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Disclaimer 

This document contains material, which is under copyright of individual or several QualiMaster 

consortium parties, and no copying or distributing, in any form or by any means, is allowed without 

the prior written agreement of the owner of the property rights.  

The commercial use of any information contained in this document may require a license from the 

proprietor of that information.  

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster 

consortium warrant that the information contained in this document is suitable for use, nor that the 

use of the information is free from risk, and accepts no liability for loss or damage suffered by any 

person using this information. This document reflects only the authors’ view.  

The European Community is not liable for any use that may be made of the information contained 

herein.  
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Executive summary 

The D5.3 deliverable provides a description of the first version of the integrated QualiMaster 

infrastructure. This version of the QualiMaster infrastructure incorporates components from all 

other technical work-packages, i.e., WP2, WP3, and WP4. The deliverable provides an overview of 

these components. In addition, the deliverable discusses the validation methodologies and reports 

the results of our preliminary performance evaluation over individual components as well as over 

the entire infrastructure. 

The information provided in the particular deliverable must be seen as complementary to the 

previous WP5 deliverables. This is particularly the case for the D5.2 deliverable since D5.2 

reported the stabilized architecture of the infrastructure (as a refinement of the one described in 

D5.1) and the detailed description of the layers composing the QualiMaster infrastructure along 

with the communication mechanism for the layers. 

In addition, the D5.3 deliverable is closely related to the following deliverables: D2.2 (in particular 

the detailed descriptions for the processing elements); D3.2 that provides the set of processing 

algorithms translated and implemented in hardware; and D4.2 that reports the reactive and 

proactive adaptation components, the initial tooling support for quality-aware pipeline modeling, 

and the cross-pipeline adaptation. 
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1 Introduction 

The current deliverable presents and discusses the first version of the integrated infrastructure, 

which includes components from all technical work packages, i.e., WP2, WP3, WP4, and WP5. 

Therefore, the current status, as described in this deliverable, forms version 1.0.0 of the 

QualiMaster Infrastructure.  

In particular, the D5.3 deliverable provides a brief overview of the overall architecture, including the 

interactions between the incorporated layers, tools, and external systems, such as a real-time 

stream processing framework or reconfigurable computing hardware. This also includes the status 

of all integrated components and processing elements, as well as an overview of the ones that we 

are currently developing.  

Note that the information provided in the particular deliverable must be seen as complementary to 

the previous WP5 deliverables. This is particularly true for the D5.2 deliverable given that it 

reported the stabilized architecture of the infrastructure and the detailed description of the layers 

composing the QualiMaster infrastructure along with the communication mechanism for the layers. 

Therefore, the current deliverable does not repeat the descriptions provided in D5.2, such as 

processing elements, but rather gives the current status through the most recent extensions and 

modifications over the QualiMaster components. Moreover, the D5.1 deliverable touches additional 

aspects with respect to the QualiMaster infrastructure. For example, D5.1 discusses the benefits 

and functionalities provided the external systems that have been incorporated and used in the 

current version of the infrastructure. 

One important contribution included in the current deliverable are the results of our experimental 

evaluation. This evaluation was based on the initial experimental methodologies described in the 

previous WP5 deliverables, i.e., D5.1 and D5.2, enhanced with related information that is currently 

available in the consortium. The followed methodologies (e.g., validation of quality, performance) 

along with the used data sets create an evaluation template that we plan to repeat in the upcoming 

months in order to monitor the improvement of the QualiMaster infrastructure and to evaluate the 

processing elements, components and pipelines that will be incorporated in the next milestones.  

In the following paragraphs we first list and discuss the relation to other deliverables that have 

been submitted during the last weeks (Section 1.1). We then provide a brief overview of the current 

QualiMaster infrastructure (Section 1.2) followed by the structure of the remaining sections of this 

deliverable (Section 1.3). 

1.1 Relation to other Deliverables 

The deliverable D5.3 is closely related to several other deliverables submitted during the previous 

months. The following paragraphs list these deliverables and denote the information they contain 

that is considered complementary to the one in D5.3. 

Deliverable D1.2 - "Full Use Cases and Requirements" (submitted month 12)  

Reports the requirements and use cases that QualiMaster needs to satisfy (note that this 

deliverable is a continuation of deliverable D1.1 "Initial Use Cases and Requirements"). The 

architecture extensions and modifications reported in D5.3 encode requirements from D1.2. 

Deliverable D2.2 - "Scalable, Quality-aware Data Processing Algorithms V1" (submitted 

month 19)  
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Provides the set of financial and social data stream processing algorithms that are currently 

incorporated in, or developed for, the QualiMaster infrastructure. Since D2.2 gives the formal and 

complete overview of these algorithms, we now only provide a brief overview as well as the current 

status of these algorithms.  

Deliverable D3.2 - "Hardware-based Data Processing Algorithms V1" (submitted month 19)  

Provides the set of processing algorithms translated and implemented in hardware. D5.3    

provides a brief overview and reports the most recent developmental advancements with respect 

to the particular algorithms. 

Deliverable D4.2 - "Quality-aware Processing Pipeline Adaptation V1" (submitted month 19)  

Describes the reactive and proactive adaptation components as well as the initial tooling support 

for quality-aware pipeline modeling and the initial components for cross-pipeline adaptation. In 

particular, D4.2 provides an overview of the current state of the analysis of the enactment patterns 

for adaptive decisions. The current deliverable provides more details by reporting the underlying 

infrastructure concepts needed to realize the adaptation, in particular the QualiMaster pipeline 

lifecycle as well as the actual approaches on state transfer among algorithms, improved algorithm 

switching and changes to the parallelization of Storm components at runtime. Moreover, D5.3 

reports on the extended infrastructure derivation processes, which takes up the improvements to 

the QualiMaster Configuration (Meta) Model described in D4.2. 

Deliverable D5.2 - "Basic QualiMaster Infrastructure" (submitted month 12)  

Gives the stabilized design of the QualiMaster infrastructure. The D5.2 deliverable discussed the 

extensions and enhancements we have incorporated during the last months while also reporting 

the results of our performance experiments and measurements over the individual 

algorithms/components as well as overall pipelines. 

1.2 Overview of Infrastructure 

As explained in the previous paragraphs, the D5.2 deliverable (submitted in month 12) provided a 

detailed description the infrastructure and the D2.2, D3.2 and D4.2 deliverables (submitted in 

month 19) provided the full description of the incorporated and currently developed processing 

elements and components. In order to avoid repetition, we now give a brief overview of the current 

QualiMaster infrastructure. Note that the remaining sections of this deliverable also give brief 

overviews of processing elements and components mainly focusing on the most recent extensions, 

i.e., development that has not been reported in one of the previously submitted deliverables.  

The architecture employed by the QualiMaster infrastructure is illustrated in Figure 1. In short, the 

Configuration Environment, through the Infrastructure Configuration Tool, allows the customization 

and instantiation of the generic Infrastructure for a domain-specific application-oriented 

infrastructure. The Runtime Platform performs that required data stream processing. The 

processing is supported by two repositories: One that stores the actual configuration of the 

infrastructure and the running pipelines in terms of models (the Pipeline Repository); and another 

repository that stores the algorithm implementations as well as adapter or monitoring probe 

implementations. The QualiMaster Applications utilize the results produced by certain pipelines at 

runtime, visualize the result information and, to a limited degree, support the user in 
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communicating intended changes in the processing to the runtime components of the 

infrastructure.  

 

 

Figure 1: A graphical illustration of the architecture of the QualiMaster infrastructure. 

 

The Runtime Platform is supported by the following layers: the Execution Layer that includes the 

runtime systems (e.g., Apache Storm); the Data Management Layer that enables the data 

communication between the infrastructure and the applications; the Monitoring Layer for 

supervising the execution; the Coordination Layer for controlling and changing the execution in the 

execution systems; and the Adaptation Layer, which is responsible for runtime decision-making 

and autonomously optimizing the execution of the pipelines at runtime.  

1.3 Structure of the Deliverable 

The remaining sections of this deliverable are as follows: Section 2 provides an overview of the 

recently included or improved infrastructure concepts. Section 3 discussed changes to the 

infrastructure components, in particular realizing the concepts from Section 2. Then, Section 4 

describes the methodologies and data sets we used for evaluating the QualiMaster infrastructure 

and it provides a report about the evaluation results. Finally, Section 0 presents a small collection 

of pipelines that we plan to include in QualiMaster during the following months.  
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2 Novel and Improved Infrastructure Concepts 

This section discusses novel infrastructure concepts we introduced to improve existing functionality 

or to enable the adaptive execution of QualiMaster pipelines. In Section 2.1, we introduce the 

(extended) lifecycle of a QualiMaster pipeline and the subsequent observation and communication 

actions of the related infrastructure layers summarized in Section 1.2. In Section 2.2, we discuss 

concepts of generically integrating hardware-based algorithms into the software-based execution. 

The following sections detail (improved) designs and concepts for the enactment of adaptive 

decisions in the QualiMaster infrastructure, from rather low-level mechanisms to rather high-level 

mechanisms addressing issues or refining initial designs from D4.2. In Section 2.3, we detail our 

approach on changing the parallelization of a QualiMaster pipeline. Actually, the D4.2 deliverable 

showed the need for such a capability and mentioned an initial implementation, while Section 2.3 

provides more details on the approach. Section 2.4 introduces an improved approach for switching 

among sub-topology algorithms taking into account queued backlogs at slow algorithms. Finally, 

Section 2.5 details the current state of the state transfer among algorithms, including software and 

hardware based ones. 

2.1 Pipeline Lifecycle 

The adaptive execution of a data analysis pipeline is at the heart of the QualiMaster infrastructure. 

In order to perform adaptations, it is essential to know when a pipeline is in a running state, i.e., the 

underlying Storm topology is created, distributed and started. However, adaptation already starts 

during startup of a pipeline, as for each algorithm family used in a pipeline, an initial algorithm must 

be assigned. Thereby, decisions must be made, whether this pipeline shall use hardware-based 

processing (if available) and for which families the algorithms shall run on the reconfigurable 

hardware. Thus, the respective layers of the QualiMaster infrastructure must be informed so that 

the appropriate actions can be taken. 

Basically, the underlying Storm topology generated from the Infrastructure Configuration also has a 

lifecycle, which is, however, not detailed enough to support adaptation. The lifecycle of a Storm 

topology consists of the following:  

● Active: The pipeline has been uploaded and started by user. The pipeline is distributed (or 

may actually be distributed) to the cluster and may be ready to process data or is actually 

processing data. The active state can also be reached by re-activating a pipeline by the 

user through a command. 

● Inactive: The pipeline has been deactivated to (temporarily) stop processing through a user 

command. 

● Killed: The pipeline switched from active state to this state upon an explicit kill command of 

the users. 

● Rebalancing: The pipeline is currently changed by the rebalance operation, which aims at 

modifying the resource allocation to optimize the cluster usage. As discussed in D4.1, this 

operation is rather time consuming, stops the processing and may affect multiple pipelines. 

Actually, the description of the active state of a Storm topology seems to be rather vague, but in 

addition to the documentation of Storm, we describe here our own experience in monitoring this 

state. In order to enable pipeline adaptation at the right points in time, WP5 and WP4 collaborated 
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to design the lifecycle of a QualiMaster pipeline. An illustration of the lifecycle is depicted in Figure 

2.a and the event flow among the infrastructure layers in Figure 2.b. 

 

 

Figure 2: (a) Pipeline Lifecycle with Storm topology states, and (b) the related event flows (forward 

with hollow, backward with filled numbers) in the QualiMaster infrastructure. 

 

The lifecycle consists of the following states and state transitions: 

● Upon the start command provided by the QualiMaster Coordination Layer and issued by 

the user, a pipeline is started. Thereby, the Coordination Layer determines the relevant 

artifacts from the Configuration, loads the pipeline from the Pipeline Elements Repository 

and passes it to Storm for starting, i.e., the generated topology switches to the Storm state 

“active”. The pipeline enters the Starting State. 

● The starting state triggers the Monitoring Layer  via an infrastructure event to initiate the 

observation the starting pipeline. First, as the structure of the underlying Storm topology 

becomes available to the Monitoring Layer (via Thrift). Although the topology is in the active 

state, it may actually not be able to process data as it may neither fully be distributed over 

the cluster nor the pipeline components, i.e., the Spouts and Bolts may be initialized. Thus, 

as soon as the uptime values of all executors and their Storm internal heartbeat have 

become available, the pipeline enters the Created State. 

● In a usual topology, Storm would open the Spouts for data processing as soon as a spout 

is initialized and regularly request new data. In an adaptive pipeline, we first have to assign 

the active algorithms (enactment pattern EP-2 and EP-3 in D4.1), their parameters 
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(enactment pattern EP-1 in D4.1) and to make the decision whether certain algorithms shall 

be executed on reconfigurable hardware. Therefore, the Adaptation Layer of the 

QualiMaster infrastructure receives an infrastructure event  and reacts on the Initialized 

State by performing a startup adaptation. Thereby, it decides on the initial algorithms and 

parameters and enacts the initial settings  through the Coordination Layer . At the end 

of the startup adaptation, the pipeline enters the Initialized State. 

● Now the pipeline is ready for data processing. Thus, upon the Initialized State, the Data 

Management Layer connects the sources and sinks of the pipeline , i.e., the regular 

requests for new data issued by Storm are now answered by the Input Spouts with data 

received from the real sources. After connecting sinks and sources, the pipeline enters the 

Started State. 

● If the pipeline shall be stopped, a respective coordination command is sent by the user to 

the Coordination Layer. The Coordination Layer changes the pipeline state to Stopping 

State. 

● The Stopping State is sent as an infrastructure event through the infrastructure and causes 

the Data Management Layer to disconnect sources and sinks , the Monitoring Layer to 

stop the observation of the pipeline and the Adaptation Layer to prevent further 

adaptation of the pipeline (except for a shutdown adaptation to adjust the resources of 

the other pipelines). Finally, the Coordination Layer frees the reconfigurable hardware, 

terminates the topology  (which leads to the Storm topology state “killed”) and changes 

the pipeline to the Stopped State. 

Currently, we perform the startup adaptation, i.e., the determination of the initial algorithms and 

parameters in a rather late state. An alternative would have been to perform this adaptation before 

the topology starts and to utilize the built in topology initialization of Storm. On the one side, this 

would require a different communication of the Coordination Layer with the pipeline as the signal 

mechanism via the Zookeepers (see, e.g., D4.2 for a more detailed explanation) is not available at 

this point in time. Probably we could utilize the pipeline configuration of Storm passed to the Storm 

components upon their initialization, which, in fact would lead to two different implementations of 

enacting algorithms and parameter changes. On the other side, an earlier adaptation phase would 

allow us to free resources before the startup of a pipeline or even to deny its startup. As this will 

become more relevant in multi-/cross-pipeline scenarios, we consider running an early adaptation 

phase already in the Starting State, but we aim at keeping the initialization of the algorithms and 

parameters during the Created State in order to simplify the implementation of the pipeline 

components. 

2.2 Advanced Hardware Integration   

This section describes the design of an advanced integration of the hardware into the QualiMaster 

infrastructure and the running pipelines. We start off with the recent state based on the discussion 

of the Design in Deliverable D3.2 and the underlying technology, identify drawbacks and discuss 

then the revised advanced integration. 

The initial hardware platform integration into the QualiMaster infrastructure was intended to 

identify the needs, problems and technical opportunities for linking Maxeler DFEs into the 

software-based QualiMaster infrastructure based on Apache Storm. First, Deliverable D3.2 

described the integration for two of the implemented algorithms, i.e. the Mutual Information and 
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Hayashi – Yoshida correlation algorithms, on the Maxeler hardware platform and how this 

subsystem can be part of the final QM system. Figure 3 shows the integration of the Maxeler 

platform, where the Hayashi - Yoshida and Mutual Information modules are mapped, as a 

component of the QualiMaster pipeline. The pipeline can execute the implemented modules by 

using simple "function calls" for one or for both of them at the same time. The pipeline 

infrastructure sends a request message to the Maxeler server to run the corresponding algorithm. 

Then the data are sent from the Pipeline Infrastructure to the Data Transmit Bolt. The Maxeler 

server uses TCP communication scheme (sockets) to get the data. The data are subsequently 

transmitted to the Maxeler server initiating a thread, which makes a function call to the 

corresponding hardware module that processes the input data. The configuration file, for each one 

of the implemented algorithms, is mapped on the DFE modules during the hardware function call. 

The initialization of a DFE for the first time with hardware-based algorithms may take from 100ms – 

1s. After the data are processed, the results are transmitted back through the TCP connection and 

end up at the Data Receive Spout of the corresponding topology. Last, the results are transmitted 

back to the QM infrastructure. 

 

 

Figure 3: The Hayashi Yoshida and the Mutual Information Topologies of the Storm based 

QualiMaster Pipeline. 

 

Maxeler servers can support up to 4 different and concurrent hardware-based function calls. Thus, 

it is essential for the adaptation layer to be able to allocate or release these resources. The DFEs 

can be released by calling the max_unload() function. Then, the thread that programmed and 

passed data to the unloaded DFE is killed, which mean that the  remaining resources are then 

given to the QualiMaster Pipeline.  

Above, we described the way that two independent algorithms, i.e., Hayashi-Yoshida correlation 

and Mutual Information, were integrated into the Maxeler Server. Also, we described our first 

attempts to integrate the Maxeler Server with the mapped hardware modules, as part of the QM 
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pipeline infrastructure. As Figure 3 shows, we needed to build a communication protocol between 

the parts of the QM pipeline and the Maxeler Server.  

 

In our first attempts, we built "communication" protocol messages, which were transmitted as TCP 

packets. According to this protocol the communication messages had the structure that is 

presented in Figure 4. Each packet had a different structure and it had an information, i.e., 

message type, which distinguished the type of the messages. There were three important 

drawbacks to this our first custom communication solution:  

A. It was not generic, thus a change into the transferred information would lead to great 

changes in the custom code that implements the packet parsing in both Storm and 

hardware sides,  

B. It was not easily extensible, as we need a solution that will be easily extensible in case of 

new implemented algorithms and data and  

C. As the Storm uses Java libraries and Maxeler server uses C/C++ libraries, we need a 

solution that can couple this "gap" and work in both sides.  

As a consequence, we were not able to fully derive the related software artifacts during the 

QualiMaster platform instantiation, i.e., manual programming was needed for integrating each 

individual hardware-based algorithm. This affects the quality of the pipelines and increases the 

effort for using the reconfigurable hardware. 

 

Figure 4: Initial Communication protocol messages. 

 

In order to solve the above custom inconvenience, we need a consistent data serialization solution 

between software and hardware, in particular, to provide the possibility to integrate the hardware-

based algorithm into the QualiMaster instantiation. Therefore, we consider the Google Protocol 

Buffers (protobuf)1 asserialization solution, which is a flexible, language- and platform-neutral, 

extensible and automated mechanism for serializing structured data. The advantages of the 

Google Protocol Buffer solution are mainly that:  

A. It offers efficient and flexible ways for encoding (serializing) and decoding (de-serializing) 

structured data.  

                                                

1https://developers.google.com/protocol-buffers/docs/reference/overview 
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B. It offers an extensible format for message building. Messages are specified in terms of a 

domain-specific language in so called proto files and a tool shipped with the protobuf 

framework generates automatically the needed code for parsing and exchanging the 

messages. 

C. Easy language and platform interoperability, as Google’s Protocol Buffer tool generates all 

the needed functions that can be used and “connect” platforms with different architectures, 

like systems that execute Java code with systems that execute C++ code.  

According to the newly proposed solution, the design of the proto messages indicating the 

structured data to be transmitted becomes essential to the communication protocol. We distinguish 

between the  

 Hardware communication protocol, which indicates what kind of messages follow, such 

as data messages, parameter change messages or disconnect requests terminating the 

communication. This follows basically the original communication protocol described above 

using protobuf messages rather than handcrafted messages. 

 The messages to encode the data consumed and produced by algorithm families in the 

QualiMaster pipelines. The structure of these messages is defined in the Pipeline 

Configuration through the used algorithm families. Thus, the proto files for the pipelines can 

be generated as part of the infrastructure derivation. 

 The messages corresponding to algorithm-specific types, i.e., types defined by algorithm 

providers. The related proto files are defined by the algorithm providers, i.e., the algorithm 

packages contain the related code generated by protobuf. As described in D4.2, algorithm-

specific types are subject to a specific part of the Configuration in order to be usable by the 

data consumed and produced by the algorithm families. 

 Messages for common data structures defined by the QualiMaster infrastructure. Akin to 

algorithm-specific types, these data structures are stated in the Configuration, but actually 

they are predefined by the QualiMaster consortium. 

In order to separate the concerns of algorithms and pipelines (and their different role 

responsibilities), we decided to handle the serialization of both types separately, namely pipeline 

level data and algorithm-specific data, effectively to send first the pipeline-level data and then the 

algorithm-level data. Alternatively, we could have merged algorithm-specific and pipeline-level data 

into one message, but this would mix the concerns of the roles of Algorithm Providers and 

Infrastructure Users, such as Pipeline Designers and affect development efficiency. 

DataItem { 

BasicType type1, 

BasicType type2, 

… 

    AlgorithmSpecificType algType1, 

    ... 

} 

 

message DataItem{ 

BasicType type1, 

BasicType type2, 

… 

} 

message AlgorithmSpecificType{ 

    #fields in the algorithm-specific type 

} 

Figure 5.a: The data item configuration in 

IVML notation composed of both basic 

Figure 6.b: The message specification(s) in 

protobuf notation illustrated in terms of the 
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type fields and algorithm-specific fields.  pipeline-level message (upper part) and the 

algorithm-specific message (lower part). 

 

Figure 7.a shows the actual data item configuration in IVML notation composed of both basic data 

type fields and algorithm-specific fields, while Figure 8.b illustrates the message specification 

derived from the original data item configuration in terms of two different types of messages in 

protobuf notation, i.e., the pipeline-level message containing only the basic type fields and the 

algorithm-specific message holding the inner fields of the algorithm-specific type. 

The basic idea of having two above types of messages is that, we split the serialization task of the 

data item into the pipeline- and algorithm-level as also consistent with the data item configuration 

style (see D4.1). To ease serialization and de-serialization, we decided to follow the known style of 

wrapping the respective code into type-specific classes, so called Serializers. To obtain the 

Serializers for a pipeline, we follow three different strategies: 

 Generated serializers: As pipeline-level messages correspond to the input/output item 

Configuration (see D4.1), we can generate the related Serializers along with the data 

classes themselves as part of the infrastructure instantiation. 

 Provided Serializers enable the serialization and de-serialization of algorithm-specific 

types. Akin to the related proto files, these classes are developed by the Algorithm 

Providers. 

 Infrastructure serializers realize the common data structures and are implemented by the 

QualiMaster consortium. 

It is noteworthy that the Serializer implementation is always dependent on the respective proto file 

defining the individual messages as well as the related code generated by the protobuf framework. 

Ultimately, those individual Serializers (more precisely the mapping between data type and its 

serializer) are stored in a Serializer Registry. Based on the actual type to be serialized, the 

respective Serializer can be obtained on-the-fly, so that ultimately serializing a specific data 

instance is just one (method) call. Once a data item instance is requested to be serialized / de-

serialized, we obtain its Serializer, may lead to the call of further Serializers down to the algorithm-

specific or common data types. 

Figure 9 depicts the architectural overview of the static structure of the serialization components. 

The ISerializerinterface contains both, a serialize and a de-serialize method for a specific type 

of data item being. A SerializerRegistrymaintains the mapping between type (name) and the 

related serializer. As an example for a pipeline-level Serializer, the 

PipelineBasicTypeSerializeris derived during Infrastructure Instantiation along with the 

respective proto file and the classes generated by the protobuf framework. In contrast, the 

AlgorithmSpecificTypeSerializeras an algorithm algorithm-specific type is developed by the 

Algorithm Provider based on a proto file for algorithm-specific types. 

Furthermore, during the QualiMaster Platform Instantiation the configuration of the data items 

allows us to collect all needed proto files, i.e., the ones generated by the instantiation process and 

the ones created manually by the Algorithm Developer. Based on this collection of proto files, we 

can derive the related C implementations using the protobuf framework tools and generate on top 

the corresponding C Serializers, which also follow the architecture shown in Figure 9. 
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Various tests were conducted using the proposed communication protocol between the software 

and the hardware part of the QualiMaster Pipeline. The results showed that using Google Protocol 

Buffers, we managed to connect and exchange data/results efficiently between the Storm-based 

part of the QualiMaster pipeline and the reconfigurable part. In our future plans, we are going to 

evaluate the actual performance of the initial and the generic approach and focus on speeding up 

the communication between software and hardware. Also, we are going to explore a form of 

“batch” communication, i.e., bundling a set of messages together. In this scenario, we are going to 

explore batching of messages (inspired by the Storm implementation).  

 

 

Figure 9: Overview of the static structure of serialization components. 

 

2.3 Parallelizing Storm Components at Runtime 

The ability of changing the parallelism of Storm components at runtime is vital for the adaptation, in 

particular due to the enactment patterns EP-5 (parallelize processing elements) and EP-6 (migrate 

execution of analysis tasks) described in D4.2. On the one side, this allows us to adjust the 

resource usage of pipeline elements technically rendered as Storm Bolts and Spouts while 

processing data in a pipeline. On the other side, changing the parallelism enables us to give 

individual pipeline elements more or less execution priority, i.e., to speed up slow and overused or 

slow down underused processing elements. 

In this section, we discuss the design of the functionality to change the resource usage of a 

pipeline / Storm topology through changing the parallelization of its individual components. As we 

will discuss at the end of this section, changing the parallelism can serve for more purposes and, 

thus, will increase the opportunities to change the processing of a pipeline at runtime.  

Before we discuss the details about the design, we list the specific requirements enactments in 

QualiMaster pipelines / topologies: 

● R1. The enactment shall be gap-free. As the basic requirement for the enactment patterns 

described in D4.1 and D4.2, we aim at minimizing the impact on the real-time characteristics of 

the processed data streams. 

● R2. No items shall be lost while changing a pipeline. Although this requirement is an 

implication of R1, it is worth mentioning it explicitly. Ultimately, changing the parallelization 

causes that the previous algorithm / Executor stops processing. In the extreme case the 
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previous algorithm is terminated and removed from memory. Therefore, we have to ensure that 

the already queued items are processed, i.e., the previous algorithm runs until completion. 

● R3. Changing a pipeline shall (wherever possible) guarantee that queued items are 

processed in the same sequence as this would have been done by the original pipeline. 

Actually this requirement draws from a discussion with WP2 and is required, in particular, by 

the financial algorithms. In fact, also this requirement is concretization of the gap-free nature 

(R1), however, a not so obvious one. As analyzed in D4.2, due to the implementation of Storm, 

the items queue up at the slowest Bolts, e.g., in a sub-topology leading to a backlog of items. 

Without specific considerations, processing may easily consider data items in the wrong 

sequence. 

Actually, turning sequential processing into parallel processing (or the opposite direction) will 

change the processing sequence anyway, as the individual threads or processes (on different 

machines) will work within their own context influenced by other processes, underlying hardware 

resources, operation system scheduling, specific timing conditions, etc. Thus, the only sequence 

that can be guaranteed is the queuing before a potential distribution to parallel or sequential 

execution. 

In deliverable D4.2 we showed that the build-in rebalance functionality of Storm is not suitable for 

runtime adaptation as it is not gap-free. Actually, the rebalance operation is a cluster-wide 

optimization, which reassigns the processing resources in the cluster and restarts the involved 

Storm topologies, i.e., it affects potentially more than just the pipeline we aim for. We also showed 

that for a simple experimental pipeline of one source, one processing element and one sink the 

rebalance operation needed 8 seconds in which the data processing stopped. According to our 

experience, the startup time of a pipeline depends on the complexity of the underlying topology 

and, thus, for more realistic pipelines, the rebalance operation would interrupt the processing for 

an even longer time. 

In order to mitigate this impact, we considered two design alternatives: 

● An overlay network (e.g., [JGJ+00, WR03] on top of Storm, which hosts the actual 

pipelines, in other words, a virtualization layer for Storm topologies. The basic idea is to lay 

out a fixed maximum topology as underlay network U and to run the actual topologies as an 

overlay network O in a virtualized way on top of U. At a glance, this allows shifting Bolts 

and Spouts of O on top of U as needed and to reroute connections in O dynamically. 

However, there are also some drawbacks, which seriously limit the flexibility. Basically, U 

must allocate the entire cluster, all processors and free processor cores, but, akin to plain 

Storm pipelines, would not be able to free a machine for maintenance (adaptation scenario 

A-5 in D4.2) except for applying the Storm rebalance operation. Due to the strict separation 

of Bolts and Spouts in Storm, U would need to be equipped with a certain (fixed) amount of 

Spouts. Further, efficiently migrating executors would need at least a form of queue 

transfer, which leads either to intermediary Spouts or a modification of the implementation 

of Storm in this regard. Finally, distribution operations of Storm such as shuffle or field 

grouping would need to be rebuilt on U so that they are available for O. 

● A modification of Storm to enable changes of the parallelization at runtime. Although 

equipping Storm with the needed capabilities (if possible at all) might be the most efficient 

approach, it also requires to understand the architecture and implementation of Storm on a 
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rather detailed level and to learn the Clojure2 programming language, which is used to 

realize the core of Storm. However, unless the modification does not become an official 

part of Storm, we must patch newer release versions of Storm accordingly. 

The need to change the parallelism in a stream processing framework is already known. For 

example, Aniello et al. discuss adaptive but static resource assignment for Storm in [ABQ13]. To 

solve this, also Yang and Ma [YM15] consider a modification of Storm, which allows a migration of 

Workers and Executors. However, their version is not available and the authors do not support 

changing the parallelization rather than just migrating Workers and Executors. Furthermore, their 

approach relies on saving and re-sending failed items that are lost due to the migration. As far as 

we can see, this does not take into account for a gap-free reconfiguration into account, in particular 

not that queuing sequence shall be preserved. 

In order to modify Storm, we analyzed the Storm architecture and implementation to figure out 

whether the required modifications are actually possible. Basically, Storm defines the allocation of 

Spouts and Bolts as well as the respective Tasks in terms of an Assignment structure in its 

centralized (replicated) runtime memory, the Zookeeper. Tracing the execution paths within Storm 

which modify, read and react on an Assignment, we identified the related components and 

developed a plan for the modifications. This includes the following: 

● Nimbus, which centrally creates and writes Assignments based on user commands and a 

plug-in resource scheduler. However, the actual schedulers of Storm calculate complete 

assignments upon runtime changes so that we need a specific scheduler implementation 

for our purpose. Further optimizations of the data processing in QualiMaster will probably 

indicate the need for a further refinement of that scheduler, e.g., to perform a dynamic 

isolation of multiple pipelines running at the same time or to keep the Hardware Integration 

Spout within the same process rather than individual processes by accident. 

● Supervisor, which creates and terminates Workers according to the actual Assignments. 

Technically, a Supervisor is a demon JVM, which connects to the Zookeepers and controls 

Worker JVMs. Supervisors analyze the assignments according to a regular poll of the 

Zookeeper data and terminate unreachable Workers. We decided to rely on this 

mechanism to enact new assignments. In order to synchronize the changes among multiple 

supervisors / workers, we extended the Storm Assignment structure with explicit worker 

dependencies. 

● Worker, which creates and terminates Executors running Bolts and Spouts of a certain 

topology. Besides the Executors, a Worker runs a receive thread, which dispatches 

incoming items to the respective Bolts and provides a transfer / output queue. For 

communicating Bolts and Spouts on other Workers, a Worker maintains (local or remote) 

connections in terms of a kind of routing table. In Storm, a Worker refreshes its connections 

according to a regular schedule. We decided to extend this mechanism in order to consider 

the explicit worker dependencies in the Assignments, to analyze new Assignment for 

changes, to create / terminate Executors as well as connections to other Workers on 

demand and to adjust the item routing accordingly. 

● Executor, which processes one or multiple Tasks of the same Bolt or Spout, more 

precisely instance copies of the respective Bolt or Spout. The actual Bolt or Spout as well 

as the desired number of Tasks can be defined as part of a Topology. It is worth mentioning 

                                                

2http://clojure.org 
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that a Task can be executed as part of an Executor, in an Executor on the same Worker as 

the other Tasks or on a “remote” Executor of another Worker. In particular the explicit 

shutdown of a Worker is relevant to our modifications, as it indicates when a transfer of its 

actual input queue to the replacement Executors shall happen (requirement 3) and whether 

the standard suicide termination (terminating also the containing worker at a planned 

topology shutdown) or a graceful termination of the respective Executor shall happen, 

which allows the completion of the actual processing (requirement 2). 

● Queues used in the Executors and the Worker. Basically, the DisruptorQueue of Storm 

already provides a mechanism to handle two different kinds of items, namely the actual 

queue and a cache that is inserted at the actual queue position at a cache flush. This 

mechanism is used in Storm during topology setup time and queue caches are flushed 

automatically when starting an executor. Deferring this flush after the queue transfer, i.e., 

explicitly publishing already enqueued items into the target queues while caching new items 

allows realizing requirement 3. However, flushing the queue of a remote executor as well 

as dynamic item routing require changes to the respective queue transfer functions of 

Worker and Executor. 

 

 

Figure 10: Changing the parallelization of Storm components in terms of the example pipeline a) 

increasing b) and decreasing c) the parallelism of Executors as well as migration of workers d). 

 

Based on the analysis we created an overall design of changing the parallelization of Storm 

components. Thereby, we follow the design decisions and constraints of Storm, i.e., the number of 

executors must be less or equal than the number of tasks. Figure 10 illustrates the design in terms 

of a simple pipeline depicted in Figure 10.a. The numbers represent tasks, i.e., the Source is 

executed by task 1, the family by tasks 2 and 3 and the Sink by task 4. Consequently, in this 

example we can change only the parallelization of the family. We distinguish two basic cases: 

1. Increase the parallelization of an Executor by splitting it into multiple Executors, i.e., 

turning a thread into multiple threads. As illustrated in Figure 10.b, first corresponding new 
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executors are created  based on the new assignment detected by the parent Worker. 

Then (as part of the shutdown process of the existing executor), the already enqueued 

items are transferred to the respective new executors . New items arriving during the 

transfer are cached and enqueued at the correct position when flushing the queues at the 

end of the transfer. Finally, the existing executor terminates gracefully after completing its 

processing . 

2. Decrease the parallelization of an Executor by joining multiple Executors. Basically, this 

works akin to increasing the parallelization of an Executor. Figure 10.c illustrates the steps. 

First, the joined executor is created . Then the input queues of the Executors to be joined 

are transferred to the new Executor . Thereby, the queues are transferred in parallel as 

the original executors are parallelized, i.e., the input queue of the new Executor cannot be 

filled in a deterministic way. Finally, both initial Executors terminate gracefully after 

completing their actual item . 

Actually, case 1 can be extended to enable the migration of Executors among workers. This is 

illustrated in Figure 10.c. The new assignment causes the Supervisor of the target machine to 

create the target Worker , which, in turn, creates the target Executor . Thereby, inter-worker 

connections to the source Worker are created and the item routing table is adjusted . Due to the 

worker dependencies, now the source Worker continues processing the assignment, i.e., it creates 

its inter-worker connections and adjusts its routing table , initiates the queue transfer akin to case 

1  and finally terminates the source Worker gracefully after completing its actual tuple . 

We will provide an analysis of changing the parallelization in Storm in Section 5.4. As a side effect, 

the design of the modifications described above allows in addition to the change of the parallelism 

the following: 

●  Dynamic allocation and unallocation of processing paths, i.e., unneeded resources can be 

freed if possible. As the absence of certain Executors is not an issue to Storm, in particular 

Executors which do not receive data, we can terminate Executors assigned to alternative 

processing paths, e.g., sub-topologies that are currently not used. 

●  Scaling of the resource pool, i.e., new compute nodes can be allocated if they become 

available and existing ones can be freed, in particular to support the maintenance 

adaptation scenario A-5 described in D4.2. 

In case that we relax also the design constraints of Storm, we believe that adding Executors that 

are unknown at startup also with new program code shall be possible. While adding additional 

Tasks for these Executors might be possible, adding additional Tasks for existing Executors could 

be an issue as this requires a change of every Worker and Executor as well as their routing tables, 

because Storm internally considers Executor identifications as intervals of Task numbers. As 

defining a certain Task reserve is anyway considered as a good practice to scale Storm topologies 

in some Internet forums, this should not be a too serious limitation. 

Although our successful modifications to Storm significantly increase the capabilities of Storm 

towards resource adaptation, there are currently some general limitations that we aim to solve in 

the future: 

● As discussed above, the overall reconfiguration time depends on the actual queue lengths 

and the polling frequency of Workers and Executors. For improving the reconfiguration 

behavior, we currently use for both frequencies 1 second (initially 10 seconds are used for 
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the Supervisors) and consider to update Workers and Executors either more frequently or 

based on the Zookeeper signaling and observation mechanism. 

● In addition to Bolts and Spouts, Storm also creates internal Executors, in particular for 

Ackers (item acknowledgement mechanism) and Measurements. Currently, we do not 

consider internal Executors during migration, but we plan to take them into account if the 

last regular topology executor shall be migrated. As both components hold important state 

information, we aim at integrating this work with the realization of the state transfer. 

● Currently, we create always new Executors when increasing or decreasing the parallelism 

(cases 1 and 2 above). Actually, changing the existing executor could speed up the 

reconfiguration time, but requires explicit access to Executor internals from the Worker. If 

the actual reconfiguration behavior becomes critical, we will consider this modification. 

So far, we do not explicitly support combined actions, i.e., increasing / decreasing the parallelism 

together with migration. If this becomes essential for adapting the pipelines, we will take also 

combined actions into account. 

2.4 Switching Sub-topology Algorithms 

Switching among alternative algorithms of an algorithm family as a realization of enactment 

patterns EP-2 (select algorithm from processing family) but also EP-4 (switch between software- 

and hardware-based processing) in D4.1 is one of the key enactments in the QualiMaster project. 

In deliverable D4.2 we analyzed the respective effects with and without processing latencies 

(delays) for two base cases, i.e., switching among simple algorithms and switching among sub-

topologies. In D4.2 we concluded that switching among simple algorithms can actually be done in 

gap-free manner. However, we also concluded that switching among sub-topology-based 

algorithms with a certain delay is currently not gap-free as the delay causes a backlog of data 

items in the slower algorithm, causing the slower algorithm to process items even after the 

algorithm switch. As a mitigation of this situation, we discuss in this section two approaches to 

improve the switching among sub-topology-based algorithms. We also detail the design of our 

current approach and perform an evaluation as part of Section 4. 

Basically, similar requirements as for changing the parallelization of a pipeline in Section 2.2 apply 

in this section, namely gap-free enactment (R1), no loss of data items (R2) and maintaining the 

same processing sequence (R3).  

In order to keep the processing result consistent after switching to another algorithm, we can either 

ensure that all items in the previous algorithm have been fully processed before switching or 

transfer queued items from the previous algorithm to the active one. Actually, it is impractical (and 

in general not gap-free) to wait until the previous algorithm completely processed all queued items, 

as in extreme cases the queue may contain hundreds of items. Thus, we will focus on affecting the 

queued items as part of algorithm switching. The built-in item queuing of Storm ensures that items 

are always queued in the input queue of an executor before they are processed. This is 

aggravated in sub-topologies, as the backlog does not always occur at the first component of a 

sub-topology rather than at the slowest component. As items are queued in different analysis / 

processing stages, we cannot just (this would require a change of Storm interfaces and a 

respective implementation) transfer the items in the internal queues into the new sub-topology as 

we do not have any clue about the right sequence. Thus, we introduce an additional control for 

synchronizing items among algorithms. 

Based on the above discussion, we consider two design alternatives: 
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● Admission control of input items being sent to the sub-topology based on the algorithm 

capacity. In the recent research of the distributed stream processing, due to the limited 

computational resource, admission control has already been considered as a great 

important mechanism aiming at dynamically managing resource utility to optimize the 

overall system performance with a large number of dynamic streams[XTZ07]. For instance, 

[XTZ07] designed a joint source admission control, data routing and resource allocation 

mechanism for maximizing the system utility. Also, [BTÖ13] discussed an adaptive 

admission control on dynamic input streams in parallel stream processing based on the 

input rate forecasting. However, their discussion does not meet the specific requirement of 

our case for the QualiMaster project. To adopt the basic idea of admission control we would 

have to explicitly control the input streams based on the capacity of the consuming 

algorithms to avoid too many queued items. Basically, we would queue items in the family 

node (the node which performs the stream switching) and send batches of items along sub-

topology if there is free processing capacity rather than single items irrespective of the 

actual capacity. A batch is sent only when the preceding batch has been fully processed. In 

order to obtain the information indicating that the sub-topology is ready to receive another 

batch of items, we would need a central control node (e.g., the family node) collecting the 

queuing status from each Spout/Bolt and, if no items remain in the sub-topology, requesting 

the next batch from the related family node. Due to the sending batch unit, an internal batch 

size parameter would be needed to dynamically control the optimal number of items in a 

batch. This parameter could be controlled centrally, e.g., through the Adaptation Layer, but, 

more preferably, in a local fashion as a kind of local feedback loop, which aims at a batch 

size that keeps the sub-topology running, but avoids unnecessary queuing in the sub-

topology. By this design, switching a sub-topology-based algorithm would have no need to 

transfer any queue and only need to wait until all items in a batch are completely processed 

in actual sub-topology before the switch (while the new sub-topology may already start 

processing). This waiting time depends on when the switch signal arrives. In the best case, 

the switch signal arrives when the batch of items is being fully processed, then the family 

can go on with the new algorithm immediately. For the worst case, the maximal waiting time 

would be the time of processing the complete batch of items which actually differs from the 

batch size. Although the switch seems to become easier without queue transfer, there are 

also some drawbacks, in particular a dependent design in which we either need detailed 

information about the status of the internal Storm queues or explicit queues in all Bolts of 

the sub-topology algorithm. 

● Queue transfer among the entrance queues from the previous algorithm to the active 

algorithm while switching. In order to transfer those not yet completely processed items 

from the preceding algorithm, we include anintermediary Spoutas a controlling node serving 

input items to the sub-topology between the family node and the sub-topology. Basically, 

the intermediary Spout holds an explicit queue which stores the items emitted from the 

family node and removes items only when they are fully processed by the last node of the 

sub-topology. When a switch command arrives, the items in the explicit queue of the Spout 

are either the ones pending to be processed or the ones emitted to the sub-topology but not 

fully processed yet. It is noteworthy that the condition for removing an item from the queue 

can be checked by adopting the message processing guarantee of Storm. The message 

processing guarantee is realized by acknowledging (or failing) each processed item in each 

Bolt. Additionally, in the Spout, Storm provides the ack interface which enables the 

possibility to access the information whether the item carrying a unique message id is being 
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completely processed until the end of the sub-topology. In this design, the algorithm is 

independent from individual queues, i.e., we do not rely on the queuing information of the 

nodes in the algorithm and there is no need for a potentially interrupting (central) admission 

control. By considering an additional Spout to the sub-topology, the sub-topology could run 

as a complete sub-pipeline separately from the main topology. Actually, this is a first step 

towards a different integration style of sub-topologies, i.e., to manage them as individual 

topologies rather than as single big topology as already envisioned in D4.1. However, an 

additional Spout per sub-topology also requires more resources, at least one Executor per 

sub-topology. Furthermore, due to the additional Spout as well as the underlying signal 

communication in the sub-topology, this design will lead to the requirement of generating 

sub-topologies which is also being suggested in D4.2 for achieving error-free sub-topology 

and supporting the potential sub-topology reconfiguration driven by the Adaptation Layer. 

 

 

Figure 11: (a) a design of queue transfer while switching among sub-topology-based algorithms 

in terms of the example pipeline and (b) the detailed view of the queue transfer design. 

 

As the second alternative (entrance queues) does not require changes to Storm, we decided to 

realize and analyze this alternative first. If possible, we also plan to analyze the first alternative 

(admission control) and to compare the alternatives empirically.  

Figure 11 illustrates the design of the improved switching among sub-topology-based algorithms 

using entrance queues. Figure 11.a depicts the extended example pipeline (over the abstracted 

basic pipeline used for experiments in D4.2) with the intermediary Spouts discussed above. Figure 

11.b shows a detailed view of the queue transfer between the two alternative algorithms from 

Figure 11.a. 
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As depicted in the Figure 11.a, the family is equipped with two sub-topology-based algorithms 

(SubTopology1 and SubTopology2) as well as their respective intermediary Spouts (Spout1 and 

Spout2). At the beginning, the family is running on the first sub-topology, i.e., SubTopology1 in 

the Figure 11.b. When a signal to switch the algorithms arrives at the family node, the family 

immediately stops sending items to Spout1 as the entrance node of SubTopology1. Meanwhile, 

it also sends a passivate signal to the Spout1 to stop emitting items to SubTopology1. When 

Spout1 receives the passivate signal from the family, it then sends a block signal to deactivate the 

last Bolt of SubTopology1, which becomes idle, i.e., no items are being processed and forwarded 

to next consuming Bolts . Afterwards, the last Bolt of the SubTopology1 informs Spout1 by a 

ready signal to transfer its queue to Spout2, and, thus, starts activating SubTopology2 . The 

above communication aims at guaranteeing that the items in the queue of the Spout1 are those, 

which are not yet fully processed so that no duplicated processing results are emitting from the last 

Bolt of the SubTopology1. When the ready signal from the last Bolt of SubTopology1 arrives, 

Spout1 starts transferring all items in its queue to the queue of Spout2. After all items are 

successfully transferred, Spout2 informs the family to be activated by the activate signal , i.e., to 

direct the streams to the SubTopology2. Finally, the algorithm is switched to SubTopology2 

with no item loss as (R2) well as remaining as the same sequence as its original sequence in the 

family (R1). We provide an evaluation of the entry queue switching design in Section 0. 

2.5 Transfer among Stateful Processing Elements 

One important mechanism of the infrastructure is the transfer among stateful processing elements. 

As an example of its usage, consider the priority pipeline, and more specifically, switching from the 

processing from the SW implementation to the HW implementation of the Hayashi-Yoshida 

correlation estimator. The ideal is to minimize all resources required for performing this switching 

and especially the required time as initially discussed in D4.2.  

The majority of the stream processing algorithms perform initial computations using the first ticks 

they receive and then simply update these computations using the following ticks. The first 

mechanism is directly transferring these computations either from SW to HW or from HW SW. 

Thus, the processing can continue normally (called Direct State Transfer in D4.2). 

Unfortunately, the above mechanism requires that the two implementations, for example the SW 

and HW implementations, perform exactly the same processing over the given ticks. This is not the 

case for all stream processing algorithms. For example, the SW implementation of the Hayashi-

Yoshida correlation estimator maintains a slightly different information than the HW 

implementation.  

In such situations we apply the Warming Up strategy described in D4.2. In particular, we execute 

the second processing element in parallel with the first processing element and switch to the 

second processing element. The duration of this parallel execution depends on the streaming 

window size (currently this is set to 30 seconds) and, thus, defines the major portion of the 

enactment time in this case. 

For realizing the Warming Up strategy, in particular for the mentioned case of switching between 

HW and SW based processing, we will combine overlapping processing with the new design for 

switching sub-topology algorithms discussed in Section 2.4. In more detail, using the numbering 

from Section 2.4, the algorithm switch message will enable the parallel processing of data through 

the SubTopology2, while the output of SubTopology2 will remain disconnected and 
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SubTopology1 goes on processing. After the end of the streaming window overlapping time, we 

will connect the output of SubTopology2, disconnect the output of SubTopology1 and use the 

technique from Section 2.4 to stop the processing in SubTopology1 immediately. Alternatively, we 

may remove the deactivated subtopology from memory (see Section 2.3) and stop the subtopology 

if it is integrated as an individual subtopology (mentioned as one alternative to modify pipelines in 

the D4.1 deliverable). 

3 Status of the Integrated Components 

In this section, we provide an overview of the components that are currently integrated in the  

QualiMaster infrastructure. Since the D5.2 deliverable provided a detailed description the 

infrastructure and the D2.2, D3.2 and D4.2 deliverables provided the full description of processing 

elements and components, we focus only on new developments as well as the most recent 

extensions for each processing element and component.  

3.1 Components 

3.1.1 Execution Layer 

According to the overall architecture of the QualiMaster infrastructure, as introduced in D4.1/4.2, 

the Execution Layer consists of the actual Execution Systems for performing the data analyses, in 

particular Apache Storm and the reconfigurable hardware. For realizing the concepts discussed in 

Section 2, the following changes and extensions to the Execution Layer have been implemented: 

● As discussed in Section 2.3, Apache Storm does not support dynamic modifications of the 

running topologies. As a mitigation, we extended Apache Storm according to the design in 

Section 2.3 so that migration of Storm components (Bolts and Spouts), changes to the 

parallelism of Bolts and Spouts, as well as the ability to disable / enable entire components 

is possible. The result is a modified Storm core library, which can be integrated into the 

QualiMaster infrastructure by replacing the original library. 

● Actually, the runtime performance characteristics of a hardware-based algorithm are fixed 

due to the design and layout process, i.e., important quality parameters such as clock 

cycle, execution time per tuple (batch) or memory requirements are already known before 

executing the algorithm. However, the actual allocation of hardware co-processors (in 

QualiMasterMaxelerData Flow Engines) by pipeline algorithms is determined at runtime. 

Although the actual allocation of algorithms to co-processors is determined by the 

Adaptation Layer of the QualiMaster infrastructure, in some cases DFEs may be allocated 

differently than intended. Two possible cases are 1) if the execution of a pipeline fails and 

the allocation of algorithms to co-processors is not freed (D4.2, adaptation scenario A-4) or 

2) if co-processors are not exclusively used by the QualiMaster infrastructure and, e.g., 

other systems or humans may allocate co-processors on demand. Thus, in close 

collaboration with WP3, we designed a monitoring service for hardware co-processors, 

which allows the QualiMaster infrastructure to determine the actual number of freely 

available  DFEs based on the DFE servers configured in the Infrastructure Configuration 

(cf. D4.1/D4.2). In more details, the monitoring service consists of two monitoring 

processes that run independently on the two different platforms, i.e. SW-based in the 

QualiMaster Monitoring Layer and HW-based. As far as the hardware part, we implemented 

a deamon process, which runs as a background process on the hardware platforms. This 
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process accepts TCP connections from the corresponding software monitoring system and 

sends back the information about the number of the available and active DFEs. The 

corresponding software part is described in Section 3.1.3. 

● As described in Section 2.2, we implemented a generic protocol for communication 

between the reconfigurable hardware and the software-based infrastructure. In our 

first attempt, we used a custom-based solution, where the exchanged messages include 

information about the type, e.g., configuration message, data message or request message 

for the results, and the data. This solution had many disadvantages as it was not generic 

enough, it was not easily extensible, it was platform dependent and, thus, we were not able 

to (fully) generate respective software artifacts as part of the QualiMaster infrastructure 

derivation process. Thus, we used for the communication scheme, a more generic solution, 

i.e., the Google Protocol Buffers3 as a platform-neutral, cross programming language 

foundation (Java for the software side and C/C++ for the hardware side). Protocol buffers 

offer a flexible, platform-neutral, extensible and automated mechanism for serializing 

structured data. We tested and validated the communication between the reconfigurable 

part of the QualiMaster pipeline and the software part with various types of exchanging 

messages. According to our initial results, the implemented protocol offers a generic, 

efficient and easily extensible way for communication between the QualiMaster 

infrastructure / pipelines and the hardware-based execution.  

In the future, we aim at improving and optimizing the integration of the Execution Systems with the 

QualiMaster infrastructure. We could imagine that a QualiMaster specific Storm scheduler plug-in 

(which determines the initial allocation of Workers to physical resources) could improve the 

resource usage, in particular with respect to the distribution of the Bolts and Spouts used for 

integrating hardware co-processors. In addition, we aim at improving some points about the 

integration of the hardware processing elements into the complete QualiMaster infrastructure as 

already indicated in Section 2.4. We also aim at realizing dynamic allocating and de-allocating of 

the available DFEs, thus, offering a better resource usage. 

3.1.2 Pipeline Support 

The increasing capabilities of the QualiMaster infrastructure also impose more and more technical 

requirements on individual algorithms. This is in particular true for algorithms representing whole 

sub-topologies, as they must communicate correctly with the infrastructure, e.g., to pass algorithm 

parameters to their respective implementing components (Spouts, Bolts or reconfigurable 

hardware algorithms), or to be notified about an actual algorithm switch in order to handle queued 

items appropriately (as discussed in Section 2.4). In particular, the upcoming state transfer 

mechanism (Section 2.5), which will rely on the capabilities to modify the parallelism at runtime 

(Section 2.3) or handling queued items (Section 2.4) may impose further communication 

requirements. 

To support Algorithm Providers in developing data analysis algorithms for the QualiMaster 

infrastructure, we document the actual development conventions in the QualiMaster Wiki and will 

turn the contents into a part of the QualiMaster infrastructure documentation at the end of the 

project (or as soon as needed externally). Furthermore, we developed a supporting library that we 

briefly describe in this section. 

                                                

3 https://developers.google.com/protocol-buffers/ 
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The QualiMaster pipeline support library provides: 

● The basic interfaces for implementing QualiMaster sub-topologies. 

● An object-oriented signal mechanism. As described in D5.2 and D4.2, QualiMaster 

pipelines use Zookeeper signals to communicate (binary forms of) commands, such as 

changing an algorithm or modifying a parameter to the implementing Storm Bolts and 

Spouts. This is a convenient approach, as also parallelized Bolts and Spouts are addressed 

in the same way. In the initial version of the QualiMaster infrastructure (as of D5.2), we 

assembled the (binary) signal contents in the Coordination Layer and parsed it in the 

receiving generated Bolts or Spouts. Thus, parsing the contents of signals in sub-topologies 

(as well as passing signals on within sub-topologies) was identified as an issue by those 

partners playing the role of Algorithm Providers in the project. As a solution, we developed 

an object-oriented signal interface, which allows specialized Spouts and Bolts to send 

signals in terms of objects (inspired by the command design pattern [GHJ+00]) and to 

receive them using the observer design pattern [GHJ+00]. These specialized Spouts and 

Bolts transparently connect to the Zookeeper and enable the developers to conveniently 

pass on and handle signals. 

● In some cases, a pipeline also needs to pass information to the QualiMaster 

infrastructure, e.g., to acknowledge a changed algorithm or to report about application-

specific monitoring information built into the pipelines by the code generation of the 

infrastructure derivation process. Akin to the object-oriented signaling described above, the 

specialized Spouts and Bolts provided by the pipeline support library encapsulate the 

communication with the Event Bus of the QualiMaster infrastructure. The specific code then 

just needs to create an event instance and to call the send method of the underlying Spout / 

Bolt. For experiments, the QualiMaster Event Bus can even take over the role of the 

Zookeeper signal distribution, i.e., signals can be transparently turned into events, sent 

through the Event Bus and turned back into signal instances at receiver side. 

● As discussed in D4.2, sub-topologies are currently considered as a black box. To 

aggregate runtime information about these sub-topology black boxes, the QualiMaster 

infrastructure needs to know at least, which Spouts and Bolts belong to which black box. 

Therefore, the pipeline support library extends the Storm mechanisms 

(TopologyBuilder) for creating topologies in a way, that the QualiMaster infrastructure 

receives the required information. The extended classes are utilized by the generated 

topologies and, thus, transparent for the sub-topologies. 

● A topology started by the QualiMaster infrastructure can now receive options about the 

initial parallelization of pipeline components at pipeline startup. In other words, this 

extends the default Storm style of defining the parallel in terms of “constants” in a topology 

class and allows performing tests and experiments with pipelines in a flexible way rather 

than re-generating pipelines just for changing the initial parallelization settings. 

The pipeline support library is already in a rather stable state. We plan to extend the capabilities of 

this library only if additional functionality is required to support and simplify the development of 

algorithms by Algorithm Providers. 

3.1.3 Coordination Layer 

In the QualiMaster infrastructure, the Coordination Layer is responsible for receiving commands in 

terms of pipeline elements and translating them into the API calls and terminology of Storm 
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topologies and re-configurable hardware. In particular, the Coordination Layer synchronizes 

runtime changes among multiple Execution Systems, e.g., changing an algorithm by “migrating” 

the execution from the software side to the hardware side. 

In addition to the basic event handling to realize the Pipeline Lifecycle (Section 2.1), in this version 

of the QualiMaster infrastructure, the Coordination Layer was equipped with the following 

additional capabilities: 

● Changes of the parallelization and resource allocation of Storm components at 

runtime. Basically, we integrated the rebalance command of Storm as a coordination 

command. However, as already discussed in D4.2 and in Section 2.3, the Storm rebalance 

command does not support gap-free enactment of adaptation decisions. As mitigation, we 

extended Storm with the respective capabilities as described in more details in Section 

2.3/3.1.1. Currently, to avoid too much (interface) changes to Storm, we realized the 

functionality which changes Storm assignments in a consistent manner based on a pipeline 

command as part of the Coordination Layer. Thereby, the Coordination Layer detects the 

actually running Storm version and prevents Storm from attempting to change the 

parallelization process, in case the non-extended Storm version is installed. 

● Initializing a pipeline according to the Pipeline Lifecycle (Section 2.1) includes that all 

algorithms and required parameters are initialized before a pipeline is connected to the 

respective data sources and sinks. This can require that multiple Zookeeper signals 

(algorithm change + initial parameters) are sent to the same Storm component. Due to a 

basic delay of 20-30 ms in signal processing (see D4.2), the Coordination Layer may write 

signal information faster to the Zookeeper data structure than the receiving Storm 

component can process them, so that eventually information could get lost. Therefore, we 

realized in this version of the Coordination Layer a transparent grouping of multiple 

commands addressing the same Storm component, i.e., an initialization sequence as 

explained above is packed into one signal avoiding the problems of potential loss of 

information. Grouping of commands is applied to command sets and command sequences 

(see D5.2), whereby a more comprehensive grouping for command sets can be achieved, 

as they do not require a certain execution sequence. Alternatively, such grouping can also 

be realized as part of the adaptation specification, but requires a more explicit specification 

(rather than the implicit guaranteed handling by the Coordination Layer). 

● Upon algorithm or parameter change commands, the Coordination Layer now caches the 

actual algorithm and parameter settings. On the one side, this simplifies the 

specification of adaptively changing an algorithm. Basically, the replacing algorithm 

selected at runtime from an algorithm family requires an initial parameter set. This is by 

default (and even without considering the actual algorithm state, cf. Section 2.5), the set of 

parameters specified for the algorithm to be replaced (unless other parameters are 

specified). On the other side, this capability prepares the realization of a default behavior 

for recovering from execution failures (adaptation scenario A-5 in D4.2). 

● As already described in D4.2, the Coordination Layer was extended to obtain the 

Configuration Model and the actual pipeline artifacts from the pipeline elements 

repository. Having the Configuration at hands, a pipeline can be started just based on its 

name, as through the Configuration the related artifacts are known. Therefore, we 

integrated the QualiMaster Coordination Layer with the EASy-Producer runtime library. 

In the future, we plan to extend the synchronization capabilities of the Coordination Layer, in 

particular to improve the pipeline shutdown phase (as Storm is not guaranteeing a cleanup of the 
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used resources such as the connections to hardware co-processors) and to integrate changing 

parallelization (Section 2.3), gap-free algorithm switch (Section 2.4) and state transfer (Section 

2.5). If the consortium opts for a loose integration of sub-topologies (envisioned in D4.1 and D4.2), 

the Coordination Layer will be extended to take over the control of the sub-topologies along with 

the integrating main topology. 

3.1.4 Monitoring Layer 

The Monitoring Layer of the QualiMaster infrastructure is responsible for aggregating monitoring 

information from various sources, in particular from the Execution Systems, the algorithm 

monitoring through SPASS-meter [ES14] and the application-specific monitoring through 

monitoring probes built into the pipelines as part of the code generation during the infrastructure 

derivation process. It provides a view on the actual execution state of the running pipelines based 

on monitoring information, i.e., it maps back the implementation level to the pipeline level and, 

thus, performs a counter-mapping to the Coordination Layer. 

In this version of the QualiMaster infrastructure, the Monitoring Layer, we equipped the Monitoring 

Layer with the following additional functionality: 

● Detection of pipeline states according to the Pipeline Lifecycle introduced in Section 2.1. 

In particular, the Monitoring Layer detects when a pipeline comes up and when its 

components are properly initialized so that the pipeline initialization and adaptive 

enactments can happen. 

● As part of the QualiMaster adaptation cycle, the constraints (on runtime variables) of the 

Configuration Model shall be validated and, in case of violations, turned into constraint 

violation triggers. Therefore, we integrated the EASy-Producer runtime library and, in 

particular, the new IVML reasoning support (see D4.2) with the Monitoring Layer. Upon a 

regular schedule, the monitored system state is cloned, frozen and mapped into the runtime 

variables of the Coordination Model using the rt-VIL mapping phase (cf. D4.2). Then, the 

IVML reasoner is executed and constraint violations are tuned into adaptation triggers. 

● Monitoring of the parallelization quality parameters introduced in D4.2, i.e., the actual 

parallelization and the (aggregated pipeline) capacity. As the capacity measure is not 

provided by Storm for all components and we did not want to extend Storm in this regard, 

currently, the infrastructure derivation generates specific monitoring probes for completing 

data items in Spouts and Bolts implementing data sinks. These monitoring probes send 

events to the Monitoring Layer via the QualiMaster Event Bus. 

● Also the available DFEs of the hardware co-processors (as explained for the Execution 

Systems in Section 3.1.1) are now captured as part of the monitored system state. 

Therefore, as part of the regular cluster monitoring, the hardware monitoring interface is 

utilized via the TCP protocol provided by the Hardware side to obtain the allocated / free 

DFEs. The DFE clusters defined in the Configuration as well as the monitoring port are 

obtained and used to address the specified monitoring service. 

● To support the validation, we extended the monitoring layer to store the final observed 

system state of a pipeline when it is stopped as a monitoring log. 

As next steps, we plan to extend the monitoring of application-specific characteristics and the 

determination of offline algorithm profiles, in particular based on the information provided by 

SPASS-meter. To improve the performance, but also for observing application-specific 
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characteristics, we augmented SPASS-meter by an extension mechanism [B14], which incurs low 

performance overhead. 

3.1.5 Adaptation Layer 

The adaptation layer realizes the environment for executing adaptation specifications, i.e., rt-VIL 

scripts as defined in D4.1 and D4.2. Therefore, we integrated the EASy-Producer runtime library 

including the novel components for rt-VIL and the IVML reasoner (cf. D4.2) into the Adaptation 

Layer. For specifying the adaptation in a domain-specific way, we also integrated the QualiMaster 

specific rt-VIL extension library (cf. D4.2) with the QualiMaster infrastructure. This library maps the 

resource descriptors, the adaptation events and the coordination commands as types into rt-VIL. 

Upon an adaptation event, which is initially scheduled in the adaptation event queue of the 

Adaptation Layer (also to enable a cleanup of superseded adaptation events), the actual 

Configuration and the related rt-VIL script are determined, the monitoring mapping phase is 

executed in order to fill the runtime variables and the rt-VIL script is executed. As a part of the 

execution of strategies and tactics, the IVML reasoner is utilized to validate the new runtime 

configuration. Upon a valid runtime configuration, the changes are turned into coordination 

commands (as illustrated in D4.1) and send to the Coordination Layer, which, as described above, 

may group, synchronize and execute the commands. 

Currently, we are working on the adaptation scripts to enable the adaptation for changing 

characteristics of the data streams (adaptation scenario A-1 in D4.2) and the dynamic startup 

initialization (adaptation scenario A-5 in D4.2). As part of the integration of the QualiMaster 

infrastructure with the stakeholder applications, the Adaptation Layer will be extended by 

adaptation events realizing the application triggers (adaptation scenario A-3) and the adaptation 

scripts will be extended to handle the application triggers with an adequate priority. Akin, explicit 

triggers from the QualiMaster Infrastructure Configuration tool (QM-IConf) indicating requested 

resource reallocation for maintenance will be turned in respective adaptation events and 

considered in the rt-VIL scripts. As part of work on the individual adaptation scenarios, also the 

capabilities of the rt-VIL types and the type extension library will be extended, in particular in terms 

of generic and domain-specific optimization algorithms. 

3.2 Processing Elements 

We now provide a brief overview of the current status of the processing elements. Our goal is to 

give the extensions and modifications that occurred during the last months and have not been 

described in one of the recently submitted deliverables (i.e., D2.2, D3.2, and D4.2). 

3.2.1 Hayashi-Yoshida Correlation Estimator 

The Hayashi-Yoshida correlation estimator system consists of two main subsystems, one 

implemented in software and the other one in hardware. The software subsystem starts initializing 

the system establishing the connection with the “outside” world in order to transmit the streaming 

data and receive the final results. On the hardware side, the software that runs on top of the DFEs 

creates three independent parallel running threads for receiving and pre-processing incoming 

streaming data. The hardware subsystem implements a method that calculates the Hayashi-

Yoshida correlation metric with lower complexity than the initial repetitive algorithm. The proposed 

hardware-based module calculates the HY coefficients in an additive and streaming way. Last, it 

calculates the HY estimation value for each one of the market stocks pairs. 
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Figure 12: Hardware-based subsystem for calculating the Hayashi-Yoshida correlation coefficients. 

 

In more details, the HY Coefficient Estimator module consists of two smaller modules that 

calculate independently and concurrently the correlation coefficients at the start and at the end of 

the processing sliding time window for each pair of the processing market players. Thus, the 

correlation coefficients for every pair of the processing stock markets is calculated for the right 

timestamp. These modules also calculate when data are expired. All data are stored in an internal 

memory and reused every time when they are needed. Figure 12 shows the hardware subsystem 

calculation of the covariance coefficient. Detailed presentation of the architecture as well as 

implementation details is available in the D3.2 deliverable. 

3.2.2 Mutual Information 

QualiMaster will have two processing elements for Mutual Information (MI). One processing 

element will be a Storm implementation and the other processing element will be an FPGA-based 

implementation. The Storm implementation has been already completed. However, the particular 

algorithm is not streaming, so we are currently working on converting and connecting it with the 

streaming data arriving at the QualiMaster infrastructure. 

The FPGA implementation is divided in two subsystems. The first one calculates the probability 

density function (pdf) estimation and the other one computes the Mutual Information value, 

respectively. The pdf estimation, based on histograms, is calculated on software as it is not a 

computationally intensive problem. The pdfs, are streamed into hardware for the calculation of 

Mutual Information and two hardware cores are responsible for calculating the partial MI results. 

The results from the hardware cores are streamed and accumulated on software to produce the 

appropriate MI final result. Figure 13 shows the block diagram of the proposed reconfigurable 

system. 

For the calculation of MI a fully pipelined architecture is used, allowing an iteration of the Sum to 

be calculated every clock cycle. The three pdfs are streamed to the pipeline at a rate of one value 

per pdf every clock cycle. They are then processed in the pipeline and the results are accumulated 

in the Sum module.Figure 14 shows the block diagram for this architecture.  
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Figure 13: Mutual Information basic System 

Architecture. 

Figure 14: Hardware Architecture detailed 

presentation of the architecture and implementation 

details are available in D3.2. 

 

 
 

Figure 15: Transfer Entropy basic System 

Architecture. 
Figure 16: Hardware Architecture for the Transfer 

Entropy implementation. 



QualiMaster Deliverable D5.3 

Page 34(of 65)  www.qualimaster.eu 

 

3.2.3 Transfer Entropy 

Transfer entropy will be incorporated in as an FPGA processing element. The system architecture 

for Transfer Entropy shown in Figure 15 is similar to the architecture of Mutual Information. The TE 

calculation starts with the pdf estimation as the MI, which has been implemented in software. Next 

it streams the pdfs data to the hardware subsystem where TE is calculated. 

The hardware architecture for TE calculation is presented in Figure 16. This architecture 

represents each one of the TE1 and TE2 cores shown in Figure 15. The basic architecture is 

similar to the Mutual Information calculation architecture. The difference of these two 

implementations is the size of the pdfs, which for MI is R2 and for TE is R3. The architecture is fully 

pipelined, allowing an iteration of the Sum to be calculated every clock cycle. Note that a detailed 

presentation of the architecture, including implementation details, is available in D3.2.  

3.2.4 ECM-sketches 

Τhe ECM sketch is a compact structure combining a state-of-the-art sketching technique for data 

stream summarization, in our implementation the Count-Min data structure, with the Exponential 

Histograms. Currently, this is an FPGA processing element. The proposed system is divided into 

three hardware-based entities: the Hash function module, the Count-Min module and the 

Exponential Histogram module. An initial hardware-based architecture for the ECM sketches is 

presented in Figure 17. 

 

Figure 17: Initial hardware-based architecture for mapping ECM on reconfigurable platform. 

This implementation takes as input streaming tuples with a Stream_ID and a Hash Value. When a 

new element arrives, the Hash function module is used for assigning the input element to a single 

Exponential Histogram data structure. Then, each row of the Count-Min data structure is mapped 

as an Exponential Histogram data structure. The input data are shifted and stored into each line of 
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the EH structure. Detailed presentation of the architecture and implementation details are available 

in the D3.2 deliverable. 

3.2.5 Querying Stock Correlation Graph 

As we have described in deliverable D5.2, one methodology for detecting systemic risk can be 

achieved by analyzing the stock correlation graph. More specifically, we consider a network 

structure that represents the correlations between the single stock market players as, for example, 

generated by the Hayashi-Yoshida correlation estimator. This network is analyzed for potential 

fallbacks of the market player dependency structure. 

During the last months we have continued the development of a Storm based processing element 

that receives the correlations between market players in order to create and maintain a network. In 

addition to the efficient storage of the modifications appearing in the network, we also started the 

working of methodologies for processing queries over the network. Note that these queries can 

involve either a particular time point that would result in a single snapshot or a time period that 

implies retrieving a collection of snapshots. Once we develop these methodologies for processing 

the queries, we will build functions that assess systemic risk tasks. 

3.2.6 Distributed Similarity Indexing 

Another processing element that we are currently developing is T-Storm, an extension of 

StatStream that aims at minimizing StatStream's limitations. Our current goal is allowing users to 

select among various different distance measures (e.g., cosine, Hamming, etc.) or even create 

their own distance measure and incorporate it in T-Storm. To enable this, we are incorporating an 

LSH index, since LSH is distance measure agnostic. More details for the particular processing 

element are available in the D5.2 deliverable. 

3.2.7 Event Detection/Prediction  

In addition to the progress reported in D2.2, the Date Parser for Event Prediction has been tested 

using news data from different sources and about various topics, such as the BP oil disaster and 

the Lybian civil war. The CUSUM (cumulative sums) approach has been identified as a useful third 

algorithm for the Event Detection algorithm family.  

3.2.8 Sentiment Analysis  

In D2.1 we provided an overview of the two main Sentiment Analysis methods implemented so far 

within the QualiMaster pipeline as Storm topologies, namely the Support Vector Machines and 

SentiWordNet. In Section 3.2. from the D2.2 deliverable, we describe an application scenario 

where we exploit the Sentiment Analysis methods for the task of identifying opinionated hashtags. 

Furthermore, the Storm implementation of the two Sentiment Analysis elements have been 

extensively evaluated within scenarios which include a Twitter Real-Time Stream use case. 

3.2.9 Expert Search  

The modules for Expert Search and User Modeling have been evaluated with respect to the quality 

of the produced results. These results are reported in detail in the D2.2 deliverable. The next steps 

towards the integration of the module into a QualiMaster topology are the transfer of the algorithms 

into bolts and experiments towards the use of NER tools in a distributed environment. The use of 

Wikipedia Miner requires access to several files on a local file system, as a next step we will 
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evaluate how this access can be changed to work with HDFS. Pipelines including the Expert 

detection module as a component for filtering or splitting the stream of social web data are 

currently under investigation. 

3.2.10 Social Networks  

The extraction of financial networks from twitter streams has been reported in detail in D2.2 was 

tested on previously collected data in local user mode. There is ongoing effort to transfer the 

topology to the final clustered environment and switch to data processing in real-time. Currently the 

extracted symbols are stored in a relational database, and graphs are computed on the fly. It is 

under investigation, if a change of the storage to non-relational database, in particular HBase, 

would yield an advantage compared to the current scheme. Finally, there is ongoing work to 

implement temporal visualization of the computed graphs. 

3.3 Infrastructure Instantiation Process 

The infrastructure instantiation process turns the Configuration of an infrastructure including the 

specification of the resource pool, the algorithms, the algorithm families, and the pipelines into 

realizing artifacts. For implementing this process, we rely on a close collaboration with WP4, which 

designs and realizes the Configuration Meta Model as well as the related configuration tool support 

in terms of the QualiMaster Infrastructure Configuration Tool (QM-IConf). Based on a valid 

configuration, the infrastructure instantiation process turns in particular pipelines into underlying 

Storm topologies (the initial process has been described in D5.2), i.e., source code artifacts for 

topologies, Bolts and Spouts, links them with algorithm artifacts from the Pipeline Elements 

(Development) Repository, compiles the pipelines and turns them into individual Maven artifacts. 

As emphasized in D5.2, the resulting topologies are typically more complex than the configured 

pipelines, as the topologies also contain switching Bolts, joining Bolts, Hardware connector Spouts 

(as explained in D3.2), or, as discussed in Section 2.4 internal Spouts for efficiently managing the 

runtime algorithm switch among sub-topologies. In this section, we discuss the advances we made 

over the initial description of the infrastructure instantiation process given in D5.2. 

Due to improvements of the Configuration Meta Model described in D4.2, but also due to recent 

insights into the enactment of adaptation decisions, we included the following extensions into the 

QualiMaster Infrastructure Instantiation Process: 

● Feedback of the QualiMaster partners requested changes of the Configuration Meta Model 

regarding the input / output data items, in particular to define individual names of the data 

items and to be able to configure own field types. Consequently, we changed the 

infrastructure derivation process so that the respective generated methods follow the 

configured names of the data items (affects the names of the data interfaces and the data 

calculation methods for simple Java-based algorithms) and that the arbitrary field types are 

properly used, imported and referenced in the generated Maven build specifications. 

● To enable the transition of pipelines into production stage; for individual pipelines the 

configuration can now enable or disable the logging of additional information, which can be 

useful for debugging pipelines. We call this the pipeline debug mode. As discussed in 

D4.2, logging unneeded information can lead to significant performance issues. Information 

about the debug mode is now passed along the pipeline instantiation steps and considered 

wherever the code generation Spouts and Bolts would insert logging of additional data. 
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● For automated integration support, we extended the Configuration by artifact 

specifications for individual pipelines and for the artifact that shall contain the actual version 

of the Configuration Model (in terms of artifacts of the Integrated Variability Modeling 

Language IVML4), the Pipeline Instantiation Process (in terms of artifacts of the Variability 

Instantiation Language VIL) and the Adaptation Specification (in terms of the Runtime 

Variability Instantiation Language rt-VIL). During the infrastructure derivation process, the 

individual pipelines are now generated into individual namespaces along with their 

respective Maven build description, which uses the pipeline artifact specification from the 

Configuration to denote the artifact to be deployed. Further, we added a dedicated step to 

the infrastructure derivation process, which packages all IVML, VIL and rt-VIL artifacts into 

a Maven artifact according to the infrastructure artifact specification in the Configuration. 

● Feedback from experiments with the QualiMaster Priority Pipeline (initial results are given 

in D5.2) indicates that the integration of Data Management Bolts, which transparently 

store intermediary analysis data using the Data Management Layer for further / offline use, 

could be a bottleneck. Initially, we created Data Management Bolts, which just emit the 

received data while also storing the data. Although the Data Management Layer provides 

support for buffering data to be stored so that no performance issue should occur, 

ultimately the performance depends on the actual implementation of the respective 

mechanisms in the Data Management Layer. In order to avoid potentially invisible 

bottlenecks, the partners opted to integrate Data Management Bolts in a parallelized 

fashion. Instead of just passing through the data, the preceding Storm component emits 

two streams, the usual data flow and a cloned stream to the Data Management Bolt, which 

now acts as an implicit data sink. As a consequence, a slow implementation in the Data 

Management Layer may lead to local queuing in the Data Management Bolt and, if properly 

parallelized along with the remainder of the pipeline, does not influence the performance of 

the actual analysis. Currently, the infrastructure instantiation process is equipped with 

alternative generation styles for both integration alternatives in order to allow experiments 

with both styles, but currently utilizes only the novel implicit data sink style. 

● Further experience from experiments with the QualiMaster Priority pipeline indicated that 

data analysis algorithms can fail while processing. In such cases, a Storm topology may 

completely stop processing, in particular if a programming or execution failures cause an 

Executor to terminate (which may lead to a ripple effect also causing a suicide of the 

respective Worker). The more general situation of processing errors as well as potential 

counter measures is subject to adaptation scenario A-4 in D4.2. As a first (implicit) counter 

measure, we included a so called Default Mode, i.e., the data analysis algorithm is 

supposed to detect any potential processing error and to notify its containing Bolt or Spout, 

which then starts emitting only default valued data items so that (at least) alternative data 

flows can continue processing. Therefore, the infrastructure derivation process now 

generates a detection for the respective algorithm signals (actually a specific Exception) as 

well as code for emitting default data items. Although this is not a comprehensive solution 

for adaptation scenario A-4 as various errors situations are currently not handled, e.g., 

when an Executor runs out of memory, it is a first step towards gracefully handling 

execution errors and it supports the development and debugging of pipelines. 

                                                

4 See D4.1 and D5.2 for more details on the languages provided by the Configuration Core EASy-Producer. 
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● The Storm framework offers two ways of turning data items into a format that can be 

transmitted among Workers and Executors, namely the internal Java object serialization 

and the more efficient Kryoserialization5. While the internal Java object serialization is 

rather generic (and, thus, not very efficient), Kryo typically needs details on how to serialize 

individual data items. To support (experiments with the) more efficient serialization, we 

extended the infrastructure derivation process to generate the serialization code (as well as 

the respective registration code) for all the data items used in a QualiMaster pipeline. For 

full performance, as already indicated in D4.2, algorithm specific types must provide 

specific serialization code, which can then be considered while generating the registration 

code. In case that a pipeline supports full Kryo serialization, we may consider switching off 

the dynamic fallback to internal Java object serialization offered by the Storm framework 

and run pipelines even more efficiently. As Kryo serialization is typically recommended for 

production pipelines, we extended in collaboration with WP4 the Configuration Meta Model, 

so that the respective serialization mode (Java-based, kryo-based) can be enabled / 

disabled for individual pipelines. 

● Akin to kryo serialization (and as already discussed in Section 2.4), we derive the proto files 

and the Serializers for the advance hardware integration. We also generate the hardware 

integration Bolt and Spout (shown in the initial integration design in Section 2.4). 

Furthermore, we plan to collect all integrated proto files along with generated Serializers for 

C to support the development of the hardware side. 

● Further, we changed the generation of the pipelines in order to use the object-oriented 

signaling mechanism provided by the pipeline support library (see Section 3.1.2) rather 

than the plain Zookeeper-based mechanism we utilized before. 

 

As already mentioned in D5.2, the infrastructure derivation process is part of the continuous 

integration of the QualiMaster components, i.e., each change to the Configuration (Meta) Model, 

the instantiation process or the underlying components of EASy-Producer lead to a re-build and 

cause notifications in failure cases. Ultimately, continuous integration causes the automatic 

deployment of the Maven artifacts created for the pipeline interfaces, the pipelines and the model 

artifact into the Maven repository of the project, which currently acts as Processing Elements 

Repository. This allows developing against and experiments with the most recent versions of the 

pipelines. 

In the future, we plan to generate also the respective structures and mechanisms for the advanced 

algorithm switching (cf. Section 2.4) and to derive (at least templates) for the configuration of the 

Storm framework and the QualiMaster infrastructure to support Pipeline Administrators to maintain 

a consistent installation. As already indicated in D4.2 and above in this deliverable, the advanced 

mechanisms for handling sub-topologies require more and more development conventions to be 

considered when implementing algorithms. Currently, the consortium is discussing whether 

modeling the sub-topologies as sub-pipelines could simplify the development. If we opt for 

modeling sub-topologies, we will revise the infrastructure derivation process in order to generate 

individual sub-pipelines and extend the Coordination Layer to start them appropriately. Even if the 

consortium may resort just to a more loose (network-based) integration of sub-topologies as 

already envisioned in D4.1, we will perform similar supporting changes to the infrastructure 

derivation process and the Coordination Layer. 

                                                

5 https://github.com/EsotericSoftware/kryo 
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4 Settings for the Experimental Evaluation 

We now describe the settings, meaning data sets, resources, methodologies, etc., of the 

experimental evaluation. More specifically, we list the available hardware resources (Section 4.1), 

the various collections of evaluation data sets (Section 4.2), and the methodologies that will be 

applied for validating the developed stream analysis processes (Section 4.3) 

Note that the particular setting described in this deliverables will be used as the basic template for 

upcoming evaluations of the QualiMaster infrastructure. Our vision is to continue enhancing it, i.e., 

incorporate additional data sets in the evaluation collections and extend the evaluation 

measurements. This will allow us to investigate additional aspects of the infrastructure, and thus 

improve the infrastructure’s behavior on related situations. 

4.1 Hardware Resources 

As we already discussed in the D5.2 deliverable, we have a small set of hardware resources,  

which we use to enable the smooth validation of the infrastructure. The following paragraphs 

provide an overview to these resources. 

(I) Cluster Infrastructure - Mikio Cluster 

The Mikio Cluster corresponds to a cluster infrastructure that is relatively small. In particular it 

includes a cluster with 4 machines, each having 2 AMD cores, clocked at 2.1GHz, 8GB RAM and 

80GB HDD. Our plan is to use the Mikio Cluster for performing initial experiments focusing on the 

validation aspect of our implementation. 

(II) Cluster Infrastructure - SoftNet Cluster 

It corresponds to a cluster with 24 machines, 18 machines with Dell PowerEdge R300 Quad Core 

Xeon X3323 2.5GHz and 6 machines with Dell PowerEdge R310 Quad Core Xeon X3440 

2.53GHz. Each machine has 8GB RAM, 500GB HDD, and Gigabit Ethernet connection (1Gb/s). 

Our plan is to use the SoftNet Cluster for performing the scalability experiments of the QualiMaster 

infrastructure, i.e., once the verification is validated using the QM-Mikio Cluster. 

(III) Cluster Infrastructure - L3S Cluster 

The L3S cluster includes 16 machines each having 2 Six Core Intel Xeon E5-2620 CPUs clocked 

at 2.1GHz, 128GB RAM, 48TB HDD, Gigabit Ethernet and InfiniBand network connection. This 

rather powerful resource is shared between a bunch of frameworks, e.g.,  Hadoop Map-Reduce, 

Spark and Elasticsearch, therefore we intend to use the L3S cluster primarily as a testing platform 

and backup resource. 

(IV) Cluster Infrastructure - Hildesheim Cluster 

The Hildesheim cluster includes 3 Zookepers (2 virtualized), 6 (including 1 Nimbus) Dell Optiplex 

745, Intel Core2 Duo, 1 GHz, 8G RAM, 500G HDD, Gigabit Ethernet connected by a dedicated 16 

port network switch. Currently, this cluster is intended to support the development and early 

experimentation, in particular to perform functional tests on generated pipelines and QualiMaster 

the infrastructure. An extension by further (already available) machines for testing and scalability 

experiments is planned. 

(V) FPGA-based platform - Maxeler PC-C series 

The Maxeler MP-C series servers offers high speed stream-based processing, i.e., the type of 

processing which will mostly apply in the QualiMaster project. The servers provide the closest 
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coupling of DFEs and CPUs for computations requiring the most data transfer. The server consists 

of multiple Intel Xeon cores with many GBs of RAM for the CPUs and multiple FPGA devices 

(DFEs, i.e. dataflow engines) closely coupled to the CPUs. Each dataflow engine is connected to 

the CPUs via PCI Express, and DFEs within the same server are directly connected with MaxRing 

interconnect. The servers also support optional Infiniband or 10GE interconnect for tight, cluster-

level integration. In terms of design tools, the Maxeler card comes with a high-level compiler called 

MaxCompiler, which enables users to describe the hardware circuit using a high-level Java-based 

description. The Maxeler tools offer a dataflow model of the application, with the user-indicated 

parallelism being mapped to the hardware by the tools. 

(VI) FPGA-based platform - Convey HC series 

The Convey HC series systems are hybrid-core computers, which can be efficiently used as 

platforms on high performance computing (HPC) field. The HC systems allow for FPGA 

multiprocessing with a large-memory model. The Convey’s infrastructure combines a 4-core Intel 

Xeon processor and a Convey-designed coprocessor based on four user-programmable Xilinx 

Virtex-5 XC5VLX330 Field Programmable Gate Arrays (FPGAs), with its own high bandwidth 

memory, i.e. 80 Gigabytes/sec, addressed and cache coherent memory subsystem. Last, the 

Convey systems accelerate computing by providing higher absolute performance, increased 

functionality, and improved efficiency. The Convey HC-2 systems increase application 

performance tens of times over commodity servers. 

4.2 Collections of Evaluation Data sets 

The experimental evaluation we performed had various goals. The first was to ensure that the 

QualiMaster infrastructure is able to process the real data from the financial domain as provided by 

our application partner. This refers not only to the quality of resulted financial analysis but also to 

the ability to process the data in the desired time frames. However, in order to reach the ultimate 

purposes of the project, we needed to also test the behavior of the infrastructure in more complex 

situations, for example the behavior when we notice a larger number of market players or a higher 

number of ticks per second. To capture these goals we used real data sets from the financial 

domain as well as synthetic data sets. The following paragraphs provide their detailed description 

while Table 1 summarizes their main characteristics.  

(I) Real data sets from the Financial Domain 

Our first data sets are composed by real data. This data is provided by SPRING through a custom 

API. SPRING gets the data from established financial data providers. Two data providers have 

been used for this. For an initial small data set, data was gathered from “TeleTrader Software 

GmbH”. In a later stage of the project, the source of data switched to “TaiPan”, which is a product 

of “Lenz und Partner AG”, which provides much bigger and real time data sets. We collected the 

data of a whole day. In particular, we have two data sets: SRD-A that contains the data of 

03/18/2014 and SRD-B that contains the data of 07/08/2015. As shown by the overview in Table 1, 

SRD-A has 125 marker players and 29.2 (average) ticks per seconds, whereas SRD-B has 2830 

market players and 422.7 (average) ticks per second.  

Given the data sets characteristics, SRD-A is the smallest among all real and synthetic data sets, 

since it has the smaller number of market players as well as the less average ticks per second. In 

addition, we consider SRD-B, as it is the representative data set for the financial domain, since it 

covers all important segments of the financial markets and provides high accuracy data. 
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 (a) Spring-RD 

market 

players 

total ticks total 

seconds  

avg. ticks  

per second  

SRD-A 

-- 03/18/2014 

125 2526319 86400 29.2 

SRD-B 

--07/08/2015 

2830 36335876 85960 422.7 

 

 (b) Increasing-MP&TS 

market 

players 

avg. ticks per 

second 

known 

behavior 

I-ALL-A 100 100 X 

I-ALL-B 250 250  

I-ALL-C 500 500  

I-ALL-D 750 750  

I-ALL-E 1000 1000 X 

 

 (c) Increasing-MP 

market 

players 

avg. ticks per 

second 

known 

behavior 

I-MP-A 250 250  

I-MP-B 500 250  

I-MP-C 750 250  

I-MP-D 1000 250  

 

 (d) Increasing-TS 

market 

players 

avg. ticks per 

second 

known 

behavior 

I-TS-A 750 250  

I-TS-B 750 500  

I-TS-C 750 750 
 

 

Table 1: An overview of the collections with data sets used in our current evaluation: 

(a) real world financial data streams; and (b-d) collections of synthetic data sets. 

 (II) Synthetic Financial Data Sets  

As we explained, we also created synthetic data sets in order to investigate the infrastructure’s 

behavior on more complex situations and on various characteristics. For this, we used a data 
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simulator provided by SPRING. This simulator allows to create data sets with custom market 

player numbers, data rate (ticks per second), data length and specific behavior of the market 

player’s data in terms of correlation of the market players. 

Using the simulator, we created three collections that contain data sets with different 

characteristics. In particularly, we varied the following characteristics: (a) the number of market 

players that provide stock information; (b) the number of ticks provided by all market players within 

a second; and (c) the overall comparisons that the correlation algorithms need to compute. Table 1 

provides an overview of the created collections. As show, the first collection, named Increasing-

MP&TS, contains data sets with an increasing number of market players and ticks per second (and 

thus also correlations). In the second collection, named Increasing-MP, we fixed the number of 

ticks per second and modified only the number of players. The overall number of correlations that 

must be computed is increasing along with the number of players. In the third collection, named 

Increasing-Ts, we fixed the number of market players and varied the ticks per second. In this 

collection the number of correlations is the same for all data sets since the correlations depend 

only on the number of market players.  

Figure 18 provides a graphical illustration of the three collections. Each collection, represented by 

a different color, contains a small number of data sets with a varying number of the market players 

and ticks per second (corresponding to the two axis of the plot), as we already explained. The 

number of correlations that must be computed is denoted by the size of the circles as well as the 

number shown inside each circle.  

One important aspect of the generated data sets is that for some of them we known the behavior 

of the market correlations. When executing the particular data sets, we should notice a sequential 

inchange of the correlations between market players from uncorrelated to correlated. I.e., the 

market players are initially uncorrelated, they then become correlated, then uncorrelated, etc. 

Thus, we use these data sets for validating the quality of the corresponding correlation algorithms. 

 

Figure 18: An illustration of the collection of data sets used in our current experimental 

evaluations, which investigates influence of market players, ticks per second and required 

comparisons (denoted by the size of the circles as well as the shown numbers). 

 

Data Set Days Tweets (in 
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Collected millions) 

Apple 14 1.3  

Companies 92 16.8  

Symbols 92 0.88  

Stream 1 5.2  
 

Table 2: Statistics of the four data sets with Social data.  

 

As we explained at the introduction of this section, our goal is to enhance these data sets in the 

upcoming months. In addition to the aspects discussed above, we are currently considering 

accompanying the collections with other data aspects or even configuration attributes of the 

QualiMaster infrastructure execution environment that might influence the overall processing 

performance. With respect to this, we are (currently) investigating the following: 

● Allow market players to provide more than one tick per second (currently we consider one 

tick per market player per second as the maximum). 

● Modify the size of the streaming window. 

● Check the behavior of the infrastructure when processing the data sets on a clustering with 

a varying number of nodes. 

(III) Social Data  

Compared to financial data series, social stream content is very diverse in terms of used 

vocabulary and volume. In order to evaluate the behavior of the social components with respect to 

data stream we collected the following data sets containing Tweets with different characteristics 

(Table 2 provides some more statistics): 

1. The “Stream Dataset” contains a random sample of tweets collected using the Twitter 

streaming API without any filters, this sample represents 1% of the overall written 

messages on Twitter and is not focused towards any topic. 

2. The “Company Dataset” consist of Tweets related to a set of 20 different companies, the 

tweets were collected using the company name as a filter. This dataset represents a 

relative broad dataset since not all tweets may be directly of interest for the stock market. 

3. The “Symbol Dataset” contains only tweets which have a so called symbol in their text. 

Symbols consist of a Dollar Symbol followed by an abbreviation for the company, for 

instance $AAPL for Apple. This Dataset is focused only on tweets which have a direct 

relation to the stock market. 

4. The “Apple Dataset” is a subset of the company dataset and contains only Tweets with the 

word “apple” in it. The tweets were collected around the 10th of September 2014 were 

Apple announced new products like the Apple Watch and the iPhone6. These events have 

a big impact on the social networks increasing the number of tweets from around 50k per 

day to more than 380k on that specific day. 

4.3 Validation Methodologies 

One important aspect of the developed process for financial analytics is that they are executed 

over a cluster and/or reconfigurable hardware. In order to verify and validate such implementations 

we use the following methodologies: 
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 Comparing against verified algorithm (VA): The first methodology is to compare our 

results with the results of a centralized version of the particular algorithms. For this, we plan 

to maintain a repository with the centralized implementations, for instance local directions 

with c-versions of the algorithms or google tests6, and related each implementation to a 

small set of data sets. The goal of this validation methodology is to be able to compare the 

results generated by the QualiMaster algorithm with the corresponding centralized 

implementation. Note that in most cases, the results will be almost the same due to the use 

of approximations or inability to implement the analytics exactly as in the original 

implementation. 

 Expected Behavior (EB): Since we consider validation crucial for the QualiMaster 

infrastructure, we decided to also examine it through a second methodology. Our exact 

plan is to also use data sets in which the behavior is a-priori known, either composed by 

real data or generated by a simulator. Thus, when executing the algorithm over the 

particular data collections we should we see the expected behavior. 

 Manual Verification (MV): A manual verification of the algorithm’s results will be done 

during the expert evaluations. Part of this evaluation will be the expert’s rating on the 

provided results. More details as well as the results will be discusses in upcoming 

deliverables. 

  

                                                

6 https://code.google.com/p/googletest/ 
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5 Performance Results 

We now discuss the performance over the priority pipeline using the collections presented in 

Section 4.2. Note that the goal of our current evaluation is not to demonstrate the full 

capabilities of the QualiMaster infrastructure but rather explain (i) how such an 

infrastructure can be evaluated with respect to validation and performance; (ii) investigate 

which characteristics can influence performance; and (iii) detect possible enhancements 

that can improve the overall infrastructure’s performance7. 

Our plan is to continue the experimental evaluation in the following months. We will first improve 

the infrastructure’s components based on the findings of the current experimental evaluation. 

Then, we will define additional characteristics that should be investigated, as such the number of 

nodes in the cluster and the window size, and extend the evaluation goals, e.g., test the limits of 

our infrastructure. The next QualiMaster experimental evaluation will thus be based on these 

additional characteristics and goals.  

5.1 Hayashi-Yoshida Correlation Estimator  

5.1.1 Validation using Methodologies VA and EB 

As we discussed in Section 0, we can have different methodologies for validating the quality of the 

algorithms included in the QualiMaster infrastructure. The applicable methodologies are: VA, i.e. 

comparing against verified algorithm, and EB, i.e., expected behavior. In order to follow the VA 

methodology, we first implemented the original algorithm in the C language, and then compared 

the results returned from this implementation with the SW implementation as well as the HW 

implementation. The comparison revealed that the results are almost identical; very small 

differences are expected due to variation in the actual implementation of the particular processing. 

 

Figure 19: The average correlation value generated for the I-ALL-A data set (i.e., Increasing-

MP&TS collection) for all market players on each second. The correlation algorithm is correct 

                                                

7 Note that the collection of the computed results from the cluster nodes to a single sink is one of the spotted 
possible improvements since it required too many resources. We will revisit the particular implementation 
soon and thus our evaluations do not consider this part. 
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since the sequential inchange of uncorrelated to correlated market players is the behavior that we 

expect to see when processing the particular data set. 

 

With respect to the EB methodology, we used the data sets for which we had known the results 

that should be generated. As explained in Section 4.2 and illustrated in Table 1, for data sets I-

ALL-A and I-ALL-E (included in the Increasing-MP&TS collection), the expected behavior is to 

notice a sequential inchange of uncorrelated to correlated market players. To check if our SW and 

HW implementations we executed them over the specific data sets, and then computed the 

average of the correlation values returns on each second. These average correlation values per 

second were actually as expected. Figure 20 shows the results of this evaluation over the I-ALL-A 

data set. This data set is for one hour, and thus, the plot shows the average of all returned 

correlation values for each second during this hour. It is easy to see that the results are as 

expected, i.e., market players are uncorrelated and become correlated, they then become 

uncorrelated and so on. 

 

`  

Figure 20: The correlation values generated for the first 500 pairs of market players  over 

the I-ALL-A data set (i.e., Increasing-MP&TS collection).  

 

For completion reasons we also provide the actual correlation values (instead of the average as 

the previous plots). Figure 20 shows the correlation values between market player pairs for the first 

500 computations returned when executing the I-ALL-A data set (i.e., Increasing-MP&TS 

collection). Note that completely correlated corresponds to 1 and completely uncorrelated to -1. 

The market player pairs along with the computed correlation values (as shown in the plot) are 

returned to the applications. And then, the applications present them to the end users. 

5.1.2 Performance Analysis using Collections with Synthetic Data 

The high level goal of the priority pipeline is to compute and generate the correlations between the 

market players using the ticks of the incoming data stream. The pipeline must return the new 

correlations every second, i.e., every second the pipeline returns correlations based on the 
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updated ticks it has received. The following paragraphs discuss the QualiMaster performance over 

our various data collections. The experiments are carried out on the Mikio Cluster. 

(I) Varying the number of market players 

Firstly we evaluated using the data sets from the Increasing-MP collection and the pipeline that 

was using the SW implementation as well as the HW implementation. Table 3 summarizes the 

results. As shown, this collection has 4 data sets with an average of 250 ticks per seconds and an 

increasing number of market players. The correlations that are required to be computed and 

returned per second span from 31125 to 499500. Both implementations are able to return all these 

correlations.  

 

market 

players 

ticks per 

second 

window 

size 

cluster 
nodes 

number of 

correlations 

processing 

with SW 

processing 

with HW 

250 250 30 9 31125 X X 

500 250 30 9 124750 X X 

750 250 30 9 280875 X X 

1000 250 30 9 499500 X X 
 

Table 3: The results of the priority pipeline when computing the correlations over the data 

sets of the Increasing-MP collection using SW and HW implementations.  

 

(II) Varying the number of ticks per second 

The second evaluation was over the data sets of the Increasing-ST collection. Now the market 

players were 750 in all data sets but the average ticks per seconds were increasing from 250 until 

750. Note that since the number of correlations depends on the number of market players, which 

was the same in the data sets, the correlations that are required to be computed and returned per 

second were 280875 in all cases. As shown in Table 4 the SW and the HS implementations are 

able to return all these correlations.  

market 

players 

 ticks per 

second 

window 

size  

cluster 
nodes 

number of 

correlations 

processing 

with SW 

processing 

with HW 

750 250 30 9 280875  X X 

750 500 30 9 280875   X X 

750 750 30 9 280875  X X 
 

Table 4: The results of the priority pipeline when computing the correlations over the data 

sets of the Increasing-TS collection using SW and HW implementations. 

 

(III) Varying the number of market players and ticks per second 

In the third evaluation we used the Increasing-MP&TS collection. This collection has an increasing 

number of players, spanning from 100 to 100, and increasing number of ticks per second, going 

from 100 to 1000. Given the increase in the number of the market players, we also see an increase 

in the number of correlations. As shown in Table 5, the HS implementation returns the correlations 

for all these data sets. However, we see that SW does not reach this goal. More specifically, we 

see that the 20% of the required 499500 correlations are not delivered within the first second, but 



QualiMaster Deliverable D5.3 

Page 48(of 65)  www.qualimaster.eu 

 

in the next second. This extremely small delay will be propagated to the consequent seconds (in 

case the same ticks per second rate continues), contributing to a non-acceptable delay for the end-

user. 

market 

players 

 ticks per 

second 

window 

size  

cluster 
nodes 

number of 

correlations 

processing 

with SW 

processing 

with HW 

100  100  30 9 4950  X X 

250 250 30 9 31125  X X 

500 500 30 9 124750  X X 

750 750 30 9 280875  X X 

1000 1000 30 9 499500   X 
 

Table 5: The results of the priority pipeline when computing the correlations over the data 

sets of the Increasing-MP&TS collection using SW and HW implementations. 

 

 

 

Figure 21: The number of correlations computed over the Increasing-MP&TS collection using 

software and hardware implementations. A possible switching from the SW to the HW 

implementation is when the number of players is somewhere between 800 and 1000. 

Figure 21 shows a graphical illustration of the SW and HW performance for the particular 

collection. Given the QualiMaster infrastructure, we can easily see a possible switching from the 

SW to the HW implementation, when the number of players is somewhere between 800 and 1000. 

Thus, end-users will keep receiving all required correlations within the defined time frame (i.e., 

within one second). Note that this evaluation serves as a simplistic example of adaptation, i.e., it 

should not be perceived as the actual processing capabilities of the SW implementation or of the 

overall infrastructure. 

5.1.3 Performance Analysis using Collections with Real Financial Data 

In addition to the synthetic data sets, we have also evaluated the priority pipeline over the real data 

from the financial domain, i.e., Spring-RD collection. The QualiMaster infrastructure is able to 
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compute the correlations for both data sets, i.e., SRD-A and SRD-B. One issue we detected is that 

the SRD-B data set has a large number of market players for some hours, as shown in Figure 22. 

For instance, around 16:00 we see 1684 market players in 10 minutes, which means that we 

generate 1.4 Million correlations. Although the QualiMaster infrastructure generates these 

correlations, the network does not have the capability to transfer them within the required time. 

More specifically, our network at the Technical University of Crete has bandwidth up to 100 Mbps, 

which is about 12.5 MBs per second. If each tuple that describes a correlation result is about 15 

Bytes, then we need at least a transfer rate about 20 MBs per second for sending all the results to 

sink. Thus, despite the fact that the processing of this real life dataset can be easily achieved by 

the proposed QualiMaster platform, the transfer rate for the existing infrastructure restricts the 

capabilities of the system. In future, we aim at increasing the transfer rates in our network for 

achieving even higher throughput rates. 

 

Figure 22: The number of ticks and market players in the SRD-B data set. 

 

5.2 Sentiment Analysis  

We investigated the running properties of the social analysis processing elements within the 

priority pipeline. The experiments are carried out on the Mikio Cluster. Our goal was on examining 

the following aspects: 

a) Influence of different data characteristics 

In-Parameter: data sets with different properties; Measure: running time behavior  

We carry out experiments with the datasets, as described earlier, in order to observe the 

behavior for a general stream (using the Stream data set), stream focused on implicit 

(using the Company data set) and explicit (using the Symbol data set) mentions of 

companies as well as stream focused on a particular company (using the Apple data set). 

b) Influence of the data volume 

In-Parameter: speed factor; Measure: capacity of each node in the pipeline 

We implemented replay mechanism for twitter data stored on HDFS where we can vary the 

speed of incoming data from maximum speed, where the creation data of the tweets is 
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ignored and the tweets are delivered one by one without any delay, and factors within the 

range 100-750. In this context we measure the capacity of each bolt in the pipeline. 

Another goal of this evaluation is to find out the processing limit of the pipeline. 

c) Influence of the parallelization 

In-Parameter: number of workers; Measure: processing time per tuple through all nodes 

After performing preliminary tests we discovered that particular bolts with heavy processing 

(e.g., SVM, SentiWord or Kleinberg Event Detection) can be positively affected through 

parallelization. To examine this effect in more detail we are varying the number of workers 

within the pipeline. 

5.2.1 Supported Vector Machine (SVM) Based Algorithm 

Sentiment analysis processing was showing similar results for all given datasets. Hence in this 

section we display the results for the experiments b and c. Figure 23 illustrates the SVM 

processing time for a single tweet in dependence of the number of parallel workers and different 

data volume. Showing the processing time for the highest possible volume at about 35 ms per 

tweet. Quadrupling the number of workers halved the processing time and further increase in 

worker number did not lead to significant acceleration, because the tokenization bolt did not deliver 

more results. 

 

Figure 23: Average processing time per Tweet against the number of workers for SVM for different data 

volume. 

Figure 24 illustrates the capacity of the bolts without parallelization (1 worker) for different data 

volumes. With maximum speed the SVM bolt was running on the border of its capacity, whilst 

tokenization bolt could still process five times more tuples. We also measured the average bolts 

capacity for all parallelization setups. As illustrated in Figure 25, on average multiplying the number 

of workers was positively reflected in decreasing of the capacity for both bolts. We could not reach 

the limit of the processing ability in this case even for full speed available. 
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Figure 24: Capacity of all bolts against different 

speed factors for SVM. 

Figure 25: Average Capacity for all parallelization 

setups against different speed factors for SVM. 

 

5.2.2 Sentiment Word Network (SentiWordnet) Based Algorithm 

In the next step we performed similar performance evaluation of the SentiWordnet Algorithm based 

component. Figure 4 illustrates the SentiWordNet processing time for a single tweet in 

dependence of the number of parallel workers and different data volume. Showing the processing 

time for the highest possible volume at about 710 ms per tweet. Here increasing the number of 

workers was only slightly positively reflected in running time for speeds smaller maximum. 

 

 

Figure 26: Average processing time per Tweet against the number of workers for SentiWodnet for 

different data volume. 

Figure 27 illustrates the capacity of the bolts for the pipeline without parallelization (1 worker) for 

different data volumes. With maximum speed the SentiWordNet bolt was running about 40% more 

of its full capacity similar to part of speech tagger, which was running almost at full capacity 0.8. 

The tokenization bolt and part of speech tagging bolt could process around 50% more tuples.  
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Figure 27: Capacity of all bolts vs different speed 

factors for SentiWordnet. 

Figure 28: Average Capacity for all parallelization 

setups vs speed factors for SentiWordnet. 

 

Similar to SVM, we measured the average bolts capacity for all parallelization setups also for 

WentiWordnet. As illustrated in Figure 28, on average multiplying the number of workers was 

positively reflected in decreasing of the capacity for all bolts, especially for tokenization and POS 

bolt where capacity goes down to 0.1 and 0.18 respectively compared to SentiWordNet bolt where 

capacity goes down to about 0.6 but still about 40% higher than other bolts.  

In a summary, using the parallelization, both algorithms could process the data even when it was 

delivered at the maximum speed. According to the evaluation results our pipeline can process 

tweets delivered more than 750 faster as original.          

5.3 Event Detection  

5.3.1 Moving Average Based Algorithm 

The processing of Moving Average shows similar results for the Symbol data set and the Company 

data set but different results for the Apple data set. All experiments were conducted with one 

worker. We did not consider parallelization as the Event Detection component did not use full 

capacity for a speed factor other than 0. 

Table 6 shows the overall combined latency of all bolts, the capacity of the Event Detection Bolt 

(ED) and the capacity of the Stock Parser Bolt for each of the three datasets that were used for 

testing. The measures were taken approximately 15 minutes after the start of the pipeline. Latency 

and capacity (Figure 29: Average Capacity against different speed factors for Moving Average) for 

the Apple dataset are noticeably lower than for the other datasets because the majority of the 

tweets in the dataset do not contain stock symbols and are ignored. 

 

 

 

 

 



Deliverable D5.3 QualiMaster 

© QualiMaster Page 53(of 65)  

 

Dataset Overall Latency Capacity ED Bolt Capacity SP Bolt 

Symbol 4.342 0.985 0.297 

Company 4.965 0.957 0.174 

Apple 1.273 0.01 0.014 
 

Table 6: Latency and capacity overview for Moving Average. 

 

 

Figure 29: Average Capacity against different speed factors for Moving Average. 

 

 

Dataset Overall Latency Capacity ED Bolt Capacity SP Bolt 

Symbol 0.861 0.36 0.57 

Company 0.931 0.345 0.545 

Apple 1.7 0.008 0.012 
 

Table 7: Latency and capacity overview for Kleinberg. 

 

 

Figure 30: Average Capacity against different speed factors for Kleinberg. 
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5.3.2 Kleinberg Algorithm 

Compared to the results for the Moving Average Based approach the results for the Kleinberg 

Algorithm show lower latency and capacity. The measured values for the Apple dataset are again 

lower compared to the other two datasets. The results are depicted in Table 7. 

To summarize we can state that the Event Detection component using one of the two algorithms 

implemented so far could process incoming tweets at a rate at least 750 times higher than original 

speed, even when we assume that most of the tweets contain stock symbols. 

5.4 Performance of changing the parallelization 

In this section, we discuss an evaluation of the operations for changing the parallelism in a pipeline 

through the design we introduced in Section 2.3. As described in D4.2, we performed an initial 

validation of the implementation on a local cluster, i.e. on the same machine used for developing. 

That evaluation showed that increasing as well as decreasing the parallelism of an Executor can 

be done in less than 200 ms. Actually, this duration depends on the actual length of the already 

items. Similarly, migrating an executor consists of two phases of less than 200 ms for performing 

the changes in both Workers separated by the time needed to pull the assignment from the 

Zookeeper in the respective Supervisors and the Workers. However, the local cluster mode can 

just give a first impression whether an implementation might work, but it cannot give an indication 

of the actual performance, e.g., on the machine we used the pipeline had a throughput of around 

80 items per second. 

 

a) 

 

b) 
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Figure 31: Splitting an Executor running the analysis pipeline with a) 1 Worker and b) 3 Workers. 

For this evaluation, we basically rely on the same experimental setting as described in D4.2, i.e., 

the cluster and the analysis pipelines described there in order to identify better the actual effects. 

Further, we focus on the pipeline utilizing simple Java algorithms and evaluate how changing the 

parallelization of a pipeline in terms of splitting an executor as well as migrating an executor under 

the given requirements affects the output data streams. As already done in D4.2, we selected 1000 

items / second as input rate. We equipped the family element with 3 tasks (to enable changes of 

the parallelization) as well as data source and sink with 1 task each. During the experiment, we run 

the pipeline with 1 Worker, and, alternatively, with 3 Workers to compare the effect of an 

overloaded situation (1 Worker) and at a bounteous distribution (3 Workers). During all executions 

of the pipeline, Storm assigned one Executor to the family element, i.e., initially the 3 Tasks of the 

family element run in the same Executor on the same Worker. 

In the first part of the experiment, we analyze the splitting behavior, i.e., after some setup time, 

we request the splitting of the Executor of the family element into two Executors. Figure 31 

illustrates the throughput during the experiment running the pipeline on a single Worker as well as 

on 3 Workers. In both cases, the split of the executors is indicated by the green marker. The 

respective command is sent by the evaluation script to the QualiMaster Coordination Layer and 

executed there utilizing the Storm modifications. As discussed in Section 2.3, this leads to the 

creation of two further Executors taking over the work of the original Executor, a queue transfer 

among the old and the new Executors and the shutdown of the old Executor. Analyzing the 

recorded information shows that while executing the entire pipeline on a single Worker as depicted 

in Figure 31 a), the enactment leads to a stop of the processing for 10 ms and a decrease of the 

throughput to 22 items / second for roughly 1 second duration. After that time, Storm is processing 

the items transferred from the queues as indicated by the peak so that the pipeline goes on 

processing normally after 4 seconds. Running the pipeline with 3 Executors under good resource 

conditions as shown in Figure 31 b) does not indicate major effects in the throughput. Also there 

the records show a processing interrupt of around 10 ms, Storm can immediately process the item 

backlog of the queues.  

In the second part of the experiment, we focus on migrating an Executor between two Workers. 

In this specific setting, we select (automatically) a cluster node, which is not used by Storm for 

executing the pipeline, i.e., we migrate the processing and grant more resources. Here, the 

analysis script issues the command for creating a new Executor and migrating the execution. This 

is performed by the Coordination Layer utilizing the Storm modifications and leads to the creation 

of a new (additional) Worker, a respective Executor and the termination of the original Executor. 

Figure 32 a) illustrates the throughput of the analysis pipeline running on 1 Worker. This actually 

leads to a short reduction of the throughput by around 40% for the duration of one second and a 

respective peak for processing the queued item backlog for another second. In detail, the analysis 

records show three interruptions in sequence (372ms, 21 ms and 31 ms) when the target JVM for 

the migration is created and the queued items are transferred. Akin to the split of the Executor in 

the first case, a Migration of an Executor when running the pipeline with 3 Workers does not lead 

to a major impact as shown in Figure 32 b), actually a decrease of the throughput by 3 items / 

second and an processing interrupt of 5 ms.  

We conclude that the design for changing the parallelization of processing elements discussed in 

Section 2.3 clearly outperforms the rebalance operation of Storm, which led in our experiments to 

an interruption of the processing for several seconds. In a tight resource situation changing the 

parallelization can lead to recognizable effects, which are comparable to other enactment patterns 
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(e.g., the improved switching design that we will evaluate in the next section). If underused or 

unused resources are available, changing the parallelization can be done with in a gap-free 

manner. 

 

a) 

 

b) 

 

Figure 32: Migrating an Executor running the analysis pipeline with a) 1 Worker and b) 3 Workers. 

5.5 Performance of switching 

In this section, we evaluate the performance of the improved switching design discussed in Section 

2.4. As in Section 2.4, we will focus on the entrance queue here. For analyzing the design, we 

utilized the same basic abstracted form of the test pipeline as in D4.2. But for the subtopology-

based algorithms, we added the intermediary Spout between the family node and the original 

subtopology due to the design of the entrance queue (as shown in Figure 11 a). Furthermore, in 

order to keep the same execution environment as in D4.2 we performed this experiment also on 

the SUH Storm cluster composed of one Storm Nimbus node and five Supervisors. Thus, except 

for the additional Spout in the subtopology, we remained other environmental settings the same as 

in the D4.2 deliverable to achieve a consistent comparison between the original and improved 

switching as analyzed below.  

Figure 33 illustrates the throughput while switching among sub-topology-based algorithms with a 

certain delay in terms of the improved switching of the queue transfer design as discussed above 
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(Figure 33 a) and the original switching discussed in D4.2 (Figure 33 b). In order to create a 

meaningful comparison with the original switching, in this experiment, the environmental setup 

remains the same as described in D4.2. Analogous to the experiment in Section 3.3.4.4 of D4.2, 

we wait until the pipeline reaches a stable processing 1000 items per second, and then enact also 

a delay of 30 ms on SubTopology1, wait further 10 seconds switch then to SubTopology2. As 

illustrated in Figure 33 a), we first decelerate the first running algorithm SubTopology1 by the 

delay enactment at timestamp 1440493397 s (the first triangle highlight). The effect on the 

throughput of the delay enactment is akin to the previous experiment in D4.2 (Figure 33 b), which 

is reduced to 33 items per second. However, the effect on the throughput of the switch enactment 

is different due to the queue transfer in the improved switching.  

 (a) 

 

(b) 

 

Figure 33: Throughput while switching among sub-topologies (delay) based on (a) the improved 

switching of queue transfer, and (b) the original switching in D4.2. 

As indicated by Figure 33 a), we enact a switch at timestamp 1440493407 s (the second triangle 

highlight). In the previous experiment (Figure 33 b), after the switch the algorithm SubTopology1 

which is actually supposed to be terminated, continues to process its backlog of items and (in the 

experiment) runs out until the pipeline stops as shown in the timing diagram of the active algorithm 
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in the Figure 33 b). This obviously leads to an inconsistent processing result in the end, not to 

mention being a gap-free enactment (requirement R1).  

Using the new design of entrance queues (Figure 33 a), we transfer all not yet fully processed 

items from the preceding algorithm to the current active algorithm in the right sequence before the 

switch, terminate the preceding algorithm properly as well as guarantee that there is no item lost. 

Thus, we can see from the timing diagram of the active algorithm along the execution period in the 

Figure 33 a), the preceding subtopology-based algorithm is being terminated and the new 

subtopology algorithm starts after the switch. In addition, we also record the actual switching time 

in this experiment based on the improved switching, i.e., from the timestamp when the switch 

signal arrives to the timestamp when the last item in the preceding SubTopology1 is being 

transferred and the family node starts to direct data items to the new SubTopology2. Ultimately, 

the result presents an extreme improvement on the switching time from 23s until the end of the 

pipeline execution in the original switching to 250 ms in the new design. However, the switching 

time duration depends on the number of items being queued in the previous subtopology. We will 

perform further experiments with new design on the actual subtopologies used in the QualiMaster 

project to figure out whether this imposes any limitation. As a potential countermeasure, we 

consider the admission control design on the entrance node based on the capability of the actual 

algorithms as mentioned in Section 2.4. However, this will require support from the Adaptation 

Layer, probably also from the algorithm provider, e.g., deriving the algorithm capacities and, thus, 

is in line with the further research in WP4 on algorithm profiles for controlling the adaptation.    

5.6 Performance of the Data Management Layer 

For the evaluation of the Data Management HBase component performance we focused on the 

writing speed analysis within the full pipeline. This component is able to store into HBase any kind 

of serializable Java objects. We are using Apache Avro for the serialization and deserialization 

purposes. In this analysis we compare the time needed for serialization and storage of objects. 

During object serialization and storage through a Storm topology, several parameters can 

influence the resulting performance. The main factors we analyzed in this context are the number 

of worker/tasks for each component, the size of the objects getting serialized and the use of the 

integrated HBase buffering methods. 

When buffers the buffer of the Data Management is set to disabled, the bolt is directly performing 

the serialization and writes the serialized object into the corresponding table. Each of the “puts” is 

sent to the region server one at a time. This behavior creates some overhead and a lot of 

messages, however the advantage is that the content of the messages is immediately available in 

HBase. In case the buffer is enabled a “put” is performed not directly, but only after the Buffer is 

filled, all data is send to the region server at once.  

  Buffer On Buffer Off 

Tweets Per 

Second 

Capacity 

HBase  

Capacity 

Serializer 

Capacity 

HBase  

Capacity 

Serializer 

100 0.033 0.132 0.632 0.115 

250 0.039 0.235 1 0.214 

500 0.076 0.427 X x 

1000 0.260 0.749 x X 

Table 8: Influence of HBase Buffers. 
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For our first test we compared the influence of this parameter when writing complete Tweets to 

HBase. A Tweet contains several information regarding the user as well as a lot of Meta 

information regarding the tweet. Even if the message itself is only 140 characters long the size of 

an average Tweet object is 2.6kB. Table 8 shows the results for without and with Buffer for only 1 

task user per HBase and serialization. 

The Latency in this scenario was about 1.430 ms for the serialization and 0.361 for HBase with 

active Buffer. The capacity measured by Storm is defined as (Number of Executions * average 

execute latency) /measurement time. Thus, a value close to 1 indicates, that the bolt is running at 

its maximum. 

When using the buffer the bottleneck for the serialization is the Avro serialization. The HBase 

writing speed was around 4 times faster. This would indicate that the construction of a Subtopology 

for the Data Management bolt where one HBase bolt is connected to 4 serializers would lead to an 

optimized performance.  The maximum number of tweets we could write with one task for 

serialization was about 1100 Tweets per second. Without using buffer the performance of the 

HBase writing Bolt is significantly worse. It was not possible to process 250 Tweets per second. 

The measured maximum was around 160 Tweets per second. In scenarios were it is not possible 

to accept the higher latency when using the buffer we could use several HBase bolts in parallel in 

order to increase the performance.  

 

 3 Worker (1+2) 6 Worker (2+4) 12 Worker (4+8) 

Tweets Per 

Second 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

1000 0.387 0.547 0.032 0.229   

2500 0.466 0.902 0.681 0.608 0.256 0.593 

5000 X x 1 0.806 0.754 0.962 

10000 x x x x 1 1 

Table 9: Writing performance for Tweets. 

 

Based on the previous results we decided to use HBase along with the buffer for scenarios where 

many objects need to be saved in a short period of time and without the buffer when a very low 

latency for the writing to HBase is required. For analyzing the scalability of the infrastructure we 

performed same experiments but with a larger number of Workers and Tasks.  Based on a set of 

experiments we found that a ratio 4 to 1 on tasks and 2 to 1 on workers leads to a relative equal 

capacity for serializing and storing of the data. So 4 worker means 4 worker and 4 tasks for HBase 

and 8 worker and 16 tasks for the serialization (Table 9). 

We see that for the maximum performance areas the capacity of the two bolts is relative close, 

indication, that both are running at maximum performance. With 6 Workers we archived a 

maximum of 3235 Tweets per second. The Maximum with 12 Worker was not much higher around 

3700 Tweets per second. Overall these numbers show that the storing of tweets in HBase would 

be possible with just one worker, since the Twitter API does not allow more than around 200 

Tweets per second to be received.  
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 3 Worker (1+2) 6 Worker (2+4) 12 Worker (4+8) 

Messages 

Per Second 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

2500 0.031 0.542 - - - - 

5000 0.108 0.994   - - 

10000 x x 0.143 1 0.163 1 

20000 x x x x x x 

Table 10: Writing Performance for Messages. 

For evaluating the influence of the size of the stored objects we performed a similar experiment to 

the ones carried out before with much smaller objects, representing a stock market message 

consisting of a stock Symbol, a timestamp and a value. Since these messages are much shorter 

and easier to serialize we expect a higher throughput compared to the original tweets. Since the 

serialization of these messages requires less computing we choose the same amount of workers 

and tasks for the serialization and HBase bolts. The results are shown in Table 10. In comparison 

to the tweets, the processing of the short messages requires even less performance from the 

HBase bolts, the maximum number of messages we could process were around 6900 per second. 

 

 3 Worker (1+2) 6 Worker (2+4) 12 Worker (4+8) 

Messages 

Per Second 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

Capacity 

Hbase 

Capacity 

Serializer 

10000 0.025 0.657 - - - - 

20000 0.160 0.920 0.051 0.689 - - 

40000 x x 0.223 1.0 0.061 0.8 

80000 x x x x 0.06 1 

Table 11: Writing Performance for Messages on L3S Cluster. 

 

We also evaluated how the performance changes when running on a different cluster. As expected 

the number of messages that can be processed increases when running the experiment on the 

L3S cluster (Table 11). On the L3S server we were able to store up to 43 Million messages per 

second when using 8 Workers for serialization and 4 Workers as HBase connector. 

Overall our evaluation shows that the processing speed for storing elements inside HBase is fast 

enough for the scenarios we are aiming at, in a next evaluation we will also analyses the read 

speed and the latency.  
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6 Conclusions and Next Steps 

The infrastructure presented in this deliverable provides a solid basis for the configuration, running 

and adaptation of stream processing pipelines operating both on financial data and on data from 

the Social Web. For unfolding the full power of the QualiMaster approach further extensions of the 

infrastructure are still required. For guiding this process of stepwise extension in the coming 

months, we use a demand-driven approach: We define further relevant processing pipelines and 

derive further infrastructure requirements from them.  

6.1 Upcoming Financial Processing Pipelines 

In collaboration with the application partners in the project further pipelines have been defined in 

the project. In addition to the usefulness of the computation in support of systemic risk analysis, 

the following criteria have been considered in the design of the pipelines: 

 Incorporating options for configuration for contributing to the targeted financial analysis 

playground; this especially includes the design of modular, re-usable pipeline components 

(processing elements). 

 Working towards new and useful ways of combining financial and social web data 

streams in a synergetic way. 

 Providing hooks for showcasing the adaptation support, which is developed in the 

project. 

 Providing novel ways for supporting systemic risk analysis. 

 Exploiting and extending the approaches already developed in the project for the first 

QualiMaster priority pipeline, in order to ensure efficient use of resources. 

Following these guidelines, we have defined the pipeline that are described below.  

Dynamic Graph Pipeline 

 

 

Figure 34: A graphical illustration of the dynamic graph pipeline. 
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This pipeline, shown in Figure 34, targets the "Too big to fail" aspect of systemic risk analysis. It 

builds upon the correlation computation developed for the first QualiMaster Priority pipeline 

(described in D5.1), extending it with alternatives for computing correlation such as mutual 

information, thus creating a rich processing element family. The pipeline leverages the correlation 

information for creating a dynamic graph, which uses the dynamically computed correlations for 

creating edges in the graph. Such graphs provide the basis for further, more in-depth analysis of 

the relationships between market players. In the pipeline, a dynamic "hub" analysis is foreseen for 

this purpose. This dynamically identifies strongly interlinked elements ("hubs"). The identification of 

such elements is expected to contribute to a better and dynamic understanding of the market 

players, which are "too big to fail". The figure shows a high-level overview of the pipelines applied 

to the financial stream. A similar pipeline can be built for the social web data stream using other 

measures for computing correlation between market players, e.g., the co-mentions of in tweets. 

Time Travel Pipeline  

The next pipeline, shown in Figure 35, is based on the insight that it might make sense to inspect 

previous similar situations, in case a (seemingly) critical situation comes up. The pipeline can be 

seen as a modification and extension of the dynamic graph pipeline described above. For enabling 

efficient "time travel" information about the evolution of the graph has to be stored, in order to be 

able to go back to earlier states of the graph. In more detail, we assume that the user specifies a 

time interval and that the pipeline based on this input will compute the graph evolution within this 

time interval. This can for example be used to replay the graph evolution in this time. In the 

pipeline, this task is translated into (a) adequate graph storage (e.g., regular snapshots and 

intermediate change history), (b) a time travel component, which retrieves the adequate graph 

information based on the user input and creates a graph update stream from it, and (c) analytics 

on top of this evolving graph, which can re-use the component from the original pipeline. 

 

 

Figure 35: A graphical illustration of the time-travel pipeline. 
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Focus Pipeline 

Figure 36 shows the focus pipeline, which is expected to help users focus on the parts of the 

correlation graph that they consider important. For this purpose the pipeline is extended with a 

graph filtering component, which can reduce the graph based on user input. In addition, we 

foresee to use additional signal for current market player focus from social web data. This will be 

based on event detection from a social web data stream, event classification and recommendation 

of further market players to put in the focus graph. We are currently considering a semi-automatic 

approach, where focus changes are suggested to the user. The figure below also considers a 

more automated approach, where graph filtering is directly influenced by the results of event 

detection and classification (dotted blue line). A further envisioned use of event detection (and 

prediction) is in pipeline adaptation (red dotted line). The pipeline could, for example, be adapted 

higher data load expected as an effect of the detected event.  

 

Figure 36: A graphical illustration of the subgraph focusing pipeline. 

Transfer Entropy Pipeline 

 

Figure 37: A graphical illustration of the transfer entropy pipeline. 
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While the previous pipelines rely on a symmetric measure for the relationship between market 

players, such as correlation and mutual information, with the pipeline shown in Figure 37, we plan 

to investigate the asymmetric measure of transfer entropy. This has been identified by the 

application partners as an interesting additional analysis perspective. It will be combined with 

clustering (optional) and with a visualization for directed graphs. 

Evolution Analytics & Prediction Pipelines 

The storage of graph history, as it has been described in the Time Travel pipeline, opens up 

interesting additional analysis and processing opportunities. Figure 38 shows a pipeline that goes 

towards this direction. It can, for example, be used to learn pattern from past developments and to 

use them to predict future pattern, when similar situations are observed again. The approaches 

and algorithms for such pattern recognition and prediction still require further elaboration and will 

be handled later in the project.  

A second kind of predictive pipelines can be based on an analysis of social web data. Here, it is 

planned to use another type of analysis for making predictions: Explicit predictions and 

announcement for events will be extracted from social web data and analyzed for their predictive 

power, checking, for example, for sufficient support. 

 

Figure 38: A graphical illustration of the evolution analysis and prediction pipeline. 
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complex data structures such as graphs, multi-pipeline adaptation, measurements and evaluation 

for more complex pipelines). Furthermore, we will refine the adaptation approaches, develop 

components in support of the pipelines and will perform further technical evaluations, which will be 

partially reported in D6.2  
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