erSitdy
N S ~
SPrs O
5 g S :
2 d & F—
/{p § E -

2003

Hildesheimer Informatik-Berichte

Christian Kroher

Control Action Types
Patterns of Central Control for Self-adaptive Systems

August 26, 2022

Report No. 1/2022, SSE 1/22/E
ISSN 0941-3014

Software Systems Engineering e Institut fiir Informatik
Universitdat Hildesheim e Universitatsplatz 1 e D-31134 Hildesheim

Abstract

An essential building block for any Self-adaptive System (SaS) is its inherent control
mechanism. This mechanism enables a SaS to modify its domain functionality with
respect to changes in its environment autonomously. Distributed control and central
control represent two complementary paradigms to establish this capability. The selec-
tion of one of these paradigms leads to significant trade-offs regarding certain software
qualities when designing a SaS. A promising approach to minimize these trade-offs
is an integration, which combines the individual benefits to achieve the best of both
paradigms. However, establishing such a multi-paradigm control requires comprehen-
sive knowledge about control options and their interactions, which is hardly available.

In this report, we build on our previous work and present a pattern catalog for
integrating distributed and central control. We introduce these patterns by a taxonomy
of Control Action Types (CATs). Each CAT describes a unique type of interaction
between a central controller and a distributed controlled SaS to achieve a desired
adaptation. Further, we identify involved trade-offs between these CATs. While other
approaches exist, which propose their individual integrations, we aim at a systematic
discussion of the range of multi-paradigm control for a SaS.

Keywords: Self-adaptive systems, distributed control, emergence, control unit, central
control, multi-paradigm control, patterns

Contents

1 Introduction

2 Background

2.1 Multi-Paradigm Control
2.2 System Understanding
2.3 Running Example o000

3 Taxonomy

4 Patterns
4.1 Command e
4.2 Constraint
4.3 Influence
4.4 Pseudo-Emergence oL
4.5 TIsolation Lo

5 Discussion
6 Related Work

7 Conclusion

Bibliography

33

36

38

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

SaS control design space and trade-offs 0. 7
System reference model oL 9
System reference model instance: example of a micro grid 11
Command pattern 17
Constraint pattern 18
Influence pattern 21
Pseudo-emergence patterno 25
[solation pattern L 28

List of Tables

5.1 Summary and classification of presented control action types

Chapter 1

Introduction

The unique characteristic of any Self-adaptive System (SaS) is its autonomous adapta-
tion to changes in its environment [WSG™13]. In general, this capability serves several
system qualities, like scalability, resilience, and flexibility [KMO07]. However, the extent
of support for certain system qualities depends significantly on the selected mechanism
to establish self-adaptation of a SaS. In particular, the specific way of establishing the
control mechanism for observing and reacting to changes plays a fundamental role.

Distributed control and central control are two complementary paradigms to
establish the control mechanism for a SaS and thereby its ability to self-adapt.
The former paradigm splits the system control across the constituent entities of a
SaS [GCGCO07, KC03, DKJ18]|. The latter paradigm adds a single controller, which
manages all constituent entities of a SaS collectively [WSGT13, GCGL15, Boy76|. This
results in individual benefits and drawbacks regarding certain software qualities. For
example, distributed control provides higher resilience by avoiding any single point of
failure (no single controller). In turn, central control enables higher predictability of
the ultimate outcome of adaptations by avoiding any negotiations (no coordination of
control between multiple entities). Hence, the selection of one of these paradigms leads
to significant trade-offs when designing a SaS [Bor13].

A promising approach to minimize the trade-offs between distributed and central
control is their integration. The aim of this integration is the combination of the in-
dividual benefits to achieve the best of both paradigms [KGS22, Borl3]. However, a
reasonable integration forming a useful multi-paradigm control approach is challeng-
ing [MEHdH13]. For example, it is not trivial to find a suitable compromise between
resilience (distributed control) and predictability (central control) of a SaS. Further,
SaS engineering lacks a systematic understanding of control options [dLGM™13] as well
as references for their interactions [BDMSG™*09]. This absence of fundamental knowl-
edge impedes profound design decisions towards a multi-paradigm control approach.

In this report, we build on our previous work [KSPS21, KGS22] as part of the
DevOpt-project [Dev] and present a pattern catalog for integrating distributed and
central control. We therefore extend our initial catalog [KSPS21] by explanations of
our approach for multi-paradigm control and the underlying understanding of a general
SaS. On this basis, we introduce the patterns by an extended taxonomy of Control Ac-
tion Types (CATs). These CATs support the design of a multi-paradigm approach to
SaS control, like design patterns do for object-oriented software development [GHJV94]
or idioms for specific programming languages [Cop92]. Each CAT describes a unique

type of interaction between a central controller and a distributed controlled SaS to
achieve a desired adaptation. Hence, we provide a systematic discussion of how cen-
tralized control can influence a SaS, while keeping as much of its autonomy as possible.
This core contribution explicitly addresses the aforementioned obstacles when design-
ing control for a SaS [MEHdH13, dLGM™13, BDMSG'09]. Further, we discuss the
trade-offs between the CATs and the general benefits of this catalog for practitioners
as well as researchers.

The aim of our pattern catalog is to provide a systematic overview of the range of
possible approaches to establish multi-paradigm control for a SaS. Hence, we do not
introduce fundamentally new control mechanisms. Our catalog categorizes existing ap-
proaches, like [KM90, GCS03, KTK"16], and enables the comparison of their properties
on the level of abstract control action types. In this way, our contribution differs from
other overviews on SaS control, which, for example, focus on the broader design of such
systems [KTPR20], the interaction and distribution of control loop steps [dLGM*13],
or the distribution of entire controllers [SMSc*10].

The remainder of this report is structured as follows. Chapter 2 presents the back-
ground for our pattern catalog. It explains our approach to multi-paradigm control
and our general understanding of the target system we apply this approach to. We
exemplify this explanation by a scenario from the electric grid domain, which we use
as a running example throughout this report. Chapter 3 introduces the taxonomy for
describing our patterns consistently. We define the individual dimensions of this taxon-
omy, which cover both general as well as multi-paradigm control aspects. In Chapter 4,
we apply this taxonomy to describe the individual patterns. Further, we illustrate their
application in the context of our running example. Chapter 5 summarizes and discusses
the contribution of this report. In particular, we discuss the main advantages and dis-
advantages of the individual patterns, provide examples for their selection in practice,
and explain the expected impact for current and future research. Chapter 6 delimits
this overall contribution from related work, while Chapter 7 concludes this report with
final remarks on future work.

Chapter 2

Background

The contribution of this report relies on a specific integration of distributed and central
control mechanisms to achieve the desired multi-paradigm control approach. Hence,
we start by outlining this integration and its motivation in Section 2.1. This basic
introduction to our control approach leads to a particular understanding of a SaS. We
explain this understanding along a system reference model in Section 2.2. This model
introduces the generic elements of and their relations in a SaS to which we refer to in
Chapter 4 to describe individual CATs. In Section 2.3, we instantiate this model to
create a running example for the remainder of this report.

2.1 Multi-Paradigm Control

The main motivation for our pattern catalog presented in this report is based on our
approach to integrate distributed and central control for complex SaS [KGS22]. This
integration enables a SaS to easier satisfy multiple software qualities simultaneously
than comparable systems, which rely on one of these control paradigms exclusively.
The emergent properties arising from distributed control will enable a SaS to handle
common situations in a resilient way autonomously. For special situations, which
require global knowledge to be detected and to derive respective actions, a central
controller for the SaS keeps an option to intervene.

High
Simplicity
Predictability
Speed
Low
Central control Distributed control

Figure 2.1: SaS control design space and trade-offs

Our Multi-Paradigm Control (MuPaCo) approach therefore aims at an optimum
for design trade-offs regarding certain software qualities as illustrated in Figure 2.1.
The more control is distributed among the constituent entities of a SaS, the higher is

their autonomy and, hence, the support for resilience [GCGCO07] and scalability [KC03].
However, a high degree of distribution makes it difficult to reach global optimum, op-
timize simultaneously multiple properties, and balance the entire system fast after
significant changes. Central control counteracts these downsides by its simplicity com-
pared to multiple distributed control mechanisms and their coordination. This leads
to high predictability of the ultimate outcome of adaptations [WSG*13, GCGL15] at
comparably high speed. In turn, a high degree of central control lacks robustness
against failure, requires support for potentially multiple adaptation approaches offered
by SaS entities, and needs comparably high computational effort to manage all SaS
entities simultaneously. The advantages of distributed control again compensate these
disadvantages from strictly following central control.

The integration of basic distributed control with temporal, case-dependent central
intervention is at the heart of our MuPaCo approach. In this way, we bring together
recent advances in distributed, emergent systems engineering with well-established con-
trol theory to reach optimal design trade-offs. A significant step towards the realization
of this approach is the overview of possible types of central control actions and their
impact on a distributed controlled SaS presented in this report.

2.2 System Understanding

A typical SaS basically consists of a managing system and a managed system [KC03,
WA13, QWG21]. The former system type often realizes a control loop, like
MAPE [KCO03], OODA [Boy76], or CARE [GCGL15], to adapt the domain functional-
ity provided by the latter system type to changes in its environment. In Figure 2.2a,
we adopt this basic differentiation in terms of a control unit representing the managing
system for the managed system. We intentionally use a different term for the managing
system as our focus is on executing certain adaptations via our CATs in this report.
Based on this specific focus, we interpret our control unit as a special case of managing
system, which is able to perform all of these CATs (indicated by the ctri-attribute in
Figure 2.2b). Hence, we assume that the control unit also provides upstream capabil-
ities, like monitoring and analyzing the managed system, but do not further discuss
them here.

The basic constituent element of the managed system is called entity in Figure 2.2a.
In general, an entity is a software system, which interacts with its local entity environ-
ment. It observes this environment via its monitored variables and reacts to the derived
input by producing output, which it maps to its controlled variables [PM95]. As part of
the managed system, these entities typically only provide certain domain functionality,
but do not include self-adaptive capabilities [HTHJ09, ARS17|. However, some notions
of a SaS consider its entities to be self-adaptive on their own [KC03, SMSc™10]. Hence,
we differentiate between two specific types of entities as illustrated in Figure 2.2b:

o A self-adaptive entity pursues a specific goal autonomously. It therefore adapts
itself to its local entity environment without the need of external guidance. A
typical SaS represents an instance of such an entity in this understanding. This
leads to a recursion where a self-adaptive entity simultaneously is an element of a
managed system and consists of a managing system as well as, again, a managed
system.

o A non-self-adaptive entity does not pursue a goal autonomously. It therefore
only provides its domain functionality, but no self-adaptive properties on its own.
Any instance of such an entity will only react to explicit calls for this domain
functionality without consideration of the state of its local entity environment!.
This leads to the absence of any refinement of a non-self-adaptive entity relevant
for our system understanding?.

management

- e m e e e e e e - e e e e e ey

/ Managed System \

Entityl Environment
monitored B controlled

——————>| Entityl -
variables C variables
] _ monitored Entitv3 controlled
Interaction 9" variables :y variables

y Entity3 Environment
monitored . controlled -~ impact
&—————>| Entity2 . g S
variables variables

Entity2 Environment !

o ——
v

-
~

- e e e e e e e R e e R e e e e G e R e e e e e e e e e .

(a) System overview

1.* 1.*
Entity
ZP managedSystem

[| 1
Non-Self-Adaptive Entity Self-Adaptive Entity [K>——

1
1
manages 1

Managing System

e

ctrl[] : CAT

(b) Core element types

Figure 2.2: System reference model

'Except for those parts of the environment (monitored and controlled variables) relevant to observe
such calls and react to them. However, it always provides a constant behavior even in situations that
would require adaptation to improve it.

2A non-self-adaptive entity may of course be further refined into constituent elements, but these
elements will not be a managing and a managed system as for self-adaptive entities.

Based on this differentiation, our reference model supports the following SaS vari-
ants:

o Basic SaS for which the control unit represents the managing system and a set
of non-self-adaptive entities realizes the managed system; this represents a simple
application of the reference model as the entities of the managed system cannot
be further refined by re-applying this model

o« Complex SaS in which the managed system consists of self-adaptive entities
managed by a superior control unit; this represents a full-recursive application of
the reference model as it can be re-applied to each entity of the managed system

o Hybrid SaS including non-self-adaptive and self-adaptive entities as part of their
managed system and a superior control unit as managing system; this represents
a partial-recursive application of the reference model as it can be re-applied to
the self-adaptive entities of the managed system, but not to the non-self-adaptive
ones

Independent of their specific type, relations between entities exist to provide the
general domain functionality of the managed system collectively. We categorize these
relations into direct interaction and indirect impact. Direct interaction describes any
form of information exchange between at least two entities. However, the type of
exchanged information is limited. We do not expect explicit control of one entity
over others by sending commands or force a specific adaptation. This is an exclusive
capability of the control unit. Interactions only convey information about entities, like
their intention or state. For example, the interaction between Entity! and Entity2 in
Figure 2.2a may allow coordinating their future actions before their actual execution.
In contrast, indirect impact occurs as an effect of one entity’s actions via its controlled
variables. For example, the impact relation in Figure 2.2a may indicate that Entity3
observes (the result of) the execution of certain actions by Entity2. For both types of
relations, the specific characteristics of their instances vary in practice. In general, we
assume that at least one of these types exist between entities of a managed system,
while any combination per entity is possible.

The presented reference model enables the derivation of SaS instances ranging from
single, small-scale systems to complex systems of systems. Further, it supports both
basic control paradigms to establish self-adaptation: the basic SaS variant represents
a purely central control approach, while the complex SaS variant allows a purely dis-
tributed control by excluding the superior control unit. Our multi-paradigm control
approach exists inherently in the complex SaS variant (without modifications) and the
hybrid SaS variant. This generality of the reference model aims at its practical ap-
plicability as required in the DevOpt-project [Dev]. For the CATs in this report, we
focus on the complex and hybrid SaS variants, which consist of distributed controlled
entities and a superior central control unit.

2.3 Running Example

In the DevOpt-project [Dev], one of the target use case scenarios resides in the domain
of smart energy supply. Figure 2.3 illustrates an electric grid as an example from this

10

domain. The Micro Grid represents a certain city district, which consists of a set of
electric grid elements:

e The Power Plant acts as a pure energy provider for the entire district
o The Fuactory is a pure energy consumer as it does not generate any energy itself

o The Wind Turbines combine energy provision with its consumption when loading
their local battery for later use of their generated renewable energy surplus

e The Home A and Home B also realize hybrid capabilities via their photovoltaic
as local renewable energy generators as well as their batteries and electric cars
as local consumers

management
// - =~ \\

t Micro Grid A
1 \
] Power Plant il ___)_l \
: [Self-Adaptive Entity] - - |
] g Home A |
1 ‘._. :-' o _ 1
: 3 Wind Turbines E (phOtOVSOI/ta:&Ioi?l bztt;;y, e-car) i
! v 3 (local battery) ; [Self-Adaptive Entity] i
. - - i|[Non- Self-Adaptive Entity]|: :
1 interaction impact * i Impact I
! impact !
A Y | e > |
: VR Grid . :
! ' Power !
1 I I
! A Balance - 3 I
I I - Y ; I
" :’ "“ ::. Home B X
\ Factory e (photovoltaic, local battery, e-car) !
‘. |[Self-Adaptive Entity] impact impact [Self-Adaptive Entity] K

S 7
N e

N o e

Figure 2.3: System reference model instance: example of a micro grid

We consider these electric grid elements as specific instances of the entities of
our system reference model introduced in the previous section. In general, each of
these elements monitors and controls its respective variables in its specific environ-
ment (no global grid knowledge). However, they vary with respect to their degree of
self-adaptation and autonomy. The Power Plant, Factory, Home A, and Home B rep-
resent instances of self-adaptive entities as they typically pursue their individual goals.
For example, Home A and Home B should offer a high level of comfort for its residents
with minimal energy consumption. The Factory should reach the maximum of produc-
tion with the available amount of energy. In turn, the Power Plant should provide the
maximum of energy with minimal effort. In order to reach their goals, each of these

11

elements consists of further entities supervised by a certain form of managing system.
In practice, such forms may range from automated control loops to manual control by
humans. In contrast, the Wind Turbines are an instance of a non-self-adaptive entity
due to their lack of an individual goal and a dedicated managing system. They only
react to changing weather conditions (monitored variables) by blocking or releasing
their rotor blades (controlled variables). If no other demand exists, they load their
local battery until maximum, which then terminates the energy generation. A goal
beyond mere energy production requiring adaptations by a more sophisticated local
managing system typically do not exist for this entity here.

The Grid Power Balance is a means to connect all entities in Figure 2.3. It quan-
tifies the overall energy flow between the entities as a single variable aggregating the
individual energy surpluses (provisions) and deficits (consumptions). In this way, the
Grid Power Balance realizes an impact relation of our system reference model. Any
significant change in an entity power balance as an effect of its locally controlled vari-
ables will occur as a subsequent change of the Grid Power Balance. In turn, this
subsequent change may affect other entities indirectly. Hence, this relation between
all entities enables them to act on the current provision and consumption of energy in
the grid. Further, the interaction relation between the Power Plant and the Factory
enable their direct communication in special situations. For example, the Factory may
inform the Power Plant about its plan to increase its production unscheduled in a
certain timeframe in future. The Power Plant may then acknowledge or reject this
plan depending on its capability to provide the necessary extra energy.

The individual capabilities of the entities as well as their relations result in the
emergent behavior of self-stabilizing towards an optimal Grid Power Balance on a
global level. This optimum typically is the provision of enough energy to satisfy all
demands, while consuming all available energy to prevent its waste. For example, Home
A may offer an energy surplus via its photovoltaic and due to the lack of active local
consumers. The remaining entities in Figure 2.3 recognize this surplus as a consequence
of the respective increase of the Grid Power Balance. Several alternative strategies exist
to avoid wasting this surplus, which solely rely on the self-adaptation of individual
entities realized by a distributed control paradigm:

o If Home B or the Factory increases its energy demand at the same time, the
surplus could be used to balance the grid

o If the grid power is balanced (no simultaneously increasing demand):

— The surplus could be an opportunity for the Power Plant to reduce its
production

— The surplus could be used to start other consumers, for example, in the
Factory or any batteries

Each of these strategies is sufficient to reach an optimal Grid Power Balance again.
However, comprehensive knowledge about the current situation in the entire grid would
allow for a more qualified selection, like whether reducing the production of the Power
Plant is the better choice than starting other consumers. A possible approach to
always select the optimal strategy in any of such situations is to extend the basic self-
adaptive and distributed approach by a central Control Unit. Hence, the Micro Grid

12

becomes a managed system that ensures reliably balancing its energy autonomously
via distributed control. The Control Unit typically only performs optimizations, like
selecting a globally optimal distribution of energy or prefer renewable energy to other
sources. Further, the grid would always fall back on a reliable energy supply, if problems
with the central Control Unit occur.

13

Chapter 3

Taxonomy

The characterization of the patterns as Control Action Types (CATSs) uses a common
schema for describing their properties consistently. We introduce this schema in this
chapter by defining its constituent dimensions. These dimensions cover general and
multi-paradigm control aspects as well as demonstration purposes. They are inspired
by taxonomies used to characterize patterns in other research areas, like object-oriented
design [GHJV94], programming languages [Mar96], or agent-based systems [SCHT02].
The result is a refinement of the taxonomy used in our previous work [KSPS21]. The
explanation of this refined taxonomy relies on the system understanding and uses the
terms as introduced in Section 2.2.

The general aspects of our taxonomy provide the following fundamental information
about a CAT:

o« Name: The unique label of the CAT, which enables its precise identification
and conveys its core control mechanism. We introduce the name of the CAT in
terms of the heading and as part of the first paragraph of the respective section
describing the CAT in Chapter 4.

o Intent: The description of the control mechanism of the CAT. This includes
the discussion of the intent and rationale to pursue this particular action. If
necessary, we will consider additional problems motivating its application.

o Applicability: The discussion of any conditions that must be satisfied for a
successful application of the CAT. This covers aspects ranging from general as-
sumptions on the entire SaS to specific capabilities of the constituent entities.
However, the amount and details of relevant aspects will vary with respect to
the individual CAT. Further, we always assume upstream control capabilities
to be available (cf. Section 2.2). For example, we will not discuss the steps of
monitoring and analyzing the SaS for the selection of an appropriate CAT for a
particular situation. Our focus is on the CATs and their application only.

o Structure: The description of the elements involved in the CAT along a graph-
ical representation of their static relations. This always includes a control unit,
which executes the CAT, and a target entity. For some CATs to work as intended,
the relevant relations require additional auxiliary elements, e.g., to transmit the
control action from the control unit to the target entity.

14

e Dynamics: The description of the dynamic relations between the elements in-
troduced as part of the CAT’s structure. In particular, we discuss the commu-
nication among them along a graphical representation. Further, we consider the
response of the (remaining) SasS.

The dimensions specific to multi-paradigm control discuss the following runtime
properties of a CAT:

o Delay: The delay between the start of the central intervention and the point
in time when the desired results have been achieved. Depending on the spe-
cific CAT, this may include the time for the response by the (remaining) SaS
and, in particular, its self-adaptive entities.

o Autonomy: The extent to which the application of the CAT preserves the dis-
tributed self-organization of the SaS. This discussion always considers the directly
affected target entity. Further, we discuss any potentially additional indirect im-
pact on the remaining self-adaptive entities.

The demonstration aspects of our taxonomy cover the following practical informa-
tion for a CAT:

o Example: The description of the application of the CAT in the context of our
running example of an electric grid (cf. Section 2.3). In contrast to the following
dimension, we illustrate the application of each CAT in the same context here to
highlight their individual nature.

o Usage: The collection of known uses of the CAT in other literature. This also
constitutes partially related work of this report specific to the respective CAT.

15

Chapter 4

Patterns

This chapter provides the detailed descriptions of the Control Action Type (CAT)
patterns using the taxonomy defined in Chapter 3. These descriptions rely on our
basic SaS understanding introduced in Section 2.2. Hence, we describe each CAT
by an interaction between a control unit, which executes the CAT, and a self-adaptive
entity, which represents the target of that control action. Following our multi-paradigm
control approach (cf. Section 2.1), we assume the target entity as well as the remaining
SaS entities to be distributed controlled, while the control unit deploys central control.
The selection of a self-adaptive entity as the target of a central control action is subject
to previous analysis and planning steps, which are out of scope of this contribution (cf.
Section 2.2). Further, CAT descriptions do not consider adaptations of multiple entities
simultaneously. For this purpose, the control unit either re-applies the same CAT to
all target entities or executes different CATs for each target entity.

4.1 Command

Global knowledge about the current situation sometimes demands for immediately en-
suring a specific adaptation of a particular entity. Hence, complex coordination tasks
are not desired, like internal reasoning and decision-making by individual entities, or
their interaction. In particular, in a global case of emergency, autonomous propagation
of this situation between entities and their respective adaptations delay urgent reac-
tions. The command pattern describes how to establish a central control mechanism
for these types of situations. It bypasses the basic distributed control and the related
self-adaptation processes in a SaS for the benefit of a fast and targeted adaptation.
Intent: A command represents an instruction that the target entity must carry out
as specified immediately. It leaves no room for interpretation for that entity. While
this erodes its autonomy [VDPV97], some safety critical situations and systems rely
on the possibility of such interventions [KBBT16]. Commands may trigger a range
of different adaptations of the target entity, like its re-configuration, forcing a specific
single action, or disabling it completely. These adaptations aim at the target entity
exclusively. In particular, commands do not affect the remaining entities directly.
Applicability: The control unit must know the supported commands of the tar-
get entity. The target entity must provide a corresponding interface that supports a
command. Further, it must directly adhere to a received command. This requires an

16

<<interface>>
ICommand

execute(Command c)

Control Unit [1 | 1 | :Control Unit | target:Entity |

Entity ! T
control() O- -~ target |"'| execute(aCommand) I
L
T 7
1 | I:l
I

I
- -{ target.execute(aCommand); [

(a) Structure (b) Dynamics

Figure 4.1: Command pattern

exclusive bypass for commands to omit the interpretation and autonomous derivation
of adaptations an entity typically performs based on its usual input.

Structure: The participants of the command pattern consist of a single control
unit and a single entity as illustrated in Figure 4.1a. That target entity implements
the interface necessary to execute remote commands. An association between the two
participants enables the direct transmission of such a command from the control unit
to the entity. Communication from the entity to the control unit is not necessary. The
control unit observes the result of the command by its usual monitoring of the target
entity.

Dynamics: The control unit sends a command to the target entity as illustrated in
Figure 4.1b. The entity processes the command and performs the desired adaptations
accordingly. The command does not affect any other entities of the system. However,
the resulting adaptations of the target entity may cause further adaptations of the
remaining ones.

Delay: Sending a command directly to the target entity instantly triggers its re-
spective adaptations. No further actions (and their delays) are significant to achieving
the goal associated with a command. This explicitly excludes any subsequent adap-
tations of the remaining entities as consequences of the adaptation of the targeted
one. These consequences may be an indirect effect of the pattern, but are not directly
involved in it.

Autonomy: A command explicitly dictates the reaction of the target entity with-
out any further room for interpretation. The result is a pure centralized control with a
temporal, but complete loss of autonomy for this entity. All remaining entities maintain
their autonomy as they are not affected by that command. Potential subsequent adap-
tations of other entities are the result of their autonomous reaction to the controlled
adaptation of the target entity.

Example: The charging of the electric cars at Home A and Home B uses the
entire renewable energy produced by the Wind Turbines. In the meantime, the Factory
increases its energy demand due to rising production. The typical autonomous reaction
of the Power Plant is to increase its energy production accordingly to keep the entire
grid in balance. The Control Unit observes this self-adaptation and identifies the
resulting reduction of the percentage of renewable energy in the grid. Hence, the
control unit sends a command to each home, which forces the charging process of the
electric cars to stop. The renewable energy from the Wind Turbines now covers the

17

increased demand of the Factory, which sustains the target percentage of renewable
energy in the grid.

Usage: IBM introduces so-called touchpoints that employ commands to manage
a hardware or software component of an autonomic computing system [IBM05]. Au-
tonomic managers use these hardware or software components via their touchpoints,
while each manager embodies a particular control loop to perform self-management
tasks. Hence, an autonomic manager represents a control unit in our patterns with the
ability to control one or more components (entities) via commands.

Said et al. use parameter tuning as well as activation and deactivation to adapt ele-
ments of a SaS [SKK™14]. Further, Mosch et al. propose a similar external parametriza-
tion of components in the context of organic computing [MLESAT06]. These actions
represent specific examples of our general command pattern. In particular, setting
(new) parameters for an entity or (de-)activating it explicitly are instructions that the
target must carry out as specified.

Garlan et al. build their architecture-based self-repair approach on an adaptation
framework, which assumes that the adaptation target provides a set of change opera-
tions [GCS03]. This provision of change operations equals the implementation of the
command interface in our pattern.

Finally, Miiller et al. present commands as part of a feedback control for adaptive
systems [MPS08]. However, they do not explain these commands beyond their appear-
ance as connective element between a corrector element and the executing system.

4.2 Constraint

Global knowledge about the current situation sometimes implies advantages for (parts
of) the SaS, if a particular entity omits some of its adaptations. In particular, avoiding
the typical behavior of an entity because of its self-adaption may contribute to a more
suitable global reaction of the SaS to temporal events. An illustrative example is
a highway, where the cars and construction workers of road works are self-adaptive
entities. A partial speed limit for these road works forbids higher speed for the cars
(while they are allowed to drive even slower) to reduce the risk of accidents for all
entities. The constraint pattern enables such (temporal) restrictions on the adaptation
and, hence, behavior of entities.

<<interface>>
IConstraint

apply(Constraint c)

A
1 1 L :Control Unit | target:Entit |
Entity | !
control() O- - target D apply(aConstraint)

i
. i |T|

1
- -{ target.apply(aConstraint) A |

(a) Structure (b) Dynamics

Figure 4.2: Constraint pattern

18

Intent: A constraint defines an explicit restriction on the adaptation space of the
target entity. This restriction forbids the application of a subset of the adaptations
available in that space immediately. Depending on the available adaptations, a con-
straint may restrict the set of executable actions or even the entire behavior of the
target entity [Fis06, KBBT16]. Hence, the target entity autonomously selects the opti-
mal adaptation as usual, but within the limits of the received constraint. The remaining
entities remain unaffected.

Applicability: The control unit must know the adaptation space of the target en-
tity and its supported expressiveness to define valid constraints. The adaptation space
provides the basic operands and their values, like configuration parameters and their
valid ranges, or the set of executable actions and their triggers. The supported expres-
siveness defines the available operators to connect operands and values for restricting
this adaptation space. The target entity must provide a corresponding interface that
allows the communication of such constraints. Further, it must be willing to adhere to
a received constraint. This requires ignoring those adaptations during its adaptation
planning, which the received constraint forbids explicitly.

Structure: The static view on the elements of the constraint pattern reveals the
same participants as in the command pattern (cf. Section 4.1). The differences reside
in the interface and the association between those elements. In Figure 4.2a, the target
entity implements the interface necessary to receive remote constraints. Further, the
association enables the transmission of such a constraint from the control unit to the
entity. Communication from the entity to the control unit is, again, not necessary as
the correct application of the constraint becomes observable via the usual monitoring
of the target entity.

Dynamics: The control unit sends a constraint to the target entity as illustrated
in Figure 4.2b. The target entity applies the constraint immediately. This application
results in a constant restriction of its adaptation space as defined by the constraint.
The removal of this restriction requires the transmission of new constraint information
by the control unit. In particular, new constraint information may force the removal
of an actively maintained restriction to fully release the adaptation space again. While
a constraint does not affect the remaining entities of a SaS directly, they may react to
the absence of the forbidden adaptations of the target entity.

Delay: Sending a constraint directly to the target entity instantly triggers its ap-
plication and, hence, the defined restriction of the entity’s adaptation space. Further,
this application must trigger a check, whether the current state of the target entity
violates the constraint. In case of constraint violation, the target entity immediately
adapts in accordance to its restricted adaptation space. If the target entity already
satisfies the constraint, it does not perform further actions, but to maintain this satis-
faction in future. Hence, in both cases, no significant delays for applying and satisfying
the constraint occur.

Autonomy: The autonomy of the target entity is mostly preserved. It keeps
its control authority within the limits of the restriction defined by the constraint.
However, a restricted adaptation space partially limits the autonomy of the target
entity as some potential adaptations are no longer available. In general, the more
restrictive a constraint is, the higher is also the loss of autonomy for the target entity.
The remaining entities maintain their autonomy. Hence, they may react autonomously
to the results of the application of the constraint by the target entity.

19

Example: In the evening of a typical working day, the people return to Home A
and Home B with their electric cars. The simultaneous charging of multiple electric cars
results in a spike of energy consumption. Hence, the Power Plant would autonomously
increase its energy production to keep the entire grid in balance. However, the Control
Unit already has the information that the wind will increase during the night. This
increase will enable the Wind Turbines to generate enough renewable energy to charge
the electric cars. The control unit therefore sends a constraint to (the charging stations
of) Home A and Home B, which reduces their energy consumption and consequently
avoids the increasing production of non-renewable energy by the Power Plant. During
the night, the control unit replaces this constraint by a less restrictive one to make use
of the available wind energy for charging the electric cars.

Usage: Minsky proposes the usage of the Law-Governed Interaction (LGI) control
mechanism to support self-healing in open distributed systems [Min03]. A law in the
LGI control mechanism defines regulations for the interaction of agents of the system.
In particular, regulations restrict the effect that events should have on an agent. While
the restrictions apply to the interaction of agents exclusively, laws and regulations
represent a special instance of constraints in the sense of our pattern catalog.

Kantert et al. introduce a system-wide control loop for guided self-
organization [KTK*16]. The controller part of this control loop creates and applies
norms to prevent negative emergent behavior of the system. A norm defines incen-
tives and sanctions, which individual agents of the system perceive as a response to
their contribution to the overall system behavior. Receiving incentives for beneficial or
sanctions for malicious behavior both represent a form or continuous manipulation of
self-adaptive elements towards a certain behavior. Hence, norms indirectly restrict the
adaptation space as the agents typically strive for incentives and try to avoid those be-
haviors that cause sanctions. Synonyms for this subcategory of our general constraints
are social constraints [PSA11], social laws [ST92] or, social control in general [HW11].

4.3 Influence

The direct control of an entity via commands and constraints sometimes is not an
adequate choice. For example, these CATs restrict the autonomy of the target entity
too much, their application does not lead to the desired result, or the target entity does
not support them at all. For such situations, global knowledge about the relations
between entities of the SaS allows to establish an indirect control. The influence pattern
leverages this knowledge to manipulate the target entity via direct control of a related
entity.

Intent: An influence aims at a specific adaptation of the target entity in an au-
tonomous way. Hence, it does not directly address that entity, but causes a change
in its environment, which triggers a particular reaction. A command or a constraint
for an entity related to that target can cause such a change via interaction or impact
as described in Section 2.2. This related entity becomes the controlled influencer to
trigger a specific adaptation of the target entity. While this results in the respective
loss of autonomy for the influencer, the target entity and all other entities of the SaS
remain autonomous. In this way, this pattern also supports situations where a certain
openness exists about which entity will ultimately react.

20

<<interface>> <<interface>> <<interface>> <<interface>>

ICommand IConstraint linteraction limpact
execute(Command c) || apply(Constraint c) sendl(lnformatlor? ouF, Entity receiver) observe(Entity observable)
A PN receive(Information in)
T T A
1 e oo L e e e e e e e e e e e e e]
1 I 1
1 1
1 1 Entity |
1 1
femmmemc—————— bmmmmmmman T A
1
1
:
1
Control Unit [t 1 | L | 1 1 |
| Controllable < > Uncontrollable
control() O -~ influencer observable receiver

1

1

' if (influencer instanceOf ICommand) {
' influencer.execute(aCommand)
“=-1 }else{

influencer.apply(aConstraint)

}

(a) Structure

| influencer:Controllable | | target:Uncontrollable

Il

]
I I
alt J| [influencer instanceOf ICommand] |

IJ_I execute(aCommand) |

I

| alt J [target instanceOf lInteraction]

| |

| send(newsState, target)

I

I i il nit e F=-----

| [else] |

: observe(influencer) :

I L] L]
g O g g | pp————

| [else]

I

I

IJ_I apply(aConstraint) I
| I
I

I

I

1

alt [target instanceOf lInteraction]

send(newState, target)

1
1

I
I
I
I
I
| [else]
I
I
I
|

I
I
I
a 0

(b) Dynamics

Figure 4.3: Influence pattern

Applicability: The control unit must know the entities of the SaS and their rela-
tions to identify an appropriate entity as influencer for the target entity. This identifi-
cation process must guarantee that the influencer satisfies the following requirements:

o The entity must have an influencing relation to the target entity, which is:

21

— Either a direct interaction between that entity and the target entity

— Or an indirect impact as the target entity observes that entity

« The entity must support direct control via commands (cf. Section 4.1) or con-
straints (cf. Section 4.2)

Depending on the supported direct control of the selected influencer, the control unit
must know the commands for that entity or its adaptation space. In particular, it
must know the specific command or constraint for the influencer, which will indirectly
trigger the desired adaptation of the target entity.

Structure: The influence pattern distinguishes between controllable and uncon-
trollable entities as illustrated in Figure 4.3a. The former implements at least one of
the interfaces, which enable its external control via commands (cf. Section 4.1) or con-
straints (cf. Section 4.2). The latter does not provide any external control interfaces,
but has an association to the former, e.g. to provide certain domain functionality col-
lectively as described in Section 2.2. For this purpose, both entities implement at least
one of the interfaces, which enable direct interaction or indirect impact. Hence, either
the controllable entity can send its new state as a result of its adaptation to the uncon-
trollable receiver, or the uncontrollable entity can observe this adaptation on its own.
In both cases, the association enables the uncontrollable entity to react to adaptations
of the controllable one. A second association from the control unit to the controllable
entity allows the transmission of commands or constraints depending on the interfaces
implemented by the controllable entity. However, that entity does not represent the
actual target for the control unit. The controllable entity acts as an influencer for the
uncontrollable entity by leveraging the relation (association in Figure 4.3a) between
them.

Dynamics: The control unit sends a command or a constraint to the influencer
as described in Section 4.1 and Section 4.2, respectively. In Figure 4.3b, the decision
on which of these previous CATs to use solely depends on the interface implemented
by the controllable entity. If the influencer implements both interfaces, this decision
must also consider which CAT results in an adaptation of the controllable entity that
influences the uncontrollable target as desired. We omit this complex planning step in
Figure 4.3b for brevity. The actual influence occurs depending on the interface, which
realizes the relation between the two entities. On the one hand, the influencer may
directly send its new state after its adaptation to the target!, which reacts accordingly.
On the other hand, the target observes the adaptation of the influencer, which triggers
a corresponding reaction. In the same way, any remaining entity of a SaS with similar
relations to the influencer or the target entity may react to their resulting adaptations.

Delay: Influencing a target entity consists of two fundamental steps: the direct
control of the influencer and its subsequent influence on the actual target. The first
step solely relies on CAT's without any significant delay (cf. Sections 4.1 and 4.2). The
second step leads to a delay until the target entity performs the ultimately intended
adaptation. The extent of this delay depends on several factors, like the specific type of
relation between influencer and target, the steps and processes defined by their inter-
action protocol, and the actual adaptation the target must perform. In particular, the

! Another way of direct interaction is that the influencer sends its intent to adapt in a certain way
before its actual adaptation.

22

actual adaptation may vary between an almost instant switch of a single configuration
option to complex rebinding of several internal components. Further, the influencer
may trigger adaptations of entities outside the scope of this pattern. This side-effect
may result in additional influences on the adaptation of the target entity and, hence,
the delay of this CAT.

Autonomy: The preservation of the autonomy of the involved entities depends on
their respective role in this CAT. The influencer loses its autonomy at least partially
in case of using constraints to apply the initial direct control (cf. Section 4.2). If the
control unit uses commands for this control, the influencer loses its autonomy com-
pletely (cf. Section 4.1). The actual target in this CAT preserves its autonomy. While
this CAT influences the target on purpose, it uses no other mechanisms than the usual
relations between entities and their self-adaptation to induce that influence. Hence,
the remaining entities also maintain their autonomy and may react autonomously to
the results of the direct control of the influencer and its influence on the target entity.

Example: In this particular example, we define the Factory to be an uncontrol-
lable entity, e.g. for compliance reasons. The remaining grid entities are controllable
and, hence, represent potential influencers for the uncontrollable Factory by leveraging
their direct and indirect relations. In this setting, the Factory increases its production
unusually in the morning to compensate an error in its production system and the
resulting loss of production during the night. This leads to an unscheduled increase
in its energy demand without prior notice. The Wind Turbines as well as the photo-
voltaics at Home A and Home B already provide their weather-dependent maximum
of renewable energy to the grid instead of loading their empty batteries. Hence, the
autonomous reaction of the Power Plant is to increase its energy production to keep the
entire grid in balance. The Control Unit observes the decrease of the ratio of renewable
energy over the entire grid because of these local autonomous adaptations. Further,
it detects the uncontrollable Factory to be the driving force for this global change.
Based on previous interactions, the Control Unit is aware of the typical coordination
activities between the controllable Power Plant and the Factory. It therefore selects
the Power Plant as its influencer and sends a constraint, which prohibits its additional
energy production. As part of applying this constraint, the Power Plant informs the
Factory about the upcoming decrease of energy provision via their direct interaction
relation. In the end, the Fuactory has no other reasonable choice than to reduce its
production to a usual amount again.

Usage: Fisher defines influence in the context of emergent systems of systems
as "any mechanism by which one entity interacts with another in a way that changes
the physical, informational, or emotional state of the other" [Fis06]. This definition
summarizes the basic principle of our eponymous pattern. However, Fisher does not
include a particular control hierarchy. While our pattern assumes a control unit to
initiate an influence explicitly via commands or constraints, Fisher considers all entities
to be equal.

Johnson and Brown demonstrate the control of the collective behavior of robot
swarms via the manipulation of their environment [JB15]. In particular, the reloca-
tion of their target(s) causes the robots (our entities in this report) to autonomously
change their behavior accordingly. Considering the target of a robot to be part of its
environment, the notion of influence by Richter et al. generalizes from the specific
context of robotics. They discuss influencing an entity via its environment as a form of

23

central control in general [RMB™06]. Their goal of applying such influence is to disrupt
emergent behavior of decentralized systems. For this purpose, Schmeck et al. include
environmental influence in their architecture for controlled self-organization [SMSc*10].

4.4 Pseudo-Emergence

In some SaS, neither direct control via commands or constraints nor indirect influence
represent applicable CATs. Reasons range from being inadequate or even incapable
to achieve the desired adaptation to a total lack of their support. In particular, in
a complex SaS (cf. Section 2.2), related self-adaptive entities (again individual SaS)
may not provide the necessary interfaces for such (external) control. However, global
knowledge about the self-adaptive and emergent behavior of the entities enables ap-
plying control in an emergent way. In the pseudo-emergence pattern, the control unit
leverages this knowledge to influence the target entity by integrating a pseudo-entity
within the SaS.? Hence, this CAT is related to the influence pattern (cf. Section 4.3),
but deploys a special entity for this purpose instead of selecting an influencer from the
existing ones.

Intent: Pseudo-emergence describes the deliberate exploitation of a system’s self-
adaptation to assert control. It does not directly address any entity of a SaS, but
causes a change in the environment of a target entity to trigger its adaptation. For
this purpose, it integrates a pseudo-entity into a SaS, which leverages the usual rela-
tions between entities to influence the target. The SaS and its entities perceive this
integration as a typical system extension as the pseudo-entity imitates the behavior of
a native type of entity. In particular, the target entity relates to the pseudo-entity in
the same way as to any other instance of that native type. Hence, the target entity
and all other entities of the SaS remain autonomous, which also results in a certain
openness about which entity will ultimately react.

Applicability: The SaS must allow integrating additional entities at runtime. In
particular, the SaS or the individual entities must provide a mechanism, which relates
additional and existing entities by establishing direct interaction or indirect impact (cf.
Section 2.2). The control unit must know the entities of the SaS and their relations
to create stimulus-response-relations of the target entity. These relations define which
information or action of which type of related entity triggers which adaptation of the
target. The control unit uses this information to create the correct type and behavior
for the pseudo-entity. It therefore must generate a new entity, configure it to achieve
the desired adaptation of the target, and deploy it as pseudo-entity in the SaS. The
control unit may alternatively deploy itself as such pseudo-entity. This alternative
requires a control unit design, which allows using the same relations that typically
exist between entities exclusively.

2The terms pseudo-emergence and pseudo-entity refer to the imitating nature of this pattern, which
deploys a new entity to the emergent collective, while its only purpose is to execute a certain control
instead of contributing to the domain functionality.

24

<<interface>> <<interface>>
linteraction llmpact
send(Information out, Entity receiver)
receive(Information in)

observe(Entity observable)

0.1 1
] iy P

pseudo-entity observable
receiver/]\ 1

1 Control Unit

control() O- -,

II_{>

if (this.hasEntityGenerationSupport) {
pseudo-entity = new Entity()
// configure pseudo-entity to achieve control goal
}else {
pseudo-entity = this
}

(a) Structure

control:Control Unit target:Entity

1
alt : [control.hasEntityGenerationSupport]

E:l_ <<new>>
----------- >| pseudo-entity:Entity |
|

alt l [target instanceOf lInteraction]

send(newsState, target)

alt I [target instanceOf lInteraction]

send(newsState, target)

|
|

| |

"? _____
4

(b) Dynamics

Figure 4.4: Pseudo-emergence pattern

Structure: The pseudo-emergence pattern treats all constituent elements of a SaS
as generic entities. Hence, Figure 4.4a only includes such a single type of entity, which
implements (at least one of) the interfaces for direct interaction and indirect impact
to enable the association between its instances in the roles of receiver and observable
(cf. Section 2.2). In order to illustrate both ways of defining the pseudo-entity, the
control unit has an association to the generic entity and additionally inherits from

25

it. The association allows creating and configuring a new entity as pseudo-entity, if
the control unit supports such entity (code) generation. The inheritance defines the
control unit also to implement the interfaces, which usually enable direct interaction
or indirect impact between entities only. Hence, the control unit can define itself as
the pseudo-entity to send states of any kind to the target, or to perform arbitrary
actions, which the target will observe. In both ways of defining the pseudo-entity, the
self-association of the generic entity enables the target entity to react to adaptations
of the pseudo-entity, which it perceives as a typical change in its environment.

Dynamics: The control unit either creates a new entity as the pseudo-entity or
defines itself as pseudo-entity to relate with the target. In Figure 4.4b, we only indicate
these preliminary steps, but omit implementation-specific details, like the exact way of
configuring and integrating the pseudo-entity. The pseudo-entity then either directly
sends information to the target entity, or performs actions, which the target entity will
observe. In Figure 4.4b, the decision on how to initiate this self-adaptation of the target
solely depends on the interface it implements. However, this decision must also consider
the target’s adaptation space and the environmental conditions that enact specific
adaptations of the target (stimulus-response-relations). The result of this decision
process is a particular information or action, which will trigger the desired adaptation
of the target and, hence, defines the specific type of relation to use. While the pseudo-
entity must perform to observable action to create the respective stimulus for the target,
it must not necessarily realize what it transmits as information only. For example, it
may send a new state information to the target without actually switching to this
state as the sole information about that adaptation is sufficient to trigger the target’s
response (illustrated by the newState in Figure 4.4b). Independent of the particular
way of influencing the target entity, it finally adapts in response. Further, all remaining
entities of the SaS, which also relate to the pseudo-entity autonomously, may react to
its information and actions.

Delay: In general, influencing a target entity leads to a delay until the target
performs the desired adaptation (cf. Section 4.3). Pseudo-emergence requires the ad-
ditional upfront integration of a pseudo-entity potentially including its creation and
configuration. This integration extends the basic delay of the influence up to a sig-
nificant degree, if creating a new entity as pseudo-entity is necessary for each control
action. However, if the control unit integrates itself as pseudo-entity into the SaS
constantly, all subsequent control actions become faster after this initial integration.
Independent of the particular way of integration, the pseudo-entity may trigger adapta-
tions of entities besides the targeted one. This may in turn cause additional influences
on the target and, hence, on the delay of this CAT.

Autonomy: Pseudo-emergence represents the only CAT in this pattern catalogue,
which completely preserves the autonomy of the entire SaS. It leverages the knowl-
edge about and the mechanisms of the usual relations between entities and their self-
adaptation. In particular, it only influences the target entity by manipulating its
environment and lets it react to that influence independently. The creation and inte-
gration of the pseudo-entity to induce such influence has no impact on the autonomy.
However, this preservation of autonomy results in an uncertainty on the details of the
effect of an influence. Similar to the corresponding CAT in Section 4.3, any entity of
the SaS may react autonomously to the results of pseudo-emergence and its influence
on the target entity.

26

Example: The general policies for the photovoltaics at Home A and Home B
define the provision of their surplus to the electric grid for further distribution, if no
local demand exists. Hence, the photovoltaic at Home A provides its total energy
to the grid as the residents are on vacation and the battery is already fully charged.
The photovoltaic at Home B instead provides its total energy to local consumers.
The additional charging of the battery using renewable energy at Home B is therefore
not possible. The Control Unit observes these local situations and identifies a more
reasonable use of the renewable energy at Home A by charging the battery at Home
B. Due to missing interfaces to directly instruct the photovoltaic and the battery, the
Control Unit establishes a pseudo-entity. The pseudo-entity acts as an energy consumer
for the photovoltaic at Home A and as an energy provider for the battery at Home B.
This temporal deployment of the pseudo-entity in the electric grid enables redirecting
the surplus to the demand.

Usage: Karuna et al. present the design of a manufacturing coordination and con-
trol system based on the concepts of multi-agent systems and emergence [KVSGT05].
The inherent control mechanisms includes an activity, which shares the core idea and
principles of our pseudo-emergence pattern. In this activity, a parent agent creates new
agents on demand to prepare manufacturing resources (again represented as agents)
for their later usage. This creation of new agents corresponds to the integration of
pseudo-entities, while the preparation represents a special form of influencing the re-
maining system. Further, pseudo-emergence shares some concepts with influencing as
described in [Fis06, RMB'06]. In particular, it extends this basic action by (option-
ally generating and) integrating a pseudo-entity as influencer into the system, which
actually performs the influence.

4.5 Isolation

Special situations sometimes require the complete exclusion of an entity from the SaS.
For example, the target entity constantly disrupts (parts of) the SaS due to malfunction
or bad faith, which also excludes other forms of interaction with that entity. Further,
maintenance and testing of the target may require its temporary isolation to prevent
side-effects on the remaining SaS during these tasks. The isolation pattern represents
a CAT, which realizes such a form of control. In particular, it provides an alternative
to a complete deactivation of the target entity. While deactivating the target results in
a similar effect on the remaining SaS (the target entity is no longer available and the
SaS must adapt to this new situation), the target may not support this direct control
due to malfunction, bad faith, or missing interfaces. Maintenance or testing tasks may
even require that the target entity remains active.

Intent: Isolation disables the relations between the target entity and the remaining
ones to prohibit their direct interaction or any indirect impact. For this purpose, it
must not trigger adaptations of entities. However, all affected entities perceive this
disabling as a change in their environment, which may cause respective adaptations as
sequential events. In contrast to the other CATs in this catalogue, these adaptations
are not the intention of this pattern. The core of isolation is to prohibit any interactions
or impacts between the target and the remaining entities of the SaS. Further, the target
remains active either on purpose or due to its missing support for remote deactivation.

27

<<interface>> <<interface>>
linteraction limpact
send(Information out, Entity receiver)
receive(Information in)

observe(Entity observable)

1
- ----- O Entity
- - ; observable
send(Information out, Entity receiver) { | 1’['receiver
if (relation.isEnabled) { 1
// send “out” to “receiver” !
} 1 | Relation

}

relation | disable() o-} -

receive(Information in) { [
if (relation.isEnabled) { | R =false)
// process “in” ;

}
}

observe(Entity observable) { 1

if (relation.isEnabled) { control() O- -
// monitor “observable” | R, :
} 1
} 7 | relation.disable() ;

(a) Structure

:Control Unit | other:Entity | | :Relation | | target:Entity|
I T

I

1

|_| disable()
u

send(out, target)

T
I
T |
I I
I I I
I I I
I I I
| | |
I I I
I I I I
: : : observe(other)
I | I
I [I
| | |

(b) Dynamics

Figure 4.5: Isolation pattern

Applicability: The SaS must allow accessing its network infrastructure. In partic-
ular, the SaS or the individual relations must support a mechanism to disable specific
relations between entities on demand. This mechanism may either be an exclusive ca-
pability of the control unit (e.g., in terms of a dedicated network management module),
or may be available via application of other CATs to network management entities of
the SaS. Indeed, the specific realization of this mechanism depends on the particular
infrastructure of the SaS. The control unit must know the entities of the SaS and their
relations. Further, it must identify the subset of relations from the target entity to the
remaining ones and vice-versa to disable these relations only.

Structure: The focus of the isolation pattern is on the relations between entities.
In order to establish such relations, the influence pattern already introduced the inter-

28

action and impact interfaces, which an entity typically implements (cf. Section 4.3).
Figure 4.5a provides more details on that interface implementation in a comment re-
lated to the generic entity. These details outline a dependency of the execution of the
core interaction and impact actions on the state of the involved relation introduced as
eponymous association class. The main purpose of these details is to illustrate that en-
tity interaction or impact only occurs, if the respective relation is enabled. Other ways
of realizing equal dependencies exist, which may be more suitable for the particular SaS
implementation at hand. The core of the isolation pattern is the association between
the control unit and the relation (association class). It allows disabling a relation by
setting its state accordingly. In Figure 4.5a, a simple Boolean variable represents this
state. If set to false, it leads to the desired suppression of core interaction and impact
actions of the related entities.

Dynamics: The default state of any established relation between entities always
enables typical interactions and impacts as illustrated for previous patterns, like in
Figure 4.3b or Figure 4.4b. Hence, we assume this default state for the relation between
the target entity and the other entity in Figure 4.5b as an origin to describe the
dynamics of the isolation pattern. In this dynamical view, the control unit disables
the relation between the target entity and the other entity. The relation switches its
state accordingly leading to a blocking of the interactions and impacts between these
entities. Figure 4.5b illustrates this blocking by self-calls of the target and the other
entity, which would otherwise have reached the other one, respectively. In order to
isolate the target completely in practice, the control unit disables all other relations
involving the target in the same way. The related other entities of the SaS may react
to this isolation by individual adaptations.

Delay: The isolation of a target entity instantly applies to the entire SaS. In
particular, neither disabling the relations between the target and the remaining entities
nor blocking their interactions and impacts implies significant delays. Similar to the
command pattern (cf. Section 4.1), this explicitly excludes any subsequent adaptations
of the remaining entities as consequences of the isolation. These consequences may be
an indirect effect of this pattern, which do not affect the target.

Autonomy: Isolation preserves the autonomy of individual entities as it aims at
the relations between them only. It does not directly address an entity or its adaptation
space. However, it restricts the autonomy of the SaS as a whole due to its active change
of the network topology usually created collectively by the entities. The resulting loss
of relations may trigger adaptations of the target as well as the remaining entities, but
without further central intervention.

Example: On a calm day, the Wind Turbines suddenly start to provide a significant
amount of energy to the grid. The Factory autonomously increases its production
therefore above its normal level for this time of day. The Control Unit observes both
abnormal behaviors and identifies a malfunction of the batteries at the Wind Turbines.
This malfunction causes the batteries to supply their energy to the grid instead of
saving it for the night. However, the Wind Turbines including their batteries do not
respond to any external control action. Hence, the Control Unit decides to isolate the
Wind Turbines as they should not have contributed to the gird power balance anyway
(safe exclusion regarding the power supply of the remaining grid). It disables their
impact relations to the other grid elements, which ultimately results in cutting of the
energy flow from and to the Wind Turbines. The subsequent decrease of available

29

energy forces the Factory to decrease its production to its normal level. The later
repair of the batteries also enables the relations between the Wind Turbines and the
other grid elements again.

Usage: Kramer and Magee propose an architectural reference model for self-
managed systems [KMO07]. This model contains a component control layer for which
the authors propose their change management algorithm [KM90] to ensure stable con-
ditions before changing components. One example for such stable conditions is that
components must be isolated before they can be safely removed. Our pattern tar-
gets exactly such an isolation, while the ultimate removal of an isolated component
represents an extension.

Minsky includes message transformation and rerouting as possible regulations de-
fined by LGI laws (cf. Section 4.2) for controlling the message exchange between
entities [Min03]. Further, Richter et al. introduce the modification of the interconnec-
tion network of entities to influence the system structure and, hence, the global system
behavior [RMBT06]. These approaches represent a weak form of isolation as defined
by this CAT. In particular, both approaches do not aim at a complete isolation of an
entity explicitly. However, we consider the basic mechanisms of these approaches to be
capable of achieving this kind of complete exclusion.

30

Chapter 5

Discussion

The patterns of our catalog provide a systematic overview of the range of possible
approaches to establish multi-paradigm control for a SaS. Each CAT defines a specific
type of centralized control action with its individual impact on the general autonomy
of the SaS entities. Table 5.1 summarizes these key properties from Chapter 4 and
classifies them as advantage and disadvantage of the respective CAT. Hence, this table
outlines their basic trade-offs. The details for an individual CAT can then be found in
the respective section as listed in the table.

Table 5.1: Summary and classification of presented control action types

CAT Advantage Disadvantage
Command Instant action Total loss of autonomy
(Section 4.1) with known unique result for target entity
Constraint Instant action Partial loss of autonomy
(Section 4.2) with known range of results for target entity
Influence Preservation of autonomy Delayed action
(Section 4.3) for target entity with uncertain range of results
Pseudo-Emergence Preservation of autonomy Delayed action
(Section 4.4) for all entities with uncertain range of results

Instant action
Isolation with known unique result;
(Section 4.5) preservation of autonomy
for all entities

Total loss of target entity

In practice, Table 5.1 serves as a starting point to access the catalog and to decide
which CAT to consider when designing a SaS with multi-paradigm control. For exam-
ple, the control unit may represent the last instance for averting errors and failures in
a SaS. A designer therefore may choose between command and constraint, which both
enable immediate reactions. However, their results and inherent loss of autonomy for a
target entity vary. Hence, the designer either has to balance between those properties
or decides to integrate both CATs into the SaS. The latter requires the additional def-

31

inition and realization of respective triggers to select the appropriate CAT for a given
situation at runtime. If the self-adaptability of the entities in a SaS already provide
an appropriate level of reliability and robustness, the control unit may be a means to
optimize the SaS based on global knowledge additionally. In this case, the focus is on
preserving autonomy rather than immediate corrections, which influence and pseudo-
emergence guarantee in varying degree. Other reasons to select one or more of the
CATs as well as other combinations are possible. Influence may prevent harm in an
early stage by leveraging SaS autonomy. Isolation may optimize a SaS in its entirety
by excluding a particular interfering entity.

In research, the pattern catalog contributes a systematic understanding of control
options for multi paradigm control of SaS. Hence, it tackles the challenge of integrat-
ing distributed and central control [MEHdH13] and fills an already identified research
gap [dLGM'13, BDMSG'09] (cf. Chapter 1). Further, this catalog is a source for
new research questions, which are beyond the scope of this report. For example, the
questions arise whether more CATs with different properties are needed or which com-
binations of them are meaningful with respect to the properties of the SaS and its
application environment. In this sense, researcher may build on this catalog for classi-
fying their approaches. This facilitates their comparison and results in a continuously
maintained collection of CATs, which benefits research as well as practice.

32

Chapter 6

Related Work

In this report, we introduce Control Action Types (CATSs) as patterns of interaction
between a central controller and a distributed controlled SaS to achieve a desired
adaptation. The particular focus of these patterns is on the application and execution
of specific actions. Hence, we target the final step of an iteration of a SaS control
loop exclusively, like execute [KCO03], act [Boy76], or enact [GCGL15]. Our discussion
of related work therefore starts with other patterns and templates for this particular
step, but with a different focus or for a different type of target system. For complex
autonomous or self-adaptive systems, we discuss relations to other generic descriptions
of control aspects afterward. In general and to the best of our knowledge, no catalog
of central control patterns for distributed controlled SaS in the presented form exists.

Krupitzer et al. differentiate 55 SaS design patterns from their systematic literature
review into seven categories [KTPR20]. One of these categories focuses on the execution
step of the MAPE [KCO03] control loop exclusively. While the identified design patterns
target decentralized coordination in general, the particular subset in the execution
category provides an overview on different patterns for realizing adaptation (actions).
However, as being an overview, the authors do not detail the individual findings in
the way we describe our CATs. In contrast, we would add our report as another
contribution to their execution category. In that sense, we must discuss the other
papers in this category as follows:

» Abuseta and Swesi [AS15] present one design pattern for each step of the MAPE
control loop. The pattern for the execution step describes how to establish the
relations between the components that accomplish the execution activity. The
authors do not discuss the possible types of actions to perform, like we do with
our individual CATs.

o Said et al. [SKK'14] also propose one design pattern for each step of a control
loop in the particular context of self-adaptive real-time embedded systems. In
contrast to Abuseta and Swesi, the pattern for the acting step includes specific
actions, which we generalize to our command pattern in Section 4.1 (see the usage
dimension in that section for a detailed comparison).

o Iglesia and Weyns [IW15] formalize behavior specification templates for each step
of the MAPE control loop. An important characteristic of the target systems of
these formalizations is the changing availability of resources. Hence, their behav-
ior template for the execution step focuses on adding and removing resources ex-

33

clusively. While we could perform the pure addition or removal via the command
pattern (cf. Section 4.1), the behavior template includes additional activities to
ensure correctness of these actions.

« Ramirez and Cheng [RC10] define four reconfiguration patterns to perform struc-
tural and behavioral adaptations of a SaS. These patterns focus on the internal
procedures and states of the affected components as well as the entire system to
perform the respective adaptations safely. Hence, we consider these reconfigu-
ration patterns as potential approaches to realize the internal changes of target
entities induced by applying our CATs.

In addition to the survey of Krupitzer et al., we identified the following work on
adaptation actions and strategies. Salehie and Tahvildari differentiate twelve adapta-
tion actions by their impact on a SaS, their execution time, required resources, and
complexity [ST09]. In our understanding, these adaptation actions represent entire
tactics, which include multiple actions in the sense of our patterns. Musli et al. iden-
tify three multi-adaptation patterns for the design of Cyber-Physical Systems (CPS)
with self-adaptation capabilities MMW™17]. These patterns define different combina-
tions of multiple types of self-adaptation spanning multiple layers of a CPS. Hence,
these patterns are significantly more complex than our CATs, which is partially due to
the nature of their target system type. Alfonso et al. present four adaptation strate-
gies derived from their systematic literature review on self-adaptation for Internet of
Things (IoT) systems [AGCC21]. Each strategy describes a form of system adaptation
as a reaction to particular events or changes in the system’s environment to maintain
a certain Quality of Service (QoS). While our patterns also aim at triggering certain
adaptations, we do not particularly focus on QoS of individual entities or the entire
system besides their autonomy. However, the CATs in this report may support the
operationalization of the strategies by Alfonso et al. in practice.

Besides generic descriptions for the realization of the execution step, other patterns
focus on its distribution as part of an entire control loop. de Lemos et al. briefly
introduce five patterns for interacting control loops as part of their broader research
roadmap for engineering SaS in general [ALGM™13]. Each pattern describes a par-
ticular way of orchestrating entire MAPE control loops or their individual steps!.
Weyns et al. extend these basic descriptions using a specific graphical notation to
capture the interactions and a common schema for describing the same patterns sys-
tematically [WSGT13]. Quin et al. map these patterns in [WSG*13] to coordination
mechanisms, which further extends their description by how loop and step interactions
are realized in other literature [QWG21]. In general, the individual patterns define
different degrees of decentralization of control loops (steps) to manage adaptations in
complex SaS sufficiently. In contrast, our patterns define different types of central
control actions to achieve a desired adaptation of a particular entity within a SaS. Our
focus is on the interaction between a central control unit and those distributed con-
trolled entities. While the control unit may realize an entire control loop, our patterns
contribute to the realization of the execution step exclusively.

An extension of distributing individual steps of a control loop is the distribution
of the entire loop in terms of a controller. Schmeck et al. provide three different

"'While the authors focus on the MAPE control loop exclusively, the patterns are also applicable
with other loops, like OODA [Boy76] or CARE [GCGL15].

34

architectural variants to realize observation and control in organic computing sys-
tems [SMSct10]. Each variant defines a specific distribution of observer and controller
instances with its individual impact on the autonomy of the system they observe and
control. The authors therefore define a degree of self-organization as synonym for
autonomy, which relates the number of controllers to the number of elements of the
system. Based on this definition, the presence of a single controller for all elements
implies central control and, hence, weak self-organization (no autonomy). If the num-
ber of controller instances is greater or equal to the number of elements, the system
is strongly self-organized (autonomy). The impact on the autonomy of the SaS is also
an important dimension, which we discuss for each of our patterns. However, we do
not quantify the resulting degree of the autonomy, but describe it by the freedom that
the target entity and the remaining system have for reacting to the application of a
particular CAT. In general, our patterns define control actions instead of changing
distributions of controlling elements in a system. Weyns and Andersson derive three
architectural styles for self-adaptation in systems of systems from classic control ar-
chitectures [WA13]. Each style provides its individual level of knowledge sharing and
collaboration between the constituent systems and, in particular, between the man-
aged systems and their controller. In general, the authors focus on the distribution of
controller instances and the data flow within the resulting systems. The descriptions of
our patterns also consider data flow between the central controller and the distributed
controlled entities. However, our patterns define control actions instead of changing
distributions of controlling elements in a system.

Finally, design patterns for the creation of entire control systems exist. Patikiriko-
rala et al. derive nine patterns to design control systems for SaS in their technical
report [PCHW12b]?. Wooldridge and Jennings report four different architectures for
control systems of autonomous agents (which can be interpreted as special type of
SaS) [WJ95]. Both the patterns as well as the architectures support realizing entire
control systems, but do not consider individual control actions, like our CATs.

2The related symposium paper [PCHW12a] does not include these patterns.

35

Chapter 7

Conclusion

A reasonable approach to minimize the quality trade-offs between distributed and cen-
tral control in Self-adaptive Systems (SaS) is to integrate both paradigms into a single
multi-paradigm control solution. The patterns presented in this report contribute to
such a solution. They define a set of Control Action Types (CATs), which describe
specific forms of interactions between a central controller and a distributed controlled
SaS. We describe each CAT along various dimensions of a taxonomy. This taxonomy
covers general aspects, like the problem a particular CAT addresses, as well as as-
pects specific to multi-paradigm control, e.g., its impact on the autonomy of affected
system entities. Further, a running example from the electric grid domain shows the
application of each CAT.

Our pattern catalog supports practitioners in the design of their SaS when following
a multi-paradigm control approach. We therefore summarized their most important
trade-offs: the delay and predictability of control results in contrast to the loss of
autonomy for the affected system (entities). In general, the faster and more precise a
CAT is, the higher is the loss of autonomy. This summary enables a basic selection of
one or more CATs during the design of a SaS. The main part of this report then provides
their full details along references of their usage in related work. Hence, the pattern
catalog also contributes to current and future research activities with a systematic
overview of control options. Researcher may use this overview to identify research
gaps and to classify their own approaches.

Our general vision is a comprehensive multi-paradigm control approach for SaS. It
will combine higher level, central control with highly reliable, distributed controlled
SaS entities. In particular, the central control mechanism will select the appropriate
CAT for a certain situation as needed. The presented pattern catalog provides the
foundation for this selection. Further, the details for each CAT will support their
realization as part of a central control unit.

36

Acknowledgments
This work is partially supported by the DevOpt-project, funded by the German Min-

istry of Research and Education (BMBF) under grant 01IS18076A. Any opinions ex-
pressed herein are solely by the authors and not of the BMBF.

37

http://www.devopt-projekt.de
https://www.bmbf.de
https://www.bmbf.de

Bibliography

[AGCC21]

[ARS17]

[AS15]

[BDMSG*09]

[Bor13]

[Boy76]

[Cop92]

[Dev]

[DKJ18]

[dLGM*13]

Ivan Alfonso, Kelly Garcés, Harold Castro, and Jordi Cabot. Self-
adaptive architectures in IoT systems: A systematic literature review.
Journal of Internet Services and Applications, 12(1):1-28, 2021.

Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Formal de-
sign and verification of self-adaptive systems with decentralized control.
ACM Transactions on Autonomous and Adaptive Systems, 11(4):1-35,
2017.

Yousef Abuseta and Khaled Swesi. Design patterns for self adaptive
systems engineering. International Journal of Software Engineering and
Applications, 6(4):11-28, 2015.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger
Giese, Holger Kienle, Marin Litoiu, Hausi Miiller, Mauro Pezze, and
Mary Shaw. Engineering Self-Adaptive Systems through Feedback Loops,
pages 48-70. Springer, Berlin, Heidelberg, 2009.

Etienne Borde. Software Engineering for Adaptative Embedded Systems,
pages 159-190. John Wiley & Sons, Ltd, 2013.

John Raymond Boyd. Destruction and creation, 1976.

James Coplien. Advanced C++ Programming Styles and Idioms.
Addison-Wesley, 1992.

DevOpt - DevOps for self-optimizing emergent systems. Online:
http://www.devopt-projekt.de/.

Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-agent systems: A
survey. IEEE Access, 6:28573-28593, 2018.

Rogério de Lemos, Holger Giese, Hausi A. Miiller, Mary Shaw, Jesper
Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M.
Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker,
Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ron Desmarais, Schahram
Dustdar, Gregor Engels, Kurt Geihs, Karl M. Goschka, Alessandra
Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer,
Anténia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela
Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezze, Chris-
tian Prehofer, Wilhelm Schéfer, Rick Schlichting, Dennis B. Smith,

38

[Fis06]

[GCGCOT]

[GCGL15]

[GCS03]

[GHIV4]

[HTHJ09]

[HW11]

[IBMO5]

[TW15]

[JB15]

[KBB*16]

Joao Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wut-
tke. Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap, pages 1-32. Springer, Berlin, Heidelberg, 2013.

David Fisher. An emergent perspective on interoperation in systems
of systems. Technical Report CMU/SEI-2006-TR~003, Carnegie-Mellon
University /Software Engineering Institute, 2006.

Marie-Pierre Gleizes, Valérie Camps, Jean-Pierre Georgé, and Davy Ca-
pera. Engineering systems which generate emergent functionalities. In
International Workshop on Engineering Environment-Mediated Multi-
Agent Systems, pages 5875, Berlin, Heidelberg, 2007. Springer.

Dieter Gawlick, Eric S. Chan, Adel Ghoneimy, and Zhen Hua Liu. Mas-
tering situation awareness: The next big challenge? ACM Special In-
terest Group on Management of Data Record, 44(3):19-24, 2015.

David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing Sys-
tem Dependability through Architecture-Based Self-Repair, pages 61-89.
Springer, Berlin, Heidelberg, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

Robrecht Haesevoets, Eddy Truyen, Tom Holvoet, and Wouter Joosen.
Weaving the fabric of the control loop through aspects. In 1st Interna-
tional Workshop on Self-Organizing Architectures, pages 38-65, Berlin,
Heidelberg, 2009. Springer.

Christopher D. Hollander and Annie S. Wu. The current state of nor-
mative agent-based systems. Journal of Artificial Societies and Social
Simulation, 14(2):1-24, 2011.

IBM Corporation. An architectural blueprint for autonomic computing.
Third edition. Technical report, IBM Corporation, 2005.

Didac Gil De La Iglesia and Danny Weyns. MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems, 10(3):1-31, 2015.

Matthew Johnson and Daniel Brown. Evolving and controlling perime-
ter, rendezvous, and foraging behaviors in a computation-free robot
swarm. In 9th FAI International Conference on Bio-Inspired Informa-
tion and Communications Technologies, page 311-314, 2015.

Hermann Kopetz, Andrea Bondavalli, Francesco Brancati, Bernhard
Fromel, Oliver Hoftberger, and Sorin lacob. Emergence in cyber-physical
systems-of-systems (CPSoSs). In Andrea Bondavalli, Sara Bouchenak,
and Hermann Kopertz, editors, Cyber-Physical Systems of Systems,
pages 73-96. Springer, Cham, 2016.

39

[KC03]

[KGS22|

[KMO0]

[KMO7]

[KSPS21]

[KTK*16]

[KTPR20]

[KVSG™*05]

[Mar96]

[MEHdH13]

[Min03]

Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-
puting. Computer, 36(1):41-50, 2003.

Christian Kroéher, Lea Gerling, and Klaus Schmid. Combining dis-
tributed and central control for self-adaptive systems of systems. In
1st DISCOLI Workshop on DIStributed C'OLlective Intelligence, 2022.
Accepted.

Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dy-
namic change management. IEEE Transactions on Software Engineer-
ing, 16(11):1293-1306, 1990.

Jeff Kramer and Jeff Magee. Self-managed systems: An architectural
challenge. In 2007 Future of Software Engineering, page 259-268. IEEE,
2007.

Christian Kroher, Klaus Schmid, Simon Paasche, and Christian Sauer.
Combining central control with collective adaptive systems. In 2021
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion, pages 56—-61. IEEE, 2021.

Jan Kantert, Sven Tomforde, Melanie Kauder, Richard Scharrer, Sarah
Edenhofer, Jorg Hahner, and Christian Miiller-Schloer. Controlling neg-
ative emergent behavior by graph analysis at runtime. ACM Transac-
tions on Autonomous and Adaptive Systems, 11(2):1-34, 2016.

Christian Krupitzer, Timur Temizer, Thomas Prantl, and Claudia
Raibulet. An overview of design patterns for self-adaptive systems in
the context of the internet of things. IEFEE Access, 8:187384-187399,
2020.

Hadeli Karuna, Paul Valckenaers, Bart Saint-Germain, Paul Verstraete,
Constantin Bala Zamfirescu, and Hendrik Van Brussel. Emergent fore-
casting using a stigmergy approach in manufacturing coordination and
control. In International Workshop on Engineering Self-Organising Ap-
plications, pages 210-226, Berlin, Heidelberg, 2005. Springer.

Robert C. Martin. Design patterns for dealing with dual inheritance
hierarchies in C++. In 2nd USENIX Conference on Object-Oriented
Technologies, volume 2, pages 1-11. USENIX Association, 1996.

Frank D. Macias-Escriva, Rodolfo Haber, Raul del Toro, and Vicente
Hernandez. Self-adaptive systems: A survey of current approaches, re-
search challenges and applications. Fxpert Systems with Applications,
40(18):7267-7279, 2013.

Naftaly H. Minsky. On conditions for self-healing in distributed software
systems. In 2003 Autonomic Computing Workshop, pages 86-92. IEEE,
2003.

40

[MLESA'06] Florian Mésch, Marek Litza, Adam El Sayed Auf, Erik Maehle, Karl E.

[MMW*17]

[MPS08]

[PCHW12a)

[PCHW12b)]

[PM95]

[PSA11]

[QWG21]

[RC10]

[RMB+06]

Grofipietsch, and Werner Brockmann. ORCA - towards an organic
robotic control architecture. In Self-Organizing Systems, 1st Interna-
tional Workshop, IWSOS 2006, and 3rd International Workshop on New
Trends in Network Architectures and Services, EuroNGI 2006, pages
251-253, Berlin, Heidelberg, 2006. Springer.

Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures, Henry
Muccini, and Mohammad Sharaf. Patterns for Self-Adaptation in Cyber-
Physical Systems, pages 331-368. Springer, Cham, 2017.

Hausi Miiller, Mauro Pezze, and Mary Shaw. Visibility of control in
adaptive systems. In 2nd International Workshop on Ultra-Large-Scale
Software-Intensive Systems, page 2326, New York, NY, USA, 2008.
ACM.

Tharindu Patikirikorala, Alan W. Colman, Jun Han, and Liuping Wang.
A systematic survey on the design of self-adaptive software systems us-
ing control engineering approaches. In 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages
33-42. IEEE, 2012.

Tharindu Patikirikorala, Alan W. Colman, Jun Han, and Liuping Wang.
Technical report: A systematic survey on the design of self-adaptive
software systems using control engineering approaches. Technical report,
Swinburne University of Technology, 2012.

David Lorge Parnas and Jan Madey. Functional documents for computer
systems. Science of Computer Programming, 25(1):41-61, 1995.

Jeremy Pitt, Julia Schaumeier, and Alexander Artikis. The axiomati-
sation of socio-economic principles for self-organising systems. In 5th

International Conference on Self-Adaptive and Self-Organizing Systems,
pages 138-147. IEEE, 2011.

Federico Quin, Danny Weyns, and Omid Gheibi. Decentralized self-
adaptive systems: A mapping study. In 16th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages
18-29. IEEE, 2021.

Andres J. Ramirez and Betty H. C. Cheng. Design patterns for develop-
ing dynamically adaptive systems. In ICSFE 2010 Workshop on Software
Engineering for Adaptive and Self-Managing Systems, page 49-58, New
York, NY, USA, 2010. ACM.

Urban Richter, Moez Mnif, Jiirgen Branke, Christian Miiller-Schloer,
and Hartmut Schmeck. Towards a generic observer/controller archi-
tecture for organic computing. In INFORMATIK 2006 — Informatik
fiir Menschen, volume 1, pages 112-119. Gesellschaft fiir Informatik eV,
2006.

41

[SCH*02]

[SKK+14]

[SMSc*10]

[ST92]

[STO9]

[VDPV97]

[WA13]

[WJ95]

[WSG+13]

Kurt Schelfthout, Tim Coninx, Alexander Helleboogh, Tom Holvoet,
Elke Steegmans, and Danny Weyns. Agent implementation patterns.
In OOPSLA 2002 Workshop on Agent-Oriented Methodologies, pages
119-130. ACM, 2002.

Mouna Ben Said, Yessine Hadj Kacem, Mickaél Kerboeuf, Nader Ben
Amor, and Mohamed Abid. Design patterns for self-adaptive RTE sys-

tems specification. International Journal of Reconfigurable Computing,
2014, 2014. Article ID 536362.

Hartmut Schmeck, Christian Miiller-Schloer, Emre Cakar, Moez Mnif,
and Urban Richter. Adaptivity and self-organization in organic comput-

ing systems. ACM Transactions on Autonomous and Adaptive Systems,
5(3), 2010.

Yoav Shoham and Moshe Tennenholtz. On the synthesis of useful so-
cial laws for artificial agent societies. In 10th National Conference on
Artificial Intelligence, page 276-281. AAAI Press, 1992.

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Transactions on Autonomous and
Adaptive Systems, 4(2), 2009.

H. Van Dyke Parunak and R. S. VanderBok. Managing emergent be-
havior in distributed control systems. Technical report, Industrial Tech-
nology Institute, Ann Arbor, United States, 1997.

Danny Weyns and Jesper Andersson. On the challenges of self-
adaptation in systems of systems. In Ist International Workshop on
Software Engineering for Systems-of-Systems, page 47-51, New York,
NY, USA, 2013. ACM.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review, 10(2):115-152,
1995.

Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela
Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Hol-
ger Giese, and Karl M. Goschka. On Patterns for Decentralized Control
in Self-Adaptive Systems, pages 76-107. Springer, Berlin, Heidelberg,
2013.

42

	Introduction
	Background
	Multi-Paradigm Control
	System Understanding
	Running Example

	Taxonomy
	Patterns
	Command
	Constraint
	Influence
	Pseudo-Emergence
	Isolation

	Discussion
	Related Work
	Conclusion
	Bibliography

