

IT-Studienprojekt (ERASMUS+, IMIT)

Service and device monitoring on devices in

IIP-Ecosphere

Version 1.0 vom 24. Juni 2021

(Vor Abgabe entfernen)

Miguel Gómez Casado

375687

gomezm@uni-hildesheim.de

Supervisors:
Prof. Dr. Klaus Schmid, Dr. Holger Eichelberger, SSE

Arbeitsgruppe Software Systems Engineering  Institut für Informatik

Universität Hildesheim  Universitätsplatz 1  D-31134 Hildesheim

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

ii Version 1.0

Eigenständigkeitserklärung

Version vom 24. Juni 2021 (Vor Abgabe entfernen) List of contents

Version 1.0 iii

Abstract

This project is part of a much broader project called IIP-Ecosphere [IIPE19]. The IIP-Ecosphere

project aims to create a framework that will act as an industry standard for the upcoming Fourth

Industrial Revolution. The focus of this particular project lies within IoT monitoring. More in

particular, the monitoring of services and other resources in the environment of Industry 4.0. In

a steadily drifting towards ubiquitous information systems, the demand for IoT and IoT

standards grows, and the monitoring of these devices and services becomes an important aspect

to be taken into consideration. Through monitoring we can decide what actions to take and

detect uprising issues and problems before they take place, allowing us to react to them quickly

and effectively. This project aims to add value to the aforementioned IIP-Ecosphere project by

adding a service monitoring interface and component that fits into the project's requirements and

structure, that would allow us to monitor the different resources and the devices they run on.

This document will first introduce the different motivations and goals for this project before

delving into the background existing prior to starting the project's development. As the

document progresses, we will see come more technical elements of the project, starting with the

requirements that this project has and how they fit into the broader scope of the IIP-Ecosphere

project, then we will have a look at the project's architecture, starting with a conceptual model

and an initial idea to later flesh out a more complete and detailed architectural model. Later on,

we will go into implementation details and decisions taken for the project's technical part as

well as how they were tested and validated. We will end the document by explaining how this

component can be integrated with the rest of the IIP-Ecosphere project and add some

concluding remarks.

This project resulted in the creation of a software component that allows a resource we are

trying to monitor to record and expose a series of measurements that can later be collected by a

monitoring resource. The elements required for both exposing and collecting the metrics are

both part of the component in question, reducing the effort and time required to use this type of

monitoring. All of this has been achieved following the IIP-Ecosphere's requirements, where we

combine the use of Spring Cloud Stream [VMM21] and Micrometer-API [PS21] as well as the

use of Asset Administration Shells [PI418]. We will, of course, briefly discuss this technologies

in this document. We tried to keep the monitoring as efficient timely as possible, achieving an

average 5ms recovery time for recorded meters.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

iv Version 1.0

List of contents

List of contents .. iv

List of figures .. vi

List of tables .. vi

List of abbreviations ... viii

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Goals of the project .. 2

1.3 Planning of the project .. 3

1.4 Structure of the project .. 3

2 Project background... 4

2.1 Asset Administration Shell (AAS) .. 4

2.2 Spring Cloud Stream ... 5

2.3 Micrometer-API .. 6

3 Requirements ... 7

3.1 Overall Requirements ... 7

3.2 Transport and Connection Requirements .. 9

4 Architecture ... 11

4.1 IIP-Ecosphere architecture .. 11

4.2 Project Architecture .. 13

4.2.1 Server-side division... 15

4.2.2 Client-side division ... 17

5 Implementation ... 20

5.1 General implementation of the project .. 20

5.2 Implementation of the server-side ... 20

5.2.1 Metrics Provider implementation and the Capacity Base Unit enumeration 23

5.2.2 Implementation of the Metrics Provider REST Service and the REST Advice 25

5.2.3 Dependencies of the server-side.. 26

5.3 Implementation of the client-side ... 27

5.3.1 Meter representations ... 28

5.3.2 Metrics AAS ... 32

5.3.3 Dependencies of the client-side .. 39

6 Evaluation and validation .. 42

6.1 Funtional tests ... 42

6.1.1 Server-side unit tests ... 43

6.1.2 Client-side unit tests .. 46

Version vom 24. Juni 2021 (Vor Abgabe entfernen) List of contents

Version 1.0 v

6.2 Integration tests .. 51

6.2.1 Server-side prototype ... 51

6.2.2 Client-side prototype ... 53

6.3 Performance tests ... 54

6.4 Test coverage ... 60

7 Integrating the Metrics Provider Component ... 61

7.1 Integrating the server-side of the component... 61

7.2 Integrating the client-side of the component ... 62

8 Final remarks ... 63

8.1 Conclusion ... 63

8.2 Outlook .. 64

Appendix ... 66

A.1 Example of application.yml file ... 66

A.2 Example of a server-side Spring Cloud Stream Application ... 68

A.3 Example of a client-side application constructing an AAS Server 70

A.4 Example of a client-side application that uses an existing AAS to extract and

operate with metrics ... 72

A.5 Examples of JSON objects representing meters and Meter updaters 77

A.5.1 JSON Object Representing a Timer ... 77

A.5.2 JSON Object Representing a Gauge .. 77

A.5.3 JSON Object Representing a counter .. 78

A.5.4 JSON Object Representing a Timer Updater ... 78

A.5.5 JSON Object Representing a Counter Updater .. 78

A.5.6 JSON Object Representing a Gauge Updater .. 78

A.5.7 JSON Object used to update the system's disk or memory base unit 78

A.5.8 JSON Object obtained when retrieving the jvmbuffermemory property of the AAS 79

Glossary... 80

Bibliography ... 83

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

vi Version 1.0

List of figures

Figure 1: Overall architecture of the IIP-Ecosphere platform[IH21] .. 12

Figure 2: Conceptual model of the two component divisions in operation 14

Figure 3: Simplified model of the Metrics Provider component .. 14

Figure 4: Conceptual model of the individual elements from the component in operation 15

Figure 5: Inheritance style/profile of the server-side division ... 16

Figure 6: Simplified model of the server-side division ... 16

Figure 7: Inheritance style/profile of the client-side division .. 18

Figure 8: Simplified model of the client-side division .. 19

Figure 9: Detailed class diagram of the server-side .. 22

Figure 10: Dependency diagram of the server-side ... 26

Figure 11: Detailed class diagram for the meter representation package 29

Figure 12: Detailed class diagram for the metrics AAS package .. 33

Figure 13: Small diagram representing the AAS' structure ... 36

Figure 14: Dependency diagram of the client-side .. 41

Figure 15: Flow diagram of the test .. 55

Figure 16: Graph depicting the time required to retrieve a counter in nanoseconds 56

Figure 17: Graph depicting the time required to retrieve a gauge in nanoseconds 56

Figure 18: Graph depicting the time required to retrieve a timer in nanoseconds 57

Figure 19: Graph depicting the time required to retrieve the different meters in nanoseconds to

compare the retrieval times ... 57

Figure 20: Graph depicting the time required to parse a counter in nanoseconds 58

Figure 21: Graph depicting the time required to parse a gauge in nanoseconds 58

Figure 22: Graph depicting the time required to parse a timer in nanoseconds 58

Figure 23: Graph depicting the time required to parse a timer in nanoseconds 59

List of tables

Table 1: Project Goals ... 2

Table 2: General requirements from the IIP-Ecosphere platform ... 7

Table 3: Specific requirements for the project based on the general requirements of IIP-

Ecosphere .. 7

Table 4: Transport and connection requirements of IIP-Ecosphere taken into consideration 9

Table 5: Unit Test battery key ... 42

Table 6: Capacity Base Unit Test Battery ... 43

Table 7: Capacity Base Unit Test Battery ... 43

Table 8: Meter Representation test battery .. 46

Table 9: Counter Representation test battery .. 47

Table 10: Gauge Representation test battery ... 47

Table 11: Timer Representation test battery ... 48

Version vom 24. Juni 2021 (Vor Abgabe entfernen) List of tables

Version 1.0 vii

Table 12: Metrics AAS Construction Bundle test battery ... 50

Table 13: Metrics Extractor REST Client test battery .. 51

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

viii Version 1.0

List of abbreviations

API Application Programming Interface

IoT Internet of Things

AAS Asset Administration Shell

CEO Chief Executive Officer

AI Artificial Intelligence

HTTP Hypertext Transfer Protocol

I4.0 Industry 4.0

JSON Java Script Object Notation

XML Extensive Markup Language

UI User Interface

POM Project Object Model

CRUD Create, Read, Update, Delete

OS Operative System

UML Unified Modeling Language

MQTT Message Queuing Telemetry Transport

AMQP Advanced Message Queuing Protocol

RAM Random Access Memory

JAR Java Archive

OT Operational Technology

IT Information Technology

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Introduction

Version 1.0 1

1 Introduction

This project is not an isolated project aiming to obtain a software solution to an existing

problem, it is part of a much broader project known as IIP-Ecosphere[IIPE19]. IIP-Ecosphere is

a German initiative that aims to research and improve technology in the scope of Industry 4.0.

Due to the current evolution of information technologies, slowly advancing towards the area of

ubiquitous information systems, more commonly referred to as Internet of things or IoT for

short, IIP-Ecosphere is currently undergoing research in this area to integrate new solutions to

the ever-changing and relentless evolution of industry.

The current state of IIP-Ecosphere features a multilayer structure. The best way to describe this

would be using the tree analogy. At the very bottom of the tree we would find edge devices,

devices directly providing a service, taking measurements or, in short, supplying a product that

adds value to the overall industrial system in some way. Using the tree analogy, this would be

the "roots" extracting nutrients and required resources for the system. We would then work

ourselves up the tree going up the different layers, letting go of specific details of the edge

devices in favor of an abstraction from the physical devices, providing important aid to the

structure, similarly to what a tree trunk would do. The final layer would involve a cloud or a

cluster. This would be the most "visible" part of the system, what would be used to manage the

system in general.

To further aid in the construction of this structure, every element and layer of the system is

considered a resource. By denoting as resources all devices, layers and services, we draw a

further abstraction from the different elements, allowing us to simply treat all of them equally

under this umbrella term.

We will now go more into detail about this particular project and what role it plays in the bigger

picture that is IIP-Ecosphere. This project aims to create an infrastructure for what will become

the resource monitoring layer of the IIP-Ecosphere project. In the following subsections, we will

see what the motivation and the targets of this project are.

1.1 Motivation

The resources that are part of a system are hardly ever perfect. It is already something quite

usual in the world of information technologies for a device or a service to suddenly stop

working unexpectedly, or to work in a different manner to what was planned for it. When

working at an industrial level, one of this seemingly small or common issues could cost

thousands or even millions of Euros, depending on how critical the system that has failed is. For

this reason, being able to monitor a resource is an important matter and one that should be taken

into account.

It is very hard to manage a resource if you are unaware of its current state, not to mention, that it

is also something critical when it comes to detecting problems before they occur. Failures and

problems in information technologies, like most other issues that occur elsewhere, have a cause.

Perhaps there is a shortage of a system resource such as memory, or one of the components is

damaged and is negatively impacting the throughput. If this resource is being monitored, all this

variables can be detected before the issue escalates beyond control, allowing us to take action

early on and avoid future complications.

This aspect was something that had indeed been mentioned and planned within the IIP-

Ecosphere project but had, until now, been left aside to focus on more pressing matters. With

better specified requirements an already existing infrastructure for the project, this part of the

IIP-Ecosphere project became available to be picked up and worked on.

Apart from this already mentioned details, there is also a scientific motivation behind this

project as many of the technologies in use here are new and have yet to be fully tested and

explored. This prompted some research questions that were also used early on in project

development to set a more clear goal or path to follow as, due to the aforementioned novelty of

these technologies, the steps to follow were never fully clear. By setting trying to answer this

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

2 Version 1.0

questions as a minor goal or focus, we could later build the more concrete goals. These

questions were:

 What architecture is feasible in this context, could a standard approach using

Micrometer Monitoring API [PS21] help here?

 How can Micrometer-API be integrated with Industry 4.0 (I4.0) Asset Administration

Shells (AAS) [PI418] on both Information Technology (IT) infrastructure and

Operational Technology (OT) resources?

 Is AAS fast enough for IoT monitoring?

 How could custom probes be integrated?

1.2 Goals of the project

One of the approaches taken by IIP-Ecosphere to aid in drawing an abstraction to the specific

and more detailed resources was using a new technology known as Asset Administration Shell

(AAS)[PI418]. An AAS represents resources as assets. An asset would be a model of the

resource in question while the administration shell would be an interface to interact with this

asset in a uniform way. The monitoring functionality that this project aims to add to the IIP-

Ecosphere has to fit into the idea of an AAS, which is one of the requirements of the project.

The target of this project is, therefore, to provide an infrastructure to the environmental

monitoring of resources for the IIP-Ecosphere project. The monitoring mechanism provided

must be able to be represented as an asset, or rather as part of an asset, and, as a result, will be

accessible using an AAS. We will go more into details of what an AAS is and what it implies

later on in this document.

Even though the final product of this project has to be functional, it is not expected to add a

fully fleshed monitoring service that would work in every scenario, but to provide a starting

point or, using a aforementioned word, to provide an infrastructure to the monitoring layer. The

end product will allow an AAS to read the levels of usage of certain system resources as well as

providing an interface to allow the creation of customized probes that would allow us to monitor

more specific elements of the resource such as, for instance, the throughput of the service it

provides.

With this paragraphs in mind, we now present table 1, that shows the specific goals the project

has more clearly, showing the main goals that drove the project and adding some smaller sub-

goals that were added later on.

Table 1: Project Goals

Goal Description

G1 Create a component that can read the current state of system resources from an OT

resource

G1-1 Extract Micrometer-API metrics from the OT resource

G1-2 Extract memory and disk metrics from the OT resource

G2 Create a component that allows to read the system resources using an AAS

G2-1 Add an infrastructure or a skeleton to building an AAS supporting the monitoring

G3 Create a component that can add and/or modify custom probes to the OT resource

we are monitoring

G3-1 Allow the custom probes to be created and/or modified by either the OT resource

or the monitoring IT resource

G4 Create a component that provides a way to parse monitoring information into a

functional ADT

G4-1 Provide a way to update a custom meter using the ADT that represents it

G5 Keep average meter retrieval and parse times lower than 10ms

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Introduction

Version 1.0 3

1.3 Planning of the project

It has been hard to think of the plan for the project before getting started with it due to the fact

that it is a very new concept both generally speaking, as some of the technologies in use are still

not fully implemented at this time and still going under research; and at a personal level, as I

never worked with anything related to IoT or monitoring. This was, as a result, a perfect

opportunity to learn something new and provide value both to the IIP-Ecosphere project and to

my own personal knowledge. The plan of this project was, as a result, built at the same time as

the project, creating an initial idea and iterating over it as progress was being made. The way

this project was driven was by taking note of the known technology, the progress that had been

made and adding a small and reachable goal to improve the project. Many of this goals were, of

course, motivated or based on the requirements and overall goals of the project, but also on the

previously mentioned research questions.

The first part of the project involved getting familiar with the technology being used in the IIP-

Ecosphere and understanding what was being developed within the project's scope. Although

this would not provide a tangible product or value to the project, it was an important starting

point to improve speed and efficiency when it came to technical work. A minimum

understanding of how the tools that are going to be used is always a vital component to any type

of work. Otherwise, the project would advance at a far slower pace than feasible, practically

dooming it from the start.

After that, we continued working, attempting to create a simple monitoring interface using

different prototypes and approaches to draw conclusions on which approach was the best one.

These prototypes were simply to test how the interface would react to a normal situation. The

result would be a small prototypical infrastructure that would allow the addition of more

components and functionality as we slowly worked our way towards building a more advanced

software component that allowed us to achieve the goals we had set for the project.

The following step involved iterating over the previously mentioned prototypical infrastructure.

Starting by making that infrastructure independent from the testing prototypes and refining the

existing functionality as well as adding new one. This part aimed to turn the infrastructure into a

software library that could later be deployed in a working project to add the monitoring

functionality with as few changes as possible. Once again, this strived for achieving a further

independence of the monitoring component. This would be the part that added the biggest

amount of value to the project, as the added functionality would be tested and validated to

ensure its correctness.

More functionality was added after noticing some parts from the testing prototypes could be

added into the component for a more standardized and uniform execution and, roughly after the

tests started to provide good results, we started working on this document which, in turn, also

provided some insight from a different perspective that would also enrich the technical work

from the project as, in one way or another, by writing the progress down, these ideas became

clearer and more organized, allowing to make additions.

1.4 Structure of the project

To finish off this section, we will speak a bit about the structure of the project. This project is

composed of a software component that can be divided into two parts, and this document. One

of the parts contains the functionality required to extract and expose system metrics from an OT

resource, as well as adding the possibility of creating and modifying custom probes in the same

way. The second part corresponds to the functionality required to read the data from the IT

resource by using an AAS and create usable ADTs to make their management more

comfortable. This document acts as a memoire of the project, documenting its progress and

conclusions.

More detailed information of the software component's inner structure will be provided in the

section regarding architecture.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

4 Version 1.0

2 Project background

In this section we discuss the approach taken for the project and what decisions were made both

early on in the project and as it progressed. We will also include some subsections detailing the

approach taken to study, research and better understand the technology and tools being used in

IIP-Ecosphere and, as a result, are also used in this project.

Starting off with the initial planning of the project, there were two possible approaches that

could be taken overall. The first approach would be a top-down approach, where we would start

from an abstraction of the component we wanted to created and refine said abstraction into a

more specific component until achieving the desired goal. As a result, this approach is often

more theoretical at first, trying to find an adequate design prior to implementing a solution. This

approach is often used because it is a good way to always keep the main goal or the final target

in mind. It is also beneficial in order to have a general idea on how the system works as a whole

without initially overwhelming the developers with specific functionality. The second approach

would be a bottom-up approach, which essentially is the opposite of the previously mentioned

top-down approach. In this case, we start by creating the specific components with some

functionality, then add them up to achieve bigger and more complex functionality, slowly

building up the system until we have the final product. This approach is more technical than the

top-down approach, as it usually works in incremental addition of functionality to slowly build

up the bigger picture we started off with in the other approach. This approach is a good idea

when we want to take smaller steps and draft a plan in a more flexible way, determining what

the next step could be based on the already existing progress.

After giving it some thought, it was decided that the approach the project would follow would

be a bottom-up approach. There were, of course, multiple reasons to support this decision. The

main reason that fueled this choice was the fact that, being new to this technology, it was

difficult to picture the abstract overview required for the top-down approach. Also related to the

lack of knowledge in this field, a bottom-up approach would be helpful to understand the way

the different components and elements worked individually, and later on experience how they

could work together. A more technical or experimental bottom-up approach seemed more likely

to render good results than a theoretical top-down approach when taking these circumstances

into account.

In the following subsections, we will discuss some of the technologies that have been used and

what approach was taken in the initial stages of the project to further comprehend how they

worked and what value could be extracted from them.

2.1 Asset Administration Shell (AAS)

Although we have already introduced what an AAS is in the introduction, we will go more into

details about it in this subsection.

As previously mentioned, an AAS represents resources as Assets which, in turn, are interacted

with by using an interface, the administration shell, that treats all the assets equally. To further

illustrate this idea, we could simply use the hierarchical structure in a normal company. We can

imagine there is a management board or a CEO at the head of the company, a series of

department directors and then the workers working in each department. When the CEO wants

something done, they would never go directly to each worker from a specific department to

personally request them to do their specific part that would, eventually, help them reach their

goal, mostly because he would probably be unsure of what each employee does specifically and

would most certainly end up giving the wrong instructions to the employees. The CEO would

talk to the department director and file their entire request directly to them. It would be the

department director, who knows exactly what each worker is supposed to do, the one that would

give out the specific orders to each individual worker. In this analogy, the workers would be

assets and the department directors would be Asset Administration Shells. The CEO would be

the process or processes that use the asset administration shell to manipulate the different assets.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Project background

Version 1.0 5

So, why was AAS an idea to begin with? AAS is the implementation of the concept of a digital

twin that is being developed fur Industry 4.0. It aims to establish cross company interoperability

and to create a series of standards for the integration of IoT into this Fourth Industrial

Revolution. This idea allows the combination of intelligent resources, which are resources with

AIs, and passive resources in a uniform way. By representing different elements involved in the

industrial production as assets, we can create a digitalization of our resources, which would, in

turn, make the overall system more efficient.

An AAS is composed of a header and a body. The header part of an AAS contains the relevant

information to identify, configure and use an asset. The body of the AAS contains what we call

"submodels". A submodel contains a hierarchy of the different properties that the asset has. The

properties represent a feature or some data that the asset might have. With this two components

combined, we can identify an individual asset among multiple similar resources and know what

type of information we can obtain from this asset as well as what we can do with it.

The project behind the creation of the concept of an AAS is BaSyx [EF21]. BaSyx is a project

owned by Eclipse that aims to create an open source platform to aid in the automation of

industry in the Industry 4.0. The idea behind AAS is to create a standard version of a digital

twin, a digital representation of a real device or resource. The target is to help all interested

stakeholders to advance and shape the Fourth Industrial Revolution. BaSyx is, therefore, an off-

the-shelf component implemented in different languages to allow its use in the most extensive

way possible. This project is also partially funded by the Federal Ministry of Education and

Research of Germany.

This technology lies at the base of the AAS implementation of IIP-Ecosphere, although, as one

can imagine, IIP-Ecosphere does draw an abstraction from this base technology, providing a

slightly different, more flexible interface for this technology. Understanding how BaSyx worked

underneath was helpful to further understand this abstraction by the IIP-Ecosphere of this

technology. By having a look and experimenting with some of the prototypes provided by

Eclipse, we were able to gather quite a good understanding of this technology prior to starting

with the development of a prototype.

Further prototypes of AAS were also studied, this time from the IIP-Ecosphere. Although based

on the same principals as BaSyx, having a look at this particularity was also vital, since, after

all, this was the version of AAS we would be using for the project. Some of the functionality

was left open, allowing for a more flexible use of this technology as well as providing tools to

also simplify its use.

2.2 Spring Cloud Stream

Spring Cloud Stream is a framework designed to create highly scalable and event-driven

microservices while also allowing the option of connecting said microservices with messaging

systems. Spring supports multiple binder implementations to allow the use of different

messaging systems and technologies to be used together with Spring Cloud Stream[VMM21].

Spring Cloud Stream is actually quite wide spread and can be found in multiple software

solutions form important and well known companies for different reasons. One of such is

Netflix, who started using Spring Cloud Stream in 2015 in substitution to a pre-existing internal

solution due to the improved reliability, scalability, efficiency and security that Spring Cloud

Stream offers.[WCY+18] It is also used for the online services used by Target for online

shopping, as it provides scalable, nimble and efficient microservice communication.[BD18]

These two examples prove that Spring Cloud Stream can be used for multiple and different

tasks

Spring had become of the technologies that had been chosen by IIP-Ecosphere to the point of

actually becoming a requirement [IH21]. Spring would be used in the transport layer of IIP-

Ecosphere to connect components that could be completely independent from one another, via

the usual I4.0 protocols such as MQTT [MO20] or AMQP [O14]. A simple prototype, for

example, was being built at the time this project was being carried out that combined an

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

6 Version 1.0

artificial intelligence (AI) programmed in Python that allowed to stream the produced data using

Java. This is, of course, the type of flexibility required by the IIP-Ecosphere project.

There were, of course, a series of different options considered by the IIP-Ecosphere when it

came down to choosing an adequate streaming component that could be used as the transport

component[IH21]. Several of them were discarded due to them not meeting requirements from

the project, in particular those regarding flexibility. The requirement to also use AAS wherever

possible was also an important limiting factor when it came to deciding what platform to

integrate to the IIP-Ecosphere project. A few still remained, but some experiments run on the

components started to reveal issues that discarded other options, such as severe lack of

documentation to execution errors. The decision of using Spring Cloud Stream was then settled,

after determining that it was both the most stable of the remaining candidates as well as fitting

many of the requirements. The ability to exchange transport protocols for individual streams

allows the user to define the formats they require for each transport necessity.

2.3 Micrometer-API

One of the technologies that had been considered already by IIP-Ecosphere in regards to

monitoring had been the Micrometer-API[PS21]. Micrometer is a vendor-neutral application

metrics facade. It provides an interface over the instrumentation clients. Micrometer allows the

creation of probes and meters that operate under the same facade and, registering them under a

simple name, we can use to retrieve them later. There are already a series of bindings that are

already configured in Micrometer-API, simplifying the work required to use it. One final detail

that makes is very attractive for the IIP-Ecosphere project is that it is integrated into Spring, the

previously mentioned technology. With Spring already as a requirement for the project, adding

Micrometer seems to be a simple idea as the part of the work involving its start up is already

handled by Spring under the hood, relieving us from some of the workload as well as

simplifying much of the work that would be otherwise required for this.

In spite of the Micrometer-API evidently being by multiple monitoring services, including

Spring Boot, Prometheus or JMX[MRC06], Micrometer-API is not that way known, or at least

is not well publicized, as other than these mentions found on the official page implementation

and the example we used to learn how Micrometer-API worked in unison with Spring Cloud

Stream[MH20], we have been unable to find any other examples of its usage easily. Perhaps this

is due to its integration in other tools, which it uses as support to obtain the meters, meaning that

you don't have a standalone Micrometer-API component that can be used.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Requirements

Version 1.0 7

3 Requirements

In this section we will cover some of the requirements that this project has and their relation

with some of the requirement in the IIP-Ecosphere project. Apart from mentioning the

requirements, each section will also include a small paragraph explaining how the different

components are expected to be covered by the project.

3.1 Overall Requirements

The table below shows a series of requirements from the IIP-Ecosphere platform that were

extracted from the platform handbook[IH21]. Since this project is part of the IIP-Ecosphere

project, these requirements have also had to be taken into account:

Table 2: General requirements from the IIP-Ecosphere platform

Requirement Summary

R1 Vendor and technology neutral

R2 Use of standards

R3 Design as virtual platform

R4 Design based on components and services

R5 Use of open source

R6 Open for optional/commercial components

R7 Use of AAS for interfaces

R8 Use of systematic variant management techniques

R9 Means for availability

R10 Soft real-time processing (<100 ms) for production critical functions

R11 Documentation

R12 Documentation of processing steps

These requirements cover the entire IIP-Ecosphere platform and are general requirements that

have to be fulfilled by each component of the IIP-Ecosphere platform, including this project.

Some of the requirements are, to a certain point, somewhat out of the scope of this project and

are, in one way or another, fulfilled indirectly, simply due to its integration into the IIP-

Ecosphere platform. Of course, on the other hand, most of these requirements have been refined

to be more specific to this particular project, specifying some of the technologies to be used that

fit inside the previously mentioned requirements:

Table 3: Specific requirements for the project based on the general requirements of IIP-Ecosphere

IIP-Ecosphere

Requirement

Requirement Summary

R1 R1-1 Use of Spring Cloud Stream boot component to manage and

inject dependencies required for monitoring

R1 R1-2 Use Spring Cloud Stream Micrometer-API component to

manage and create monitoring probes and values

R1 R1-3 Use of Spring Cloud Stream REST controller to design a

RESTful service

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

8 Version 1.0

R4 R4-1 Design a monitoring component that can be added to the

IIP-Ecosphere platform

R4 R4-2 Access to monitoring values using a RESTful service

R4 R4-3 Modification and deletion of custom metric values using a

RESTful service

R5 R5-1 Use of Spring Cloud Stream as framework (open source)

R5 R5-2 Use of Micrometer-API as monitoring platform (open

source)

R7 R7-1 Use of AAS interfaces to access the metric values

R7 R7-2 Use of AAS interfaces to modify or delete custom metric

values

R10 R10-1 Time required for retrieving and parsing meters cannot be

above 100ms

R10 R10-2 Average time required for retrieving and parsing meters

should be below 10ms in normal workload circumstances

R11 R11-1 Documentation of the available operations in the code

R11 R11-2 Documentation of the available operations available as

JavaDoc handbook

R11 R11-3 Documentation of requirements to allow the component to

function properly

R12 R12-1 Documentation of processing steps taken by the designed

component

Most of the software components used to create and test the functionality of this project have

been provided by the Spring Cloud Stream framework. Spring is an open source framework,

meaning that its components also fall under the category of open source. Additionally, since

Spring Cloud Stream already has a series of mechanisms that allow to make the transport and

communication flexible as we saw before, we can also consider it technology neutral, at least in

the sense of communication protocols, meaning that we fit the requirements handsomely by

using this framework. Micrometer-API also falls under this category. We already saw that, in

the official description of the API provided in their homepage [PS21], Micrometer-API is

defined as vendor-neutral, once again successfully complying with the requirements. For this

reason, the use of these two technologies seems to be very appropriate for the project.

With regards to the design based on components and services, since this project is going to be a

part of the larger scale IIP-Ecosphere platform, it already makes sense that it is designed as a

semi-independent component for the platform. Of course, we need to include some

dependencies with the technologies we require to make it work, such as the already mentioned

Spring Cloud Stream framework and the Micrometer-API, but this dependencies will already be

dependencies of the IIP-Ecosphere project, meaning that this component is, in fact, independent

inside the IIP-Ecosphere environment. The idea behind designing this project's product as a

component is simple as well as sensible. The resulting component could simple be "plugged"

into the resource we want to monitor and the resource carrying out the monitoring and that

would be it. Components are also a fantastic idea when it comes to creating scalable systems,

which is something that can come in very handy in the near future.

The existing integration of Micrometer-API in the Spring Cloud Stream framework already

makes the metric values available to be viewed using an HTTP [BFF96] request. This is already

something that, already fueled many of the ideas behind different decisions taken when

implementing this project. HTTP is independent from the language and can be executed from

different processes in completely different execution environments, even in remote and distant

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Requirements

Version 1.0 9

devices. This allows for a great flexibility when it comes to access the data. The resulting

interface (naturally, an AAS interface) can simply access the metrics using an HTTP request.

This would hide all the underlying process of requesting the metric, calculating it and retrieving

it in an HTTP response. After this handy way of accessing the data was made clear, it seemed to

be a good option to add a RESTful service to allow the modification of custom metrics to be

done in the same way as the reading. REST services use HTTP as an application protocol as

well as a transport protocol, creating a very simple, yet efficient and effective service. By using

a REST service, every operation is equal to the eyes of the user, as well as creating a uniform

and consistent type of operation.

With a fully operational RESTful service that allows the access and modification of metric

values, we can easily create an AAS interface that can map the different metrics as properties so

their access is completely uniform. Under the hood, the AAS would actually be using the

RESTful service to obtain the different values and, similarly, to modify or delete custom metrics

that we might want to include.

Regarding the quality requirement that involves the time limit of 100 ms mentioned in R10, we

might need a further explanation as to why this is necessary. Monitoring a resource is important,

to the point that it may be critical to the system, so keeping the limit is important. Due to some

complications that appeared during the development regarding a specific type of metric that was

used to gather system resource values that involved a significant overhead time to calculate

them, it was decided to sacrifice the real time calculation of these values in favor of a more

effective and less time consuming alternative which involved scheduling the calculation of these

metrics rather than calculating them when requested. This schedule must also fit into the time

limit and, as a result, has to be included as a requirement.

Of course, one final paragraph to discuss documentation, all progress and knowledge gained

from this project would be lost if there is insufficient documentation. Documentation explaining

what each operation does and how to correctly use it is important for both the use and the

maintenance of the component. It is also important to document how to use and deploy the

component where it is needed, explain what steps must be taken prior to adding it to an

application or a process to ensure it works as expected. It is also important to document what

the component is supposed to do when running, as this will show some insight to the work and

idea behind it to quickly locate and solve an error if it occurs.

3.2 Transport and Connection Requirements

This section is significantly smaller to the prior section, but it was considered to be relevant to

include in the document. Due to the dislocated or split nature of the component we create with

this project, since it includes elements needed by the resource we want to monitor, as well as

parts we require to monitor the service, it is important to include some of the transport and

connection requirements that have been taken into consideration to design the component:

Table 4: Transport and connection requirements of IIP-Ecosphere taken into consideration

Requirement Summary

R14 Open and flexible connectors

R19c Restful APIs with JSON/XML

In order to allow the connectors to be flexible, no specific host or port is specified in the

component when it comes to deploy the RESTful service. This will all be managed by the

Spring Cloud application from the specific device or environment, meaning that the RESTful

service and the monitoring components will work equally independently of the identity of the

specific process and device running them. Of course, the port can be modified using a blueprint

of sorts that is provided by the Spring Cloud application, but this detail will be shown in a later

section where we dive deeper into implementation details.

The last requirement considered is regarding the format we are going to give the data for its

transportation. We already know that the property shown in the AAS is an "illusion", as the

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

10 Version 1.0

value has to be requested to the RESTful service. The issue is how to send data from the AAS to

the service without losing any of the values. There are multiple ways and alternatives to do this,

but if we have to make such a decision, the best approach is to look at the requirements from

both the overall project and other components in order to be consistent with the already taken

decisions. For this reason, the decided data sharing format is JSON, following the requirement

R19c.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Architecture

Version 1.0 11

4 Architecture

In this section we will take a look at the project's architecture. We will start by showing a

diagram of the architecture of the IIP-Ecosphere project so we can locate where this project is

nested before going into further detail about this project's specific architecture. In order to

understand the structure we start from a general overview of the complete project before

moving down towards the specific elements that compose this component.

4.1 IIP-Ecosphere architecture

Since we are working in the IIP-Ecosphere project, it makes sense to first have a look at the

project's architecture before continuing to the specific component we are creating to locate it

within the bigger picture that is represented by this broader project. The diagrams and

information shown in this subsection has been extracted from the IIP-Ecosphere platform's

handbook[IH21].

Figure 1 shows the multi-layered architecture of the project. The IIP-Ecosphere project is

composed of 8 horizontal layers and a 9th vertical layer. As it is common with this type of

architecture, one layer can only access resources from layers that are below it and never above

it, managing the inter-layer dependencies by using a hierarchical design top-to-bottom. As it is

also common with this types of architectures, there is also a relaxed, vertical layer (shown on

the left) that may be accessed by every other layer in the project. This vertical layer is often

used to have all configuration properties in one located place.

More detailed information can, of course, be located in the appropriate documentation of the

IIP-Ecosphere platform, but in order to show a minimum amount of insight, we now list the

different layers with a short summary of what each layer is responsible for:

 Support Layer: layer responsible for realizing basic abstractions to ease functions from

upper layers. This layer allows the platform to reduce unnecessary redundancy as well

as promote internal conversions.

 Transport and Connectors Layer: layer responsible for connecting different devices

among each other and with other platform services. This ensures that the appropriate

protocols and formats from I4.0 are used.

 Services layer: layer that provides openness and extensibility throughout different

types of services, focusing on AI services. These services must be configured and

orchestrated in order to be useful for the application. This layer defines the basic service

interfaces, provides access to data routing and manages the automatic translation of data

formats along data streams.

 Resources and Monitoring layer: layer that manages the monitoring of services

deployed in resources. This is done in terms of AAS. This layer has a monitoring

component which can be deployed along with services and use the capabilities of the

Transport and Connection layer.

 Security and data protection layer: layer that provides data to the overall security

configuration (authentication, cryptography, etc.), in particular, regarding AAS and

BaSyx [EF21].

 Reusable Intelligent Services layer: this layer is responsible for paving a way for

open, reusable and extensible intelligent services. Te actual functionality of this

component in the context of a running application is also defined in the platform

configuration.

 Configuration layer: layer that contains components to manage and operate on the

platform configuration.

 Applications layer: layer that includes a simple platform user interface (UI) relying on

configuration and AI-enabled applications.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

12 Version 1.0

Figure 1: Overall architecture of the IIP-Ecosphere platform[IH21]

With the architecture of the IIP-Ecosphere project in mind, we can now establish the location of

the component created by this project within the broader project's scope. It is easy to establish

that the component in question belongs to the resources and monitoring layer. Inside this layer,

there are a series of subdivisions to further organize its contents. The particular subdivision

where this component fits into is the environment subdivision. We will now look more in

particular at the specific architecture of the project.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Architecture

Version 1.0 13

4.2 Project Architecture

Before diving deeper into a more detailed view of the project, we will start with an overview of

the overall structure. Once again, in order to aid in better understanding the architecture, we will

make use of some diagrams to visually illustrate some of the concepts and decisions taken to

build the project's architecture.

The component produced by this project has been baptized under the name Metrics Provider.

The reason behind this is that the first element created in the project, as well as the central and

main element within it, is the one responsible for extracting the metrics we want to monitor and

make them visible to the process or component who is responsible for carrying out the

monitoring of the resource and its service. All other elements in this project revolve, in one way

or another, around this particular element, either to aid it in its execution or to translate the data

retrieved from it into a more manageable piece of information. Because of this significance in

the project, the decision was made to name the project and component itself after it, as it is the

best representative figure for the component.

As mentioned before, this project aims to provide the infrastructure to monitor a service and the

resource running said service, as well as providing the required interface to comfortably access

the information obtained through the monitoring. In this previous sentence, we can clearly see

two significantly different parts inside the component.

The first subdivision is the one aiming to create an infrastructure for the extraction and exposure

of metrics we want to monitor, including all the required elements to perform said task. The

second subdivision contains elements to provide an accurate interpretation of the data produced

by the first subdivision, parse it into a structure that is easier to manage and supply an interface

to easily access the first subdivision. After taking this concept into account, we can clearly see

that there is a sort of client-server relationship between these two divisions. The first

subdivision acts like a server, supplying data upon request and lying in an otherwise "dormant"

state when not in use, waiting for the other element to establish a connection and request its

data. The second division acts like a client, connecting to the server to retrieve its data, and then

interpreting the "raw data" it receives as a response, allowing us to parse said data into a more

manageable and simple structure to use it efficiently. In figure 2, we can see the concept that we

just described in a more visual manner.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

14 Version 1.0

Figure 2: Conceptual model of the two component divisions in operation

With the concept introduced by figure 2 in mind, considering both subcomponents of the

Metrics Provider component, we obtain the architecture of the project shown in figure 3. Figure

3 shows all the elements and the way they are organized within the project in a simplified way

in order not to overload the diagram. We can clearly see that the component is first split into the

aforementioned divisions before further subdividing and organizing the elements within. We

will go into more detail in the following subsections

Figure 3: Simplified model of the Metrics Provider component

With the concepts introduced by figure 3, we can refine the conceptual idea introduced in figure

2 and provide a more detailed insight on how the component would theoretically work when in

use. The individual tasks performed by each of the displayed elements will be detailed in the

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Architecture

Version 1.0 15

upcoming subsections to further illustrate the concept, but the diagram shown in figure 4 may

be of assistance to have a visual idea and first impression of the roles each individual element

plays when deployed.

Figure 4: Conceptual model of the individual elements from the component in operation

4.2.1 Server-side division

The first division we will look at is the one regarding the server side. As we briefly introduced

earlier, this part of the component contains the required elements to extract and expose the

metrics corresponding to a service and resource. As this division serves no other propose, there

are no further subdivisions within this package. This package is composed by three classes and

an enumeration: the Metrics Provider class, the Metrics Provider REST Service class, the REST

Advice and the Capacity Base Unit enumeration. Some of the details from this classes will be

explained later on when we reach the section in this document that covers the implementation,

but a basic summary of the task performed by each of the elements is as follows:

 Metrics Provider. As previously stated, this is not only the central element of this

package, but also of the entire component produced by this project. This element aims

to extract the metric data from the resource and service we are going to monitor and

expose it in a way we can read it from the client-side, following the relevant

requirements from the project. As well as allowing the client-side to read the metric

values, this class also provides functionality to add, modify and delete custom metrics

that we might want to add to the resource both in the client side and the server side.

This element is a specification of a predefined element from Spring, simply called

Component. This can be seen in figure 5.

 Metrics Provider REST Service. This element is the one responsible for creating a

RESTful service. This RESTful service will act as an interface between the client-side

and the actual Metrics Provider that would be, otherwise, inaccessible without this

element. This class serves the function to receive and process the client-side's requests

to then provide the requested data that is extracted by the Metrics provider. It simply

acts as an "gateway" between the two sides of the component. Just like the Metrics

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

16 Version 1.0

Provider, this is also a specific element predefined by Spring called Rest Controller. In

figure 5, we can see how this fits in.

 REST Advice. This element is a small class that exists to act as a simple error handler

for the REST Metrics Provider Interface. There are some errors that can be expected to

occur if there are certain conditions not met by the client-side when making a request.

Other than simply returning an error with no further explanation, this element will

respond with a more detailed description of the error that has been produced, showing

some insight to what caused it and how the client-side can solve it. This was an element

that was pretty much required by the Spring Framework in use, as it represents another

predefined element from Spring, the Rest Advice, that is supposed to work side by side

with the other element to effectively handle the errors produced by its operation.

 Capacity Base Unit. This element is an enumeration. Enumerations aim to add a

restriction to a certain parameter or property from a software component. In the case of

the Capacity Base Unit, the restriction it aims to add is the base unit for a system

resource such as physical memory or disk capacity, that are measured in specific unit

types. This adds a restriction to the unit in the way that only values such as "byte" or

"gigabyte" are used, in opposition to a non standard base unit that the component would

not consider valid. This element, as a result, adds both some aid to the client-side to

know what units are valid and which ones can be requested, and some additional aid for

the Metrics Provider itself to easily detect the unit a specific metric is shown in, and

how to perform a unit conversion if needed.

This would be a summary of what each element does without going too much into

implementation detail. Figure 5 shows the inheritance style or profile that this elements follow,

specifying the particular type of architectural component they represent. Figure 6 shows how

the different elements are related to one another and what type of association they share, as well

as the directionality of said association. To keep the diagram as simple as possible, as well as

omitting implementation details and decisions, this diagram only shows the names and the

stereotypes of the classes without going any further into detail. A far more detailed diagram will

be provided in the corresponding section.

Figure 5: Inheritance style/profile of the server-side division

Figure 6: Simplified model of the server-side division

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Architecture

Version 1.0 17

4.2.2 Client-side division

The client-side division is the second division the component has. This division contains the

elements required to access the metrics that have been extracted by the server-side's components

as well as providing a mechanism to parse the data retrieved from the server side into a more

suitable and manageable structure that can be used by the application running at the client side

and that is making use of this component. This would include both object representations of the

meters as well as an AAS representation of the monitoring part of the asset. To have this part

more organized, it is divided into two packages: one concerning the object representations of the

meters, and another one containing the required tools to set up an AAS with the monitoring

metrics.

The first package within this division, concerning the meter representations, is composed of four

classes: the Meter Representation class, the Counter Representation class, the Gauge

Representation class and the Timer Representation class. Just like before, we will detail the

reasoning behind this classes in a later section, but a summary of this could be as follows:

 Meter Representation. Represents a generic meter. Mostly used to hold properties

common to all the other meter types and to have common operations. It is an

implementation of the Meter interface provided my Micrometer-API. All other meter

representations are subclasses that extend this superclass.

 Counter Representation. Represents a counter meter. Provides required properties and

operations to represent a counter as specified by the Counter interface of Micrometer-

API. A counter is a type meter that allows us to count an occurrence. Counters only

work in incremental values, they can never be decremented.

 Timer Representation. Represents a timer meter. Provides required properties and

operations to represent a timer as specified by the Timer interface of Micrometer-API.

A timer, as the name implies, allows us to record the time taken to perform a specific

action or, if we have to manually add time from elsewhere, to manually add the time to

the particular timer. A timer will know the amount of times it has been used (a counter,

if you will), the maximum time that has been recorded and the total time that has been

recorded.

 Gauge Representation. Represents a gauge meter. Provides required properties and

operations to represent a gauge as specified by the Gauge interface of Micrometer-API.

A gauge is simply a calculated value. Gauges are one of the most basic and useful types

of meters as they can basically represent changing values. Any value that is not

incremental, where we would instead use a counter, and that might vary in both positive

and negative dimensions is a gauge.

The second package within the client-side division is one concerning the construction of an

AAS with the metrics for the client-side. This part of the client-side, although vital to properly

obtain the metrics, is independent from the meter representations, as they can both work

without really using one another (in spite of this being a bit more difficult and elaborate). This

package has another four classes as well as an enumeration: the Metrics AAS Constructor class,

the Metrics AAS Construction Bundle class, the Metrics AAS Constants class, the Metrics

Extractor REST Client class and, lastly, the Meter Type enumeration. This part is an important

one regarding integration with the rest of the IIP-Ecosphere project and will be further detailed

in the implementation section. For now, we will only present a brief overview of the different

elements in this package:

 Metrics AAS Constructor. This would be one of the main classes in this package. As

the name indicates, this element is responsible of creating the AAS. In reality, the client

process using the Metrics Provider functionality will communicate solely with this

component, so it acts as a sort of facade for the package. Needless to say, this

component creates the AAS and provides mechanisms to extend it with custom metrics

that we might want to add. In reality, this class creates the "skeleton" of the AAS, as all

the functionality is provided by the Metrics Extractor REST Client.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

18 Version 1.0

 Metrics Extractor REST Client. This would be the second main element from this

package. This element is the one that actually communicates with the server-side, acting

as a link between the two. As we saw before, the Metrics Provider REST service

exposes the metrics and the operations over them as a service. This component is the

client that uses that service. Because of this, this class works in unison with the Metrics

AAS Constructor: the AAS created by the Metrics AAS Constructor is the one that the

client application will be using, but the functionality of the AAS itself is fully

implemented by this other class.

 Meter Type enumeration. This enumeration was simply created to support the

functionality of the AAS constructor in regards to adding custom metrics. We will see

the specifics in detail when we reach the implementation details, but in short, by using

this enumeration, the user can specify what type of custom metric they want to map into

the AAS.

 Metrics AAS Constants. This class is also a support class for the AAS constructor, this

one containing names and tags used for the system and Micrometer metrics. We will see

the idea behind it, once again, in the appropriate section, as the reason for this class

existing separately from the Metrics AAS Constructor class is an implementation

decision.

 Metrics AAS Construction Bundle. This is yet another support class, but slightly closer

to the structure of the AAS. As the name implies, this element represents a bundle that

groups together several components that are required to build the AAS, allowing for a

more comfortable and uniform access to said components. Its target is once again to

support the construction of the AAS as well as simplifying the process as much as

possible. The Metrics AAS Constructor will expect an instance of this class to be

provided in order to successfully build the AAS.

This would be a summary of what each element does, ignoring further implementation details

for now. Figure 7 shows the inheritance style or profile that this subdivision follows, similarly

to the previous section, also showing the particular type of architectural component they

represent. Figure 8 shows how the different elements are related to one another and what type of

association they share, as well as the directionality. To keep the diagram simple, it only shows

the names and stereotypes of the classes. A more detailed diagram will be provided in the

corresponding section.

Figure 7: Inheritance style/profile of the client-side division

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Architecture

Version 1.0 19

Figure 8: Simplified model of the client-side division

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

20 Version 1.0

5 Implementation

In this section, we will go more into detail in regards to the project's implementation and the

implementation decisions. This decisions are greatly influenced by the requirements, but not

solely by them. Some of the decisions, as we shall see soon, were made due to limitations in the

current technology as well as due to attempting to create an approach that could simplify or

make an operation more secure in one way or another. We will start discussing some general

decisions taken for the entire project before going into more specific decisions regarding each of

the two divisions within the project.

5.1 General implementation of the project

Due to both our experience with Java and due to the fact that most of the IIP-Ecosphere's

platform is currently written in Java, it seemed like a good idea to choose Java as programming

language for the project. To further back this idea, the AAS implementation from IIP-Ecosphere

and Eclipse BaSyx both are implemented in Java and, as a result, when we studied these

technologies at the beginning of the project, we were already looking into them with this

language. To add yet another reason to use Java, the idea behind the creation of a digital twin

and, more in particular, an asset to be accessed through an AAS fits very well into the idea that

inspired Object Oriented Programming [WP21]. Because of this, Java seemed a more than

suitable option.

To further specify what type of Java project we are using, we decided to use a Maven project.

Maven is an open source project management tool based on the concept of a project object

model (POM). Maven manages the project's build, reporting and documentation from this

central piece of information [ASF02]. This means that any dependencies our project has with

other open source libraries are managed by maven, downloading and installing the required

version of the library directly from the Central Maven Repository. This is very comfortable and

safe when it comes to managing this dependencies, saving a lot of time when it comes to

updating the library versions we require and not having to manually download the libraries,

helping us save time. We will see the dependencies each of the different sides has when we

detail them.

To add further reasons to using Maven, the IIP-Ecosphere platform is also available in a Maven

repository, meaning that we can use the already existing components from the IIP-Ecosphere

project, such as the AAS implementation and the adaptations made to Spring Cloud Stream to

fit the requirements. Both of these are important to be able to build a prototype to test out the

Metrics Provider Component to ensure it is working the way it is supposed to, as well as being

able to add a functionality related to the AAS that can be used by an application built using the

IIP-Ecosphere implementation of it.

In the following subsections we will see the specific implementation and implementation

decisions of the two main blocks of the project. The order we will follow to explain them will

be a chronological approach. The reason behind this decision is simply due to the fact that the

component itself was incrementally built, starting with the core components that are needed to

extract the metric data. Everything else was added later on to simplify future work and

implementation of elements using the Metrics Provider component. With this approach to

writing the following subsections, the reader will hopefully be able to understand the train of

thought followed when creating the component as well as further understanding how the system

works internally as each component was created as a result of wanting to extend the

functionality of the previous.

5.2 Implementation of the server-side

The server side was the very first part to be implemented for this component, more in particular

the Metrics Provider class which, after all, gives a name to this component. As mentioned in the

previous paragraph, this is the element that provides the core functionality to the entire

component. If the requirements for deploying this component are satisfied, this component is

enough to carry out the monitoring. It would, of course, require a lot of effort to do so, as we

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 21

would have to create all the infrastructure to support an HTTP client and an AAS manually, as

well as finding a suitable way of interpreting the data. We would also have the problem that this

relationship would be one-sided, meaning we would only be able to read the metrics and not to

modify or add custom metrics of our own. In spite of this issues, it can be done and, in fact, it

was done at the beginning to inspire the changes that followed.

The Metrics Provider class was inspired by a small prototype created when we were first

researching and understanding how the different tools in the project worked, more in particular

Micrometer-API. During this phase of the project, we took to explore the internet trying to find

examples of Micrometer-API applications. One of these examples was creating a Spring

Application with a Micrometer component, which seemed to fit right into the projects

restrictions to begin with. This example can be found on in the bibliography as it was an

important asset to help starting up the project [MH20].

The example takes advantage of the integration of Micrometer-API into Spring Boot. The

starting point is a Spring Boot Application that is executed to start putting the Spring

Framework into action. There is a class labeled as "component" that will be created

automatically by the Spring Boot Application and will have its dependencies injected. This class

was a first version of the Metrics Provider. The injection creates an instance of a Micrometer-

API class called Meter Registry. Upon creation, this Meter Registry will already register some

of the system's metrics. By simply instantiating this class, we would already have the Meter

Registry running. By adding a few more lines to the application's configuration file (called

application.yml), we could ask the Spring Boot Application to expose this registry on an

endpoint that could be accessed via HTTP. The example then proceeded to use an application

called "Grafana"[GL21] to extract the metrics exposed on the endpoint to create graphs to be

displayed on the screen. We would, of course, not delve deeper into this part, as Grafana is not

relevant to our project, but if this application was able to use the metrics to create graphs, it was

a clear indicator that we could do the same to represent the metrics using an AAS in a similar

fashion.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

22 Version 1.0

Figure 9: Detailed class diagram of the server-side

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 23

5.2.1 Metrics Provider implementation and the Capacity Base Unit enumeration

The Metrics Provider class was initially created as a "clone" of the class used in the previous

example. Of course, this was not enough to suit our needs, but it would be a suitable starting

point. Because of this we already have a few elements that remain from that initial point. First

of all, the Metrics Provider is annotated as a Component so that the Spring Boot Application

can locate it and treat it as a component, successfully injecting the dependencies we need, which

brings us to the constructor, which receives the Micrometer-API Meter Registry instance created

by Spring Boot as an argument. This is saved as an attribute, as all the important operations will

require using this attribute in some way.

We also added the Configuration Properties annotation. This was done to allow the server-side

to define configuration properties for the metrics provider directly from the application.yml

file, which acts like a blueprint of sorts. As of now there are three properties that can be

configured using this mechanism: the schedule rate, the memory base unit and the disk capacity

base unit. The way this can be done is shown in the text below extracted from the

aforementioned application.yml file. There will be a full example of this file in the appendix.

The schedule rate, as we will see later on, is required for a scheduled task that runs in the

Metrics Provider. This is the rate of invocation of the scheduled operation in milliseconds. This

value is defaulted to two seconds in case it is not specified, due to the fact that 2 seconds should

be enough to allow the component to "rest" after execution, but it could very likely be lowered

to a much faster rate. The memory and disk capacity base units are created to allow the

monitoring application to specify the base unit for the system metrics regarding physical

memory and disk capacity. These are, by default, extracted as bytes, which can be difficult to

manage if the value is too high. To avoid this, we created these two configuration properties.

These two configuration properties can be modified at runtime, which will also allow the client-

side application to customize this if needed. The scheduler rate, on the other hand, must be a

final constant value, so this can only be modified in the application.yml file before execution.

To add some constraint to this mechanism, we created the Capacity Base Unit enumeration.

This enumeration contains the valid base units that can be used, which include: bytes, kilobytes,

megabytes, gigabytes and terabytes. Apart from allowing to safely parse the property indicated

in the application.yml file into a valid value, this enumeration also adds a few useful operations.

The first provides a value in bytes of the selected base unit, so that the extracted value can

accurately be converted to the selected value. Additionally, there is another method that creates

a String to add to the meter description, indicating the base unit following the Micrometer-API

standards (a lowercase string with the corresponding base unit).

Returning once again to the Metrics Provider, we can also find three maps created as attributes

of the class, one for each type of meter. This was done to store custom metrics when they are

created. The decision of choosing a Map instead of another type of Collection like a list or an

Array is due to the fact that every meter is identified using a URN or name. By using a map, we

can access the custom metric by using that same name, allowing a uniform access as well as

removing the dependency that would appear should we choose to use an index such as a number

instead.

The Gauges' map does stand out as it doesn't map a Gauge object but an Atomic Double instead.

There is a reason for this. Micrometer-API defines Gauges as values that are calculated upon

request. If we create a Gauge instance, then this value cannot be modified. This is actually

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

24 Version 1.0

acknowledged by Micrometer-API, that added the possibility or registering a number as a

Gauge. The registry acknowledges that number as a Gauge, providing the value when requested,

while also allowing to modify the value. As to why an Atomic Double was used, after some

initial experimentation and trial and error, it was determined that the number in question had to

be an instance of a java.util.concurrent number or a subclass. This was because any other (for

example, Double) would not register correctly and would always render a null or zero value

when requested. A gauge returns a double value, so it was decided to use Atomic Double to

maintain the type of number in use.

The class contains some methods to perform the basic CRUD[WP21] operations on the custom

metrics. It is important to mention that the create and update operations were unified into a

single one. The reason behind this is that the custom metrics can be accessed (and probably will

be accessed) by a Spring Cloud Stream. If we separate these two operations, the Spring Cloud

Stream would first have to check if the value exists, create it if it doesn't exist and/or update it if

it does exist. This adds some extra work required on the server-side application using the

Metrics Provider Component. We want to reduce that overhead as much as possible, so the

create and update operation are unified into a single operation that runs the necessary checks

without requiring the server-side application to do that.

After running some initial tests, it was discovered that the Meter Registry from Micrometer-API

did not register some interesting metrics, namely the physical memory values and the disk

capacity values. After snooping around the famous software forum, Stack Overflow[SE21], a

method of obtaining this values was discovered. This involved using a Operating System MX

Bean, which is the management interface for the Operating System where the Java Virtual

Machine is running [O20], to obtain the metrics. This metrics where then registered onto the

registry using the Micrometer-API naming convention (separating the words with dots). After

some further tests however, this was proven to be somewhat of a problem efficiency-wise. As

mentioned previously, a gauge is calculated upon request, meaning that every time the value

was requested, all the calls to the Operative System (OS) had to be performed, which made the

retrieval roughly between 2 or 3 times more costly than the other metrics. To solve this issue,

the scheduled operation was created. The scheduled operation calculates the values on a

separate thread every certain amount of time (the scheduler rate property previously mentioned)

and stores the values in attributes that are registered as gauges. With this, the "real time" aspect

of these measurements is lost to a "soft time" aspect, but the efficiency gained is worth this loss,

especially considering that we can decide how much we are willing to sacrifice using the

configurable property.

Now that we have introduced the scheduled operation, we have to explain a strange condition in

it that initializes these added metrics to begin with. One would expect them to be registered by

the constructor instead of this scheduled method, but there is a catch. Spring Boot first

initializes the components and then retrieves the configuration properties. This means that, at

the time the constructor is called, we do not have the configuration properties ready and, as a

result, cannot register these metrics. This is the reason for this somewhat "ugly" addition to this

operation.

To finish explaining this class, there are some methods marked as protected. These methods are

marked that way to allow access only to the Metrics Provider REST Service. These methods are

required to retrieve the data in a JSON format as well as modifying the configuration properties

using the REST Service, as the system metrics registered in the scheduler have to first be de-

registered and the re-registered again in order for the unit change to take effect. The JSON

parser methods also rise a few eyebrows. These methods are strange as there already are plenty

of JSON libraries that allow the creation of a JSON Object without having to write it manually

as these methods do. We were, however, left with no choice. These classes run inside a

framework that, as of now, still has a JSON Object parser that is "too green" to actually be able

to parse a JSON Object. For this reason, it has to be done manually. We could say this methods

were added as a quick-fix for the current state of the framework. If the framework updated this

issue in the future, these methods could then provide a proper JSON object instead, reducing the

complexity of the code considerably.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 25

5.2.2 Implementation of the Metrics Provider REST Service and the REST Advice

After the Metrics Provider class was implemented, we could now access the metrics using an

endpoint provided by the Spring Boot Actuator that runs within the Spring Boot Application.

This was a good starting point to retrieve the metrics, but we now required a way to modify

these values remotely. This would allow us to register all custom metrics within a single Metrics

Provider if needed, as well as also letting a client-side application to modify the configuration

properties that allow this modification. Seeing that the preferred method of exposing these

metrics by the Spring Boot Actuator is by using an endpoint accessible by HTTP requests, the

most reasonable approach was to create a REST service that supported both reading and

modifying operations on the custom meters. This REST service would also end up taking over

the original endpoint so the application.yml file can be simplified as well as having a single

access point for the HTTP requests, independently of their intentions.

The Metrics Provider REST Service class implements this RESTful service mentioned in the

above paragraph. As we could have guessed, the Spring Framework already has a framework

implementation for a REST service, annotated as REST Controller. With this annotation, this

class will now be instantiated by the Spring Boot Application automatically, just like the

Metrics Provider. As a matter of facts, a reference to the instance of the Metrics Provider

created by the Spring Boot Application is injected into this one through the constructor. With

this connection between both instances, we can now access the Metrics Provider's metrics using

the class implementing the REST Service. This class, therefore, acts as a link between the

Metrics Provider and the "outside world".

This service, initially including solely the functionality regarding the custom meters, has an

endpoint for each of the type of meter. For each meter, an HTTP client can retrieve a list of the

meters of that specific type, modify the value or add a new custom meter to the Metrics

Provider or delete a custom meter. This is all done using the appropriate HTTP request type to

the corresponding endpoints. The update or create operation works just like the one in the

Metrics Provider, unifying the create and update operations. The JSON object expected,

however, can be a bit puzzling at first. The format of said JSON object as well as its reason to

be is explained by the different Meter Representations found in the client-side subsection.

Apart from the custom metrics, the REST service also allows the client-side application to

modify the base units for the memory and disk capacity system metrics. To do so, this methods

expect a very simple JSON Object containing a single attribute called "unit". This attribute has

a String value attached that is equal to one of the valid units present in the Capacity Base Unit

enumeration. This methods will then deregister and re-register the corresponding metrics to

successfully update the values.

Once again, we can observe some strange operations performed to parse a JSON Object

manually. Once again, this is due to the limitations of the library's current state. In this case we

use a map to read the JSON and obtain its values manually. The best option would be to use an

actual JSON library, once this issue has been solved in a future update, but for now this quick-

fix implementation allows the component to work.

To finish with this class, there are another two endpoints created: simple-meter and tagged-

meter. With these two endpoints, the /actuator/metrics endpoint used by the Spring Boot

Application to expose the metrics could be removed from the application.yml file and allow all

the operations to be performed through the REST service. The idea was, initially, to have a

single endpoint called meters, however, we once again encountered a limitation that made this

impossible. Due to the way the REST service (or rather, REST controller) is implemented by

the Spring Framework, we either have a request that receives at least one request parameter or

that doesn't receive any. This was an issue as some of the metrics registered in Micrometer's

Meter Registry have tags that are requested using request parameters. Because of this, and after

several attempts made to unify both endpoints, there was no other option than having an

endpoint for meters with tags (tagged-meter) and another one for meters without tags (simple-

meter).

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

26 Version 1.0

To finish off this part of the component, we will mention the REST Advice class. This class was

created following the implementation standard portrayed by the Spring Framework's approach

to a REST service. As well as a REST Controller a REST service created with the Spring

Framework should also have a Controller Advice. The function served by this class is to

implement an error handler for the controller, in our case, the REST Controller. If the client-side

application sends a request that is not valid, this handler will capture the produced exception

and reply with an error response containing the message of the exception that was triggered. For

example, if the user tries to modify a custom gauge, but the JSON object is malformed, this

class will respond with a 401 HTTP Response and a message explaining what was not valid.

This class is expected to handle two exceptions: IllegalArgumentExceptions and

NumberFormatExceptions. The first type of exception can be produced in multiple places if the

request's body has an invalid field or, in different words, an illegal value in one of its attributes.

The NumberFormatException can be triggered when attempting to parse the numbers sent

through HTTP as a String into the number they represent.

Further information about the REST Service provided by these two classes can be found in the

appendix.

5.2.3 Dependencies of the server-side

To finish this section, we will talk about the dependencies that the server-side has. This

information is represented graphically in figure 9, to be able to see this information in one

glance.

Figure 10: Dependency diagram of the server-side

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 27

Starting the diagram from top to bottom, the REST Advice only has dependencies with the

org.springframework.web. This library includes the annotations required by the Spring

Framework to correctly indicate that this class is a controller advice as well as indicating which

exception is handled by each of the different methods. We also require this annotations to be

able to define the response status and to define that the response of the method is delivered as a

response body. Finally, we also need the enumeration HttpStatus to use it alongside the

corresponding annotation to indicate the status code for the response (in this case all are client

errors, but with a few differences).

The next class, the Metrics Provider REST Service, also has that dependency with

org.springframework.web for similar reasons as the advice. The annotations that mark that this

is a REST Controller, as well as defining the HTTP status and indicating that the result of the

operations (if it has any) is sent as a response body are all done in the same way as for the

advice. There are some further dependencies with this library which involve the annotations that

are used to determine what path and HTTP request type (GET, PUT, DELETE, POST) is

handled by each method as well as a pair of annotations indicating if the input parameters of the

method are present in the request's body, the request's path or if it is a request parameter.

This class also has a dependency with the io.micrometer.core library that is required to parse the

request parameters in a request of a tagged meter into a tag object readable by Micrometer-API.

A last dependency involving java's java.util library is also established mainly to be able to use

the Array List class to dynamically store the tags from the previously mentioned tagged meter

request, and the concurrent Time Unit class to be able to record time with a custom timer if the

update of a custom timer is requested. This library is also currently in use to manually parse a

JSON Object into a map to extract the values. Needless to say, in a hopefully near future, when

JSON is supported by the framework's virtual servers, this last dependency should be changed

for a dependency with the javax.json library to parse the JSON Objects the way they are meant

to be parsed.

The last class we haven't covered is Metrics Provider. This class has a clear dependency with

the io.micrometer.core library as it used the Micrometer-API Meter Registry as well as the

different Meters that it can have (Gauge, Timer, Meter and Counter). This library is also

required to retrieve the measurements recorded by the meters, read the tags for the tagged

metrics when we wish to request them and handle the exception that may occur if the search for

a requested metric fails (mostly due to it not existing in the registry). Apart from the

Micrometer-API library, we also require the org.springframework library containing the

annotations we need to add to mark this class as a Spring Component, enable the scheduled

operation, and import the configuration properties from the application.yml file.

Apart from these two libraries, we will require the com.sun.management,

java.lang.management and java.io libraries to be able to use the Operating System MX Bean

required to extract the memory and disk metrics and the File object to read the disk metrics, the

com.google.common.util library to define an Atomic Double we need for the custom gauges; and

the java.util library to define and use the maps where we store the custom meters, to have access

to the Time Unit enumeration for time recording and be able to define an Supplier reference for

the time recording methods that require this reference to a method we what to record.

5.3 Implementation of the client-side

After the server-side was implemented and it was verified that it worked, the next logical step to

make was to implement a way to easily access the information exposed by the server-side in a

comfortable and convenient manner. With the server-side working as intended, any REST

Client or, even simpler, any HTTP client could access the information exposed by the server-

side. Of course, the problem with this approach was that both the AAS and HTTP client had to

be created in each of the client-side applications and find their own way of parsing the JSON

Object containing the requested data. This would mean a lot of repetition of the same type of

work as well as the possibility of two client-side applications taking different approaches to the

same problem and, as a result, coming up with different solutions that, although do the same

thing, might be somehow incompatible and cause conflicts further on.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

28 Version 1.0

To avoid this issue, it was decided to work on this second aspect of the monitoring process as

soon as the metrics had been exposed, even prior to the existence of a proper REST service. The

work done by the client-side was divided into two big groups: the meter representations and the

metrics AAS. The first one to be worked on was the meter representations, created before the

REST service existed to parse the meters exposed on the Spring Boot Actuator endpoint into

object representations that could be easily handled by the client-side application. The second

one, created after the REST service was working, is a factory of sorts that allows the client-side

application to create the AAS directly as well as add any custom meters they might want to

include, so all the client-side applications have the exact same type of monitoring AAS.

Just like with the Metrics Provider, this work was inspired by another prototype that was

provided from the IIP-Ecosphere project at the beginning of this project's work, that was used to

get familiar with the concept of AAS and the implementation of AAS done by the IIP-

Ecosphere project. The use of a REST client was later introduced inspired partly by previous

university work done in the field of REST services, this time including a simple Jersey[EF18]

client to access a REST service. The idea, that would at the end be the one used, was to map the

different meters as AAS properties, and internally define the get operation as an HTTP get

request using a Jersey client. If this worked, it could later be extended to the use of REST to

modify custom meters in a similar fashion.

With this in mind, we will delve deeper into the details of the client-side of the component,

starting with the meter representations and slowly making our way towards the metrics AAS

package.

5.3.1 Meter representations

This package is composed of four simple classes and its name is quite self explanatory. The data

from the Metrics Provider is exposed as a JSON Object in a rather complicated manner, as it

can be seen in the JSON Objects found in the appendix, so the use of this raw data by itself

without further work seemed to be unadvisable, to say the least. It was clear that we required

some sort of Object representation of the extracted metric so we could use it and read it as such

in a comfortable way. The first idea was, naturally, to look into Micrometer-API, as the meters

we were using were theirs to begin with. We found a partial solution to our issue within the

library: all of the meters provided by Micrometer-API were represented using an interface.

There were four particular interfaces: Meter, Counter, Gauge and Timer; one for each of the

specific meter types, as well as a generic superclass containing common operations to all of

them. With this realization, we decided that we would use these interfaces in the client-side to

represent the retrieved meters.

The issue we encountered is due to Java not allowing, for obvious reasons, the instantiation of

an interface directly. We need to instantiate a class that implements that interface. Micrometer-

API beautifully uses the protection provided by the interface mechanism by never providing the

implementing class and always providing the object masked by the interface instead. Although

this is a very good and correct approach from a software point of view, we depended on the

factories provided by Micrometer-API to instantiate an object the way it was done normally,

like on the server-side, for example. This was instantly rejected as the factories provided by the

Micrometer-API only allow the creation of a new meter and not one with values. With the

Counters and Gauges, this wasn't much of an issue, to be honest: we could simply create a new

counter and gauge and set the value to the retrieved value. The big problem came with the

Timer, which internally stores a series of different variables that cannot be directly modified. As

the issue with the Timer was encountered, we decided that the best approach would be to create

a set of classes implementing the interfaces so we could create our own meter objects the way

we needed to create them, with the retrieved values.

After taking what we saw in the previous paragraph into account, it is very important to note

that these classes were implemented with the intention to represent a meter retrieved from the

Metrics Provider and, although they can be used in the client side to obtain and update values, it

is strongly recommended to refrain from doing so unless strictly necessary. The reason behind

this is, since the real meters are in the server-side, the update might be "dangerous". The meters

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 29

retrieved from the Metrics Provider might be modified while we are reading them, as they are

still being used to monitor the resource meanwhile. This means that, when requesting an update,

it is quite possible that these values have already changed when the update request arrives, and

said update will always affect the current state of the meter, not the one we initially read. There

are, of course, exceptions to this. If we are using custom meters created exclusively by client-

side applications to monitor, for example, the time taken to retrieve a specific set of values, and

this timer is never modified by the Metrics Provider at any moment, then it is perfectly safe to

request updates. An example will be provided when we delve into how to use the client-side of

the component.

Figure 11: Detailed class diagram for the meter representation package

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

30 Version 1.0

5.3.1.1 Implementation of the Meter Representation

The first class we will talk about is Meter Representation. This class is an abstract class, as all

of the meters have a specific type and cannot just simply be a "meter". We do, however, require

the existence of this class as there are a series of common variables and operations that all the

meters have, especially regarding the ID. The constructors of the Meter Representation are

protected as the should only be accessed by the subclasses to correctly add the ID, which

includes the URN of the meter, the base unit name of the value it records and the tags if it has

any. About the tags we must add that, after some tests that were initially run with a REST

Client, we discovered that the JSON Object itself does not store the tags when requested. For

this reason, we must indicate the tags used to retrieve the value as a parameter, which are

expected to be in their HTTP request format and, thus, need to be parsed into the correct Object

representation to be added to the ID. This is simple as each of the tags has a simple format

composed of a set of key-value pairs separated by a two dots. The second constructor is to

simply create a new Meter Representation with just the name and the type of meter, as there

can be meters created in the client-side instead of the server-side. This class will provide the

functionality required to retrieve the ID. There is a method regarding the retrieval of the

measurements is left as abstract as each specific meter uses a different statistic and might, in

case of the Timer, render multiple measurements.

We also added an abstract method specific to our meter representations to declare the need of

having a function that retrieves a JSON object with the required information to update the

meters using the REST Service. Unlike conventional REST services, we cannot update the

custom meter by parsing the entire Object into a JSON Object and sending it to the REST

service. This is, due to each of the meters having a peculiarity that made this process

impossible. We will discuss these peculiarities in each of the meter representations as we will

have to go over the method in each of the meter representations.

5.3.1.2 Implementation of the Counter Representation

As the name implies, the Counter Representation implements the Counter interface by

representing a retrieved counter meter. The constructor of this class is private, as the client-side

application should always use the parse counter method to create an instance (which in term

masks it with the Counter interface. When the JSON Object representing a Counter is retrieved,

the Counter Representation stores the count value as an attribute and sets the Measurement's

statistic to COUNT. This class implements all the required methods from the Counter interface,

allowing the user to increment the counter value and read it as if it were an actual counter and

not the representation of a counter retrieved from the Metrics Provider.

The peculiarity of the counter is that the value can only be updated by incrementing the current

value, meaning that the value cannot be directly set. For these reason, there is an attribute that

will update in the same way as the counter that is initialized with a zero value. When the JSON

Object updater is requested, a JSON Object is created containing two attributes: the name of the

counter, and the increment it has had in the client-side. If an PUT request is sent with this

update, the server-side will use the name to locate the custom counter and update its value by

incrementing it the amount indicated as increment value.

If the client-side is creating a new probe that is not present in the server-side, they will have to

use the create new counter method. This will create a completely new counter to be used in the

client-side and in order to have a valid updater to push later into the server-side.

5.3.1.3 Implementation of the Gauge Representation

This class implements the Gauge interface by proving a representation of a retrieved gauge

meter. It was called Gauge Representation for this reason. Just like with the Counter

Representation, the constructor is private to ensure that the parse gauge method is called

instead, masking this representation under the Gauge interface.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 31

The Gauge Representation will store the value of the gauge found in the JSON Object and will

set the Measurement's statistic to VALUE. Just like before, this class implements all the required

methods from the corresponding interface, in this case, Gauge. In the case of a gauge, the

interface only specifies that the retrieval of the value is required. As we explained earlier in this

document, gauges are supposed to calculate the value, so are usually attached to an operation

rather than a numeric value. Unable to know what is used to calculate the value, instead, we

have added a set value method in the Gauge Representation class to allow the client-side to

modify the value the same as it is done in the server-side.

The gauge's peculiarity is that one: not really being able to update the value. Of course, once

this problem is taken care of by adding the set value method to the Gauge Representation, we

could simply parse the entire Gauge and send it to the REST service to update the value there as

well. However, as both the timer and the counter's peculiarities make that impossible for those

two other meter types, it was decided that it was best to keep the same format of updating JSON

Object for the Gauge Representation as well for consistency purposes. Once this JSON Object

is received by the server-side, similarly to the counters, the REST service looks for the custom

gauge and updates the value to the one indicated by the JSON Object.

Just like with the counter, if the client-side is creating a new probe that is not present in the

server-side, they will have to use the create new gauge method, which will create a new gauge

to be used in the client-side and in order to have a valid updater to push later into the server-

side.

5.3.1.4 Implementation of the Timer Representation

The final meter type is the timer. The Timer interface from Micrometer-API is, by far, the most

complex of all the different meters. We used the Timer Representation to implement this

interface in our component. Like our other meter representations, we need to use the parse timer

method to obtain an instance of this class masked by the Timer interface. Just like the other

classes before it, the constructor is private.

From the JSON Object we retrieve, we set the count and base time unit directly from the JSON

Object. After some digging into the way the Timer from Micrometer-API works using the Time

Unit enumeration and paying attention to the method that allows us to record an amount of time

directly by specifying a long value and a time unit, it was decided that the best way to store this

data and allow the client-side to use the timer without losing any information was to store the

maximum time and total time as a long value with the smallest unit possible, in this case,

nanoseconds. With this, whenever we require the time measurements, we can retrieve them by

specifying the unit, just like the Timer interface requires, and not risk losing excessive

information on the way.

Unlike the other meters, a timer has three Measurements. The first measurement is the number

of times this timer was used, and has a long value with the COUNT statistic. The second one is

the total time recorded. This value is a double value represented in the timer's base unit with the

TOTAL_TIME statistic. The last measurement is the maximum time recorded by the timer,

which is mapped into a Measurement using the MAX statistic.

The Timer Representation will allow the client-side to use the object as a timer, so all the

methods required by the Timer interface are implemented to provide this functionality. The take

snapshot method is the only one that has been created using a basic Histogram Snapshot from

the Micrometer-API library, including only the basic information required. As a result, the

histogram provided is probably not the best option, but this method was never intended to be

used by this component or the client-side, so a basic implementation was produced. It is also

important to note, as it will be shown in the corresponding section, that the test done to this

method is very basic. As well as a Histogram Snapshot, the client-side can use this class to

retrieve the count of times the timer has been used, the base time unit used by the timer, and the

total and maximum times recorded by the timer after specifying the time unit we want that data

in.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

32 Version 1.0

This class will also use the basic Micrometer-API timers to record a callable, a supplier or a

runnable. All of these methods require using a method also required by the Timer interface

which involves recording a specific amount of time into the timer by specifying the amount and

the time unit it has been recorded in. This means that all recording operations will, eventually,

end up using this particular method to save the time and update the values. This proved to be

key to be able to store the recordings performed by this timer while in the client side. Every

time a recording is made, it is added to a dynamic list in nanoseconds and stored as an attribute.

The reason behind this is the timer's peculiarity, that was the one that caused the most trouble

due to its complexity to solve.

As we mentioned before, the individual values stored in a timer (count, maximum time and total

time) cannot be set separately, they can only be done by recording an amount of time with the

timer that will, in turn, update the counter and maximum recorded time as the recorded time is

added to the total amount or recorded time. As we saw in the previous paragraph, once we

discovered the common method used by all the recording methods, we decided to do the same

when it came to updating the "real" timer in the Metrics Provider via REST. As we said, all the

recordings are stored in nanoseconds within a dynamic list whenever the recording methods are

called. When we ask for the JSON Object used to update, the first attribute will, of course be the

name of the timer, but the second attribute will be a JSON Array created as a result of the

aforementioned dynamic list. This JSON Object, when received by the REST Service will

trigger the service to retrieve the timer and proceed to record each of the amounts indicated by

the JSON Array. As inefficient as this seems, this seemed to be the only plausible solution that

could be used to solve this issue. Of course, it is safe to assume that the update of this particular

type of meter is the most costly, just like the use of the timer is the most costly of them all as

defined by the Micrometer-API[PS21]. The use of this timers outside the Metrics Provider is, as

a result, strongly unadvisable, even more than any of the other meter representations.

Similarly to the other two meters, we also include another classifier method called create new

timer, allowing us to create a brand new timer in the client-side to be later pushed into the server

side.

5.3.2 Metrics AAS

This second package within the client-side division of the Metrics Provider component is

composed of four classes and an enumeration. Once we have the data from the Metrics Provider

exposed on an endpoint and controlled by a REST service, we need to retrieve this data. Of

course, the best way to retrieve the data from a REST service is using an HTTP RESTful client.

Following the IIP-Ecosphere's requirements of using an AAS, the sensible decision here is to

map the metrics of the service we are monitoring as properties of the asset and then retrieve said

properties using the RESTful client. This does seem like the best approach as, in spite of all the

underlying operations to retrieve the meter's value, we can create the illusion that its simple

retrieving a simple property like it would read any other property mapped into an AAS.

Before the implementation of this package, all this effort of creating a RESTful client and an

AAS mapping the metrics as properties was all done by the client-side. This was tested out

using a small prototype initially created to test the meter representations. However, after several

executions and changes, the idea of creating a template of sorts that already provided this

functionality that was so obviously required for the metrics provider component became clear.

Based on this previously created prototype, this package was created from scratch to have a

"fresh start" to this template. The goal was originally to create two classes: one containing the

definition for the AAS, which we would call Metrics AAS Constructor; and a second class that

would implement the RESTful client, as a result containing the functionality required by the

AAS to retrieve the data.

As these two classes were implemented, further implementation decisions were made as new

issues and limitations arose. Some other decisions were made as, due to the work carried out on

this classes, some features that could be interesting to have also from the client-side perspective

started to become visible. The end result would be this package, with double the amount of

classes as originally planned as well as an enumeration. Although one of the classes (the

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 33

Metrics AAS Constants class) is more of an enumeration than a class, we will explain the

different elements contained in this package in the subsequent sub-subsections.

Figure 12: Detailed class diagram for the metrics AAS package

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

34 Version 1.0

5.3.2.1 Implementation of the Metrics AAS Constructor and use of the Meter Type

enumeration

This is the first of the two classes that were initially intended to be a part of this package. The

idea inspiring this class is to have a factory or a constructor of some kind that adds the meters

exposed by the Metrics Provider into an AAS. This would ensure that all applications using the

client-side of this component worked in the exact same manner, as well as reducing the

workload of this client-side applications, which would otherwise have to know all the details

behind retrieving the metrics and having to implement the entire retrieval operation.

The first detail to take into consideration is that all the methods provided by this class are of

classifier scope. This means that the class does not need to be instantiated. There was quite

some thought put into this decision as there seems to be some elements that could easily fit into

the idea of instance attributes. A different approach to this was taken however, after considering

the idea that perhaps we would be interested in adding this properties and operations into an

already existing AAS, instead of creating a brand new AAS from scratch with only the metrics.

For this reason, it was decided that this class would be stateless and, as such, not have any

attributes or instances for the matter.

The first and most important method is the add metrics to bundle method. This method expects

to receive a Metrics AAS Construction Bundle, a data-type created during the implementation of

this class that we will explain after this section. This method has two parts, which were

separated into private methods for a clearer vision as well as for maintenance purposes. The first

part consists on adding the metrics to the submodel of the AAS that will administer the asset we

are monitoring. Although there were different possibilities to this, considering that the system

metrics are read-only data, we chose to map metrics as properties. This would mean that the

state of the resource we are monitoring can be read as any other type of property. Needless to

say, all of these properties are read-only and cannot be modified, so there is no possibility of

setting the property to a different value.

An important consideration taken here is that the return type of these properties will be a String.

The IIP-Ecosphere Framework for creating AASs is very comfortable indeed, but requires the

programmer to define the return type of the method, which would be more beneficial than

detrimental in most cases, but sets an important limitation in this aspect. The ideal would be to

return an already parsed and ready to go meter representation of the corresponding type upon

request. However, as this specific type is not one of the options defined by the BaSyx AAS

specs for building AASs, we had to switch to the previous state of this object, which would be

an unparsed version of it in JSON format. This again, proved to be an issue for two reasons: the

first reason being that JSON is still not one of the valid accepted types for the IIP-Ecosphere

Framework, which as of now does the exacts same thing we did in this project; and the second

reason being that the JSON library used in the AAS server is still not fully built, so attempting

to use a JSON library to perform operations within the AAS will cause it to crash. After this, we

have no other choice than to return the raw String representing a JSON that, in turn, represents

the meter we have retrieved.

Apart from these properties, there will be two operations added to allow the modification of the

configurable properties of the Metrics Provider, namely the memory and disk capacity base

units. Just like with the properties, even though the ideal would be to send a JSON Object with

the new unit within its body, we have to first parse it into a String to be able to send it to the

server. It is an additional operation that has to be carried out, unfortunately, but its small enough

to overlook it for now in the current state of the overall project. This sets the path to an update

in the future that allows the use of JSON in this method. For now, the String will suffice.

The second part of the add metrics to bundle method involves using a Protocol Server Builder.

This is a builder created by the IIP-Ecosphere platform that allows us to create a protocol server

that contains the required implementation for the properties and operations defined in the

submodel. This element is required to add the operations that are called whenever the properties

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 35

and operations mapped in the first part of the method are used. The functionality itself, as we

already mentioned, lies within the RESTful client, but this method links the specific method to

be used to each of the properties and operations created in the first part.

The final method located in this class allows the client-side application to define a custom

meter. We can see two circumstances were this could be needed. The first one is that there is a

custom meter created on the server-side that we want to monitor. That metric will have a URN

identifying it. If we define a custom metric with the same URN and type as the metric created in

the server-side, the RESTful client will retrieve the corresponding metric the same as the system

metrics were retrieved. The second possibility is that we want to measure something on the

client-side and store it in the Metrics Provider for future reference or so that other client-side

applications interacting with the same Metrics Provider can access this values. Either case

works the same on the client-side.

After specifying a valid name and type for the meter, a new property with that same name will

be added to the AAS. Additionally, two operations will be added, one to update and one to

delete. The naming convention used for this two operations is simply adding the words "update"

and "delete" in front of the name supplied. Although the modification could be implemented as

a setter for the property, we decided to keep all properties consistent as a read-only property and

create the two operations instead. It is also a good idea taking into account that the JSON Object

retrieved from the property and sent from the operations are structurally different as we

previously described in the meter representation section.

Precisely due to how the different meters are updated using a different JSON Object structure,

there are three different endpoints in the REST Service as we saw before. In order to help

determine which endpoint we are trying to interact with, the Meter Type enumeration was

created. This is a very simple enumeration containing only three primitives: COUNTER,

GAUGE and TIMER. This way, the client-side can indicate what specific type of meter they are

attempting to map under that name in a precise and safe manner, in turn, allowing the RESTful

client to know which endpoint to connect to.

In order to aid in understanding the structure of the AAS, we present figure 13. In this small

diagram, we have divided the contents of the AAS in three parts. The first one are properties

mapping system metrics collected by the Meter Registry automatically as well as the system

metrics extracted by the Metrics Provider, the second one are the operations used to change the

system memory and disk unit, and finally a third section showing the property and two

operations created when adding a custom meter.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

36 Version 1.0

Figure 13: Small diagram representing the AAS' structure

5.3.2.2 Implementation of the Metrics Extractor REST Client

This is the second most important class from this package. Just as we saw in the previous

section, the Metrics AAS Constructor provides a "skeleton" of sorts for the AAS we intend to

create to map the metrics. This acts as a facade that will be what the client-side application will

be using. However, this "skeleton" is useless if the operations don't do anything. That is where

the Metrics Extractor REST Client comes in.

The design used for this class follows the structure of a Jersey[EF18] REST Client. Unlike the

Metrics AAS Constructor, this class does require instantiation. This is because, we need to build

the URI of the server to be able to send the requests. All the possible endpoints are saved as

constant values at the beginning of the class both to simplify the code below and to have an easy

access to them in case they are modified in future updates, following the Java principle of "code

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 37

once". We also included the different tags that can be expected from the tagged metrics for the

same reason.

The class constructor requires a String representing the IP address of the resource we want to

monitor, as well as an integer representing the port number. With these two parameters, the

constructor will build a web resource containing the URI of the resource we are monitoring.

This will be used to send all the different HTTP requests to the resource.

After the constructor, there are three methods that are used to send the different types of HTTP

requests to the Metrics Provider REST Service. Due to the possibility of there being tags, the

GET request is the most complex, but not excessively so. These three methods work similarly.

We need to specify the endpoint we want to use as there are multiple possibilities, allowing us

to have a single method to use with any endpoint. After the endpoint, the parameters are

different depending on the request type. The send GET request method receives the name of the

REST resource, in our case the name of the meter it is trying to retrieve, and a list of tags if it

has any. The send PUT request receives the JSON Object with the information required to

update the meter (as a String due to the aforementioned issues with JSON in the AAS

environment) and the send DELETE request method receives the name of the REST resource

we want to delete.

As we have seen in the previous paragraph, we have a method to send three of the four different

types of requests that can be sent using HTTP. We can send GET, PUT and DELETE, but there

is no method to send a POST request. This might seem strange as we already said that the

client-side can create a custom meter, so it would make sense to use this request type to create

it. The reasoning behind this is the way the Metrics Provider works in relation to the Spring

Cloud Stream that is being used in the server-side. As we mentioned in the previous section, to

reduce the operation overhead in the server-side's streaming application, the create and update

operations for custom meters was unified into a single method. This incidentally creates a black-

box of sorts in a way that there is no way for the machines to actually know whether the custom

meter exists or not, requiring more checking if we decided to add the POST command, which

could really only be used once with each meter, requiring more work to make than necessary.

For this reason, the following concept was introduced: instead of creating or updating an

individual element of the map containing the custom metrics, we can consider this as updating

the entire map object. This would, in theoretical terms, make using a PUT command instead of a

POST command semantically valid in the eyes of REST, since we are indeed updating a

resource, in spite of this meaning creating a smaller resource within. This might, at first, seem a

bit dodgy, but we must remember that the same situation is happening in the exact same way in

the server-side, so by maintaining a single update function that performs both the update and

create operation, we continue respecting the operation consistency we had laid out.

After this three methods are introduced, we have a set of many different methods that use them

to perform their operations. We could have made the three request operations public and used

them for this as well, but it would imply a lot more coding as well as knowing the exact

endpoints in the Metrics AAS Constructor class, so we decided it was best to have a single

method per operation in the Metrics Extractor REST Client, which would not only simplify the

work for the Metrics AAS Constructor, but also make it more readable.

The tagged metrics are, a bit special. The reason is that they are a collection of different meters

of the same type (gauge, counter or timer) that are all grouped under a single name. The only

thing that defines them and makes them different are the tags. Creating a single method for each

of the different meters grouped together seemed a little bit too excessive, as the AAS would

grow considerably. It also seemed strange to do so as, after all, in spite of being different

meters, they are all referring to different values from the same resource. For example, if we take

a buffer, there is a value for the direct memory and for the mapped memory, all from the same

buffer. After some consideration, since we are working with JSON Objects regardless, it did

seem like a plausible solution to create a JSON Array containing the different meters. After

some thought and, in combination with what we had already created with the meter

representations, we decided to create a JSON Array that would contain a series of JSON

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

38 Version 1.0

Objects, one per meter extracted under that name. The JSON Objects would have two attributes,

the first one being the tags used to extract that particular metric as it was what identified the

metric to begin with. The second one is the meter object itself, which would consist of the

specific JSON Object retrieved from the Metrics Provider. The JSON Object representing the

retrieval of this tagged metrics can be found in the appendix.

We once again must note the limitation with JSON. In spite of being a separate class from the

Metrics AAS Constructor, this methods will be embedded and used by the AAS, meaning that

we cannot use the JSON functionalities here either for the time being. As a result, we once again

find ourselves manually writing the JSON Objects and JSON Arrays ourselves where required.

As well as the JSON Object restrictions, there are also some methods that look interesting as

we dive down, methods that receive and return Objects and that, when looking at the way they

are implemented, we clearly see they actually only use a single argument of String type and

return null. At first glance these methods seem ridiculous and out of place, so we found it

necessary to provide some explanation to these peculiar methods. It is, once again, related to

the AAS. The IIP-Ecosphere implementation of AAS supports adding operations dynamically,

which is what is done here. Although we must define when building the project both the

parameter type and the return type for them to be checked by the AAS's mechanisms , the

signature of the method we have to introduce is still a generic one. This is related to the BaSyx

restrictions that IIP-Ecosphere wraps. These signature defines that the method must receive an

Object array as input (which will contain the appropriate parameters masked as Objects) and

will return an Object (which will actually be the corresponding return type). In our case, nothing

is returned on either of the methods, so we simply return "null".

The last methods that this class includes were added later on just to respect the REST standards

a bit better as well as providing some extra functionality that could be interesting to have at

some point. This functionality is to request a list of all the different metrics exposed on each of

the endpoints. With this methods, we can know what custom meters of each type we have as

well as knowing which of the system's metrics are exposed at each endpoint, allowing us to

foresee if the returned JSON value is an object (meaning that it is a metric exposed on the

simple-meter endpoint) or if we will be retrieving a JSON Array (which would, in turn, mean

that its exposed on the tagged-meter endpoint).

5.3.2.3 Implementation of the support classes: Metrics AAS Constants and Metrics

AAS Construction Bundle

After having a look at the two main classes from this package that are responsible for doing the

work required to successfully build the AAS, we are going to have a look at these two support

classes created in order to help both the Metrics AAS Constructor and the client-side application

using these services.

The first class worth mentioning is the Metrics AAS Constants. This is, according to the Java

notation, a class; but if we want to follow a more strict UML notation, this element would most

likely be considered an enumeration. This is because, in spite of the Java notation that was used

to avoid the implications that declaring the file as enumeration would have (which in java

implies adding a series of methods that we are not interested in having for this particular

enumeration), this class only contains constant String values. There are no attributes that define

a state and there are no operations.

Initial prototypes used to test out the Metrics Provider component had all these values in the

class that would act as an AAS creator, the equivalent to our Metrics AAS Constructor. At first,

these values were part of that class. However, two facts soon became obvious. The first fact is

that there are a lot of constant values which would significantly enlarge the size of the class,

making it more obscure when it came to maintenance. The second fact, which was actually the

one that fueled this decision, was that these values are not only used in the Metrics AAS

Constructor. The constant values in this class are the URNs or names used by the AAS to

identify the properties and operations that map the Metrics Provider's meters and operations.

This means that the Metrics AAS Constructor needs to have access to them to create the AAS,

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 39

but the client application using the AAS also needs to have the exact same tags to be able to

read the properties and invoke the operations. For this reason mainly, it was then decided to

have a separate class containing only the values, avoiding the need to import the Metrics AAS

Constructor class into the client using the AAS.

The constants saved here are, as previously mentioned, the names given to the different

properties that mask the meters. There are tags for each of the system meters, including both

simple meters and tagged meters. Additionally, we also added the prefix used for the update and

delete operations for our custom meters. The way these operations are created is by

concatenating the words "update" and "delete" to the custom meter's name. To showcase a

simple example, if we create a custom counter called "mycounter", the property "mycounter"

will be created mapping that meter, and we will also have the operations "updatemycounter"

and "deletemycounter" added. The client using the AAS can use the tags in the same way if they

want to avoid errors caused my misspelling a word.

One last type of constant value saved in this class are the names given to the attributes of the

JSON Objects created when retrieving a tagged meter from the Metrics Provider. It is always a

bit dodgy to hardcode the names of the attributes every time we want to retrieve them as there is

always room to commit mistakes. By adding them to this class as constants, we can be sure we

are safely retrieving the values.

In regards to the Metrics AAS Construction Bundle, this support class can easily be considered a

"data type" in UML notation. The need for this class came as we were implementing the Metrics

AAS Constructor class. We wanted to build a class that would allow the addition of system

metrics as well as custom metrics to an AAS. In order to do this, we required a submodel

builder and an invocables creator. Both of these elements come from the IIP-Ecosphere

platform, the first one is a useful tool to build a submodel for the AAS and the second is to

declare and define the how a property can be set or retrieved and what signature the operations

have. After adding the operations, we would then return the sub-model builder. Now, if we want

to add the implementation of the properties and operations introduced before, we would have to

use the corresponding Protocol Server Builder and the appropriate instance of the Metrics

Extractor REST Client with the Metrics Provider REST Service's endpoint. The operations

would be added and the Protocol Server Builder returned. If we wanted to stick to not using this

data-type, we would first have to construct the submodel, then the protocol server. In between,

there is room to make many mistakes like sending the wrong instance of the Protocol Server

Builder, or sending the two at wrong times; which would result in runtime exceptions and

errors. To avoid this, the best way was to do it all in one go. This was a problem because Java

only allows us to return a single type using a function. The solution to this issue was clear:

create a bundle that groups the submodel builder, the invocables creator, the protocol server

builder and the RESTful client all in the same place and use the bundle as a whole for all

operations.

This bundle is simply a data-type. It has a constructor that requests all four elements to be

added. There is a setter and a getter for each of the four attributes and that is it. The way it is

intended to be used is creating the bundle on the client-side application implementing the AAS

server including all the elements needed into the bundle all at once. With this bundle created, all

operations over any of the elements should be done using the getter operations of the bundle, to

ensure that the components stay packed together. With this in mind, the Metrics AAS

Construction Bundle is, not only a data-type that allows the AAS server application to keep all

elements it needs for the AAS neatly together, but also a bundle used as in-out arguments for

the Metrics AAS Constructor class, which works around the limitation of having a single return

type in Java functions.

5.3.3 Dependencies of the client-side

We will finish this section the same way we finished the previous one: discussing the

dependencies that the client-side has. Although some of the dependencies are shared among the

client-side and the server-side, some are incompatible between each other. This was one of the

reasons to separate the client-side and the server-side to begin with. The problem, in particular,

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

40 Version 1.0

lies within the version of the Tomcat[ASF21] server used by Spring (which is the one used in

the server-side) and the one used by BaSyx (running in the client side). These incompatibilities

are caused between the client-side and the server-side applications, and not by the component

itself, so it is safe to work with the component on either as long as they don't mix.

Just like in the previous section regarding the server-side dependencies, we will present a

diagram, seen in figure 10, with a graphic representation of the dependencies to see them at first

glance.

We once again start from top to bottom to follow the diagram's content. We first encounter the

meter representation package with the four classes it contains. This dependencies are easily

explained as they all use the same dependencies and for the same reasons. All the classes use

the java.util library to be able to create the dynamic lists required for saving the measurements

required by the Micrometer-API interface Meter. The Timer Representation additionally needs

this library to be able to define callables and suppliers, as well as having access to the Time Unit

enumeration it uses for the base unit and conversions.

All of the classes from the meter representation package also use the javax.json library. As this

classes run out of the AAS server's scope, particularly in the client using the AAS server's

services, using JSON is possible here and, being the preferred option as continuously insisted

upon in this document, there were no doubts on whether to use it or not.

To finish with the meter representation package, as one might expect, we require to use the

io.micrometer.core library so we can have access to the different methods and operations we

require from the Micrometer-API as well as being able to access the interfaces that we are

attempting to implement with this classes. Thanks to this imports, not only can we freely use

this classes as accurate representations of the interfaces they implement, but we can also use

them as more than simple dummy representations. This is most visible with the Timer

Representation class which, after all, has a method returning a Histogram Snapshot, which is a

class from Micrometer-API, and that also uses the sample timers in Micrometer-API to record

methods if needed.

Moving on to the next package, the metrics AAS package, we have surprisingly few

dependencies. This is because the dependencies are already handled by the IIP-Ecosphere's

library for the most part, meaning that all the parts involving AAS will simply use the IIP-

Ecosphere Framework and avoid the dependencies. The only class that doesn't use these

dependencies is the Metrics Extractor REST Client.

The Metrics Extractor REST Client uses the javax.ws.rs.core library to obtain a URI builder

needed to create the web resource, to define the media type expected to be sent or returned

through the HTTP request-response loop and to obtain the maps needed to correctly send the

requests for the tagged meters. As well as that library, as we previously stated in one of the

above subsections, this class is a RESTful Client implemented using a Jersey[EF18] REST

client. For this reason, we include the com.sun.jersey.api library, which will provide the

functionality we need to send the HTTP requests, get the responses and instantiate the web

resource representing the REST service.

Last, but not least, we have the Metrics AAS Constructor and Metrics AAS Construction Bundle,

both having a dependency with the de.iip_ecosphere.platform.support.ass library belonging to

the IIP-Ecosphere framework. The bundle simply requires this to be able to store the instances

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Implementation

Version 1.0 41

Figure 14: Dependency diagram of the client-side

of the submodel and protocol server builders and the invocables creator. The Metrics AAS

Constructor needs this library to actually create the AAS's submodel and use the protocol server

builder's capabilities to link the properties and operations from the submodel to the

corresponding operations of the RESTful Client.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

42 Version 1.0

6 Evaluation and validation

In this section we discuss how the project's validity was evaluated and validated. Evaluation and

validation are of great importance when it comes to any type of project, including software

projects. An idea or a concept can be very appealing and very interesting, but if the product that

was supplied as a result of the project is faulty, then it was a waste of time and resources to

carry out the project to begin with. That is why, testing and evaluation has been something

deeply embedded in this project from the very beginning. An early focus on testing and

validation has allowed us to detect errors and bugs early in development, giving us plenty of

time and space to solve them before they were even a problem.

Evaluation was also of great importance to understand how to proceed in the project's

development. As we mentioned at the beginning of this document, many of the technologies

used for this project are still in development and, as a result, there has been a lot of

experimentation based on a trial-and-error system to achieve the goal we wanted to achieve

before creating a stable version to add to the component. Many of the ideas that added new

functionality have also arisen from the prototypes created to test the component. This would

include ideas on how to do something more efficiently or how to make something easier and

more uniform for a certain task. The entirety of the client-side part of the component was, in

fact, somehow inspired by one of the prototypes used to test the client-side.

We have divided this section into three subsections, one for each type of evaluation and

validation done for the project.

6.1 Funtional tests

This types of tests are the base for testing any good software project. This tests aim to assert that

the functionality that a particular operation is said to have is, indeed there. This tests aim to

ensure the correct result for an operation both in expected and unexpected conditions, to make

sure that the operation also responds as intended in case of an error or invalid invocation.

Since the language of choice for the project is Java, we used the JUnit library to build unit tests.

A unit test is a testing method in which individual units, in the case of Java, a method, are tested

to determine whether they are fit for use or not[WP21]. Unit tests must include both valid and

invalid uses of the specific method we are testing to know and ensure that they behave exactly

the way we are expecting them to work.

Most of the elements created in this project, have a unit test attached to it that tests if the

functionality is as expected. The classes involving the use of REST and HTTP were easier to

test using instrumentation tests so, as a result, the Metrics Provider REST Service and all the

classes involved in the metrics AAS package from the server side are tested using said

instrumentation tests.

Unit tests follow a certain standard. Since the tests are supposed to be independent from

execution order, each test case should be tested separately. This is because the unit test runner

typically mixes up the order of the tests to ensure the order is irrelevant. Each method will,

therefore have a test battery against each of the methods with both valid and invalid cases. We

will now include the test battery for each of the classes and their operations. To better

understand the notation used in the following tables, we provide a simple key in table 4.

Table 5: Unit Test battery key

Method Case Description Expected result

Name of the

method being

tested

+1 Description of a valid use of the method Expected result

-1 Description of an invalid use of the

method

Expected error

response

To make it easier to distinguish each of the elements being tested, we will divide this section

once again to reflect both the server-side and the client-side separately as well as further

subsections for any special cases that have to be taken into consideration. Apart from the test,

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 43

by using the tools provided by Eclipse IDE[MO20], we also run a coverage analysis to ensure

that the different possibilities were correctly explored.

6.1.1 Server-side unit tests

Table 6: Capacity Base Unit Test Battery

Method Case Description Expected result

bytevalue() +1 Unit is BYTES 1.0

+2 Unit is KILOBYTES 1024.0

+3 Unit is MEGABYTES 1048576.0

+4 Unit is GIGABYTES 1073741824.0

+5 Unit is TERABYTES 1099511627776.0

stringValue() +1 Unit is BYTES bytes

+2 Unit is KILOBYTES kilobytes

+3 Unit is MEGABYTES megabytes

+4 Unit is GIGABYTES gigabytes

+5 Unit is TERABYTES terabytes

valueOf(String) +1 Argument is "bytes" BYTES

+2 Argument is "kilobytes" KILOBYTES

+3 Argument is "megabytes" MEGABYTES

+4 Argument is "gigabytes" GIGABYTES

+5 Argument is "terabytes" TERABYTES

-1 Argument is null Null Pointer Exception

-2 Argument is a random String IllegalArgumentException

Table 5 shows the test battery used to test the Capacity Base Unit enumeration. This

enumeration is tested due to the fact that it has methods. The coverage analysis shows that this

test covers 100% of the enumeration.

6.1.1.1 Metrics Provider Test

This specific test does require a bit more explanation as it is a mixture between a unit test and an

instrumentation test. The reason for this is that this component is "alive" during its execution,

and certain methods behave differently depending on the state of the component. Because of

this, not all tests can be executed at a random moment. More in particular, we are talking about

the tests regarding the modification and deletion of custom metrics. This methods behave

differently depending on whether a requested metric exists or not to perform the various

operations. The same request can, as a result, yield different results depending on the moment it

was invoked. This dependency on the state has to be somehow managed. In order to do this, this

methods were tested in one big block that executes the different operations through the different

possible states the component can be in, ensuring its correct execution in each of the states. We

will, as a result, include a table for the unit tests that do exist for this class as well as a table that

acts as a step by step list of these instrumentation tests of sorts.

Table 7: Capacity Base Unit Test Battery

Method Case Description Expected result

Initialization +1 Valid Meter Registry Metrics Provider instance

created

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

44 Version 1.0

-1 Argument is NULL IllegalArgumentException

setMemoryBaseUnit()

&

getMemoryBaseUnit()

+1 Change memory base unit to

Kilobytes

getMemoryBaseUnit() will

first retrieve a non NULL

value and, after the update,

retrieves KILOBYTES

-1 Argument is NULL IllegalArgumentException

setDiskBaseUnit() &

getDiskBaseUnit()

+1 Change disk base unit to

Megabytes

getDiskBaseUnit() will first

retrieve a non NULL value,

after the update, retrieves

MEGABYTES

-1 Argument is NULL IllegalArgumentException

Gauge CRUD

operations

1. The number of custom gauges is 0

2. Removing an inexistent gauge throws an

IllegalArgumentException

3. Removing NULL throws an IllegalArgumentException

4. Adding a value to NULL throws an

IllegalArgumentException

5. Adding a new gauge increases the number of custom

gauges to 1 and the value retrieved is the same one we set it

to

6. If we add a value to the same gauge, the number of gauges

is still 1 and the value has changed to the new value

7. If we add a negative value to the gauge, the number of

gauges is still 1 and the value has changed to the indicated

value

8. If we request the value of an inexistent gauge, the value

returned is 0

9. If we request the value of NULL, the value returned is 0

10. If we remove the custom gauge, the number of gauges is 0

11. Requesting the value of the gauge will return 0

12. Trying to remove the same gauge again throws an

IllegalArgumentException

Counter CRUD

operations

1. The number of custom counters is 0

2. Removing an inexistent counter throws an

IllegalArgumentException

3. Removing NULL throws an IllegalArgumentException

4. Increasing NULL throws an IllegalArgumentException

5. Increasing NULL by an amount throws an

IllegalArgumentException

6. Increasing an inexistent counter increases the number of

counters to 1 and the value of the counter is 1.0

7. Increasing an inexistent counter by an amount increases the

number of counters to 2 and the value of the counter is the

one we have indicated

8. Increasing the counter by an amount does not alter the

number of counters (still 2), and the value of the counter is

the sum of the previous value and the indicated value

9. Increasing a counter by a negative value throws an

IllegalArgumentException, does not change the number of

counters and does not alter the value of the counter

10. Requesting an inexistent counter value returns 0

11. Requesting the counter value of NULL returns 0

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 45

12. Removing a counter reduces the number of counters to 1

13. Removing the same counter again throws an

IllegalArgumentException

Timer CRUD

operations

1. The number of custom timers is 0

2. Removing an inexistent timer throws an

IllegalArgumentException

3. Removing NULL throws an IllegalArgumentException

4. Recording a runnable with NULL throws an

IllegalArgumentException

5. Recording a NULL runnable throws an

IllegalArgumentException

6. Recording a Supplier with NULL throws an

IllegalArgumentException

7. Recording a NULL supplier throws an

IllegalArgumentException

8. Recording a one second runnable with an inexistent timer

increases the number of timers to 1. The max time of the

timer and the total time of the timer are 1.0. The usage

count is 1.

9. Recording a three second runnable with that timer does not

alter the number of timers (1). The max time of the timer is

3.0 and the total time 4.0. The usage count is 2.

10. Recording a two second runnable with that timer does not

alter the number of timers (1). The max time is still 3.0, the

total time is 6.0, the usage count is 3.

11. Recording a one second supplier with an inexistent timer

increases the number of timers to 2. The max time of the

timer and the total time of the timer are 1.0. The usage

count is 1.

12. Recording a three second supplier with that timer does not

alter the number of timers (2). The max time of the timer is

3.0 and the total time 4.0. The usage count is 2.

13. Recording a two second supplier with that timer does not

alter the number of timers (2). The max time is still 3.0, the

total time is 6.0, the usage count is 3.

14. Recording 1000 milliseconds with an inexistent timer

increases the number of timers to 3. The max time of the

timer and the total time of the timer are 1.0. The usage

count is 1.

15. Recording 3000 milliseconds with that timer does not alter

the number of timers (3). The max time of the timer is 3.0

and the total time 4.0. The usage count is 2.

16. Recording 2000 milliseconds with that timer does not alter

the number of timers (3). The max time is still 3.0, the total

time is 6.0, the usage count is 3.

17. Recording negative time with that timer throws an

IllegalArgumentException

18. Recording a valid time with NULL as time unit throws an

IllegalArgumentException

19. Requesting the total time from an inexistent timer returns

0.0

20. Requesting the total time of NULL returns 0.0

21. Requesting the max time of an inexistent timer returns 0.0

22. Requesting the max time of NULL returns 0.0

23. Requesting the usage count of an inexistent timer returns 0

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

46 Version 1.0

24. Requesting the usage count of NULL returns 0

25. Removing a timer decreases the number of timers to 2

26. Removing the same timer again throws an

IllegalArgumentException

This tests cover 37.3% of the Metrics Provider class. This, under normal circumstances, is not a

good coverage value, however, as we introduced at the beginning of this subsection, this class is

a bit difficult to test using unit tests. Using the coverage tool, we determined that all the lines of

code that were skipped by the unit tests were due to not having a Spring Boot Application,

which is responsible for starting the schedule, which involves a big percentage of code, as well

as all the code created to support the REST Service. This functionality is, of course, tested

elsewhere, by using prototypes. The prototypes were also run using the coverage tool from

Eclipse, so we could accurately ensure that the missed code was tested with the prototype.

6.1.2 Client-side unit tests

Table 8: Meter Representation test battery

Method Case Description Expected result

Initialization

with JSON

+1 Valid JSON and no tags The Meter is created and the

ID is correct (name, base

unit, description and tags)

+2 Valid JSON two tags The Meter is created and the

ID is correct

+3 Valid JSON with no base unit

value

The Meter is created and the

ID is correct

+4 Valid JSON with no description

value

The Meter is created and the

ID is correct

-1 Argument is NULL IllegalArgumentException

-2 JSON is missing description

attribute

IllegalArgumentException

-3 Valid JSON but tag is missing the

key

IllegalArgumentException

-4 Valid JSON but tag is missing the

value

IllegalArgumentException

-5 Valid JSON but the tag is a

random String

IllegalArgumentException

-6 JSON does not have a name

attribute

IllegalArgumentException

-7 JSON does not have a name value IllegalArgumentException

-8 JSON does not have a base unit

attribute

IllegalArgumentException

Initialization

with name

+1 Valid name The Meter is created and the

ID is correct (name, base

unit, description and tags)

-1 Name is Null IllegalArgumentException

-2 Name is an empty String IllegalArgumentException

Table 7 shows the test battery used to test the Meter Representation class. There is only one

method that can really be tested in this class as most of the functionality is covered by the

subclasses as this is an abstract class. Even though the tests are centered on a specific method

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 47

(the constructor), the get ID operation is also tested as it is used to verify that the ID is correctly

established by the constructor. The coverage analysis shows that this test covers 100% of this

class.

Table 9: Counter Representation test battery

Method Case Description Expected result

Initialization +1 Valid JSON and no tags The Counter is created. the ID is

correct and the count value is the

one in the JSON Object

+2 Valid JSON two tags The Counter is created. the ID is

correct and the count value is the

one in the JSON Object

-1 JSON has two

measurements

IllegalArgumentException

-2 Measurement has the

wrong statistic

IllegalArgumentException

increment(double) +1 Incrementing the value by

1.0

The count value is the one in the

JSON + 1.0

+2 Incrementing the value by

0.0

The count value is the one in the

JSON

-1 Incrementing the value by

-1.0

IllegalArgumentException

getUpdater() +1 Increment the counter and

request an updater

A JSON Object that follows the

expected format and contains the

value we incremented as

"increment" value

measure() +1 Request the measurements

of the counter

There is a single measurement with

the COUNT statistic and the

statistic matches the count value of

the counter

Initialization with

name

+1 Valid name The Counter is created. the ID is

correct and the count value is 0, and

the measurement is correct

Table 8 shows the test battery used to test the Counter Representation class. All the methods

from this class are tested. The test for the initialization is more relaxed as some cases have

already been covered by the Meter Representation test. The method returning the count value of

the counter is also tested within the initialization tests as it is used to further ensure the

initialization is correct. There are no invalid cases for said method, so no further testing of it is

required. The coverage analysis shows that this test covers 100% of this class.

Table 10: Gauge Representation test battery

Method Case Description Expected result

Initialization +1 Valid JSON and no tags The Gauge is created. the ID is

correct and the value is the one in

the JSON Object

+2 Valid JSON two tags The Gauge is created. the ID is

correct and the value is the one in

the JSON Object

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

48 Version 1.0

-1 JSON has two

measurements

IllegalArgumentException

-2 Measurement has the

wrong statistic

IllegalArgumentException

getUpdater() +1 Update the Gauge Value

and request an updater

A JSON Object that follows the

expected format and contains the

value we indicated as "value" value

measure() +1 Request the measurements

of the gauge

There is a single measurement with

the VALUE statistic and the

statistic matches the value of the

gauge

Initialization with

name

+1 Valid name The Gauge is created. the ID is

correct and the value is 0, and the

measurement is correct

Table 9 shows the test battery used to test the Gauge Representation class. All the methods from

this class are tested. The test for the initialization is more relaxed as some cases have already

been covered by the Meter Representation test. The method returning the value of the counter is

also tested within the initialization tests as it is used to further ensure the initialization is correct.

There are no invalid cases for said method, so no further testing of it is required. The same thing

occurs with the set value method that we added to be able to update the gauge's value. This

method is, in turn, tested in the get updater test and, having no invalid cases, no further testing

of this method is required either. The coverage analysis shows that this test covers 100% of this

class.

Table 11: Timer Representation test battery

Method Case Description Expected result

Initialization +1 Valid JSON and no tags The Timer is created. the ID is

correct and the counter, the

total time and the max time are

the ones in the JSON Object

+2 Valid JSON two tags The Timer is created. the ID is

correct and the counter, the

total time and the max time are

the ones in the JSON Object

-1 JSON has invalid base

unit

IllegalArgumentException

-2 JSON has two

measurements

IllegalArgumentException

-3 JSON has four

measurements

IllegalArgumentException

-4 One of the

measurements has a

VALUE statistic

IllegalArgumentException

-5 There are two

measurements with

COUNT statistics

IllegalArgumentException

-6 There are two

measurements with

TOTAL_TIME statistics

IllegalArgumentException

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 49

-7 There are two

measurements with

MAX statistics

IllegalArgumentException

takeSnapshot() +1 Request the histogram

snapshot

The method does not return

NULL

record(long, TimeUnit) 1. The initial count, total time and max time are 0

2. Recording 0 seconds increases the count by one but no

other unit is altered

3. Recording 1 second increases the count by one, the total

time and max time increases to 1.0

4. Recording -1 seconds increases the count by one, the total

time is decreased to 0.0 and the max time remains being

1.0

record(Supplier) 1. The initial count, total time and max time are 0

2. Recording a one second supplier increases the count to 1

and both the max time and total time recorded are 1.0

3. Recording a three second supplier increases the count to 2.

The total time is now 4.0 and the max time is 3.0

4. Recording a two second supplier increases the count to 3.

The total time is now 6.0, the max time is still 3.0

recordCallable(Callable) 1. The initial count, total time and max time are 0

2. Recording a one second callable increases the count to 1

and both the max time and total time recorded are 1.0

3. Recording a three second callable increases the count to 2.

The total time is now 4.0 and the max time is 3.0

4. Recording a two second callable increases the count to 3.

The total time is now 6.0, the max time is still 3.0

record(Runnable) 1. The initial count, total time and max time are 0

2. Recording a one second runnable increases the count to 1

and both the max time and total time recorded are 1.0

3. Recording a three second runnable increases the count to

2. The total time is now 4.0 and the max time is 3.0

4. Recording a two second runnable increases the count to 3.

The total time is now 6.0, the max time is still 3.0

totalTime(TimeUnit) Requesting the total time in all possible time units renders the

correct value in the corresponding unit

max(TimeUnit) Requesting the maximum time in all possible time units renders

the correct value in the corresponding unit

getUpdater() +1 Record a long value, a

supplier, a callable a

runnable and request an

updater

A JSON Object that follows

the expected format and

contains a JSON Array under

the attribute "recordings" that

contains the 4 recorded values

in nanoseconds

measure() +1 Request the

measurements of the

timer

There are three measurements.

The COUNT measurement

corresponds with the timer

count, the TOTAL_TIME

measurement corresponds to

the total time recorded and the

MAX measurement

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

50 Version 1.0

corresponds to the maximum

time recorded

Initialization with name +1 Valid name The Timer is created. the ID is

correct and the counter, the

total time and the max time are

zero, and the measurements are

correct

Table 10 shows the test battery used to test the Timer Representation class. All the methods

from this class are tested. The test for the initialization is more relaxed as some cases have

already been covered by the Meter Representation test. The method returning the value of the

count, max time, total time and base unit are also tested within the initialization tests as it is

used to further ensure the initialization is correct. The total time and maximum times are also

tested separately to ensure that the time unit is correctly converted from one unit to the other.

The coverage analysis shows that this test covers 100% of this class.

Table 12: Metrics AAS Construction Bundle test battery

Method Case Description Expected result

Initialization +1 Everything

is ok

The bundle is created and

the attributes are the same

ones used as arguments

-1 The

submodel

builder is

NULL

IllegalArgumentException

-2 The

Protocol

Server

Builder is

NULL

IllegalArgumentException

-3 The

invocables

creator is

NULL

IllegalArgumentException

-4 The Metrics

Extractor

REST

Client is

NULL

IllegalArgumentException

setSubmodelBuilder(SubmodelBuilder) +1 Change the

submodel

builder

The submodel builder

changes correctly

setInvocablesCreator(InvocablesCreator) +1 Change the

invocables

creator

The invocables creator

changes correctly

setClient(MetricsExtractorRestClient) +1 Change the

client

The client changes

correctly

setProtocolBuilder(ProtocolServerBuilder) +1 Change the

protocol

builder

The protocol builder

changes correctly

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 51

Table 11 shows the test battery used to test the Metrics AAS Construction Bundle class. This is a

simple data-type that only has setters and getters for each of the four attributes it contains. All

the cases are covered with this test. The constructor internally calls the setters to unify the

illegal argument check, so we no longer have to check it with the setter tests. Similarly, we use

the getter operations to test the initialization and the setters, so we don't need separate test cases

to check them. Coverage analysis of this class shows that 100% of the class is covered by this

test.

Table 13: Metrics Extractor REST Client test battery

Method Case Description Expected result

Initialization +1 Arguments are valid Client is created

-1 Host is NULL IllegalArgumentException

-2 Host string is empty IllegalArgumentException

-3 Port number is negative IllegalArgumentException

Table 11 shows the test battery used to test the Metrics Extractor REST Client. It can only cover

the constructor as, similarly to the Metrics Provider REST Service, the functionality that this

class provides is REST based and, as a result, requires to be tested using the integration tests.

The only thing this unit test can check is if the initialization is correct. Because of this, the unit

test only covers 3.5% of the class. It is an extremely low percentage of coverage, but, just like

the main functionality can only be covered with the instrumentation tests, the best way to cover

the constructor is with unit tests.

6.2 Integration tests

Once the functionality of the component that could be tested using unit tests was successfully

verified, we could check how it worked in operation. This was an important test to carry out as

some of the functionality, such as the Metrics Provider REST Service, as well as the elements in

the client-side's metrics AAS package could not be tested any other way. This tests involve the

creation of a prototype for each of the two parts the component has: one to use the server-side

and one to use the client-side. Although this prototypes were simple, they were enough to

correctly assert how the component worked under normal circumstances and allow us to cover

the code we had not been able to check with the normal unit tests.

In this subsections, we will have a look at how each of the prototypes was implemented and

how it works, as well as what functionality each of them is designed to test. The server-side

prototype was, of course, the first one to be created and used, as the client-side needs a server-

side to connect to and work. Once the server-side was yielding the expected results, this second

prototype was built and run. The coverage analysis were not run until the both prototypes were

working correctly. Thanks to this tests, as well as the coverage analysis, we were able to detect

some errors and some missing elements that were added after the tests.

6.2.1 Server-side prototype

The server-side prototype is based on a testing prototype created in the IIP-Ecosphere that was

used to test a simple Spring Stream Cloud service that uses a messaging broker. The original

prototype contains three classes: Test With Broker, Test and Configuration, as well as some

noteworthy resources such as a zipped broker server configuration and the application.yml file

that Spring Cloud Stream uses. This prototype was executed by running the Test With Broker

class. This class first extracts the broker configuration and adds some program arguments that

are required by the Spring Cloud application. The prototype then deployed the broker and run

the Spring Cloud application. The prototype originally created and deployed a MQTT[MO20]

server, but some early testing we did revealed some compatibility issues between the server

version and the Java version, so the server was changed to an AMQP[O14] server as MQTT had

some stability issues on this version.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

52 Version 1.0

The original prototype's Spring Cloud Stream application consisted of a simple stream

application with two beans: a supplier bean and a consumer bean. These beans worked together

following a publish-subscribe style of messaging. One of the beans, the supplier, created a

string of data (in this simple prototype, it was literally a String containing the word "DATA").

This would then be published to the broker server. The consumer bean would retrieve the data,

following the destructive reading style of a subscriber and would process the data received (in

this case, printing it to standard output). This class had a configuration class attached to it using

the appropriate Spring Cloud Stream annotation, which allowed the Spring Cloud Stream

Application to extract some configuration parameters from the application.yml file and use them

as configuration options. By default, the Spring Cloud Application runs on an endless loop. To

avoid this, the configuration included a limit of messages to be ingested by the consumer. When

the number was reached, the application would safely shut down.

This working prototype was modified to suit our needs and allow us to test the functionality of

our component in a semi-realistic manner, running the component similarly to how it would run

in a real case scenario. This modifications included deleting the Configuration class, as we no

longer needed it, and changing some code from the Test class, containing the Spring Cloud

Application. The Test With Broker class, that starts up the broker server, is not modified in the

slightest.

In order to work with the Metrics Provider component, we have to add the following

annotations for the class, as well as maintaining the ones that might already be there. Said

annotations are:

 Component Scan: this annotation tells the Spring Boot Application (which we can

consider the Spring Cloud Stream Application's super-type) where the component is

located. The argument it receives is a String with the name of the server-side package of

the Metrics Provider component.

 Enable Scheduling: this annotation is required to enable scheduling operations in the

Spring Boot Application. This will mean that it will create a separate thread to run

scheduled operations, which we require to run the scheduled operation that extracts the

system metrics.

 Import: this annotation allows us to indicate that we want to import the Metrics

Provider class into the beans running in the Spring Cloud Stream Application, which

will allow us to inject the dependency into the beans and access the custom metrics

programmatically to modify them.

Apart from this annotations, we also modify the supplier and consumer so they don't depend on

the Configuration file that was deleted. The supplier now instead creates a random number and

uses this value to modify a custom counter, a custom gauge and records this entire operation

using a custom timer. The first iteration it will also create some custom metrics to be used for

the client-side testing prototype regarding REST modification, as it would be near impossible to

modify constantly changing values. The random number is then published onto the broker. The

consumer now retrieves that value and uses it to modify its own custom metrics while also

timing the operation. The application will run for about 5 minutes before shutting down safely.

The final additions that have to be made to the server-side prototype are in the resources

directory, in particular the application.yml file. Here, we can add the configurable properties

for the Metrics Provider component by adding them under the tag metricsprovider. There is an

example of what this file looks like in the appendix. Originally, there also had to be added a

series of lines to ask the Spring Boot Actuator to expose the metrics, but this is now done by the

REST Service, so it is no longer required. This exposes the REST Service in the default port

8080, but it can be modified using the appropriate property (also in the example). In our case,

we will be using the 8080 port and will set the schedule to run every 3 seconds, use kilobytes as

memory unit and megabytes as disk capacity unit.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 53

6.2.2 Client-side prototype

The client-side prototype is a lot more complex than the server-side prototype as it is the one

that actually carries out the monitoring, so it is responsible to actively send the requests. This

prototype was also based on an example prototype from the IIP-Ecosphere that we looked at

when researching about AAS. The prototype was originally intended for another student that

was working on AI integration using AAS. It was a very crud and simple prototype in an early

stage, but more than enough to understand how the IIP-Ecosphere implementation of AAS

worked. Although it is based from an already existing prototype, the code was written from

scratch, meaning that this was actually created by us and not copied and modified from the IIP-

Ecosphere tests.

This prototype originally only tested the REST Service and the Meter Representations, meaning

that it was responsible for creating both a RESTful client and an AAS supporting the monitoring

apart from testing it. As the project progressed and it became clear that something needed to be

done to standardize the AAS creation and data retrieval, a great chunk of what was originally

part of this prototype was integrated into the component in the metrics AAS package of the

client-side. The job regarding the creation of an AAS that supported monitoring as well as the

RESTful client functionality became part of the component, simplifying the client-side

prototype a lot. Due to this, if we look at the client-side prototype, we will see that all three

classes that are a part of it have the suffix "V2" to signify they are a second version of the

originally created client-side prototype.

The classes we want to focus on here are just two of the three classes: the AAS Server (v2) and

the AAS Jersey Client (v2). The third class, called Time Recorder (v2) is the one we used to

carry out the performance tests, so it will be explained in the following subsection, allowing us

to focus on the other two classes here.

The first class we will look at is the AAS Server (v2) class. This class is the first one that has to

be run on the client-side prototype. Attempting to alter the order will, understandably, result in

failure. As the name implies, this class is the one responsible for setting up and deploying an

AAS Server. Without this AAS Server, we cannot have an AAS. This class starts by creating a

couple of Server Addresses and endpoints for the AAS Server base and the AAS's registry.

Once the endpoints are created, we build the AAS Builder using the AAS Factory provided by

the IIP-Ecosphere framework. This AAS Builder will give us the submodel builder and the

invocables creator we need for the component to work. The AAS Factory also provides the

protocol server builder we need and we create an instance to the Metrics Extractor REST Client.

We put all these four component into a Metrics AAS Construction Bundle and we are ready to

use the component.

One of the aims we had with the component's signature was to allow the modification of an

already created submodel. For this reason, to ensure it works correctly, we add a few properties

to the submodel (a name, a version and a description) and provide their implementation in the

protocol server builder prior to using the component. We now call the add metrics to bundle

method from the Metrics AAS Constructor that adds all system metrics to the submodel. We

proceed to add some custom metrics (corresponding to the ones created in the server-side for the

consumer and supplier). This would be the way we are expecting the component to be used in a

real scenario.

To check for errors, a few illegal operations are added surrounded by try-catch clauses to ensure

that the errors are actually being thrown and caught correctly by the application. Once this is

tested, we build the different elements and deploy the servers. The AAS Servers stay running

for 2 minutes and then shut down safely. This was done in this manner so that both the normal

test and the performance test could be launched.

The AAS Jersey Client (v2) class is very long, but in concept is quite simple. This class is

responsible for running the actual test to ensure that the AAS and REST service as well as, of

course, the RESTful client are running correctly. The class starts by retrieving the AAS from the

AAS Factory the way an actual client of the AAS would do in operation. The submodel is

retrieved and we proceed to extract the different data, displaying it on standard output. First we

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

54 Version 1.0

ensure that the data that was added by the AAS Server class was not modified by the component.

After this has been checked, we retrieve the properties regarding the list of meters, including

custom counters, gauges and timers, as well as both simple and tagged system metrics. After

this, we retrieve each and every one of the properties, parsing them into the corresponding meter

representation and printing them on the standard output using the parsed version instead of the

JSON version for more clarity.

After all the properties are retrieved, we run some final tests that assert that the REST service

works correctly. We retrieve, modify and delete some custom metrics that are not constantly

changing in the server-side to assert that everything functions as intended. We also attempt to

carry out illegal operations by sending invalid arguments to the REST service to test its reaction

in this cases, and ensure that the REST Advice is correctly handling the errors.

Finally, this test modifies the original memory and disk capacity units using the REST Service

before finishing and shutting down. In the upcoming section where we go over the test

coverage, we will see how this somewhat simple tests allowed us to cover the functionality of

the code in a very effective way.

6.3 Performance tests

Once we know that the component we are creating works correctly, another important question

to ask ourselves is if the component itself is feasible. It may happen that the component works

as expected in regards to produced results, but if the efficiency of the component is not good,

we cannot really use the component, regardless of its successful execution of the task at hand.

We already mentioned in the requirements section that there are a series of quality requirements

in the IIP-Ecosphere that have to be taken into account. We have to bear in mind that the system

we are monitoring could be critical for a certain production line, and that a failure we were not

able to diagnose in time could be costly. For this reason, time efficiency is already something to

take into account.

To analyze the performance of the system, there was an additional element added to the client-

side, as the performance we are actually interested in is how long it takes to retrieve a value

being monitored. This is what prompted us to create the aforementioned Time Recorder (v2)

class. With this class we intend to throw a series of tests that would allow us to estimate the

time required to retrieve the metrics and parse them into their corresponding meter

representations. After running some initial tests, it became clear that the time required to parse

the retrieved meter into an object is only a few microseconds, as it does not even reach one

millisecond to even be detected by the Time Recorder application. When the second version was

created, this was switched to nanoseconds to at least get the recording we could show on a

graph.

After creating a few control variables, the application runs a loop a certain amount of times,

which is the variable we will use for the "X" axis of the graphs. For each loop, all non tagged

metrics (including the custom ones) are retrieved using the AAS. We decided not to retrieve the

tagged ones as they would probably require more time to process as they are actually multiple

meters being retrieved. This would alter the results, providing wrong measurements. Because of

this, we only used those metrics that could be directly parsed into a meter representation. The

time required to retrieve the meters is measured, then the same is done to calculate the parsing

time. Both are combined to know the total time.

After all the loops have been done, the application calculates the mean value and prints it on

standard output. This measurements were then collected and added to a spreadsheet, which we

used to analyze the data and show the results. For each of the values for the loop, we repeated

the execution three times for more accurate results. We recorded for 25, 50, 75, 100, 125, 150,

175 and 200 loops. The graphs from figures 11 to 18 show the resulting graphs from this study.

We first present the retrieval times for the different meter types and then move over to the parse

times.

To sum up what we explained in the previous paragraphs, the performance tests consists of an

application that requests the system properties that don't have tags and parses them into the

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 55

corresponding Meter Representation. Both the time taken to retrieve the meters and to parse

them are recorded. All of this is done from the client side as the server-side already has to be

running for it to work and the time it takes to set up depends on the Spring Boot Application

rather than the component itself. Each meter type was recorded separately as they have

differences from one another. Each loop consists on requesting all counters, all gauges and all

timers, meaning that the full set of requests is performed rather than only requesting one type.

The reason why it was done in this manner was because it is more similar to what would

actually happen in a real case. In figure 15, we show a diagram explaining the test's flow.

Figure 15: Flow diagram of the test

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

56 Version 1.0

One final detail to be taken into account is that these tests were run on the same device, which

affects the retrieval times for HTTP requests as the request doesn't need to be sent through a

network, which would of course affect the time considerably. The device in question is a

Lenovo Z50-70 laptop, running Windows 10 with an Intel-i7 1.80GHz processor and 16 RAM

memory. The Java JRE version used was JavaSE-1.8 (jdk1.8.0_144).

Figure 16: Graph depicting the time required to retrieve a counter in nanoseconds

Figure 17: Graph depicting the time required to retrieve a gauge in nanoseconds

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 57

Figure 18: Graph depicting the time required to retrieve a timer in nanoseconds

Figure 19: Graph depicting the time required to retrieve the different meters in nanoseconds to

compare the retrieval times

The graphs from figures 16 to 19 show the different retrieval times for the different meter types.

We can see that with few loops, the response times are quite elevated, ranging somewhere

between 8ms and 9.5ms. However, this times go down as the number of loops increase, more or

less staying stable between 4ms and 5ms when we reach 150 loops. Apart from this, we can see

that all the different meters take, roughly, the same time to be retrieved, with no real significant

difference between them. The timer takes a bit more than the rest due to size and the counter

takes less for the same reason. The gauge, in spite of having the same size as a counter, takes

longer because, as we already discussed, it calculates the value on request. The current state of

the component makes it so that only a simple getter is used to calculate said value, thus keeping

the times in harmony with the other meters. Prior to adding the scheduled operation we talked

about in the Metrics Provider, the gauge typically took around 10ms to 11ms in the later loops,

meaning it took about double the amount of time due to all the system calls that are required to

retrieve the memory and disk capacity metrics. The results prove that the efficiency increase by

sacrificing the real time in favor of semi-real time measurements for this set of metrics was

worth the trouble. As a reminder, the rate can be changed to increase the frequency of the

schedule, getting a more accurate reading, but the efficiency will slowly be affected.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

58 Version 1.0

Figure 20: Graph depicting the time required to parse a counter in nanoseconds

Figure 21: Graph depicting the time required to parse a gauge in nanoseconds

Figure 22: Graph depicting the time required to parse a timer in nanoseconds

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Evaluation and validation

Version 1.0 59

Figure 23: Graph depicting the time required to parse a timer in nanoseconds

The graphs in figures 20 to 23 show the times taken to parse the retrieved meter in String format

to the corresponding Meter Representation. We can clearly see that the measurement from 25

loops is much higher, meaning that there is still a detectable overhead from the start up of the

process. For this reason, we will ignore the results from the 25 loops, as they don't really show

the times we want to focus on.

As we saw, due to the limitations we have, the meters have to be retrieved as Strings. This

Strings are then parsed into JSON Objects and then parsed into a Meter Representation. The

biggest factor for this times is, by far, the size of the meter. The bigger the meter, the longer it

takes to parse it. Gauges are, when parsed into a Gauge Representation the simplest and

smallest of all three meter types. We can clearly see this, as the gauges have never taken more

than 20µs, staying at an almost steady rate of about 10 to 5µs to parse.

The counter, although equal in size in its JSON representation, does have more attributes that

have to be taken care of when parsed into a Counter Representation. This makes it take

significantly longer, taking somewhere in between 45µs and 20µs to be parsed.

The final meter is the Timer, which is the biggest of the three and, as a result, takes a lot more

time to be parsed. The average time to parse a timer retrieved from the Metrics Provider to a

Timer Representation is between 70µs to 30µs. Taking about 50% more than the other two

meters combined. This is something we expected from the beginning as it was the most

troublesome and large meter to create a representation of. Apart from that, we also know that it

is the heaviest and most resource consuming Meter Representation, both size- and time-wise, so

this was the most expected results.

Overall, the times taken for both the retrieval and the parsing are exactly what we had

hypothesized and expected before even running the tests. After the modification introduced by

the scheduled operation, all meters were supposed to be retrieved in the same time

approximately, which we managed to achieve successfully. The parse times, based on sizes as

we suspected, were also clear to constraint, having the gauge taking the less time and the timer

taking the most.

With this results in mind, however, just as we said, the most critical process regarding time

efficiency is clearly the retrieval time, which also makes sense as it involves HTTP

communication, serialization and de-serialization of data and all the underlying communication

protocols and dependencies. Even in this tests that, as previously described, ignore the time

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

60 Version 1.0

required to send the request through a network, the time taken to parse is insignificant to

efficiency impact, as it doesn't even reach 1ms. As a matter of fact, it rarely surpasses 0.5ms,

with only the timer getting close to reaching that mark. We will now finish this section by

having a look at the test coverage.

6.4 Test coverage

Although we did mention the coverage of specific classes for some of the performed unit tests,

as we saw with the Metrics Provider test, there is a lot of uncovered code that required the

integration tests to run. If we run all of the unit tests created for the component, the total

coverage of the code is 27.9% This is roughly a quarter of the component, showcasing that there

is the need of running different tests to cover the rest. That is where the integration tests come

in.

Luckily, we can run the integration tests with coverage as well, allowing us to obtain the

statistic we require. Interestingly enough, although it theoretically should not be like this,

running the server-side prototype with coverage measurements changed the way the garbage

collector worked, causing it to have different tags and, as a result, causing an error on the client

side. It was a good finding, as this error could easily be solved in the REST client by adding a

few more checks to request the correct version of the Garbage Collector's timer, which was the

meter in question that got altered by this change in execution. This, unfortunately meant that we

had to change our execution pattern a little bit to correctly ensure that all the lines were being

covered, as the coverage tool itself was what was causing this disruption.

In order to solve this issue, we run the prototypes with coverage in two turns. The first consisted

on running both server- and client-side prototypes with coverage. After this execution, we rerun

the project but only record the coverage of the client-side, so that the server-side behaves the

way it is supposed to. After both executions have terminated, we merge their coverage to obtain

the total coverage combining both executions. With this, we can accurately obtain the total

coverage of the integration tests. This coverage was of 91.9% of the code, that included all that

the unit tests could not cover.

To ensure that everything was correctly covered, using the same method as before, we merged

together the coverage results of the unit tests and integration tests, what gives us a total

coverage of 99.9%. This is not the ideal 100% that one might expect, but there are very clear

explanations as to why this happens and that, in reality, the tests cover the functionality of the

component without any problem.

The Metrics AAS Constructor considers itself 99.7% covered because, as the class is never

instantiated for containing only classifier scope methods, it counts the implicit constructor

method provided by Java as not covered. There is also a switch that considers that one of its

branches is missed because the default branch is never covered. This default branch is

impossible to cover as it implies a certain parameter to not coincide with any of the cases, which

is impossible because the switch covers all the possible cases of the enumeration that that

parameter belongs too. The last case could be set as default, but it wouldn't be very correct

semantically speaking, so it is better to leave it as it is, by adding this explanation to justify why

the tool considers this option "not covered", even though it was never an option to begin with.

Excluding this class, everything else is covered 100%, so we can be confident in saying that the

component has been correctly tested, covering all possible branches in the code successfully.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Integrating the Metrics Provider Component

Version 1.0 61

7 Integrating the Metrics Provider Component

Now that we have discussed how the Metrics Provider component works, we will end by

explaining how we can use the component's functionality within the IIP-Ecosphere's scope. The

component can be treated like any other java component. A possibility would be to obtain it as a

JAR file and import it as a library into the software project where we want to use it, however,

with the existence of other tools, such as Maven[ASF02] or Gradle[G21], this is not

recommended. The recommendation is to use a Maven Project, as it is both comfortable to

manage all dependencies in the same way as well as keeping them up to date. Additionally, as

we mentioned earlier, this project has been carried out using Maven, so we are more certain of

its correctness if we use Maven.

As of now, we only know that this component will be a part of the services.environment library

from the IIP-Ecosphere platform, but we still don't know the exact name that said library will

have, so we will not be able to include it. In the examples found in the appendix regarding the

POM files, due to not knowing the name, we called the artifact representing the component

de.iip-ecosphere.platform.monitoring.metricsprovider in the current prototypes, and this will be

the name shown in the appendix's examples. To import the component, we only need to include

this in the POM file. In order for the component to work, however, there are a set of pre-

requisites that are expected to be present in the project depending on what side of the

monitoring is being carried out. We will now discuss what pre-requisites are expected on each

of the two sides of in order for the component to work correctly.

7.1 Integrating the server-side of the component

As a reminder, the server-side of the component is the one responsible for collecting the

resource's metrics and providing functionality to read them as well as allowing to create and

manage custom metrics. This is the part of the component that will be running in the resource

being monitored.

Despite this being the key part of the component, we do not require an excessive amount of

additional dependencies for it to work correctly. Apart from the artifact representing the

component, we will also have to include the Spring Boot Starter Web and Spring Boot Actuator

libraries. These two components of the Spring Cloud Stream framework are the ones

responsible for starting the Stream Cloud Application, that will boot up the different elements

required for the monitoring and inject any dependencies they require, such as the Meter Registry

where the meters will be registered, or importing the properties we might have added to the

application.yml file. The Spring Boot Actuator is the one responsible for enabling the endpoints

that will allow the REST service to work properly.

With this imported, we can create the Spring Stream Application we wish to use in our resource,

adding the functionality we require for our particular task. We can proceed to create an

reference to the Metrics Provider within the application's class if we want to add some custom

probes on the server-side. This could be interesting if we want to time a particular operation,

monitor a specific value with a gauge or count the number of times a particular element is

called. The instance in question must not be manually initialized, instead, we will use the

"Autowired" annotation so that the Spring Boot Application adds the correct instance through

dependency injection. There is an example of this in the appendix, where the server-side

prototype's main class is showcased with this elements and an example of usage in a simple

stream.

In order for the component to be initialized and to be able to use it, however, we must add three

additional annotations to the class. The first one is a "component scan" annotation with the full

name of the package containing the Metrics Provider server-side, which will tell the Spring

Framework where the component can be found for it to automatically start it and inject the

dependencies it requires. Currently, this is:

de.iip_ecosphere.platform.services.environment.metricsprovider.serverside

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

62 Version 1.0

We will also have to include the "enable scheduling" annotation for the system metrics that

Micrometer-API does not automatically add to be added, and the "import" annotation with the

Metrics Provider class as an argument to be able to import it into the application if we want to

add custom probes. If no custom probes need to be added, this last annotation can be omitted.

As we mentioned earlier, we can use the application.yml file to add some properties as a

blueprint. We can change the port the actuator uses to expose the REST service by adding the

server.port property and we can change the configurable properties from the Metrics Provider

in the same way by editing the values of metricsprovider.schedulerrate,

metricsprovider.memorybaseunit and metricsprovider.diskbaseunit. All of this can be seen in an

example of the application.yml file, corresponding to the file from the server-side's prototype

used for testing, that can be found in the appendix.

7.2 Integrating the client-side of the component

The client-side of the component, as we previously stated, is the one responsible for allowing

the metrics from the server-side to be collected so the monitoring can take place. This part of

the component, as a result, is the one expected to be running on the resource that is carrying out

the monitoring.

This part requires a few more dependencies for it to work optimally. Apart from importing the

component, the Maven POM file will have to include all the libraries provided by the IIP-

Ecosphere that are required to create an AAS. In particular, we are talking of the "services",

"support AAS" and "support AAS BaSyx" libraries from the IIP-Ecosphere. This, just like with

the Spring libraries in the server-side, is a requirement from the IIP-Ecosphere, so it doesn't

really add anything new to use the core functionality that allows to retrieve the metrics from the

Metrics Provider. We do, however, need to add a few other dependencies if we want to use the

Meter Representations. We will, firs of all, require adding the "Javax JSON API" and the

"Glassfish Javax JSON" libraries to be able to parse the String received through the AAS into an

equivalent JSON Object we can use. Once we have the JSON Object, we will need to also have

the dependency to the "IO Micrometer Core" library so we have access to the interfaces it

provides for the different Meters, which will be what the Meter Representations will be using

after parsing the JSON Object. Just like in the previous subsection, we will include the POM

file used in the client-side's prototype as an example in the appendix.

Unlike the server-side, no additional annotations are required to be added for the client-side.

The AAS is created the same way it had been created up till now. We only need to use the

corresponding methods provided by the Metrics AAS Constructor class to add the metrics to the

submodel and the implementation to the protocol server. The client of the AAS server that

retrieves the metrics will use the corresponding classifier scope methods to parse the JSON

Object into the corresponding Meter Representation. We will include in the appendix an

example of usage for both the AAS Server constructor and the AAS client parsing the retrieved

metrics.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Final remarks

Version 1.0 63

8 Final remarks

In this section we conclude the project's document by adding some final words to answer the

research questions we had introduced at the beginning of the document as well as allowing

ourselves to take a step back and have a look at the project as a whole, trying to gather together

the lessons that we learned during the development of this project.

8.1 Conclusion

This project has managed to create a component based on Spring Cloud Stream and

Micrometer-API capable of monitoring the system resources of an OT resource. This

component can actually be used, due to its implementation decisions, to create AAS in multiple

IT resources to monitor the same OT resource, or multiple AAS in the same IT resource to

monitor multiple OT resources. We decided, in spite of the constraints that some components

had with certain data-types, to make our component as standardized as possible as well as

allowing for as much flexibility as we could possibly add in order to stay in cannon with the rest

of the IIP-Ecosphere project.

We have covered the project requirements we had initially established. We have indeed used

Spring Cloud Stream and Micrometer-API to inject dependencies and manage and create

probes by using a RESTful service. The created component can be added to the IIP-Ecosphere

and, as a matter of fact, has actually been integrated within the project. The created RESTful

service allows us to perform all the CRUD operations, and the requests sent to said service have

successfully been masked by an AAS. The processing time has also proven to be within the

project's guidelines and the project has been sufficiently documented, both in the code and in

this document.

With the knowledge we have gathered from this project, we can also answer the research

questions that guided us during the initial stages of this project.

Does Micrometer-API simplify architecture and/or implementation, and how can it be

integrated with AAS on both IT infrastructure and OT resources?

Micrometer-API does simplify both architecture and implementation. The architecture is barely

modified when using Micrometer-API as it acts as an addition to already existing layers and

elements that the architecture already had, not really requiring to change much at all. It also

simplifies implementation a lot. Many probes or meters are already automatically registered and

administered under the hood by the Meter Registry. It also makes it easy to manage and use

them as they can all be managed by using the Meter Registry instance, so the code required to

add new probes, read already existing ones or modify probes can be done mostly in a single line

for operation.

Regarding the second part of this question, due to the already implemented flexibility of the IIP-

Ecosphere implementation of AAS, it was very easy to establish HTTP and REST as transport

and application protocols to share the information extracted. All we needed is a component that

started a REST server to allow us to access the metrics, and then have an AAS that uses a

RESTful client to retrieve the values. The only requirement is that the AAS and the Metrics

Provider are to not run in the same project scope, due to the incompatibilities between some

server dependencies each of the two parts in the component has, but if in different project

scopes, we can have an AAS running on either the IT infrastructure or the OT resource that

would allow us to operate on the metrics in the exact same way.

Is AAS fast enough for IoT monitoring, taking latency into account?

To answer this question, we refer to the performance test we carried out where we recorded the

time required to retrieve and parse the different meters. This question, although it may sound

quite concrete, it is actually a bit ambiguous, as there is no clear definition as to what is

considered to be "fast enough". As it tends to happen industrial environments, it may be fast

enough for some cases, but not for others, so we need to elaborate the question a bit in order to

provide an answer. We will, because of this, refer to IIP-Ecosphere's requirement R10, that

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

64 Version 1.0

establishes that the soft real-time processing for critical functions cannot surpass 100ms, as this

is the only requirement we can use to establish a line between what we can consider "fast

enough" and not. As the performance tests indicated, the time taken to retrieve and parse the

meters never surpasses 10ms, in its worst case scenario, and with an average of 5.4ms. This

means that the worst case scenario is below a tenth of the limit, and the average is actually

roughly about a twentieth of this limit. With this in mind, we can consider that AAS is fast

enough for IoT monitoring in term with the IIP-Ecosphere's current requirements.

How could custom probes be integrated?

This research question was one of the most interesting in our opinion. Monitoring the system's

resources is always a go to in monitoring, but it is always extremely interesting to be able to

monitor something other than system resources. Being able to add custom probes or meters is,

more than a helpful possibility, a requirement at this point if we want a monitoring component

to be considered good. For this precise reason we decided to add this as an actual goal to be

achieved by the component, and we were able to easily do so with the help of Micrometer-API.

Micrometer-API already includes operations and methods to construct all three types of meters

it recognizes and add them to the Meter Registry. By encapsulating this functionality into the a

single component represented by the Metrics Provider, we can easily add our own custom

probes from the OT resource programmatically using the Metrics Provider class, or from both

the OT resource and IT infrastructure using an AAS. All we need to do is specify the type of

meter we need and give it a name, from there onwards, we just have to update the value.

To provide a more concrete answer to the question and to summarize the above paragraph,

custom probes can be integrated by using the Micrometer-API functionality that the Metrics

Provider component provides. This can either be done programmatically on the server-side

using the Metrics Provider class, or on the client-side using the Metrics AAS Constructor class

methods that were provided for that reason.

8.2 Outlook

One of the reasons why I decided to take this project was because it was a combination of

elements that were familiar, such as the Java language and REST; and other elements and

concepts that were completely new. This gave two elements that I consider vital for a correct

motivation: a solid starting point from where to begin working, and something new and

unknown that can provide some new knowledge. I also find it specially motivating if a software

component or element created can actually be used in a real life scenario. Creating a useful

software component is particularly satisfying. Every last bit of help that this component might

represent for the IIP-Ecosphere project will be considered a win on my book.

Other than seeing the theoretical concept of IoT and monitoring at university lectures, I had

never worked on anything related to either of them. This project, as a result, was a perfect

opportunity to get started and learn a bit from both elements. Before this project, I had no

knowledge what so ever of the existence of AAS. I had some knowledge about the concept of

digital twins, but never in the sense of AAS.

I had never worked with Spring Cloud Stream and Micrometer-API either, so there was a lot to

learn from these two elements. I was thoroughly impressed by the Spring Cloud Stream and the

functionality this framework provides, so it will definitely be an interesting asset to consider in

future work. These two frameworks work very well together from what I gathered in this

project, so monitoring should be relatively easy with this two elements working in unison.

To finish off, we did learn some valuable lessons. The first one is that we should always test

functionality as soon as possible. This was the philosophy used in this project, what helped us to

detect issues early before they were too difficult to handle. We also learned that a bottom-up

approach with an incremental style project works very well when delving into new territory.

The bottom-up approach does give very good insight about how each element works so we can

understand how to combine them correctly, even if there is the downside of having to step back

from time to time to rethink the direction the project has to take. The incremental aspect allows

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Final remarks

Version 1.0 65

us to set goals we know we can reach with our understanding. When we reach them, we can use

the new knowledge we acquired to set a new goal, and so on.

A more particular lesson, this time regarding Micrometer-API, is that the Timers are usually the

most inefficient meters, so gauges and counters should be used instead when possible. We also

learned that gauges calculate the value upon request, which causes some performance issues if

the operation is too complex. We solved that issue in the component by adding simple getters,

but this is a valuable lesson for possible future work with Micrometer-API.

Another interesting detail regarding the Spring Cloud Stream scheduled operations, such as the

one we use to record the system data, due to the "infinite loop" they produce, can be very

resource consuming. Keeping a very low rate of execution could cause the efficiency of the

entire system to be somewhat compromised. When testing this out, if we reduced the delay to

1ms, the time required to obtain the meters almost doubled or even tripled. That is why we kept

2 seconds by default. A triple digit number like 100ms shouldn't be an issue either, but we must

really be careful if we start to go too far below that.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

66 Version 1.0

Appendix

A.1 Example of application.yml file

server:

 port: 8080

test:

 debug: false

metricsprovider:

 schedulerrate: 3000

 memorybaseunit: kilobytes

 diskbaseunit: megabytes

mqtt:

 port: 8883

 actionTimeout: 2000

 mqtt.qos: AT_MOST_ONCE

 host: localhost

 clientId: test

amqp:

 host: localhost

 port: 8883

 user: user

 password: pwd

logging:

 level:

 root: INFO

management:

 health:

 binders:

 enabled: true

 endpoints:

 web:

 exposure:

 include: "metrics"

spring:

 main:

 banner-mode: off

 cloud:

 function:

 definition: create;log

 stream:

 poller:

 fixedDelay: 8

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 67

 maxMessagesPerPoll: 1

 bindings:

 create-out-0:

 destination: ingest

 log-in-0:

 destination: ingest

 defaultBinder: amqpBinder

spring:

 config:

 activate:

 on-profile: source

 cloud:

 function:

 definition: create

spring:

 config:

 activate:

 on-profile: sink

 cloud:

 function:

 definition: log

The above example of an application.yml file has been extracted from the server-side prototype

used for testing. The most relevant information is the one nested under the tag metricsprovider

that sets the values for the configurable properties of the Metrics Provider. The only changes

required to be added to the file are the ones nested under server and metricsprovider. The rest

have nothing to do with the Metrics Provider component.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

68 Version 1.0

A.2 Example of a server-side Spring Cloud Stream Application

[...]

@SpringBootApplication

@ComponentScan("de.iip_ecosphere.platform.services.environment.metricsprovider.server
side")

@EnableScheduling

@Import(MetricsProvider.class)

public class Test {

 [...]

 @Autowired

 private MetricsProvider metrics;

 private boolean first = true;

 /**

 * Creates the data.

 * Additionally, it will produce a number to be added to a custom gauge and time

 * the operation.

 *

 * @return the data generator

 */

 @Bean

 public Supplier<String> create() {

 return () -> {

 return metrics.recordWithTimer(SUPPLIER_TIMER_ID, () -> {

 double num = Math.random();

 metrics.addGaugeValue(SUPPLIER_GAUGE_ID, num);

 metrics.increaseCounter(SUPPLIER_COUNTER_ID);

 metrics.increaseCounterBy(SUPPLIER_COUNTER_ID, num);

 if(first) {

 metrics.addGaugeValue(REST_GAUGE_ID, 0);

 metrics.increaseCounterBy(REST_COUNTER_ID, 0);

 metrics.recordWithTimer(REST_TIMER_ID, 0, TimeUnit.MILLISECONDS);

 first = false;

 }

 return String.valueOf(num);

 });

 };

 }

 /**

 * Consumes the data received.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 69

 *

 * @return the data consumer

 */

 @Bean

 public Consumer<String> log() {

 return data -> {

 metrics.recordWithTimer(CONSUMER_TIMER_ID, () -> {

 double num = Math.random();

 try {

 Thread.sleep((long) num * 500);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 metrics.addGaugeValue(CONSUMER_GAUGE_ID, num);

 metrics.increaseCounter(CONSUMER_COUNTER_ID);

 metrics.increaseCounterBy(CONSUMER_COUNTER_ID, num);

 metrics.addGaugeValue(CONSUMER_RECV_ID, Double.valueOf(data));

 });

 };

 }

 /**

 * Main function.

 *

 * @param args command line arguments

 */

 public static void main(String[] args) {

 // start spring cloud app

 SpringApplication app = new SpringApplication(Test.class);

 app.run(args);

 }

}

Above is a fragment of the prototype used for the server-side. We have excluded the imports

and some constant values used to name the custom metrics as they were irrelevant to showcase

the use of the Metrics Provider.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

70 Version 1.0

A.3 Example of a client-side application constructing an AAS

Server

public class AasServerV2 {

 [...]

 /**

 * Sets up and starts the AAS server.

 * The AAS server and protocol server are set up using the Metrics Constructor

 * to help add the metrics, all of them mapped as properties. This process also

 * adds a few custom metrics. To be tested out.

 * The server side must be running in order for this process to work, otherwise,

 * the AAS will crash when we attempt to use it.

 * The AAS will automatically stop after running for 2 minutes.

 *

 * @param args command line arguments, never used

 * @throws Exception if the test fails

 */

 public static void main(String[] args) throws Exception {

 // Create the addresses and the endpoints

 ServerAddress aasServerAddress = new ServerAddress(Schema.HTTP, REGISTRY_PORT_NO);

 ServerAddress vabServerAddress = new ServerAddress(Schema.HTTP);

 Endpoint aasServerBase = new Endpoint(aasServerAddress, "");

 Endpoint registry = new Endpoint(aasServerAddress,
AasPartRegistry.DEFAULT_REGISTRY_ENDPOINT);

 System.out.println("Endpoints created");

 // Create the builders and put them in a bundle

 AasFactory factory = AasFactory.getInstance();

 AasBuilder aasBuilder = factory.createAasBuilder(AAS_NAME, AAS_URN);

 InvocablesCreator iCreator =
factory.createInvocablesCreator(AasFactory.DEFAULT_PROTOCOL,

 vabServerAddress.getHost(), vabServerAddress.getPort());

 SubmodelBuilder smBuilder = aasBuilder.createSubmodelBuilder(SM_NAME, SM_URN);

 ProtocolServerBuilder pBuilder = AasFactory.getInstance()

 .createProtocolServerBuilder(AasFactory.DEFAULT_PROTOCOL,
vabServerAddress.getPort());

 MetricsExtractorRestClient client = new MetricsExtractorRestClient(SERVICE_HOST,
SERVICE_PORT);

 MetricsAasConstructionBundle bundle = new MetricsAasConstructionBundle(smBuilder,
pBuilder, iCreator, client);

 System.out.println("Bundle created");

 // Create base properties

 smBuilder.createPropertyBuilder(PROP_NAME).setType(Type.STRING)

 .bind(iCreator.createGetter(PROP_NAME), InvocablesCreator.READ_ONLY).build();

 smBuilder.createPropertyBuilder(PROP_VERSION).setType(Type.STRING)

 .bind(iCreator.createGetter(PROP_VERSION),

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 71

InvocablesCreator.READ_ONLY).build();

 smBuilder.createPropertyBuilder(PROP_DESCRIPTION).setType(Type.STRING)

 .bind(iCreator.createGetter(PROP_DESCRIPTION),
InvocablesCreator.READ_ONLY).build();

 pBuilder.defineProperty(PROP_NAME, () -> "My service", null);

 pBuilder.defineProperty(PROP_VERSION, () -> "1.2.3", null);

 pBuilder.defineProperty(PROP_DESCRIPTION, () -> "Prototype 4 AAS", null);

 // We add the metrics and custom metrics to the submodel

 MetricsAasConstructor.addMetricsToBundle(bundle);

 MetricsAasConstructor.addCustomMetric(bundle, SUPPLIER_TIMER_ID, MeterType.TIMER);

 MetricsAasConstructor.addCustomMetric(bundle, SUPPLIER_GAUGE_ID, MeterType.GAUGE);

 MetricsAasConstructor.addCustomMetric(bundle, SUPPLIER_COUNTER_ID, MeterType.COUNTER);

 MetricsAasConstructor.addCustomMetric(bundle, CONSUMER_TIMER_ID, MeterType.TIMER);

 MetricsAasConstructor.addCustomMetric(bundle, CONSUMER_GAUGE_ID, MeterType.GAUGE);

 MetricsAasConstructor.addCustomMetric(bundle, CONSUMER_COUNTER_ID, MeterType.COUNTER);

 MetricsAasConstructor.addCustomMetric(bundle, CONSUMER_RECV_ID, MeterType.GAUGE);

 MetricsAasConstructor.addCustomMetric(bundle, REST_TIMER_ID, MeterType.TIMER);

 MetricsAasConstructor.addCustomMetric(bundle, REST_GAUGE_ID, MeterType.GAUGE);

 MetricsAasConstructor.addCustomMetric(bundle, REST_COUNTER_ID, MeterType.COUNTER);

 [...]

 System.out.println("Metrics added");

 // Now that all has been added, we build the submodel, the aas and deploy

 smBuilder.build();

 Aas aas = aasBuilder.build();

 Server aasServer = pBuilder.build();

 aasServer.start();

 System.out.println("AAS server started");

 Server httpServer =
factory.createDeploymentRecipe(aasServerBase).addInMemoryRegistry(registry.getEndpoint())

 .deploy(aas).createServer();

 httpServer.start();

 System.out.println("HTTP server started");

 System.out.println(

 "Registry can be found on address: " + aasServerAddress.toServerUri() +
registry.getEndpoint());

 [...]

 }

}

Imports, constants and some checks done to improve testing coverage have been removed as

they were irrelevant to the construction of the AAS to monitor the Metrics Provider.

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

72 Version 1.0

A.4 Example of a client-side application that uses an existing AAS

to extract and operate with metrics

public class AasJerseyClientV2 {

[...]

 public static void main(String[] args) throws Exception {

 // Get endpoint reference

 Endpoint registry = new Endpoint(new ServerAddress(Schema.HTTP,
AasServerV2.REGISTRY_PORT_NO),

 AasPartRegistry.DEFAULT_REGISTRY_ENDPOINT);

 // Retrieve AAS and Submodel

 AasFactory factory = AasFactory.getInstance();

 Aas aas = factory.obtainRegistry(registry).retrieveAas(AasServerV2.AAS_URN);

 Submodel sm = aas.getSubmodel(AasServerV2.SM_NAME);

 // TESTING THE GET FUNCTIONS

 System.out.println("Connection established successfully, retrieving data...");

 System.out.println();

 // Base Properties

 System.out.println("Base properties:");

 System.out.println(sm.getProperty(AasServerV2.PROP_NAME).getValue());

 System.out.println(sm.getProperty(AasServerV2.PROP_VERSION).getValue());

 System.out.println(sm.getProperty(AasServerV2.PROP_DESCRIPTION).getValue());

 System.out.println();

 // Lists

 JsonArray gaugesList = retrieveArray(sm.getProperty(GAUGE_LIST).getValue());

 JsonArray counterList = retrieveArray(sm.getProperty(COUNTER_LIST).getValue());

 JsonArray timerList = retrieveArray(sm.getProperty(TIMER_LIST).getValue());

 JsonArray taggedList = retrieveArray(sm.getProperty(TAGGED_METER_LIST).getValue());

 JsonArray simpleList = retrieveArray(sm.getProperty(SIMPLE_METER_LIST).getValue());

 System.out.println("Meter lists:");

 System.out.println("\tGauges list:");

 for (int i = 0; i < gaugesList.size(); i++) {

 System.out.println("\t\t" + gaugesList.getString(i));

 }

 [...]

 System.out.println();

 // Prepare auxiliary variables

 ArrayList<JsonObject> objects;

 ArrayList<JsonArray> arrays;

 JsonObject meter;

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 73

 String[] tags;

 // Counters

 ArrayList<Counter> counters = new ArrayList<Counter>();

 objects = new ArrayList<JsonObject>();

 arrays = new ArrayList<JsonArray>();

 objects.add(retrieveObject(sm.getProperty(AasServerV2.SUPPLIER_COUNTER_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(AasServerV2.CONSUMER_COUNTER_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_GC_MEMORY_ALLOCATED).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_GC_MEMORY_PROMOTED).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_CLASSES_UNLOADED).getValue()));

 arrays.add(retrieveArray(sm.getProperty(LOGBACK_EVENTS).getValue()));

 for (JsonObject jo : objects) {

 counters.add(CounterRepresentation.parseCounter(jo));

 }

 for (JsonArray ja : arrays) {

 for (int i = 0; i < ja.size(); i++) {

 tags = retrieveTags(ja.getJsonObject(i).getJsonArray(TAGS_ATTR));

 meter = ja.getJsonObject(i).getJsonObject(METER_ATTR);

 counters.add(CounterRepresentation.parseCounter(meter, tags));

 }

 }

 System.out.println("Counters:");

 for (Counter c : counters) {

 System.out.println(c.getId() + " >>> " + c.count());

 }

 System.out.println();

 // Gauges

 ArrayList<Gauge> gauges = new ArrayList<Gauge>();

 objects = new ArrayList<JsonObject>();

 arrays = new ArrayList<JsonArray>();

 objects.add(retrieveObject(sm.getProperty(AasServerV2.SUPPLIER_GAUGE_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(AasServerV2.CONSUMER_GAUGE_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(AasServerV2.CONSUMER_RECV_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_GC_LIVE_DATA_SIZE).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_GC_MAX_DATA_SIZE).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_THREADS_DAEMON).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_THREADS_LIVE).getValue()));

 objects.add(retrieveObject(sm.getProperty(JVM_THREADS_PEAK).getValue()));

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

74 Version 1.0

 [...]

 arrays.add(retrieveArray(sm.getProperty(JVM_MEMORY_MAX).getValue()));

 arrays.add(retrieveArray(sm.getProperty(JVM_MEMORY_USED).getValue()));

 arrays.add(retrieveArray(sm.getProperty(JVM_BUFFER_MEMORY_USED).getValue()));

 arrays.add(retrieveArray(sm.getProperty(JVM_BUFFER_TOTAL_CAPACITY).getValue()));

 arrays.add(retrieveArray(sm.getProperty(JVM_BUFFER_COUNT).getValue()));

 for (JsonObject jo : objects) {

 gauges.add(GaugeRepresentation.parseGauge(jo));

 }

 for (JsonArray ja : arrays) {

 for (int i = 0; i < ja.size(); i++) {

 tags = retrieveTags(ja.getJsonObject(i).getJsonArray(TAGS_ATTR));

 meter = ja.getJsonObject(i).getJsonObject(METER_ATTR);

 gauges.add(GaugeRepresentation.parseGauge(meter, tags));

 }

 }

 System.out.println("Gauges:");

 for (Gauge g : gauges) {

 System.out.println(g.getId() + " >>> " + g.value());

 }

 System.out.println();

 // Timers

 ArrayList<Timer> timers = new ArrayList<Timer>();

 objects = new ArrayList<JsonObject>();

 arrays = new ArrayList<JsonArray>();

 objects.add(retrieveObject(sm.getProperty(AasServerV2.SUPPLIER_TIMER_ID).getValue()));

 objects.add(retrieveObject(sm.getProperty(AasServerV2.CONSUMER_TIMER_ID).getValue()));

 arrays.add(retrieveArray(sm.getProperty(JVM_GC_PAUSE).getValue()));

 for (JsonObject jo : objects) {

 timers.add(TimerRepresentation.parseTimer(jo));

 }

 for (JsonArray ja : arrays) {

 for (int i = 0; i < ja.size(); i++) {

 tags = retrieveTags(ja.getJsonObject(i).getJsonArray(TAGS_ATTR));

 meter = ja.getJsonObject(i).getJsonObject(METER_ATTR);

 timers.add(TimerRepresentation.parseTimer(meter, tags));

 }

 }

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 75

 System.out.println("Timers:");

 for (Timer t : timers) {

 System.out.println(t.getId() + " >>> CNT > " + t.count() + " || MAX > " +
t.max(t.baseTimeUnit())

 + " || TOT > " + t.totalTime(t.baseTimeUnit()));

 }

 System.out.println();

 // TESTING THE REST FUNCTIONALITY

 // Retrieving the sample objects

 JsonObject gaugeObj =
retrieveObject(sm.getProperty(AasServerV2.REST_GAUGE_ID).getValue());

 JsonObject counterObj =
retrieveObject(sm.getProperty(AasServerV2.REST_COUNTER_ID).getValue());

 JsonObject timerObj =
retrieveObject(sm.getProperty(AasServerV2.REST_TIMER_ID).getValue());

 Gauge gauge = GaugeRepresentation.parseGauge(gaugeObj);

 Counter counter = CounterRepresentation.parseCounter(counterObj);

 Timer timer = TimerRepresentation.parseTimer(timerObj);

 // Printing the sample objects initial values

 System.out.println("Initial state of REST sample objects:");

 printRestSampleObjects(gauge, counter, timer);

 // Changing the values

 ((GaugeRepresentation) gauge).setValue(12.32);

 counter.increment(12.34);

 timer.record(1, TimeUnit.SECONDS);

 timer.record(3, TimeUnit.SECONDS);

 timer.record(2, TimeUnit.SECONDS);

 // Retrieving the updaters

 String gUpdater = ((GaugeRepresentation) gauge).getUpdater().toString();

 String cUpdater = ((CounterRepresentation) counter).getUpdater().toString();

 String tUpdater = ((TimerRepresentation) timer).getUpdater().toString();

 [...]

 // Requesting the update

 sm.getOperation(UPDATE + AasServerV2.REST_GAUGE_ID).invoke(gUpdater);

 sm.getOperation(UPDATE + AasServerV2.REST_COUNTER_ID).invoke(cUpdater);

 sm.getOperation(UPDATE + AasServerV2.REST_TIMER_ID).invoke(tUpdater);

 [...]

 // Requesting the deletion

 sm.getOperation(DELETE + AasServerV2.REST_GAUGE_ID).invoke();

 sm.getOperation(DELETE + AasServerV2.REST_COUNTER_ID).invoke();

 sm.getOperation(DELETE + AasServerV2.REST_TIMER_ID).invoke();

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

76 Version 1.0

 [...]

 // Testing the configuration options

 [...]

 // Preparing the update info

 JsonObjectBuilder memoryJob = Json.createObjectBuilder().add("unit", "bytes");

 JsonObjectBuilder diskJob = Json.createObjectBuilder().add("unit", "kilobytes");

 // Requesting theupdate

 sm.getOperation(SET_MEMORY_BASE_UNIT).invoke(memoryJob.build().toString());

 sm.getOperation(SET_DISK_BASE_UNIT).invoke(diskJob.build().toString());

 [...]

 }

This class is very long because it corresponds to the client-side testing prototype, who was

responsible of testing most of the functionality that the unit tests could not cover. To avoid

adding excessive information, lots of the test cases that were irrelevant for what is intended to

be shown here, as well as lines of code that repeated already showed operations have been

removed to keep the file as clear as possible.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 77

A.5 Examples of JSON objects representing meters and Meter

updaters

A.5.1 JSON Object Representing a Timer

{

 "name": "custom.timer",

 "description": "A sample custom timer",

 "baseUnit": "seconds",

 "measurements": [

 {

 "statistic": "COUNT",

 "value": 3

 },

 {

 "statistic": "TOTAL_TIME",

 "value": 6.0

 },

 {

 "statistic": "MAX",

 "value": 3.0

 }

],

 "availableTags": [

]

}

A.5.2 JSON Object Representing a Gauge

{

 "name": "custom.gauge",

 "description": "A sample custom gauge",

 "baseUnit": "bytes",

 "measurements": [

 {

 "statistic": "VALUE",

 "value": 0.6245328097098749

 }

],

 "availableTags": [

]

}

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

78 Version 1.0

A.5.3 JSON Object Representing a counter

{

 "name": "custom.counter",

 "description": "A sample custom counter",

 "baseUnit": "threads",

 "measurements": [

 {

 "statistic": "COUNT",

 "value": 139.64683506423114

 }

],

 "availableTags": [

]

}

A.5.4 JSON Object Representing a Timer Updater

{

 "name": "custom.timer",

 "recordings": [

 1000000000,

 3000000000,

 2000000000

]

}

A.5.5 JSON Object Representing a Counter Updater

{

 "name": "custom.counter",

 "increment": 5.1

}

A.5.6 JSON Object Representing a Gauge Updater

{

 "name": "custom.gauge",

 "value": 3.2

}

A.5.7 JSON Object used to update the system's disk or memory base unit

{

 "unit":"kilobytes"

}

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Appendix

Version 1.0 79

A.5.8 JSON Object obtained when retrieving the jvmbuffermemory property of the

AAS

[

 {

 "tags": [

 "id:direct"

],

 "meter": {

 "name": "jvm.buffer.memory.used",

 "description": "An estimate of the memory that the Java virtual machine is using
for this buffer pool",

 "baseUnit": "bytes",

 "measurements": [

 {

 "statistic": "VALUE",

 "value": 16338976

 }

],

 "availableTags": [

]

 }

 },

 {

 "tags": [

 "id:mapped"

],

 "meter": {

 "name": "jvm.buffer.memory.used",

 "description": "An estimate of the memory that the Java virtual machine is using
for this buffer pool",

 "baseUnit": "bytes",

 "measurements": [

 {

 "statistic": "VALUE",

 "value": 0.0

 }

],

 "availableTags": [

]

 }

 }

]

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

80 Version 1.0

Glossary

Resource: umbrella term used to refer to both services and devices that compose or are part of

the system.

Industry 4.0: term used to refer to the ongoing fourth industrial revolution. The main

characteristic of this industrial revolution is the automation of industrial traditional industrial

processes and practices[WP21].

The project/This project: term used to refer to the project that this document refers to.

Information technology: the science and activities that involve the use of computers and other

electronic devices to store, send and manage information[CUP21].

Ubiquitous information system: a system that falls under the category of information system

that is "seemingly everywhere". The idea behind ubiquitous information systems is the

existence of electronic devices and systems around us to aid us in our day-to-day life while at

the same time going unnoticed.

Edge device: a device that is located at the end of a network and that provides an entry point for

information into said network[WP21].

Abstraction: a generic representation of a particular subject that can represent the subject

without being based on a real situation[CUP21].

The cloud: a computer network that can be accessed via internet that allows the storage of data

and programs as well as allowing the execution of certain applications.[WP21]

Cluster: group of computers connected together through a network that work together towards

achieving the same goal[WP21].

System resources: term used to refer to the "tangible" resources that a computer system has.

Some examples of this resources are the physical memory, the disk capacity or the CPU usage.

Prototype: an initial example of a product that can be shown and can later on be worked on to

develop a more complete form of the product[CUP21].

Library: collection of non-volatile software resources that can be used by computer programs

for software development[WP21].

Digital Twin: virtual representation that serves as a real-time digital counterpart of a physical

object or process or, in this project's case, resource[WP21].

Stakeholder: a person or group of people that is involved with an organization, society, project,

etc. and, therefore, has responsibilities and interests in it[CUP21].

Off-the-shelf: product that is available immediately and does not require to be specially made

to fit a particular propose[CUP21].

Framework: a supporting structure around which something can be built[CUP21]. In the world

of software engineering, this refers to a type of software that provides generic functionality that

can be selectively changed by writing additional code[WP21].

Overhead: regular and necessary costs involved in operating a business or, in our case, a

process[CUP21].

Java Script Object Notation (JSON): open standard file and data interchange format that uses

human-readable text to store and transmit data objects consisting of attribute-value pairs and

arrays[WP21].

Expensive Markup Language (XML): system of annotating a document in a way that is

clearly distinguishable from the content that defines a set of rules for encoding documents in a

format that is both human-readable and machine-readable[WP21][MRC06].

Host: device or resource that contains a running process or service.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Glossary

Version 1.0 81

Port: a communication endpoint which consists of a logical construct that identifies a specific

process or a type of network service, most commonly used in network protocols[WP21].

Redundancy: situation in which something is unnecessary because it is more than is

needed[CUP21].

Element: term used in this document to refer to a small software component, usually part of a

bigger component, and used to mark a difference between the smaller and the bigger

component.

Java Class: in Java, a class is an individual component of code containing the properties and

operations that a logical object created as an instance of that class contains. A class defines the

attributes and behavior its instances will have[O21].

Java Object: particular instance of a Java Class. An object has the functionality defined in a

class, but has an independent memory position as well as a particular state that will make it

different to other objects from the same class. Said state is determined by the value of its

attributes.

Attribute: a property corresponding to an object. Properties have a significant name to identify

them as well as a value.

Package: in Java, a package is used as a namespace, a way to organize different classes in a

way that is easy to determine the role played by a class as well as in what area it operates.

Packages in Java also have an additional mechanism that modifies the visibility of certain

elements within a class, such as its properties and operations in a way that some may only be

visible for other classes within the package and others might be visible independent to the

package[O21].

Enumeration: a data type consisting of a set of named values that behave as constant values in

a language[WP21][O21].

Repository: in simple terms, it is described as a place where things are stored[CUP21]. In the

world of software, a repository is a storage space for software projects used to create backups to

an ongoing project or to store a finished software product that can be downloaded from

there[WP21]. Many repositories also include a version control system to track progress and

changes.

Server-side: this component is supposed to be run by two different and independent resources,

one being monitored and one carrying out the monitoring. The server-side refers to the resource

we are intending to monitor using the Metrics provider component.

Client-side: this component is supposed to be run by two different and independent resources,

one being monitored and one carrying out the monitoring. The client-side refers to the resource

carrying out the monitoring, that uses an AAS to represent the resource being monitored and, as

a result, uses the corresponding part of the Metrics Provider component to do so.

Invocables creator: interface provided by the IIP-Ecosphere component used to

programmatically add operations into an AAS during the program's runtime.

Serialization: process of turning a software element such as an object into a String of bytes,

often in order to be sent through a network or to be stored in a database. This is often a

requirement for database entities and objects intended to be sent via networks such as Java

Beans or JSON Objects.

Java Beans: a Java software component that encapsulates multiple classes into a single entity

that aims to create reusable software components for Java. For this reason, Java Beans have a

zero-argument constructor, are serializable and have getters and setters for each of the different

attributes it has[WP21].

Standard output: the standard output for an application is a directory to witch any output

elements except errors will be sent. This can be set when running the application, like providing

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

82 Version 1.0

a file name, for example. If left untouched, the standard output will be the system's console

terminal.

Super-type: in programming, there can be a hierarchical relationship established between

different classes, where one class "inherits" some or all properties and operations from another

class. This other class is what we call a super-class or super-type, if we decide to consider

classes as ADTs (Abstract Data-Types). If we were to represent organic life as classes, an

"animal" would be a super-type, as it refers to multiple different sub-types such as "humans" or

"cats".

Sub-type: this is the opposite of the super-type. Following the hierarchy we described, the sub-

class or sub-type would be the one inheriting the characteristics and properties from the super-

type, and adding extra properties of its own, making it different to all other subtypes. Following

the same analogy as before, "humans" would be a sub-type of "animals". This is because all

humans are animals, however, a "human" is different from a "cat" which would be another sub-

type from the "animal" super-type.

Port: at a software level, a port is a logical element that identifies a specific process or a type of

network service.[WP21]

Try-catch clause: when executing code, a series of errors may occur. If an error occurs, the

process' execution is halted, as it cannot continue. In order to define what to do in this

situations, we can use a try-catch clause. The try statement allows us to define a block of code

to be tested for errors in runtime. The catch statement allows us to define a block of code to be

executed in case of a specific error occurring or, using Java's jargon, a specific exception is

thrown. Try and catch statements have to work in pairs, thus defining the concept of try-catch

clause.[RD21]

JAR file or jar file: JAR stands for Java Archive. A JAR file represents a format based on the

popular ZIP file format used to aggregate multiple files unto a single one. A JAR file is

commonly used to allocate all the different components of a Java Application in a single file

that can be retrieved in a single HTTP transaction.[O04]

Method: in Java, a Method is an umbrella term used to refer to operations that an object might

be able to execute. A method can be either a function, which returns some sort of result when it

has finished its execution; or a procedure, which alters the state of the system in some way, but

doesn't return a concrete result. Procedures in Java are marked as void, and functions will have a

return type such as integer, String, etc.

Method scope: the method scope refers to the visibility of a particular method to certain

software elements. In the sense used in this document, a method can have two different types of

scope: a classifier scope or an instance scope. A classifier scope method is a stateless method

visible to external classes. An instance scope method can only be executed by a specific

instance belonging to that class and will either return a result or modify a value related to the

state of that particular instance.

Version vom 24. Juni 2021 (Vor Abgabe entfernen) Bibliography

Version 1.0 83

Bibliography

[IIPE19] IIP-Ecosphere. (2019). IIP-Ecosphere. 18.06.2021. https://www.iip-

ecosphere.eu/

[PI418] Plattform Industrie 4.0. (2018). Details of the Asset Administration Shell.

18.06.2021. https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/vws-in-detail-

presentation.pdf?__blob=publicationFile&v=12

[WP21] Wikipedia. (2021). Wikipedia: the Free Enciclopedia. 18.06.2021.

https://en.wikipedia.org/

[CUP21] Cambridge University Press. (2021). Cambridge Dictionary. 18.06.2021.

https://dictionary.cambridge.org/

[EF21] Eclipse Foundation. (2021). BaSyx. 18.06.2021 https://www.eclipse.org/basyx

[IH21] IIP-Ecosphere, H. Eichelberger. (2021). IIP-Ecosphere Platform Handbook.

0.20-SNAPSHOT.

[VMM21] VM Malware. (2021). Spring Cloud Stream. 18.06.2021

https://spring.io/projects/spring-cloud-stream

[PS21] Pivotal Software. (2021). Micrometer Application Monitoring. Vendor-neutral

application metrics Facade. 18.06.2021 https://micrometer.io/

[BFF96] Berners-Lee, T., Fielding, R., & Frystyk, H. (1996). RFC1945: Hypertext

Transfer Protocol--HTTP/1.0.

[ASF02] Apache Software Foundation. (2002). Apache Maven project. 18.06.2021

https://maven.apache.org

[O21] Oracle. (2021). Java Platform, Standard Edition 8 API Specification.

18.06.2021. https://docs.oracle.com/javase/8/docs/api/

[MH20] M. Hoffmann. (2020). Monitoring Spring Boot Application With Micrometer,

Prometheus And Grafana Using Custom metrics. 18.06.2021.

https://www.mokkapps.de/blog/monitoring-spring-boot-application-with-

micrometer-prometheus-and-grafana-using-custom-metrics/

[GL21] Grafana Labs. (2021). Grafana. 18.06.2021. https://grafana.com/

[SE21] Stack Echange Inc. (2021) Stack overflow. 18.06.2021.

https://stackoverflow.com/

[O20] Oracle. (2020). Interface OperatingSystemMXBean. 18.06.2021.

https://docs.oracle.com/javase/7/docs/api/java/lang/management/OperatingSyst

emMXBean.html

[EF18] Eclipse Foundation. (2018). Eclipse Jersey. 18.06.2021. https://eclipse-

ee4j.github.io/jersey/

[ASF21] Apache Software Foundation. (2021). Apache Tomcat. 18.06.2021.

https://tomcat.apache.org/

[MO20] MQTT Organization. (2020). MQTT: The standard for IoT Messaging.

18.06.2021. https://mqtt.org/

[O14] OASIS. (2014). AMQP: Advanced Message Queuing Protocol. 18.06.2021.

https://www.amqp.org/

[RD21] Refsnes Data. (2021). W3Schools. 18.06.2021. https://www.w3schools.com/

[O04] Oracle. (2004). JAR File Specification. 18.06.2021.

https://docs.oracle.com/javase/1.5.0/docs/guide/jar/jar.html

Monitoring on devices in IIP-Ecosphere Version vom 24. Juni 2021 (Vor Abgabe entfernen)

84 Version 1.0

[G21] Gradle Inc. (2021). Gradle Build Tool. 18.06.2021. https://gradle.org/

[WCY+18] T. Wicksell, T. Cellucci, H. Yuan, A. Bross, N. Yap, D. Liu. (2018). Netflix

OOS and Spring Boot - Coming Full Circle. 18.06.2021.

https://netflixtechblog.com/netflix-oss-and-spring-boot-coming-full-circle-

4855947713a0

[BD18] J. Bursik, P. Dintakurthi. (2018). Spring-Boot-Service-to-service

Communication. 18.06.2021. https://tech.target.com/2018/12/18/spring-

feign.html

[MRC06] McDonald, D., Rucker, T., & Coley, K. (2006). XML (Extensive Markup

Language).

