
Hildesheimer Informatik-Berichte

Sascha El-Sharkawy, Adam Krafczyk,
and Klaus Schmid

Mismatched Con�guration Information of

Linux

October 19, 2016

Report No. 1/2016, SSE 1/16/E

Software Systems Engineering
 Institut für Informatik
Universität Hildesheim
Universitätsplatz 1
 D-31134 Hildesheim

Abstract

Context. Software product line engineering has been established to minimize
costs and e�orts, while maximizing the quality of products in a family of software
products. Software product lines typically contain a variability model, which sup-
ports the derivation of permissible variants. These variability models may contain
expert/domain knowledge in the form of constraints. These constraints are used
during the con�guration process to avoid the selection of unsupported product vari-
ants.

Problem. Developers must encode their knowledge about supported product
variants and restrictions, otherwise the variability model becomes ine�ective or even
incorrect. The initial development of the variability model as well as the evolution
of the product line implementation bear the risk that model and implementation
drift apart. In this report, we introduce the notion of mismatched con�guration

information to describe the situation if the variability model does not re�ect the
dependencies of the implementation. This may indicate an incomplete variability
model or undesired dependencies between code artifacts.

Solution. We discuss the impact of mismatched con�guration information and
show how to detect this conceptually. Subsequently, we focus on mismatched hier-
archical con�guration information and present an e�ective heuristic for their detec-
tion. These results serve as an input to complete variability models or a code review
to remove undesired implementation dependencies. We discuss the application of
our approach on a Linux case study. The analysis of the x86 architecture of the
Linux kernel takes only around 30 minutes and revealed mismatched con�guration
information, which was not treated by prior work.

1

Contents

1 Introduction 4

2 Related Work 5

3 Mismatched Con�guration Information 6
3.1 Problem Description . 6
3.2 Example . 7
3.3 Formalization . 9

4 Detection of Missing Nesting Dependencies 11

5 Implementation 14
5.1 Variability Extractors . 14
5.2 Algorithm . 15

6 Evaluation 18
6.1 Conducting the Analysis . 18
6.2 Analysis of the Results . 19

6.2.1 MEMSTICK_UNSAFE_RESUME 19
6.2.2 KVM_DEBUG_FS . 20
6.2.3 RTC_DRV_DS1685 and RTC_DRV_DS1689 21

7 Conclusion and Future Work 22

2

List of Figures

1 Feature model of our example with two optional features. 8
2 E�ective code of the product tBu. 9
3 Simpli�ed structure of Kcon�g. 14
4 The analysis setup . 18

List of Listings

1 Implementation space of the example. 8
2 Algorithm for detecting missing nesting dependencies. 16
3 Preprocessor structure in mspro_block.c 20

List of Tables

1 Calculation of code dependencies and dominating parent variables. 12
2 Results of the analysis for the x86 architecture (v4.4.1). 19

3

1 Introduction

Software Product Lines (SPLs) are inherently signi�cantly more complex than individual
systems. This increase in complexity is due to the need to cover all relevant varia-
tions. In addition, product lines typically contain a variability model, which supports the
derivation of the permissible variants. In particular, the variability model is supposed to
represent all necessary knowledge on which features can be combined. However, often the
product line implementation itself also restricts the potential products in a more or less
explicit way. This distribution of dependencies to (at least) two di�erent artifact types
results in a situation where the actual situation may become unclear or even inconsistent.

New concepts have been developed to address the challenges of quality assurance
in the context of SPLs. For instance, testing strategies of variable code artifacts
[vdLSR07, ABKS13] or the detection of con�guration anomalies in feature models like
dead features [MWC09, BSRC10], which are leading to misinterpretations of the vari-
ability model [vdML04]. Recent research addresses the combination of information of
the variability model and the code artifacts to facilitate static analysis of product line
assets [TLSSP11, LvRK�13]. However, this work targets the consistency of the di�er-
ent artifacts. In this report, we present an approach for checking the completeness of
the variability model to support users during the con�guration process, as demanded by
Jean Delvare, a maintainer of the SUSE distribution [Del14].

First, we discuss the impact if the variability model misses information of implemented
dependencies. Instead of the detection of all divergences of the variability model and the
implemented artifacts, which may overwhelm the developer with too many results, we
focus on the e�cient detection of a speci�c kind of mismatched con�guration information:
missing nesting dependencies. We expect that these results will be more comprehensible
to developers as they represent locally hierarchical structures of the implementation and
do not cover widely scattered cross-tree dependencies.

This report is structured as follows: in the next section, we discuss related work on
analysis methods for detecting variability-related issues in the context of software product
lines. In Section 3, we discuss the concept of mismatched con�guration information and
their impact. In Section 4 we focus on the detection of a particular class of mismatched
con�guration information, which we call missing nesting dependencies. Section 5 de-
scribes the implementation of our approach. Section 6 evaluates our approach based on
the Linux kernel. Finally, Section 7 provides conclusions and outlines some future work.

4

2 Related Work

In this report, we compare the variability information of code assets with the modeled
variability information to detect potential problems in a software product line, which may
be seen as an instance of variability smells [ABKS13]. We identi�ed two categories of pa-
pers, which are relevant for this work: similar approaches for detecting variability errors,
and existing analysis tools, which are appropriate for this kind of problem detection. The
remaining section is organized according to these two categories.

Approaches for detecting variability errors. In recent years, much e�ort was
spent to detect defects related to software product line development, like (un-)dead fea-
tures [BSRC10], (un-)dead code [TLSSP11], or variability-aware type checking and live-
ness analysis [LvRK�13]. Also Thüm et al. [TAK�14] survey general analysis strategies
for software product lines. Even if the main objective of these analysis techniques is the
detection of logical defects, some techniques also include the detection of further issues,
e.g., detection of super�uous code [TLSSP11] to resolve maintenance issues, a form of a
technical debt [Sch13, KNO12].

Nadi et al. [NBKC14, NBKC15] present an approach for the automated extraction of
variability model constraints based on a variability-aware code parser [KGR�11]. They
aim at support for creating variability models instead of a consistency check or smell
analysis. They evaluated their approach among others based on the Linux kernel and
were able to extract approximately 33% of the hierarchical constraints and 5% of the
cross-tree constraints. They argue, that the missing constraints address in large part
expert knowledge or run-time behavior, which cannot be detected by a statical analysis.

Analysis tools. Most of these software product line analysis approaches have been
evaluated based on the Linux kernel and similar open source projects. For this reason,
various research prototypes were developed, which are able to handle the variability
information of the Linux kernel. Most of these tools are able to translate the variability
information into propositional logic, which may be processed by SAT-solvers. The authors
of these research prototypes made their tools public available to facilitate the replication
of their experiments as well as to support the reuse of their tools in di�erent contexts.
In [ESKS15, ESKAS15], we analyzed the quality of tools regarding the translation of
Kcon�g models, a textual language used to manage the variability of the Linux kernel.
This translation is not a trivial task, since the semantics are rather unclear because of
many corner cases. In the implementation (cf. Section 5) we reuse some of these tools
based on our comparison [ESKS15].

5

3 Mismatched Con�guration Information

In this section, we introduce the notion of mismatched con�guration information, before
we continue in the next section with a detailed analysis of a speci�c form: missing nesting
dependencies.

3.1 Problem Description

Mismatched con�guration information describes a divergence between con�guration in-
formation in the variability model and implemented variability of (code) assets. This
may hamper the con�guration process or lead to errors during product derivation. For
example, the following defects may be introduced through mismatched con�guration in-
formation:

Redundant Con�gurations
The derivation process of a correct product line should lead to di�erent product
instances for di�erent con�gurations. As a result of mismatched con�guration in-
formation, this may be violated. While this may be intentional, it may also be
created as an accidental problem, especially if the variability information is dis-
tributed across a number of di�erent artifacts (e.g., variability model, code, build
model). This problem is also mentioned by Jean Delvare, a maintainer of the SUSE
distribution [Del14].

Also the authors of [NBKC15] argue that all valid con�gurations should lead to
lexically di�erent products. More precisely, the manual selection of a feature f
should a�ect the product derivation. If the feature f has no e�ect unless other
features are selected, it should automatically be disabled or hidden to simplify the
con�guration process. The authors call this feature e�ect. In a detailed analysis
of the x86 architecture of the Linux kernel v2.6.33.3, the authors detected 219
dependencies1, which are not covered by the variability model.

Erroneous Code Derivation
Additional or incorrect dependencies may lead to the derivation of semantically
incorrect products or at least products that di�er from the semantics intended
by the con�guration. This is a rather critical defect as the con�gured product is
compilable and hence the issues are not initially visible.

Dead or Undead Features or Code
This has received signi�cant attention in the scienti�c literature [TLSSP11,
BSRC10]. It has been mostly treated as an error, but when analyzing where these
errors stem from, this may be due to complexity of the variability as described
by Tartler et al. in [TLSSP11] in their example for the concept of "logic integrity
violation".

1Detailed measuring results are available at https://bitbucket.org/snadi/farce-

linuxanalysis/raw/365342ccb32bd51c05d41c0646841d8e89bf380c/output/Comparison/

CodeVsFeatureModel/linux_accuracyStats.csv

6

https://bitbucket.org/snadi/farce-linuxanalysis/raw/365342ccb32bd51c05d41c0646841d8e89bf380c/output/Comparison/CodeVsFeatureModel/linux_accuracyStats.csv
https://bitbucket.org/snadi/farce-linuxanalysis/raw/365342ccb32bd51c05d41c0646841d8e89bf380c/output/Comparison/CodeVsFeatureModel/linux_accuracyStats.csv
https://bitbucket.org/snadi/farce-linuxanalysis/raw/365342ccb32bd51c05d41c0646841d8e89bf380c/output/Comparison/CodeVsFeatureModel/linux_accuracyStats.csv

Potential for Evolutionary Problems
Missing con�guration information may be compensated through additional code de-
pendencies to avoid miss-con�gured products. In such situations, each code change
bear the risk, that these corrective dependencies may be removed from the imple-
mentation space without adding a corresponding constraint inside the variability
model. As a consequence, existing valid con�gurations may lead to invalid products
in the future.

As variability information may be widely distributed in a system implementation, we
need to take all artifacts into account that may contain variability information. Thus,
we look at the following three spaces in our analysis:

Con�guration Space
The con�guration space is de�ned by the modeled variability inside the variability
model. Dependencies among elements of the variability model arise through explic-
itly modeled constraints and through hierarchical structures, e.g., the relationship
between parent and child features [MWC09].

Implementation Space
In product line artifacts variability is realized through variation points like pre-
processor directives. Dependencies among variation points in the implementation
can also be represented here. For instance, in C #ifdef-Blocks realizing di�erent
features may be nested inside the same code artifact, e�ectively creating implemen-
tation dependencies among those feature implementations.

Build Space
It is also possible to model dependencies among variable elements inside the build
space, e.g. in make-scripts. Depending on the variability realization techniques
used, di�erent product line artifacts may form the �nal product [SVGB05, NH11].
From an analytical point of view can the complete (de-) selection of a product
line artifact be treated as an #ifdef-Block surrounding the whole artifact. Thus, a
comprehensive analysis of mismatched con�guration information should also include
dependencies of the build space.

In this section, we have shown how a divergence of variability of the di�erent spaces
may impair the overall product line. Such a divergence need not to lead to logical failures.
Instead they may lead to an impairment of the con�guration process, especially if they
accumulate. So far, we described mismatched con�guration information and its in�uence
to the product line on an abstract level. In the next section, we give an example how the
variability of the con�guration space and the implementation space form a con�guration
information mismatch, leading to redundant con�gurations and to an erroneous code
derivation.

3.2 Example

We introduce a small example to illustrate how missing con�guration information may
harm software product lines. While the variability in each space is consistent, their
combination gives rise to a consistency problem.

7

Figure 1: Feature model of our example with two optional features.

The example product line is described by the feature diagram given in Figure 1.
This diagram contains two independent features. Both features are optional and are not
connected by any constraints. Thus, the con�guration space (CS), de�ned by the feature
diagram, contains four con�gurations: CS � ttu, tAu, tBu, tA, Buu. The con�guration
will be saved as a set of #define-statements in a C-header �le to fmConfiguration.h.

The implementation space contains only one product line artifact: hello.c. The
variability inside this artifact is managed with preprocessor statements (cf. Listing 1).
We assume in this example there is no variability contained in the build space.

Assuming the code is correct, the variability model misses con�guration information.
Existing analysis approaches do not aim at the detection of this mismatch. Each con�gu-
ration of the con�guration space CS will lead to a syntactically correct product and, thus,
is compilable. Further, all variable parts of the implementation space (lines 6 � 13 of List-
ing 1) can be selected and unselected and, thus, are neither dead nor undead. However,
the structure of the variability inside the con�guration space di�ers from the structure
inside the implementation space, because of the additional dependency between the two
#ifdef-Blocks. In particular, while four di�erent con�gurations exist, only three di�erent
code con�gurations exist. Such situations may lead to unforeseen problems (cf. Erroneous
Code Derivation, Section 3.1); at least they increase unnecessary the complexity of the
con�guration process (cf. Redundant Con�gurations).

1 #inc lude<s td i o . h>
2 #inc lude " fmConf igurat ion . h"
3

4 int main () {
5 p r i n t f ("Active Features : \ n") ;
6 #i f d e f A
7 p r i n t f ("Feature A\n") ;
8 #i f d e f B
9 p r i n t f ("Feature B\n") ;
10 #end i f
11 #e l s e
12 p r i n t f ("None\n") ;
13 #end i f
14 return 0 ;
15 }

Listing 1: Implementation space of the example.

8

Figure 2 shows the code after the preproccessor execution for the con�guration tBu,
which is identical to the con�guration tu. Although the user selected Feature B, the
product does not contain any code related to that feature (cf. Erroneous Code Derivation).

1 #inc lude<s td i o . h>
2 #inc lude " fmConf igurat ion . h"
3

4 int main () {
5 p r i n t f ("Active Features : \ n") ;
6 p r i n t f ("None\n") ;
7 return 0 ;
8 }

Figure 2: E�ective code of the product tBu.

3.3 Formalization

Mismatched con�guration information can be detected through a comparison of the vari-
ability model and the implemented dependencies of the (code) artifacts. In this section,
we give the foundations for an e�cient analysis of mismatched con�guration information,
based on SAT solving. In the next section, this is re�ned to the identi�cation of missing
nesting dependencies. The boundaries of our approach are:

B1 Variability information can be translated into propositional logic. The approach
described below in De�nition 1 relies on a satis�ability check of (extracted) infor-
mation from the variability model and the assets (code artifacts, build process, . . .)
of the product line, to detect missing constraints. Missing information can a�ect
the detection of missing constraints in various ways:

• The approach of De�nition 1 is not applicable, if it is impossible to translate
the variability information into propositional logic, even partially.

• Missing information may lead to incorrectly identi�ed constraints (false pos-
itive results). For this reason, it is important for the translation to cover all
artifacts, which may contain variability information. In the systems software
domain there exist already a plethora of tools, which are capable to extract
information and translate it into propositional logic.

B2 A con�guration process, which makes use of a constrained variability model to avoid
the con�guration of invalid products. We have seen variability models in industry
without any constraints. These are lists of con�gurable parameters to facilitate the
con�guration of all parameters at one central point. In such a case, developers need
to check each new con�guration manually to ensure that only valid products are
derived out of the product line platform. These variability models are out of scope
as we aim at the completion of existing constraints. However, our approach can be
used to create an initial constrained variability model out of a lists of con�gurable
parameters, even if it is not our scope.

9

We focus on software product lines with constrained variability models. For in-
stance, public available software product lines like the Linux kernel and BusyBox
make extensive use of constraints in their models [BSL�13]. These constraints are
used to capture expert knowledge.

B3 A variability modeling approach, which provides assistance to simplify the con�gu-
ration process though hiding irrelevant variables. This means, that the constraints
from B2 are used to propagate values from already con�gured variables to depen-
dent elements, if values become de�nite. For instance, in feature modeling, features
become hidden or at least unselectable if their parent was deselected. Kcon�g be-
haves similar and hides variables, whose depends on constraints are not ful�lled.

Our approach facilitates the usage of an SAT-solver to check whether the variability
model VM covers a given (code) dependency δ if the aforementioned boundaries are met.
Each solution of Formula 3 indicates a mismatched con�guration information, which may
be used to complete the variability model or for a code review:

De�nition 1. The variability model VM contains a given (code) dependency δ, if and
only if δ does not further restrict the con�guration space spanned by the variability model.
That is the case if all valid interpretations of VM are also valid interpretations for δ.

(VMÑ δ (1)

ô * pVMÑ δq (2)

ô * VM^ δ (3)

However, mining general dependencies δi from code remain an issue. The authors of
[NBKC15] o�er an accurate algorithm for dependency extraction. This extraction takes
approximate 12 hours (with multithreading) / 386 hours (without multithreading) with
two AMD Opteron processors (16 cores each) and 128 GB RAM. In this work, we focus
only on a sub set, namely missing nesting dependencies. In the next section, we present
an heuristic approach to identify those dependencies in roughly 33 minutes (without
multithreading) on a much smaller hardware.

10

4 Detection of Missing Nesting Dependencies

In this section, we discuss how missing nesting dependencies can be detected e�ciently
by means of a SAT-based heuristic. This approach relies on the assumption that the
variability information can be encoded in propositional logic. This includes the complete
variability model as well as dependencies in the implementation space and the build
space. For our case study, the Linux kernel, there exist already a plenty of variability
extractors, which are able to translate the variability information of the di�erent spaces
into propositional logic (cf. Section 5.1). However, especially the tools for the extraction of
variability information from code and build artifacts �atten the hierarchy and calculate
a single condition for each variable element in the implementation and build space to
simplify the downstream analysis for which they are designed for.

Our approach aims at the deduction of hierarchical dependencies δ between vari-
able parts of the implementation and build space to check whether these hierarchies are
also covered by the variability model. For instance, in a C-based implementation these
hierarchical dependencies are nested preprocessor statements. Existing work combines
these preprocessor conditions via a conjunction, often referred to as "presence condi-
tions" [TLSSP11, KGR�11]. While this is su�cient to make a general statement under
which conditions a certain code block is part of the resulting product, this approach does
not consider hierarchies. The resulting list of presence conditions is �at, because the
combination of nested conditions form a single dependency for each code block.

Our approach for extracting hierarchical dependencies δ from code and build space
works in 3 steps. First, we extract conditional information from these artifacts, which
serve as input data for the actual algorithm (cf. Section 5.2). Subsequent, we identify
variables of the variability model, which are only used in nested conditions. We also check
that the surrounding presence conditions have at least one variable in common, i.e., that
there exist at least one variable which serves as a possible parent variable in a hierarchical
dependency relationship. In the reminder of this report, we call this kind of relationship
as a variable is dominating another variable. In the last step, we verify whether the nested
#ifdef-Block can be (de-)selected if the surrounding presence condition is ful�lled.

Our approach constructs code dependencies according to the translation of feature
hierarchies to propositional formula [MWC09], as code dependencies represent hierarchies
in the implementation space. We translate nested conditions into an implication between
the nested condition and the parent condition as illustrated in Table 1 (lines 2�3, 6�8, 11,
and 13�14). In our analysis, we check each dependency in isolation. Thus, we do not need
the information about the complete hierarchy as we only want to analyze the relation
between a nested element and its parent elements. Therefore, we calculate the presence
condition for the parent condition using the approach given in [KGR�11, TLSSP11]. This
simpli�es the analysis as we do not need to consider the full hierarchy in cases where the
hierarchy is higher than 2 (cf. lines 4�5 and 9�10 in Table 1) as this is already checked
in an earlier analysis, because each nested condition is analyzed separately.

In Section 3, we already mentioned that also the variability of the build space has to be
considered for a complete analysis of mismatched con�guration information. In our case
study, variability in the make-�les is used to select code �les for compilation and to decide
whether these �les should be linked into the �nal product or be made loadable at run-
time. These conditions can be treated like an additional #ifdef-Block surrounding the

11

Table 1: Calculation of code dependencies and dominating parent variables.
Code Dependency Dom. Vars.

1 #ifdef A � �
2 #ifdef B B Ñ A A

3 Code1 B Ñ A A

4 #ifdef C && D (C ^ D) Ñ (A ^ B) A, B
5 Code2 (C ^ D) Ñ (A ^ B) A, B
6 #endif B Ñ A A

7 #else B Ñ A A

8 Code3 B Ñ A A

9 #ifdef D D Ñ (A ^ B) A, B
10 Code4 D Ñ (A ^ B) A, B
11 #endif B Ñ A A

12 #endif � �
13 #ifdef C C Ñ A A

14 Code5 C Ñ A A

15 #endif � �
16 #endif � �

whole code artifact. In the remainder of this report, we do not di�erentiate conceptually
between dependencies coming from the implementation space and those coming from the
build space.

These dependencies represent local hierarchies among variable parts of the implemen-
tation, but do not show generalized dependencies between variables. For instance, Table 1
shows that B is nested below A at least once, but it remains unclear whether, whenever B
is used inside the implementation it is nested below A. However, these generalized depen-
dencies are needed to verify the consistency between the variability model and the code
artifacts.

We implemented a heuristic to calculate general dependencies e�ciently. In a �rst
step, we �lter variables, which are dominated by other variables. For this, we calculate
for each variable the intersection of all parent variables, i.e., variables used in surrounding
#ifdef-Blocks. If a variable is used on a top level in a hierarchy, the intersection is set to
the empty set. While calculating the intersection, we consider only the usage of variables
of surrounding #ifdef-Blocks and omit sentential connectives and negations. In Table 1,
A is not dominated, B and C are dominated only by A, as C is also used independently of
B in lines 13 � 14, and D is dominated by A and B. This is done for all variables in all
code artifacts. In the second step, we calculate the code dependencies for all occurrences
of dominated variables as already discussed. During the later analysis, we check that
the presence conditions of the surrounding #ifdef-Blocks are not contradictory for a
variable, otherwise we do not consider them as a general dependency.

For each variable v, which is dominated by at least one variable permanently, we
test whether its local dependencies δv,i are covered by the variability model VM. Con-
ceptually, this is done by testing whether VM Ñ δv,i is a tautology (cf. Formula 1 of
De�nition 1), or whether VM^ δv,i (cf. Formula 3 of De�nition 1) is not satis�able. The
transformation has the advantage that the variability model needs not to be transformed,

12

i.e., only the negation of the dependency has to be added to the existing variability model
for each dependency check.

In the following section, we present our implementation for the missing nesting de-
pendency analysis for the Linux kernel, while we evaluate our approach in Section 6.

13

5 Implementation

Here, we present our prototype for detecting missing nesting dependencies. For the imple-
mentation, we reused existing variability analysis tools to extract the relevant information
from the product line artifacts, which we need for the analysis. Since the evaluation is
based on the Linux kernel (cf. Section 6), only analysis tools are suitable, which can han-
dle the variability mechanisms used for the development of the Linux kernel (Kcon�g, C
preprossor, and Kbuild). These tools are shown in Section 5.1. In Section 5.2, we present
our algorithm to detect missing nesting dependencies.

5.1 Variability Extractors

In this section, we present existing variability analysis tools, which we used to extract
the variability information from the Linux kernel. This information serves as input for
our detection algorithm, which we explain in the next section.

Figure 3: Simpli�ed structure of Kcon�g.

Con�guration Space
The con�guration space of the Linux kernel is managed by Kcon�g [Kco15], a tex-
tual language, developed by the kernel developers. Kcon�g-�les consist of typed
variables, which may be attributed with constraints, default values, visibility con-
ditions, etc. [ESKS15]. Kcon�g models are split in multiple �les. An architecture-
dependent �le serves as entry point and de�nes architecture related settings before
importing generic �les, which may also be used by other architectures (cf. Figure
3).

Several research tools were developed to convert Kcon�g-�les into propositional
logic. For our prototype, we used kcon�greader (commit from 21.11.2015)2 to trans-
late the Kcon�g models, as this tool produces the most reliable results according
to our analysis [ESKS15]. The used version contains some additional accuracy
improvements, which not covered in [ESKS15].

Implementation Space
The Linux kernel is implemented in C, and consists of C, H, and S (assembler)
�les [Kbu15]. Variability is realized through preprocessor statements. Our current
analysis of the implementation space takes only the C-�les into account.

We use components of the Undertaker (v1.6.1)3 tool for the extraction of the vari-
ability information from C-�les. The used components parse source �les and provide

2https://github.com/ckaestne/kconfigreader
3https://vamos.informatik.uni-erlangen.de/trac/undertaker

14

https://github.com/ckaestne/kconfigreader
https://vamos.informatik.uni-erlangen.de/trac/undertaker

nesting structures of the preprocessor directives, as needed by our approach. We in-
troduced a specialized main-Method for extracting the desired information without
running the whole Undertaker analysis4. This required only minimal e�ort.

Build Space
The derivation process of the Linux kernel is implemented by Kbuild and consists
of a collection of Make�les. These �les also contain variability; C-�les may be
excluded, linked statically into the �nal product, or be compiled as loadable modules
depending on the con�guration [NH11].

We used Makex (commit from 16.10.2014)5 to generate presence conditions for each
C-�le. For this, Makex needs a list of all Linux modules; parts of Linux that can
be either linked permanently, can be integrated as loadable modules, or can be
excluded from the overall compilation. Each of them is represented by Kcon�g
as a "tristate" variable. We extracted this list from the output generated by
kcon�greader.

5.2 Algorithm

Based on the principles described earlier, we outline in this section the algorithm used as
a basis of our implementation. As part of our notation we use VKC to denote all variables
contained in the variability model (i.e., in Kcon�g). The algorithm takes three inputs:

• the code-model (CM) captures the variability contained in the code. It is given as
a set of tuples

id identi�es the piece of code that creates the variability (given as �le, start and
end line number).

cond the condition associated with the variable element; the variable element can
be (for C-code) #if, #else, or #elif. Conditions are also associated with
else-clauses (the negation of the corresponding if-clause), elif-clauses are
handled in a similar fashion.

pcond gives the complete condition of all enclosing (parent) preprocessor blocks.
Conditions of multiple enclosing blocks are combined via conjunction, as also
done by other variability analysis tools (cf. [TLSSP11, KGR�11]).

• the build-model (BM), adds the dependencies given in the build-space. This input
is optional, i.e., it can be replaced by an empty set H. The tuple-structure is
intentionally identical to the code-model, although not all entries are required:

id identi�es the targeted source �le impacted by the variability.

cond describing the condition for including the target source �le.

pcond this is empty as no hierarchical dependency analysis exists (yet).

• the variability model (VM), this is a CNF-representation of the variability model
(Kcon�g)

4The code is available at https://github.com/SSE-LinuxAnalysis/pilztaker
5https://bitbucket.org/snadi/makex

15

https://github.com/SSE-LinuxAnalysis/pilztaker
https://bitbucket.org/snadi/makex

Further, we refer to individual positions in the tuples in CM and BM using the ele-
ment names introduced above, we write v P cond to test whether a variable v is contained
in a formula cond, and we use the boolean function satpq to denote a satis�ability-test.

1 MH = H
2

3 // Generate a s s e t model
4 AM = CMY BM
5

6 // F i l t e r dominated v a r i a b l e s v
7 for pv P VKCq do

8 // Determine parent cond i t i on s f o r v
9 PPCv � tam.pcond | am P AM, v P am.condu
10 // I d en t i f y dominating v a r i a b l e s
11 Pv = {ṽ |@pcond P PPCv : ṽ P pcond^ ṽ � v}
12 end

13

14 // Detect ion o f miss ing h i e r a r c h i e s
15 for (v P VKC |Pv � H) do

16 Mv = H
17 for (am P AM | v P am.cond) do

18 i f (satpVMY t p am.cond Ñ am.pcondquq
19 ^ satpVMY t p am.cond Ñ am.pcondquq) do

20 Mv = Mv Y t am, pam.cond Ñ am.pcondq ¡u
21 end

22 end

23 // Check that surrounding cond i t i on s are not independent

24 i f (Mv � H^ satp
��

am.pcondPPPCv am.pcond
	
q) do

25 MH �MH Y t v,Mv ¡u
26 end

27 end

28

29 return MH

Listing 2: Algorithm for detecting missing nesting dependencies.

The output of the algorithm produces a set of identi�ed mismatched hierarchical
dependencies (MH), with each characterized by a tuple consisting of:

• the problematic variable v

• a set of a�ected code parts, related to v. Each consisting of:

� an id to identify the code (or build-space element) that introduces the depen-
dency and

� an exclusion condition that characterizes the situation that is allowed by the
variability model, but excluded by the implementation.

The algorithm starts by identifying all parent conditions related to a speci�c variable
(line 9). It then searches for any variables that are always contained in a precondition of

16

a speci�c variable (line 11). Only those variables are of further interest for which such a
"dominating" variable exists. While we are actually interested in dominating conditions,
we use the variable as an indicator to identify these conditions.

Next we go through all variables that have at least one dominating variable and check
their conditions (line 15/17). The satis�ability check in line 18 tests whether the negation
of the code-dependency is satis�able (and, hence, the code dependency unsatis�able).
The second satis�ability check in line 19 tests whether am.cond in�uences the code at
all. This leads to a redundant con�guration and, thus, points to missing con�guration
information, if the code dependency is indented by the developer. In line 24, we check
that the combination (disjunction) of all the surrounding conditions for the identi�ed
variable v forms a restriction, i.e., there is a dependency from the nesting conditions to
the surrounding conditions.

The combination of these three satis�ability checks are similar to the detection of
feature e�ects as described in [NBKC15]. However, the algorithm presented in Listing 2
is an e�ective heuristic to identify hierarchical dependencies only, instead of identifying
arbitrary cross-tree constraints. Please note that this does not check for dead code as in
other analysis (cf. [TLSSP11]), but only identi�es missing nesting dependencies, which
indicate missing products/super�uous con�gurations as discussed in Section 3.

17

6 Evaluation

In this section, we discuss our evaluation of the approach presented in the preceding
sections. First, we discuss the details of executing the analysis before we go into a
discussion of the results.

6.1 Conducting the Analysis

As a basis for our analysis we choose the x86 architecture of Linux kernel v4.4.1. The
main motivation for this choice was that so far many analysis have been performed on
this product line. We took it as a particular challenge whether we could identify further
problems that have not yet been described.

Our initial setup did not include an analysis of the build space, but related only
the variability model with variability in the code space. After an preliminary analysis
of these results we decided that we need to include build space analysis as well, oth-
erwise the analysis returns many false positives results. An overview of the resulting
setup is given in Figure 4. The preprocessing consists of three steps: (a) translating the
Kcon�g-information, (b) translating the make�le-information, and (c) translating the
code information to propositional logic. The tools used for variability extraction were
described in Section 5 as part of the implementation.

Figure 4: The analysis setup

The preprocessing steps were conducted on a computer with an Intel Core 2 6300
processor with 4 cores and 8 GB RAM in a virtualized (VMWare) Ubuntu 14.04 machine
with 4GB RAM and two cores. This preprocessing took roughly 30 minutes (kcon�g-
reader: 2:34", Makex: 0:45", and Undertaker: 26:28"). The most time-consuming part,
the Undertaker run, can be reused across di�erent architectures of the Linux kernel, as
it translates all code �les in an architecture-independent way. Makex and kcon�greader
must be run again for each architecture.

The �nal analysis was performed with a Java-implementation6 of the algorithm in
Listing 2. This was executed on the host system and took 3:15 minutes. Thus, the actual
analysis only requires about 10% of the total time.

6The code is available at https://github.com/SSE-LinuxAnalysis/VariabilitySmellDetector

18

https://github.com/SSE-LinuxAnalysis/VariabilitySmellDetector

Variable Result of Manual Inspection
MEMSTICK_UNSAFE_RESUME cf. Section 6.2.1
KVM_DEBUG_FS cf. Section 6.2.2
RTC_DRV_DS1685

cf. Section 6.2.3
RTC_DRV_DS1689

DEBUG_TLBFLUSH Also used in header-�les, therefore excluded from further
analysisDEBUG_VM_VMACACHE

Table 2: Results of the analysis for the x86 architecture (v4.4.1).

6.2 Analysis of the Results

The setup described in the previous section leads to the identi�cation of six problem
instances. Initially, we did not take into account whether the nested condition can be
toggled by the user. This led to the incorrect identi�cation of a number of Kcon�g
variables that were intentionally dependent on invisible variables (i.e., "HAVE_"-variables
internally used in Kcon�g to determine the capabilities of a certain architecture). Now,
the checks in Lines 17 and 18 in Listing 2 check whether the analyzed variables can indeed
be altered (or has a feature e�ect according to the de�nition of [NBKC15]). Hence, these
false positives are no longer part of the result set.

While six instances that have been identi�ed, may not seem a lot, it should be taken
into account that this already includes improvements to remove false positives and that
the speci�c Linux kernel has been intensively developed by top developers for a very long
time and has been subject to a signi�cant amount of research as well.

Manual inspection of the six results led to the following results: two elements actually
had to be categorized as unclear. The reason for their identi�cation was that the involved
variables impacted the de�nition of macros in header �les, which are included in many
code �les. This in�uenced in turn the further instantiation process. As our setup does not
incorporate the analysis of header �les, this was missed and led to the unclear assessment
as a missing nesting dependencies.

The other four results revealed multiple code blocks associated with four variables
of the Kcon�g model, which led to situations in which a con�guring user may need to
take decisions, which are not considered during the product derivation. Without domain
knowledge from an expert, i.e., a kernel developer, it remains unclear whether these
detected code dependencies are accidental or intended.

6.2.1 MEMSTICK_UNSAFE_RESUME

Here, we want to further discuss what we consider the most problematic of these four
identi�ed results. This one appears to characterize the issue of smells in the clearest way:
Our approach locates two problematic usages of the MEMSTICK_UNSAFE_RESUME-variable
inside the realization of the memory stick driver. Whenever this variable is used inside the
implementation space, it depends on another Kcon�g-variable, namely PM. A simpli�ed
excerpt of the #ifdef-Block structure is given in Listing 3.

The comparison of the implementation space with the con�guration space revealed
that there is no connection between these variables in the Kcon�g-model. The con�gu-
ration of MEMSTICK_UNSAFE_RESUME only depends on MEMSTICK, i.e., memory sticks must

19

1 . . .
2 #i f d e f CONFIG_PM
3 . . .
4 #i f d e f CONFIG_MEMSTICK_UNSAFE_RESUME
5 . . .
6 #end i f /∗ CONFIG_MEMSTICK_UNSAFE_RESUME ∗/
7 . . .
8 #e l s e
9 . . .
10 #end i f /∗ CONFIG_PM ∗/
11 . . .

Listing 3: Preprocessor structure in mspro_block.c (lines 1360�1435). Please note that
the Linux build process adds the pre�x CONFIG_ to Kcon�g variables.

be supported before their operation mode can be con�gured in more detail. According to
its description, the variable MEMSTICK_UNSAFE_RESUME is used to con�gure the behavior
of the memory stick layer when the computer is suspended. The variable PM can be used
to enable the general functionality of suspending I/O devices.

This divergence does not allow the creation of inconsistent products, since the code
of the memory stick includes the con�guration of the unsafe suspension only inside the
general suspension part. However, it allows situations, where a con�guring user has to
make decisions, which do not a�ect the product derivation. This is the case, if PM was
disabled inside the "Power management and ACPI options" and the con�gurer wants
to enable memory stick support inside the "Device Drivers" section. The relationship
between these two variables remains unclear for the con�gurer, due to the absence of
corresponding constraints in the variability model.

Based on the usage inside the implementation space and the descriptions of the vari-
ables, we suggest to model a constraint between these two variables in the Kcon�g-model.
Speci�cally, the con�guration of MEMSTICK_UNSAFE_RESUME should be made dependent
on the selection of PM to support the con�gurer during the con�guration process. Fur-
ther, this makes the dependencies between these variables, which are part of completely
di�erent sections inside the Kcon�g-model, explicit.

We expect that this makes both code-development and maintenance of the variability-
model less error-prone. Code-development would become less error-prone as a developer
would no longer have to ensure through nesting of #ifdef-Blocks that the correct de-
pendencies are de�ned, while variability modeling would become less error-prone as the
relevant dependencies are explicit.

6.2.2 KVM_DEBUG_FS

This case is very similar to the case described in Section 6.2.1. The variable KVM_DEBUG_FS
is only used once, in Line 628 of the �le arch/x86/kernel/kvm.c. Through surrounding
#ifdef-Block's and conditions of the make-�les, this line depends of the selection of the
following variables: KVM_GUEST, PARAVIRT_SPINLOCKS, and QUEUED_SPINLOCKS.

20

In Kcon�g, there is only a dependency modeled between KVM_DEBUG_FS and
KVM_GUEST. Consequently, the selection of KVM_DEBUG_FS is possible also when PARA-

VIRT_SPINLOCKS is disabled, even if this does not a�ect the product derivation.
All three variables are intended to a�ect the support of guests during the virtual-

ization. While the �rst two variables are explicitly designed for the KVM hypervisor,
PARAVIRT_SPINLOCKS is more general and should also a�ect the XEN hypervisor. There
are further constraints between these variables and other virtualization related variables
of the Kcon�g model, but no constraints to avoid this redundant con�guration.

The description of the involved Kcon�g variables points out that there is a logical
connection between KVM_DEBUG_FS and PARAVIRT_SPINLOCKS. For this reason, we would
suggest to model a depends on constraint between these two variables. However, this
relationship is not as clear as it is the case in the example of Section 6.2.1.

6.2.3 RTC_DRV_DS1685 and RTC_DRV_DS1689

Both variables RTC_DRV_DS1685 and RTC_DRV_DS1689 belong to RTC_DRV_DS1685_FAM-

ILY, which adds support for the Dallas/Maxim DS1685 family of real time clocks. They
are used multiple times within the Lines 866 to 1483 of the �le drivers/rtc/rtc-ds1685.c

and for the de�nition of constants in include/linux/rtc/ds1685.h. Even if the variables
are also used within a header �le, we decided also to include this into our manual inspec-
tion, because the usage of the de�ned variables could easily be traced back to the critical
parts of the drivers/rtc/rtc-ds1685.c �le.

Whenever RTC_DRV_DS1685 or RTC_DRV_DS1689 are used to modify the general part
of the RTC_DRV_DS1685_FAMILY implementation, they are surrounded either by SYSFS or
PROC_FS. Both variables are used to enable a virtual �le system to provide information
about the status of the operating system. However, the Kcon�g model does not contain
constraints between RTC_DRV_DS1685 and RTC_DRV_DS1689 to SYSFS or PROC_FS. Thus,
the selection of RTC_DRV_DS1685 or RTC_DRV_DS1689 has no e�ect if SYSFS and PROC_FS

are disabled.
Based on the documentation in Kcon�g, there is no logical dependency between the

involved variables. Conceptually, RTC_DRV_DS1685 and RTC_DRV_DS1689 can also be used
outside of SYSFS and PROC_FS in future implementations. For this reason, we suggest not
to model a constraint between these variables. However, the detected dependencies may
be used for a code review to check the correctness of the identi�ed dependencies.

21

7 Conclusion and Future Work

In this report, we introduced the problem of mismatched con�guration information, which
may be seen as an instance of variability smells as discussed by Apel et al. [ABKS13].
The main contribution, however, is a detailed analysis of a speci�c case: missing nesting
dependencies. For this speci�c case, we present a novel and e�ective algorithm to detect
meaningfull occurrences in a large-scale software product line. We evaluated our approach
based on the x86 architecture of the Linux kernel v4.4.1. Even though the Linux kernel
was already the object of many analyses, we were able to detect further issues with
the approach presented in this paper. These issues constitute mismatched con�guration
information as the code contains variability information that cannot be identi�ed from
the variability model.

Our current analysis does not consider header-�les, which led to the detection of two
unclear cases. For the future, we plan to consider the consistent inclusion of header-
�les as discussed in [KGR�11] to increase the accuracy of our algorithm for detecting
mismatched con�guration information. We also intent to apply our analysis approach to
a wider range of Linux architectures and potentially other systems.

Acknowledgments

This work is partially supported by the Evoline project, funded by the DFG (German
Research Foundation) under the Priority Programme SPP 1593: Design For Future �
Managed Software Evolution. Any opinions expressed herein are solely by the authors
and not of the DFG.

22

References

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

[BSL�13] Thorsten Berger, S. She, R. Lotufo, A. Wasowski, and Krzysztof Czarnecki. A
Study of Variability Models and Languages in the Systems Software Domain.
IEEE Transactions on Software Engineering, 39(12):1611�1640, Dec 2013.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Anal-
ysis of Feature Models 20 Years Later: A Literature Review. Information
Systems, 35(6):615�636, 2010.

[Del14] Jean Delvare. Hardware dependencies in Kcon�g. Linux Mailing List http://
lkml.iu.edu/hypermail/linux/kernel/1404.1/03429.html, 2014. Last
visited 20.09.2016.

[ESKAS15] Sascha El-Sharkawy, Adam Krafczyk, Nazish Asad, and Klaus Schmid.
Analysing the KCon�g Semantic and Related Analysis Tools. Technical
Report 1/2015, SSE 1/15/E, Institute of Computer Science, University of
Hildesheim, 2015. Available at https://sse.uni-hildesheim.de/kconfig-
study.

[ESKS15] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. Analysing the
Kcon�g Semantics and Its Analysis Tools. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2015, pages 45�54, 2015.

[Kbu15] Linux Kernel Make�les. https://www.kernel.org/doc/Documentation/

kbuild/makefiles.txt, 2015. Last visited 03.03.2016.

[Kco15] kcon�g-language. https://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt, 2015. Last visited 03.03.2016.

[KGR�11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg,
Klaus Ostermann, and Thorsten Berger. Variability-Aware Parsing in the
Presence of Lexical Macros and Conditional Compilation. In Proceedings
of the 2011 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA '11, pages 805�824,
New York, NY, USA, 2011. ACM.

[KNO12] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. IEEE Software, 29(6):18�21, Novem-
ber/December 2012.

[LvRK�13] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre,
and Christian Lengauer. Scalable analysis of variable software. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages
81�91. ACM, 2013.

23

http://lkml.iu.edu/hypermail/linux/kernel/1404.1/03429.html
http://lkml.iu.edu/hypermail/linux/kernel/1404.1/03429.html
https://sse.uni-hildesheim.de/kconfig-study
https://sse.uni-hildesheim.de/kconfig-study
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

[MWC09] Marcilio Mendonca, Andrzej W¡sowski, and Krzysztof Czarnecki. SAT-based
Analysis of Feature Models is Easy. In Proceedings of the 13th International
Software Product Line Conference (SPLC '13), pages 231�240. Carnegie Mel-
lon University, 2009.

[NBKC14] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
Mining Con�guration Constraints: Static Analyses and Empirical Results.
In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 140�151, New York, NY, USA, 2014. ACM.

[NBKC15] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki.
Where do Con�guration Constraints Stem From? An Extraction Approach
and an Empirical Study. IEEE Transactions on Software Engineering,
41(8):820�841, Aug 2015.

[NH11] Sarah Nadi and Ric Holt. Make it or break it: Mining anomalies from linux
kbuild. In 18th Working Conference on Reverse Engineering (WCRE 2011),
pages 315�324. IEEE, 2011.

[Sch13] Klaus Schmid. A formal approach to technical debt decision making. In
Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures, pages 153�162. ACM, 2013.

[SVGB05] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A taxonomy of variability
realization techniques. Software: Practice and Experience, 35(8):705�754,
2005.

[TAK�14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A Classi�cation and Survey of Analysis Strategies for Software Prod-
uct Lines. ACM Comput. Surv., 47(1):6:1�6:45, 2014.

[TLSSP11] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. Feature Consistency in Compile-Time�Con�gurable System Soft-
ware: Facing the Linux 10,000 Feature Problem. In Proceedings of the sixth
conference on Computer systems, pages 47�60. ACM, 2011.

[vdLSR07] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[vdML04] Thomas von der Maÿen and Horst Lichter. De�ciencies in feature models.
In Workshop on Software Variability Management for Product Derivation-
Towards Tool Support, page 44, 2004.

24

	Introduction
	Related Work
	Mismatched Configuration Information
	Problem Description
	Example
	Formalization

	Detection of Missing Nesting Dependencies
	Implementation
	Variability Extractors
	Algorithm

	Evaluation
	Conducting the Analysis
	Analysis of the Results
	MEMSTICK_UNSAFE_RESUME
	KVM_DEBUG_FS
	RTC_DRV_DS1685 and RTC_DRV_DS1689

	Conclusion and Future Work

