
 

 

          www.qualiMaster.eu  

 

 

 

 

QualiMaster  

A configurable real-time Data Processing Infrastructure 
mastering autonomous Quality Adaptation 

 

Grant Agreement No. 619525 

 

 

 

Deliverable D5.1 

 
 

 

Work-package WP5: The QualiMaster Adaptive Real-Time Stream Processing 
Infrastructure 

Deliverable  D5.1: QualiMaster Infrastructure Set-up 

Deliverable Leader TSI 

Quality Assessors  Stefan Burkard, Oliver Pell 

Estimation of PM spent 5 PM 

Dissemination level PU 

Delivery date in Annex I July 31, 2014 

Actual delivery date August 1, 2014 

Revisions 4 

Status Final 

Keywords: Infrastructure, Architecture 

 



QualiMaster Deliverable D5.1 

Page 2 (of 44)  www.qualimaster.eu 

 

Disclaimer 

This document contains material, which is under copyright of individual or several QualiMaster 
consortium parties, and no copying or distributing, in any form or by any means, is allowed without 
the prior written agreement of the owner of the property rights.  

The commercial use of any information contained in this document may require a license from the 
proprietor of that information.  

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster 
consortium warrant that the information contained in this document is suitable for use, nor that the 
use of the information is free from risk, and accepts no liability for loss or damage suffered by any 
person using this information. This document reflects only the authors’ view.  

The European Community is not liable for any use that may be made of the information contained 
herein.  

 

© 2014 Participants in the QualiMaster Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 3 (of 44)  

 

  

List of Authors 

Partner Acronym 

 

LUH 

 

SUH 

 

TSI 

Authors 

 

Mohammad Alrifai 

Claudia Niederée 

Holger Eichelberger 

Cui Qin 

Ekaterini Ioannou 

Evripidis Sotiriadis 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



QualiMaster Deliverable D5.1 

Page 4 (of 44)  www.qualimaster.eu 

 

Table of Contents 

Executive summary......................................................................................................................... 5 

1 Introduction .............................................................................................................................. 6 

1.1 Requirements driving the infrastructure design .................................................................. 6 

1.2 The QualiMaster Priority Pipeline ....................................................................................... 8 

1.3 Structure of the deliverable .............................................................................................. 11 

2 The QualiMaster Infrastructure ............................................................................................... 12 

2.1 Overview .......................................................................................................................... 12 

2.2 Flow between layers and tools ......................................................................................... 13 

3 External Systems incorporated in QualiMaster ....................................................................... 16 

3.1 Distributed real-time Computation System ....................................................................... 16 

3.2 Distributed Storage and Batch Processing ....................................................................... 17 

3.3 Reconfigurable Hardware ................................................................................................ 18 

3.4 Flexibility by Configuration ............................................................................................... 20 

3.5 Monitoring Resource Consumption .................................................................................. 24 

4 Infrastructure Layers and Tools .............................................................................................. 26 

4.1 Configuration.................................................................................................................... 26 

4.1.1 Adaptation management tool ..................................................................................... 26 

4.1.2 Pipeline Configuration tool ......................................................................................... 27 

4.1.3 Platform Administration tool ....................................................................................... 27 

4.1.4 Configuration Core .................................................................................................... 28 

4.2 Start-up time .................................................................................................................... 28 

4.3 Runtime ........................................................................................................................... 28 

4.3.1 Data Management Layer ........................................................................................... 29 

4.3.2 Execution Layer ......................................................................................................... 30 

4.3.3 Monitoring Layer ........................................................................................................ 30 

4.3.4 Coordination Layer .................................................................................................... 31 

4.3.5 Adaptation Layer ....................................................................................................... 32 

5 Current status and Future plans ............................................................................................. 34 

5.1 Current Status .................................................................................................................. 34 

5.2 Execution Environment .................................................................................................... 39 

6 Conclusions ............................................................................................................................ 41 

References ................................................................................................................................... 42 

 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 5 (of 44)  

 

Executive summary  

This deliverable reports the set-up and current status of the QualiMaster 

infrastructure. We present the infrastructure in terms of its set-up, its architecture 

and interactions between the components of the architecture. These primarily 

include the processing elements, pipeline execution, reconfigurable hardware, and 

monitoring and adaptation mechanisms. We also provide an overview of the 

external systems incorporated in the QualiMaster infrastructure and discuss the 

advantages/functionalities that we expect these systems will provide. Furthermore, 

we report on the execution environment that is currently available to all the project 

partners and discuss the current status of the infrastructure as well as the related 

scheduled future plans.  This report is just part of the deliverable. The QualiMaster 

infrastructure core as it is described in this deliverable is running as part of the IT 

infrastructure of TSI and is available for the further developments in the project.  

 

D5.1 is closely related to deliverable D1.1, since D1.1 provided the (initial) 

requirements that drove the set-up of the infrastructure. Also note that D5.1 is the 

first deliverable of WP5 and it will be followed by deliverable D5.2 (Basic 

QualiMaster Infrastructure), D5.3 (QualiMaster Infrastructure V1), and D5.4 

(QualiMaster Infrastructure V2). These future WP5 deliverables will document our 

efforts on improving and extending the QualiMaster infrastructure. 

  



QualiMaster Deliverable D5.1 

Page 6 (of 44)  www.qualimaster.eu 

 

1 Introduction 

This deliverable describes and discusses the QualiMaster infrastructure. This 

includes the set-up of the infrastructure as well as the interactions between the 

incorporated layers, tools, and external systems, such as a real-time stream 

processing framework or reconfigurable computing hardware. Our presentation of 

the infrastructure also provides an overview of the external systems we utilize and 

their advantages and functionalities. Another important aspect discussed in this 

document is the current status of the realization of the infrastructure and future 

plans.  

This report is just part of the deliverable. The QualiMaster infrastructure core as it is 

described in this deliverable is running as part of the IT infrastructure of TSI and is 

available for the further developments in the project 

The description of the QualiMaster infrastructure, as provided in this deliverable, 

mainly depicts the current status that will evolve during the project. Thus, it could be 

that some of the layers, tool and external systems will change due to the constant 

monitoring of alternatives, e.g., decisions for execution systems. These extensions 

and modifications will be reported in deliverables D5.2, D5.3, and D5.4.  

In the following paragraphs we discuss the requirements considered for creating 

the presented QualiMaster infrastructure (Section 1.1) followed by a description of 

the QualiMaster Priority Pipeline (Section 1.2), which will be the development 

priority during the next months. 

1.1 Requirements driving the infrastructure design  

Guiding our efforts for creating the design and set-up of the QualiMaster 

infrastructure and its architecture we have considered and analyzed the 

requirements collected in WP1. More specifically, we used deliverable D1.1 that 

presents a collection of requirements for the QualiMaster project and the 

QualiMaster Applications for systemic risk analysis in the financial domain. The 

D1.1 deliverable also presents the actors who will interact with the applications, an 

initial description of individual use cases that encode the interactions among 

components, requirements for the data streams to be processed and the algorithms 

to be applied in a data analysis pipeline for systemic risk calculation. 

 

One of the main requirements defined in deliverable D1.1, which we have 

considered during the set-up of the QualiMaster infrastructure, is the real-time data 

stream processing. QualiMaster will receive real-time data, e.g., financial data that 

is typically composed of numbers and Web data that is composed of more complex 

data types. This data is expected to go through real-time analysis, such as systemic 

risk analysis, with the results given to the QualiMaster applications.  



Deliverable D5.1 QualiMaster 

© QualiMaster Page 7 (of 44)  

 

 

As explained in the D1.1 deliverable, QualiMaster must be able to perform large-

scale stream processing and accelerate a wide range of data intensive algorithms. 

To assist this goal, the consortium will exploit hardware-based processing. 

However, this requires considering hardware-based implementations of (parts of) 

the financial processing algorithms, being able to combine software- and hardware-

based processing, and using the kernels (i.e., reconfigurable hardware) in an 

optimal manner. 

 

A requirement related to the real-time data stream processing is the necessity to 

adapt the processing to the needs and the runtime demands of the actual data 

streams. This basically implies the need to incorporate autonomous activities for 

maintaining the actual quality of the data analysis and the efficiency of the use of 

the physical computing resources. This quality-aware adaptation needs an 

architecture that supports the monitoring of the execution state, quickly deciding 

and enacting adaptation decisions. 

 

The analysis algorithms for systemic risk require historical data of the specific 

domain. This means that QualiMaster needs to be able to batch process the 

historical data. Integrating historical data with specific data analysis processes 

requires not only being able to maintain and access the data, but also having the 

capability to incorporate the analysis of static data sources during the real-time 

stream processing. 

 

It is intended that the QualiMaster infrastructure will integrate various systems that 

need to work together and adapt to the current processing needs (as explained 

above). In order to save time, effort, computational resources, and to support the 

uptake of the platform in other setting or domains we need flexibility through 

configuration, i.e., being able to easily setup the platform itself as well as the data 

analysis to be executed on the platform. 

 

Relation to Existing Projects.  Part of the requirements introduced in deliverable 

D1.1 can be satisfied by existing projects. The consortium has detected two such 

projects, namely TrendMiner1 and Juniper2.   

 

TrendMiner focuses on providing real-time methods for cross-lingual mining and 

summarization of large-scale stream media. The project’s case studies include 

financial decision support, which resembles the high level goal of QualiMaster. 

                                                

1 http://www.trendminer-project.eu/ 

2 http://www.juniper-project.org/ 



QualiMaster Deliverable D5.1 

Page 8 (of 44)  www.qualimaster.eu 

 

However, the focus of QualiMaster goes beyond this, and more specifically on 

enabling autonomous proactive, reflective, and cross-pipeline adaptation, 

exploitation of families of approximate algorithms with different quality/performance 

tradeoffs, and achieving scalability using reconfigurable hardware. Juniper focuses 

on providing efficient and real-time exploitation of large streaming data sources and 

stored data. The project uses financial and web streaming case studies, which 

seems similar to the domains used in QualiMaster. The QualiMaster consortium is 

currently building up a connection with the main actors from the Juniper project, in 

order to learn more about their project results and subsequently how the results 

and insights from the Juniper project can be used in the QualiMaster project.  

 

We are interested to exploit some results from these projects, such as the batch 

processing tools for Twitter text analysis that will be developed in TrendMiner.  For 

this reason, the consortium will monitor the progress of these projects and 

investigate following up on interesting aspects. 

1.2 The QualiMaster Priority Pipeline 

To prioritize our efforts with respect to the infrastructure development and 

implementation within the first year of the project, the consortium decided to define 

and focus on a QualiMaster Priority Pipeline. The goal is to have all the 

functionalities included in this priority pipeline running on the QualiMaster 

infrastructure by the end of the first year, i.e., December 2014. It is expected that 

this integrative way of prioritizing the work based on a joint priority pipeline will 

foster integration and will help in discovering important integration challenges early 

in the project. 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 9 (of 44)  

 

  

 
Figure 1: Illustration of the QualiMaster priority pipeline. 

 

Creating a priority pipeline ensures that there are early demonstrators, which go 
beyond showing individual component functionality. This is expected to be helpful 
for discussing the QualiMaster approach with other experts as well as for 
presenting the novel capabilities of QualiMaster to other interested parties, such as 
the customers of the SMEs involved in the QualiMaster project, or regulatory bodies 
in the financial domain.  
 

Having those goals in mind, the selection and design of the priority pipeline 

considerate the following desirable properties: 

 

● The pipeline must emphasize the most challenging integration tasks: it 

should be adequate for showing the interconnection between hardware- and 

software-based stream processing. 

● Processing should exploit and combine data streams from the financial 

domain and from the Social Web. 

● It should be driven by the needs of the targeted QualiMaster application 

scenarios. 

● It must illustrate the combination of processing stored data with real-time 

streams.  

● It should show a first example of dynamic pipeline adaptation.  

 



QualiMaster Deliverable D5.1 

Page 10 (of 44)  www.qualimaster.eu 

 

Incorporating these properties, we have defined a first version of the priority 

pipeline (shown in Figure 1). The preliminary QualiMaster Priority pipeline will 

consist of the following steps: 

1. Data stream ingestion: 

a. Ingestion of the Twitter stream 

b. Ingestion of the financial data stream  

2. Data Stream Preprocessing and Filtering: There are two such steps, one 

for financial data stream (Step 2a) and another for the social media stream 

(Step 2b). 

3. Social Media Stream: Here, it is planned to do real time sentiment analysis 

(e.g., for key market players) and also include the accumulated sentiment 

information (historic data). The idea is to collect sentiment trends, which 

might play a role in assessing and predicting financial developments. 

4. Correlation Computation: In this step, correlations between multiple market 

players are computed. This step will make heavy use of the high 

performance processing aspect of the QualiMaster infrastructure. 

5. Result Processing & Combination: This step contains post-processing of 

the results computed from the two streams and the activities for result 

combination. 

6. Result Visualization: In this step, the results of the analysis of the financial 

data stream and the social Web stream will be visualized in a way that this 

will support the decision making of the financial stakeholders. 

7. Pipeline adaptation:  For dynamic adaptation, it is planned to “switch” one 

part of the computation from software-based processing to hardware-based 

processing. This will be based on measuring the pipeline performances and 

making an on-the-fly adaptation decision. Two possible switching 

mechanisms are currently under discussion: a) exploiting a hardware-based 

SVM (Support Vector Machines) or LDA (Latent Dirichlet Allocation) in 

Twitter analysis, and b) performing part of the correlation computation in 

reconfigurable hardware.  

 

Note that the described priority pipeline is an implementation and integration plan 

targeting the end of the first year of the project. The first individual parts for the 

pipeline are currently under development. Considerable implementation and 

integration work is still required, but it is expected that the planned priority pipeline 

(maybe still with some minor modifications) will be completed by the end of the 

year.   

 

As a preparation step for the QualiMaster priority pipeline, two bootstrapping 

pipelines (comparable to “hello world” programs) have been defined to assist in the 

testing of the created and configured infrastructure. These basic pipelines are 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 11 (of 44)  

 

described in Section 5.1 and are part of the infrastructure setup that has been 

completed for D5.1.  

1.3 Structure of the deliverable 

The remaining sections of this deliverable are as follows: Section 2 provides an 

overview to the QualiMaster infrastructure, including a discussion of the data flow 

among the infrastructure tools and layers. Section 3 presents the external systems 

that we have incorporated in QualiMaster and explains the benefits and 

functionalities we expect to have given these systems. Section 4 provides the 

details of the infrastructure layers, including the configuration, startup time, and 

runtime lifecycle phases. Section 5 provides a discussion about the current status 

of the infrastructure along with the created execution environment, and finally 

Section 6 provides conclusions for this deliverable and gives an overview of the 

future plans. 

 

  



QualiMaster Deliverable D5.1 

Page 12 (of 44)  www.qualimaster.eu 

 

2 The QualiMaster Infrastructure  

In this section we present and discuss the infrastructure for QualiMaster. We begin 

with an overview of the infrastructure (Section 2.1) and then discuss the flow 

between the infrastructure’s layers (Section 2.2). 

 

 

 

Figure 2: Illustration of the QualiMaster Infrastructure. 

2.1 Overview 

 

Figure 2 shows an illustration of the QualiMaster Infrastructure. The QualiMaster 

input can be: (i) real-time data streams, and (ii) historical data that the infrastructure 

either maintains in local stores or receives by connecting to remote stores. In the 

QualiMaster application cases, real-time data will come from stock markets or Web 

data, such as Twitter, while historical data will encompass stock market data and 

social media data as required by the individual analysis pipelines. In particular, 

SPRING will provide a remote data store on historical financial data, which cannot 

be directly managed by the infrastructure due to license restrictions that apply for 

the financial data. The goal of the infrastructure is to perform real-time processing 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 13 (of 44)  

 

of the received data, for example to perform systemic risk analysis of the received 

stock markets. 

 

The QualiMaster Infrastructure has three lifecycle phases.  

1. The configuration time that utilizes the infrastructure tooling specifying the 

configuration for a certain application setting (e.g., financial data processing) 

and for the pipelines to be executed. The infrastructure tooling consists of the 

Pipeline Configuration tool (see D1.1, Section 5.1), the Adaptation Manager 

tool (see D1.1, Section 5.2), and the Platform Administration tool (see D1.1, 

Section 5.3). The ultimate action at configuration time is the derivation of an 

instantiated version of the QualiMaster platform and the pipelines to be 

executed in order to maximize the runtime performance.  

2. The startup of the QualiMaster platform. This lifecycle phase includes initial 

(re)configuration of hardware, e.g., upload of the laid out hardware 

algorithms, the deployment and startup of programs controlling the 

communication with the reconfigurable hardware (the so called “host” in 

Maxeler infrastructures), and the startup of the (configured) real-time data 

processing pipeline and the historical data processing.  

3. The runtime lifecycle phase that involves the actual processing of the 

streaming data. We have two processing options: (i) autonomous that 

performs the enactment of adaptation actions determined by the reactive, 

proactive, or (automatic) reflective adaptation, and (ii) manual that performs 

the enactment of manual decisions or actions suggested by the reflective 

adaptation but with manual approval.  

 

Please note that in Section 4 we provide a detailed presentation and discussion of 

the layers and tools composing each of these three lifecycle phases. 

2.2 Flow between layers and tools  

Consider now that the QualiMaster infrastructure is already running, i.e., we are in 

the runtime lifecycle phase. A QualiMaster user has specified his/her desired 

financial analysis processes along with the stocks he would like to monitor, for 

example the ones described by the user scenarios presented in Section 3.2 

“Application Use Cases for Systemic Risk Assessment for Institutional Financial 

Clients” of deliverable D1.1.  

 

To perform the processing encoded in such a financial analysis, the QualiMaster 

infrastructure involves a number of layers. These layers and their responsibilities 

are: 

● Data Management Layer - manages historical data relevant to the actual 

running pipelines. Here, we distinguish between the management of raw data 



QualiMaster Deliverable D5.1 

Page 14 (of 44)  www.qualimaster.eu 

 

(input tuples to a pipeline) and the management of processed data (including 

final results). Raw data may be used as input to several pipelines running on 

the QualiMaster platform. Thus, storing raw data is a common task in order to 

avoid repeated storage of the same information. However, storing all raw 

input data may not be feasible in all application cases. Thus, the QualiMaster 

infrastructure will provide support to tailor the input aspect of the Data 

Management Layer in terms of configuration options, e.g., to disable storage 

for a certain data source or to select the storage strategy. Regarding 

processed data, the Pipeline Designer will be able to specify as part of the 

pipeline design, how and what data shall actually be stored, e.g., in terms of 

generic built-in processing elements, which pass the related data tuples to 

the Data Management Layer for storing. 

● Execution Layer - includes the execution systems that perform the actual 

execution of the data analysis algorithms, either in terms of a real-time 

stream processing topologies on Apache Storm, the execution of hardware-

based algorithms on specialized hardware, such as MAX dataflow engines, 

or the execution of data analysis algorithms on historical mass data in a 

batch manner using Apache Hadoop. 

● Monitoring Layer - (distributed) surveillance of the execution layer in order 

to obtain readings of quality parameters for the actual execution of pipelines. 

This layer unifies and - if required - aggregates monitored information from 

different sources, such as generated or instrumented code, and specific 

modules realized for the individual execution systems of the execution layer. 

● Coordination Layer - enacting adjustments to the data analysis pipelines at 

runtime, such as selecting a specific data processing algorithm from an 

algorithm family. One adjustment may imply further enactments, e.g., when 

switching the execution from software to hardware, two execution systems 

are involved. Enacting changes efficiently across multiple execution systems 

is handled by the coordination layer. Furthermore, the coordination layer may 

use changes in monitoring through the Monitoring Layer at runtime, e.g., to 

change monitoring priorities. 

● Adaptation Layer - adaptive decision making based on monitoring the actual 

execution of pipelines (as provided by the Monitoring layer). Decisions made 

by this layer are enacted by the Coordination Layer. 

 

In the following paragraphs, we elaborate on the most important interactions among 

the individual layers. 

 

The pipeline encoding the desired financial analysis is initially given to the 

Coordination Layer. The Coordination Layer processes and deploys the pipeline 

accordingly (e.g., a JAR file to Apache Storm or a .maxj file to the dataflow engines) 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 15 (of 44)  

 

and sends the appropriate commands to control the execution in the Execution 

Layer, e.g., starting the pipeline. The Execution Layer is responsible for executing 

these commands using distributed real-time computation system, such as Apache 

Storm, on the processing nodes it incorporates, such as computer cluster nodes 

and High Performance Computing (HPC) reconfigurable nodes. The reconfigurable 

nodes are server-class HPC systems with reconfigurable dataflow compute engines 

(DFEs), which can be integrated in a cluster infrastructure. Note that the execution 

also involves receiving the streaming data and handling the final results, which is 

performed through the Data Management Layer. 

 

The Monitoring Layer is constantly observing the processing performed by the 

Execution Layer as well as the performance of the systems it uses (e.g., 

reconfigurable hardware) and collects statistics that are maintained locally in the 

Monitoring Layer. The collected information is given to the Adaptation Layer for 

deciding reactive, proactive, or (automatic) reflective adaptation. More specifically, 

the Adaptation Layer will analyze the information received by the Monitoring Layer 

and (if needed) requests enacting the commands on the pipelines encoding the 

specific financial analysis via the Coordination Layer. The modified commands are 

passed to the Execution Layer for processing on the actual execution systems. 

 

  



QualiMaster Deliverable D5.1 

Page 16 (of 44)  www.qualimaster.eu 

 

3 External Systems incorporated in QualiMaster  

We now provide a discussion of the required functionalities that are provided by 

external systems and will be utilized by the QualiMaster infrastructure. For each 

functionality we provide a discussion of the available systems and explain the 

reasons for which we selected to incorporate the specific external system. 

3.1 Distributed real-time Computation System  

QualiMaster needs to enable real-time computation over a large number of data 

streams. Such functionality is currently available by a few existing streaming 

frameworks. The most popular frameworks for real-time computation are 

StreamMine3G3, Yahoo! S44, StreamMapReduce [BMK+11], and Apache Storm5. 

The QualiMaster infrastructure will incorporate Apache Storm – the following 

paragraphs discuss the reasons for this selection. 

  

The S4 system by Yahoo, which is short for “Simple Scalable Streaming System” 

[NRNK10], is a stream-based cloud computing platform. It offers a simple dataflow-

based programming interface for deploying concurrent algorithms over large 

clusters of nodes. Upon deployment of a streaming algorithm, the processing 

elements included in the graph representing the algorithm are instantiated at 

various nodes. S4 routes the events that are to be processed to these nodes. 

 

Both Storm and S4 are released under Apache license, and are both plain Java-

based, i.e., platform-independent. They are both at incubation phase, although 

quite mature. We have selected Storm over S4 for two main reasons:  

a) Storm has a substantially more vibrant community (both developers and 

users) than S4. For example, the developers list of Storm had 3564 

messages in the first semester of 2014, whereas the corresponding S4 

mailing list had only 37 messages in the corresponding period. (A similar 

ratio was observed comparing the users mailing lists of the two computation 

systems.) We consider this to be important for QualiMaster for two reasons. 

First, it is much more probable to get support in a project with a vibrant 

community and with a large user base, in case something goes wrong, e.g., 

there is a bug in either Storm or S4. Second, any possible contributions 

made by QualiMaster will be more influential, as they will be applicable to a 

much larger user base. 

b) Even though the S4 project had substantial momentum in 2011 and 2012, 

the last version of S4 is released more than one year ago (June 2013). Storm 

                                                

3 https://streammine3g.inf.tu-dresden.de/trac 
4 http://incubator.apache.org/s4/ 
5 https://storm.incubator.apache.org/ 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 17 (of 44)  

 

on the other hand has regular updates, with its last version released less 

than a month ago (June 2014). This is attributed to the much larger user 

base of Storm. 

 

Two other possible systems for real-time computation are StreamMine3G [MFB11] 

and StreamMapReduce [BMK+11]. StreamMine3G focuses on efficient support for 

fault tolerance through active replication. All the Event Stream Processing (ESP) 

operators are replicated, so that any failure of an operator is masked by a replica. 

StreamMapReduce relies on an extension of the MapReduce programming model 

to allow processing of unbounded event streams and it enables higher 

parallelization by allowing an overlap between the map and reduce phases.  

 

StreamMine3G and StreamMapReduce are closed-source and constructed by a 

few individuals, without a backing community. In addition, deploying onto different 

platforms is easier with Storm since this is written in plain Java, which is platform-

independent. 

 

3.2 Distributed Storage and Batch Processing  

According to the user requirements (D1.1), the QualiMaster infrastructure (in 

addition to real-time streams) must support the integration of historical data sources 

and data processing. This also includes queries over historical data (REQ-DS3). 

Therefore, QualiMaster will provide the possibility to store the raw data coming from 

live streams of both financial markets and the social web. In addition, the 

infrastructure will enable the storage of the processed data (i.e., results from real-

time processing) in the QualiMaster storage system for future analysis and 

visualization tasks. As part of the configuration, the pipelines designer will specify 

which data should be stored and in which format (possibly as part of a data 

processing element that defines the type and structure of tuples that should be sent 

to the Data Management Layer for storage). 

YARN6 is one of the widely used solutions for efficient and distributed storage batch 

processing of large datasets across clusters of computers. It scales up from single 

servers to thousands of machines, each offering local computation and storage. 

Distributed storage is realized by its distributed file system called HDFS and 

distributed and parallel processing is realized by its implementation of the 

MapReduce framework7. Hadoop also detects and handles failures at the 

                                                

6 http://hadoop.apache.org/ 
7 http://research.google.com/archive/mapreduce.html 

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://research.google.com/archive/mapreduce.html


QualiMaster Deliverable D5.1 

Page 18 (of 44)  www.qualimaster.eu 

 

application layer, so delivering a highly-available service on top of a cluster of 

computers, each of which may be prone to failures. 

There are several Apache projects that provide the Hadoop project with additional 

support for more efficient and scalable storage and processing of big data. These 

include: 

● HBase8: a distributed, scalable, big data store. It is considered as the 

Hadoop NoSQL database implementing Google's Bigtable model9. 

● Pig10: a high-level data-flow language and execution framework for 

parallel computation. 

● Mahout11: a Scalable machine learning and data mining library. 

 

Due to its maturity and wide acceptance in the industry as well as its rich portfolio of 

accompanying tools, the QualiMaster infrastructure will deploy Hadoop YARN as 

the main framework for distributed storage and batch processing of web and 

financial datasets. However, during the course of the project, the deployment of 

other emerging alternatives will be investigated. 

One promising alternative for Hadoop’s MapReduce implementation is the new 

emerging Apache Spark project12, which provides a low-latency, memory-based 

computation engine for big data. It provides a simple and expressive programming 

model that supports a wide range of applications, including ETL, machine learning, 

stream processing, and graph computation. Spark can be used as a standalone 

solution or as part of the Hadoop system.  

3.3 Reconfigurable Hardware  

Field Programmable Gate Arrays (FPGAs) are programmable devices used for 

several purposes, such as network systems and high performance computing. 

FPGAs were introduced in the early 80s and were targeted for the execution of 

several kinds of computations. Some of these computations are image processing 

[HLA98, M98, LLR+99], automated target recognition [RH97], data encryption 

[EP00, P00, LCTL00], factoring large numbers [KM00], cryptography applications 

[DPR00, LMWL00], video processing [KBD03, PVH99], string pattern matching 

[WL99], discrete mathematics problems [SDA00, DSE98], FFT implementations 

[SAA95], data compression [HSM00], speech recognition [SDD00], and arithmetic 

applications [PR97, LC97]. 

                                                

8 http://hbase.apache.org/ 
9 http://research.google.com/archive/bigtable.html 
10 http://pig.apache.org/ 
11 http://mahout.apache.org/ 
12 http://spark.apache.org/ 

http://hbase.apache.org/
http://research.google.com/archive/bigtable.html
http://pig.apache.org/
http://mahout.apache.org/
http://spark.apache.org/
http://hbase.apache.org/
http://research.google.com/archive/bigtable.html
http://pig.apache.org/
http://mahout.apache.org/
http://spark.apache.org/


Deliverable D5.1 QualiMaster 

© QualiMaster Page 19 (of 44)  

 

 

FPGAs consist of several structural elements, such as lookup tables, block 

Random Access Memories (RAMs), digital signal processing units, and many 

buses for interconnection. These elements can be combined in several different 

ways to implement complex structures in hardware, therefore allowing the 

execution of any kind of computation. This flexibility allows high parallelism in data 

processing, which can offer performance with significant speedup against 

conventional computers, even if the FPGAs clock rate is about one tenth of a 

conventional processor.  

  

Computations with FPGAs for High Performance Computing (HPC) 

  

High performance computing platforms focus on accelerating applications. One of 

the best solutions to the acceleration problem is the use of hardware accelerators 

that augment processors with application specific coprocessors. Reconfigurable 

computing is the basis of many modern coprocessor designs. 

 

Reconfigurable computing is a modern computer architecture trend that combines 

the software with high performance reconfigurable hardware fabrics. The main 

benefits of heterogeneous reconfigurable computing systems are given by 

offloading the computationally intensive part of the algorithm onto a hardware-

based platform. 

 

They offer many major capabilities in terms of High Performance Computing (HPC): 

accelerating application specific processes, scalability, high-bandwidth, and low 

power. 

 

Reconfigurable platforms can implement any number of different architectures. One 

of the most promising for achieving high performance is mapping applications to 

highly parallel dataflow architectures, such as those implemented by Maxeler 

Dataflow Engines (DFEs). These utilize an explicitly parallel programming model, 

making it easy to access both deep pipeline parallelism and data vector parallelism, 

providing high performance. Reconfigurable platforms also offer high adaptability, 

since the chips can be reconfigured to implement different algorithms on demand. 

One restriction of all reconfigurable architectures lies in the number of resources. 

However, this problem seems to be solved in modern FPGA-based platforms, such 

as Maxeler dataflow computers, with the use of multiple reconfigurable dataflow 

engines that work in parallel. 

 

Next, the data transmission rate is a key factor for the HPC systems. High-end 

reconfigurable platforms, such as Maxeler platforms, offer a combination of 



QualiMaster Deliverable D5.1 

Page 20 (of 44)  www.qualimaster.eu 

 

reconfigurable logic and high-bandwidth, as well as low-latency interfaces to both 

the main processor and the system’s memory. Maxeler systems can support many 

GB/s of bandwidth from the CPU to the DFEs, between DFEs (via a proprietary 

MaxRing interconnect) and between DFEs and the network (via dedicated 40Gbit 

Ethernet links). 

 

Last, another important factor of reconfigurable computing systems is the low 

power consumption per unit of performance. Although computer clusters comprise 

low cost general purpose CPUs, large clusters require large data centers that are 

power hungry and expensive to operate over time. On the other hand, 

reconfigurable platforms have proved that they can offer orders-of-magnitude better 

energy consumption per computation versus conventional computing. 

 

Concluding, reconfigurable computing is an important tool for high performance 

computing, because it achieves impressive performance advantages with low 

power consumption. On the other hand, the resources of the reconfigurable 

platforms can be a restriction when a certain level of scalability and parallelization is 

needed by an application. Thus, high-end platforms coupled with multiple 

reconfigurable devices and high data transmission links have been selected. 

 

In summary, reconfigurable computing systems provide a powerful approach to 

quickly perform highly complex calculations, in particular over real-time data 

streams. The financial domain, i.e. the application and demonstration domain in the 

QualiMaster project, embraced high-performance reconfigurable computing, e.g., 

for the realization of complex and high-frequency processing, which is closely 

integrated into major stock exchanges. The QualiMaster project aims at identifying 

complex bottleneck streaming calculations for the software-based systems on the 

financial and the machine learning domain. These calculations will be mapped on 

reconfigurable computing platforms, which will be part of a unified cluster 

infrastructure of computer nodes, exploiting the capabilities of reconfigurable 

computing for real-time adaptive data stream processing. 

3.4 Flexibility by Configuration 

In QualiMaster, flexibility aims at supporting a stakeholder in easily defining the 

analysis tasks to be carried out by the QualiMaster platform, in particular to define 

their own analysis tasks using their own algorithms. Furthermore, at a larger scale, 

such a flexible configuration enables and supports a stakeholder to apply the 

QualiMaster solutions even to other application domains. However, optimizing the 

QualiMaster platform for the execution is a complex task which requires detailed 

knowledge about different interconnected elements ranging from the execution 

systems, the monitoring up to the adaptation layer.  



Deliverable D5.1 QualiMaster 

© QualiMaster Page 21 (of 44)  

 

 

Software Product Line Engineering (SPLE) [LSR07, PBL05, CN02] is a successful 

approach to mass customization, configuration, tailoring, and reuse of software. 

SPLE is widely and successfully applied in different industrial settings, such as 

embedded systems or information systems and helps in managing complexity of 

configurations, reducing time-to-market and reducing development efforts. 

Basically, a Software Product Line (SPL) does not aim at developing a single 

software system, rather it develops a family of similar, but differently configured 

systems. Coping with the complexity of such configurations, e.g., several thousands 

of decisions with interdependencies are reported in literature [BRN+13], is one of 

the key topics in SPLE. Deriving a specific member from a family includes the 

specification of its configuration, the validation of the configuration, and, finally, 

turning the configuration into artifacts, e.g., modifying, deleting or generating 

configuration files or source code as well as compiling and packaging the derived 

product. 

 

In order to be applied successfully, SPLE requires specific activities in all phases of 

the software lifecycle, such as architectural patterns, implementation techniques, or 

adequate testing strategies. In addition, SPLE specific activities are performed, 

such as product line scoping (determining and focusing the reuse on the most 

beneficial aspects), or variability management (modeling and managing the 

configuration opportunities and their interdependencies). In summary, SPLE allows 

to efficiently and flexibly configure, tailor and reuse software systems using 

adequate methods, models and tooling. While traditional SPLE focuses on pre-

runtime customization, Dynamic Software Product Lines (DSPL) [HHPS08] aim at 

runtime (re-)configuration and is one approach to implement adaptive systems. 

 

In QualiMaster, traditional SPLE methods and techniques are applied to flexibly 

tailor the QualiMaster platform to different domains or application areas. This 

implies a specific variability model, i.e., a configuration meta model, of the 

configuration opportunities in QualiMaster ranging from the hardware to execute the 

pipelines up to the specification of the adaptivity and the pipelines to be executed. 

Based on a specific configuration meta model, the configuration of a particular 

application environment for the QualiMaster platform can be described and the 

platform as well as the pipelines to run on that platform can be instantiated. To 

ease the configuration task for infrastructure users, this instantiation step is done 

automatically and, further, enables to optimize the platform, such as avoiding 

unnecessary monitoring. However, describing runtime mechanisms, such as the 

adaptation in terms of a configuration, requires that runtime information can be 

used in the specification before the actual runtime of the platform. In other words, 

specific configuration options are left open when determining the configuration to 



QualiMaster Deliverable D5.1 

Page 22 (of 44)  www.qualimaster.eu 

 

startup the QualiMaster platform, but filled with actual values and validated at 

runtime. 

 

EASy-Producer13 is a SPLE tool, which provides support for the development of 

SPL, and, in particular, facilities the most recent trends and concepts in SPLE, such 

as large-scale product lines, (composed) multi Software Product Lines, hierarchical 

product lines, or staged configuration and instantiation. The particular focus of 

EASy-Producer is to support these rather complex concepts in an easy-to use way 

[EKS11]. This is realized by different views, in particular simplified views for the 

standard engineering user and expert views for advanced users with 

comprehensive background knowledge [EEKS14]. The foundation for the current 

version of EASy-Producer was developed in FP7 INDENICA14, while other projects 

such as the nationally funded15 project ScaleLog allowed for extension, 

maintenance and validation. EASy-Producer is open source software under Apache 

2 license. 

 

Within the range of activities to be carried out in product line engineering, EASy-

Producer provides flexible techniques for: 

● Variability modeling, i.e., specifying the configuration options as well as 

dependencies among them in terms of configuration constraints. This is 

mainly done in IVML, the INDENICA Variability Modeling Language [IND+12, 

IVML], a powerful language, which provides concepts for developing SPLs 

and DSPLs. 

● The configuration of a particular system based on a given configuration meta 

model (the variability model). While this can be done in IVML (expert view), 

EASy-Producer offers simplified graphical editors to describe and validate a 

configuration. As part of this, a sophisticated reasoning mechanism is used to 

validate a configuration but also, if possible, to derive values via 

dependencies. 

● Turning a configuration into artifacts of the configured product, e.g., 

configuration files or adapted source code. In contrast to many (research) 

approaches, EASy-producer allows to specify this product instantiation 

(sometimes also called product instantiation) using the Variability 

Instantiation Language (VIL) [VIL]. 

 

Basically, EASy-Producer is an Eclipse plugin and designed to support software 

product line engineers. An illustration of the high-level logical architecture of EASy-

Producer is depicted in Figure 3. In addition, EASy-Producer can be used as a 

                                                

13 EASy stands for Engineering Adaptive Systems 
14 www.indenica.eu 
15 Funded by the German Ministry for Economics and Energy (former BMWi) 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 23 (of 44)  

 

standalone tool, e.g., to integrate with an existing build process, or, as an even 

smaller version, as a runtime library. This is achieved in the EASy-Producer 

architecture by strictly separating those parts that require full Eclipse support 

(workspaces, user interfaces, JFace as shown in the upper part of Figure 3) from 

the parts can perform their work based on some runtime classes of Eclipse (lower 

part of Figure 3). In particular, this separation is supported by the realization of the 

three languages (IVML, VIL, VTL), where the underlying framework for domain-

specific languages xText16 generates the language infrastructures in terms of an 

Eclipse-dependent and an Eclipse-independent part. Moreover, the standalone 

version as well as the runtime libraries of EASy-Producer can even work without a 

(full) Eclipse/OSGi framework. 

 

 

Figure 3: Logical architecture of EASy-Producer. 

 

Several further tools have been developed by the SPLE community (see e.g., 

[ALR14]), among them commercial tools such as pure::variants [B13] or BigLever 

Gears [K08] as well as a large set of research tools, such as DOPLER [RHE+10] or 

FMP [CHE05]. However, tools that can support capabilities required by QualiMaster 

are either prohibitively expensive or not available to the public (DOPLER), while 

other relevant tools typically focus on one aspect of SPLE, mostly variability 

modeling, and, thus, do not support flexible instantiation. Furthermore, using a tool 

developed by one of the QualiMaster partners eases integration and ensures 

support and maintenance. 

 

In QualiMaster, the Eclipse version of EASy-Producer will mainly be used by SUH 

in order to provide the variability model and the product derivation specification for 

the QualiMaster platform. In order to ease the configuration of the QualiMaster 

platform for domain experts, specific application frontends on top of the standalone 

version of EASy-Producer (the Configuration Core layer of the QualiMaster 

application) will be developed and connected to the repositories. In addition, the 

                                                

16 www.eclipse.org/Xtext/ 

Variability

Modeling 

(IVML)

Variability

Instantiation

(VIL/VTL)

Variability

Modeling UI

Variability

Instantiation UI

Configuration

Modeling UI

Eclipse UI / JFace

OSGi / 

Eclipse 

Runtime

EASy-

Producer 

Core

JRE / JVM

Reasoning

Core

Ec
lip

se
 

d
ep

en
d

en
t

EASy-Producer 

Eclipse integration

Ec
lip

se
 

in
d

ep
en

d
en

t



QualiMaster Deliverable D5.1 

Page 24 (of 44)  www.qualimaster.eu 

 

runtime version of EASy-Producer will be used for enacting adaptations through the 

Coordination Layer and in the Adaptation Layer, in particular for constraint 

checking. 

3.5 Monitoring Resource Consumption  

SPASS-meter17 [ES14, ES12] is a flexible resource monitoring framework for Java 

programs. It monitors the execution time, memory consumption, system load, file as 

well as network transfer of a system under monitoring (SUM), and provides access 

to the collected information at runtime. It can also observe the state of individual 

heap variables. Therefore, SPASS-meter relies on program instrumentation, i.e., 

the insertion of additional code into the SUM in order to gain access to relevant low-

level information. In contrast to related monitoring approaches such as Kieker 

[RHM+08], Opencore [JINS] or the built-in tools of Java (please refer to [ES14] for a 

detailed analysis), SPASS-meter enables monitoring of user-defined program 

units, such as individual components, or services. In the QualiMaster 

infrastructure, this specific capability enables us to access the resource 

consumption information of individual data processing algorithms, a prerequisite for 

the adaptive execution of data processing pipelines. SPASS-meter was partially 

developed by FP7 INDENICA and is open source software under Apache 2 license. 

 

However, providing information on individual parts of system requires some form of 

runtime program analysis, as the observed resource consumption must be 

collected and aggregated while the SUM is running side-by-side (as illustrated in 

Figure 4). To cope with this potential overhead, SPASS-meter can be configured in 

a flexible manner, e.g., which resources shall be collected on which part as well as 

whether parts shall be monitored in isolation or including their dependent libraries. 

Furthermore, SPASS-meter can dynamically trace execution paths in order to focus 

the instrumentation on really relevant parts. However, runtime program analysis 

itself is a resource consuming task and, thus, may lead to a certain overhead. In 

experimental analyses [ES14, ES12], we have shown that the runtime overhead of 

SPASS-meter using the SPECjvm2008 benchmark suite [SPEC] as SUM in 

comparison to Kieker and OpenCore is good (less than 3% processing power 

overhead and less than 0.5% memory overhead).  

 

 

                                                

17 SPASS is the acronym for Simplifying the develoPment of Adaptive Software Systems and SPASS-meter 

is one of the foundational building blocks of our work on that topic. In German, the term “Spass” means “fun” 
and points to the tons of fun we had while realizing this tool. 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 25 (of 44)  

 

 

Figure 4: Architecture overview of SPASS-meter. 

 

 

In the QualiMaster infrastructure, we will focus our work on SPASS-meter for 

monitoring the real-time data processing algorithms as well as for dynamically 

changing the monitoring / instrumentation on request at runtime. Therefore, 

SPASS-meter will be optimized wherever needed in order to comply with the real-

time data processing requirements of QualiMaster. Furthermore, it will be integrated 

as a mediator between the systems in the Execution Layer (to be instrumented) 

and the Monitoring Layer. The integration with the Monitoring Layer will happen as 

one of the data presentation layer plugins on top of the strictly layered SPASS-

meter architecture as shown in Figure 4. 

  

Probe collection layer

Data aggregation layer

Data presentation layer

JMX

WildCAT

JRE / JVM

Native 

data

gatherer

…

Instrumentation layer

QualiMaster data

processing elements

Operating system

QualiMaster 

Monitoring Layer



QualiMaster Deliverable D5.1 

Page 26 (of 44)  www.qualimaster.eu 

 

4 Infrastructure Layers and Tools 

In this section we now describe the layers and tools that compose the QualiMaster 

infrastructure. We group them per lifecycle phase, thus we start with the tools used 

during the configuration (Section 4.1), continue with start-up time (Section 4.2), and 

finally describe the layers used during runtime (Section 4.3). 

4.1 Configuration 

During the configuration phase, the QualiMaster infrastructure is used to define 

basic settings for the QualiMaster platform, i.e., the definitions of the pipelines to be 

executed as well as the adaptation space for the pipelines is determined. The 

related information is collected by three (conceptual) tools, stored in a configuration 

model and used to derive / instantiate the specific QualiMaster platform. During 

platform derivation, the execution systems are tailored for optimized execution of 

the configured pipelines. Further, the monitoring of the execution system is 

enabled. Ultimately, software artifacts are instantiated (generated or modified), 

which represent the actual execution, such as the pipeline representation, e.g., for 

Storm the topology definition as well as the Storm specific adaptive processing 

elements (bolts) linking to the algorithm families. 

4.1.1 Adaptation management tool 

In the configuration phase of the QualiMaster, the Adaptation Management Tool 

(AM tool) provides a user interface and related tooling on top of the Configuration 

Core to define and specify the adaptive behavior of the QualiMaster infrastructure 

and the pipelines to be executed. It relates to the implementation of the use cases 

of the Adaptation Manager (see D1.1, Section 5.2), which defines the quality 

characteristics of processing elements (UC-AM1) and pipelines (UC-AM2) as well 

as reactive, proactive, and reflective adaptation rules (UC-AM3 and UC-AM4). 

Furthermore, it will provide support for monitoring the execution of adaptation rules 

(UC-AM5), i.e., information and functionality that might also be reused in an overall 

administrative dashboard. In particular, the adaptation properties and specifications 

by the AM tool will define the acting behavior of the Adaptation Layer at runtime. 

The AM tool uses the interfaces of the common Configuration Core in order to 

configure the quality characteristics of the processing elements, the pipelines, and 

the (reactive, proactive, and reflective) adaption rules. From the Configuration Core, 

the AM tool will derive the Configuration Meta Model as well as the functionality to 

validate the settings. The configuration results will be stored in the counterpart 

repository (Processing Element Repository or Pipeline Repository), which will keep 

the information for other configuration tools and the pipeline instantiation and 

support the adaptation modifications at runtime. 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 27 (of 44)  

 

4.1.2 Pipeline Configuration tool  

The Pipeline Configuration tool (PC tool) is used by the Pipeline Designer for 

managing the QualiMaster pipelines. This tool includes functionally for defining a 

new pipeline, modifying an already created pipeline, and deleting a pipeline (see 

D1.1 and use cases UC-PD1, UC-PD2, and UC-PD3). The information related to 

pipelines, such as the data flow, will be maintained in the Pipeline Repository. 

  

Note that a pipeline is composed by processing elements. Each element will be 

executed by the Execution layer and not necessarily by the same execution 

system. For example, we might have elements in pipelines that are defined for 

being executed by the reconfigurable hardware and other elements on Apache 

Storm. 

4.1.3 Platform Administration tool  

The Platform Administration tool (PA tool) provides the capabilities for setting-up, 

installing, and managing the QualiMaster infrastructure. In the following, we list the 

key functionalities of the PA tool, which are derived from the use cases of the 

Platform Administrator as described in Section 5.3 of D1.1. In more detail, the PA 

tool will offer the following functionalities:  

 Administration of the platform quality parameters: The PA tool provides an 

interface for defining and modifying the (low-level) quality parameters for the 

platform and the methods to measure them. Example parameters are the 

platform throughput (in terms of processed tuples/sec) or the resources 

consumed (in terms of memory and CPU resources). This part of the PA tool 

implements use cases UC-PA-1 and UC-PA-2. 

 Administration of the data processing elements: The PA tool provides an 

interface to the QualiMaster repository of data processing elements. The 

interface will enable the platform administrator to add, modify and remove 

data processing elements from/into the repository. This involves data 

processing elements that are implemented on reconfigurable hardware as 

well. These functionalities realize the use cases UC-PA-3, UC-PA-4, UC-PA-

5 and UC-PA-6.  

 Configuration of the platform for software and hardware-based execution: 

The PA tool provides the capabilities for configuring the platform for a certain 

execution environment or when new (reconfigurable) hardware is made 

available. This implements the use cases UC-PA-10 and UC-PA-11. 

 Configuration of the pipeline sources and sinks: Using the PA tool, the 

platform administrator will be able to specify the technical information 

required for the sources and sinks of the pipelines, such as IP addresses, 

access credentials etc. The PA interface enables the administrator to define 



QualiMaster Deliverable D5.1 

Page 28 (of 44)  www.qualimaster.eu 

 

new sources and sinks, modify existing ones or remove them. This 

functionality implements use cases UC-PA-7.  

4.1.4 Configuration Core  

The Configuration Core provides the basic capabilities for flexibly customizing, 

tailoring, and instantiating the QualiMaster platform. Basically, this consists of the 

EASy-Producer tool (see Section 3.4). Among a wide range of interfaces of EASy-

Producer, the Configuration Core will offer mechanisms to load the QualiMaster 

configuration meta model in terms of IVML, to load and store configurations, to 

validate configurations and to reason about them and to instantiate a given 

configuration using the VIL instantiation specification for QualiMaster. The 

configuration meta model as well as the instantiation specification are considered to 

be part of the Configuration Core, but they can be adapted on need, in particular by 

very experienced users. 

4.2 Start-up time  

During the startup of an instantiated QualiMaster platform, the required resources 

are allocated and prepared for the execution. In particular, the reconfigurable 

hardware is configured by downloading FPGA configuration files. Then all 

execution systems are powered up, i.e., the startup of Apache Storm and Hadoop. 

Thereby, the systems may be instrumented as needed, i.e., monitoring probes are 

inserted in order to inform the Monitoring Layer about resource consumption. 

Furthermore, additional Monitoring modules connect to the Monitoring Layer. 

Finally, the initial algorithms to be used for execution are selected and algorithm 

parameters are determined if needed by the Adaptation Layer. The process of 

starting up the QualiMaster platform and enabling it to perform its designated 

processing tasks as configured in the pipeline definition (stored in the pipeline 

repository) is coordinated by the Execution Layer. 

4.3 Runtime 

The processing of the streaming data, i.e., the execution of the pipelines for the 

financial analysis, is performed by the QualiMaster infrastructure during the runtime 

phase. The performed processing is either manual that performs the enactment of 

manual decisions/actions suggested by the reflective adaptation but after manual 

approval, or autonomous that performs the enactment of adaptation actions 

determined by the reactive, proactive, or (automatic) reflective adaptation. 

 

This phase uses a small set of layers, and more specifically: the Data 

Management Layer for handling the input and resulted data, the Execution Layer 

for invoking the systems that perform specific processing tasks, the Monitoring 

Layer for colleting statistics related to the processing, the Adaptation Layer for 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 29 (of 44)  

 

making adaptive decisions of individual pipelines by analyzing the statistics of the 

monitoring layer, and the Coordination Layer that enacts the actions that take 

place by the adaptation layer. In the following paragraphs, we provide detailed 

description for each of the layers used during the runtime phase. 

4.3.1 Data Management Layer 

The Data Management Layer is responsible for handling the QualiMaster data. This 

includes the data that are given by the applications as well as the results that are 

generated by the processing performed by the infrastructure. As illustrated in Table 

1, in the QualiMaster application cases the QualiMaster infrastructure will work with 

data from stock markets as well as data from Social Web. In both cases, the data 

can be either real-time or historical.  

 

Data Source 

 (a) Stock Markets   (b) Social Web  

 Type   Type  

 Real-time Historical   Real-time Historical  

Table 1: Categorization of the data given to the Data Management Layer. 

 

Furthermore, intermediate or final processing results may have to be stored as 

(updated) historical data to enable future processing. Management of historical data 

is required by the QualiMaster application use cases (see deliverable D1.1).  

 

In more detail, the Data Management Layer will distinguish between: 

● Raw input real time streams that shall be processed by a data analysis 

pipeline. The Data Management Layer will provide an interface for managing 

the sources of the data streams (e.g. subscription/unsubscription to online 

sources of financial and web data streams). Similarly, the interface of this 

layer will enable managing the sinks of the executed pipelines (i.e. for the 

output streams). In addition, some applications might require the storage of 

the raw data coming from the real-time streams (e.g. for later use as 

historical data or for batch processing based data analysis). However, storing 

all information in a data stream may not be feasible, e.g., due to the volume 

of the data stream or even due to legal or licensing issues. Further, enabling 

the data analysis pipelines to decide how and what to store from an input 

data stream may easily lead to repeated storage, in particular, if multiple 

pipelines process the same input data. Thus, the Data Management Layer 

will handle this in a centralized way based on a global configuration of the 

storage for a data source, e.g., whether the Data Management Layer shall 



QualiMaster Deliverable D5.1 

Page 30 (of 44)  www.qualimaster.eu 

 

store information at all or which information shall be stored where and for 

how long. 

● Historical data input is already available in persistent storage, either within 

the QualiMaster infrastructure or accessible through the integration of 

external storages such as the historical financial data archive of SPRING. 

The Data Management Layer will provide an interface for accessing this 

persistent storage. Here, the pipeline designer specifies as part of the 

pipeline design how to access the data, e.g., through a specific data 

processing element (which accesses the data through the Data Management 

Layer) or in terms of the API of the Data Management Layer. 

● Processed data is data generated by a data analysis pipeline during 

execution. Processed data may be intermediary data or the final output of a 

data analysis pipeline. Here, also the pipeline designer specifies where within 

a data analysis pipeline which data shall be stored in which location, e.g., in 

terms of a generic data processing element that passes the related data 

tuples to the Data Management Layer. 

4.3.2 Execution Layer  

The purpose of the Execution Layer is to provide common access mechanisms to 

the systems we included in the QualiMaster infrastructure for performing specific 

processing tasks. Given the user requirements presented in deliverable D1.1 and 

the detailed discussions in Section 3, we consider the following three systems: 

● Storm for the execution of real-time stream processing topologies 

● Hadoop for the processing of historical mass data in a batch manner 

● Reconfigurable hardware for the execution of hardware-based algorithms 

  

The Execution Layer will receive the requests for these systems, send them for 

execution. In case there is a failure in one of the systems, the layer is responsible 

for notifying the other layers in order to address the issue. Having such an 

execution layer in the QualiMaster infrastructure also allows us to easily incorporate 

additional systems. Incorporating additional systems might be, for instance, 

required for satisfying a broader set of requirements or for efficiently executing 

specific algorithm parts. In particular, such a form of extension is supported by the 

extensible specification of the configuration and the instantiation of the QualiMaster 

infrastructure (see Section 3.4). 

4.3.3 Monitoring Layer  

The Monitoring Layer provides a common interface to all runtime readings taken 

from the Execution Layer such as actual quality properties and execution state and 

provides this information to upper level QualiMaster runtime layers, in particular the 

Adaptation Layer. As a core part of its tasks, it collects and aggregates information 

from the different systems in the execution layer in a distributed fashion.  



Deliverable D5.1 QualiMaster 

© QualiMaster Page 31 (of 44)  

 

 

The Monitoring Layer will provide the following type of interfaces: 

● Input/notification interface for monitoring information obtained from the 

Execution Layer, and  

● Output interface for observing layers to be informed about the (aggregation of 

the) actual status such as the Adaptation layer. 

 

Basically, the input/notification interface will be used to collect information in three 

distinct ways, namely through: 

1. Instrumentation, i.e., additional notification calls inserted into the execution 

systems and, in particular, the data processing algorithms. Instrumentation 

for monitoring the resource consumption of the execution systems, and, in 

particular, individual algorithms, will be handled by SPASS-meter (see 

Section 3.5). 

2. Explicit notification of monitored information. If required, this will typically 

happen from source code generated during the instantiation of the 

QualiMaster infrastructure, i.e., produced by VIL specifications executed by 

EASy-Producer (see Section 3.4). 

3. Generic monitoring providers, i.e., software components using interfaces 

provided by the respective execution system in order to access the execution 

status on various levels of granularity, e.g., the Thrift18 interface of Storm. 

Fundamentally, the Thrift interface of Storm provides a service to derive the 

running information about the specific topology (the Storm representation of a 

QualiMaster pipeline). Thereby, the statistics of the running pipeline on 

topology level (not on algorithm level) can be detected via the Monitoring 

Layer. 

4.3.4 Coordination Layer 

The Coordination Layer will enact the actions that are requested by the adaptation 

layer. This plays a fundamental role in the correct operation of the QualiMaster 

system. The specific layer will provide three different interfaces with the other 

layers: 

1. Interface with the Adaptation Layer. This interface will be used for receiving 

enactment "commands" from the Adaption Layer about the system's pipeline 

infrastructure. In addition, this interface will be used for informing the 

Adaptation Layer about the results of previous changes. Last, this interface 

will also be used for giving information to the Adaptation Layer about any 

failures or faults discovered during the execution of the algorithms. 

                                                

18 https://thrift.apache.org/ 

https://thrift.apache.org/


QualiMaster Deliverable D5.1 

Page 32 (of 44)  www.qualimaster.eu 

 

2. Interface with the Monitoring Layer. This interface will be used for monitoring 

of the running processes through the Monitoring Layer. Also, this interface 

will be used for changing the monitoring priority, when such commands arrive 

from the Adaptation Layer, e.g. in case that the Adaptation Layer needs to 

monitor another part of the pipelined system. 

3. Interface with the Execution layer. As the Coordination Layer is used for 

enacting the different processing modules in the pipeline, this layer will be 

responsible for establishing “pipes” between the blocks that are used for the 

processing, e.g. the connection between the Storm and the reconfigurable 

platforms. Also, this interface will be used for fault detections and sending the 

proper information to the adaptation layer for fault handling. 

 

The described interfaces will be used for the fulfillment of different operations. 

1. First, the Coordination Layer will enact the adjustments of the adaptation 

layer for the data analysis pipelines during the processing runtime. The 

Coordination Layer will receive some specific commands from the Adaptation 

Layer and it will translate them into commands for the individual systems in 

the Execution layer, e.g. Storm, Hadoop, so that to coordinate individual 

multiple affected systems. Using the Coordination Layer as command 

mediator enables us to include other or even exchange execution systems if 

actually required. This process will be based on the runtime version of EASy-

producer tool in order to process the adaptation actions described in terms of 

runtime instantiations. 

2. Second, the Coordination Layer will be used for the coordination-

communication level between the different software and hardware-based 

platforms of the system. This system will handle the efficient interconnection 

among the various pipeline infrastructures following the commands of the 

Adaptation Layer. 

3. Third, the Coordination Layer will be able to monitor the execution of the 

processing systems through the Monitoring Interface. In more details, this 

layer will monitor the execution process and inform the Adaptation Layer for 

any malfunction of the malfunctioned processing module. So, this layer will 

offer high level fault detection and exception handling. 

4. Last, the Coordination Layer will “supervise” the activation and the 

deactivation of the processing elements. Also, it will be responsible for any 

monitoring priority changes. 

4.3.5 Adaptation Layer 

Based on the readings of the quality parameters provided by the Monitoring Layer, 

the Adaptation Layer analyses this information to make adaptation decisions on 

individual pipelines as well as across pipelines (cross-pipeline optimization). 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 33 (of 44)  

 

Besides the information on quality parameters, those decisions derive from the 

quality characteristics, the adaptation rules and the pipeline constraints that have 

been specified by the Adaptation Management Tool (see Section 4.1.1), the 

Pipeline Design Tool (see Section 4.1.2) or the Platform Administration Tool (see 

Section 4.1.3), respectively. In this layer, adaptive algorithms configured according 

to the information collected by the Adaptation Management Tool will be utilized for 

making adaptation decisions and to enact those decisions via the Coordination 

Layer. Therefore, the Adaptation Layer will send an enactment request to the 

Coordination Layer. The Coordination Layer enacts the adaptive decision by 

translating it into specific commands for the individual systems in the Execution 

layer (Storm, Hadoop or FPGAs), possibly coordinating individual enactments 

across multiple affected systems. In addition, the Adaptation Layer also interacts 

with the Monitoring Layer (via the Coordination Layer) for disabling or enabling the 

observation of the resources. 

  



QualiMaster Deliverable D5.1 

Page 34 (of 44)  www.qualimaster.eu 

 

5 Current status and Future plans  

This section describes the current status of the QualiMaster infrastructure (Section 

5.1) along with the prepared execution environment (Section 5.2).  

 

(a) 

 

 

(b) 

 
 

Figure 5: The twitter pipeline (top image) and the financial data pipeline (bottom 
image) that were used for testing the created and configured infrastructure. 

SPASS-Meter is used for monitoring the resource consumption of both pipelines. 

 

5.1 Current Status 

The goal of WP5 is to define and develop the infrastructure for QualiMaster. This 

includes the set-up of the overall architecture as well as the actual implementation 

of the various necessary layers and tools. For the QualiMaster infrastructure we 

also need to devote effort in the interconnections between the various layers, tools, 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 35 (of 44)  

 

and the used external systems, as for example the physical integration of 

reconfigurable hardware within the Execution layer. In addition to the design and 

implementation, WP5 needs to work on the setup of the execution environment, the 

deployment of incremental versions of the infrastructure to the execution 

environment and the setup of the continuous integration and testing environment. 

 

From the start of the project, the consortium has focused on creating the initial 

architecture, design, and setup of the QualiMaster infrastructure. As discussed in 

the previous sections, this included the analysis of the collected requirements 

(deliverable D1.1), the creation of the QualiMaster infrastructure along with the 

definition of its layers/tools and a common understanding of the layers/tools as well 

as the flow between these layers/tools.  

 

The current results of WP5, which we reported in this deliverable, have been used 

for creating an actual infrastructure. In order to assist the testing of the created and 

configured infrastructure, and especially of the interaction between the tools and 

external systems (e.g., Storm, Hadoop, Maxeler nodes, and SPASS-meter), we 

have defined and used the following two bootstrapping pipelines: 

1. Twitter pipeline, illustrating the real-time processing of Twitter feeds using 

Storm in combination with HBase, which computes the top-k of the most 

frequently tweeted market players. The pipeline connects to Twitter’s public 

Streaming API19 and receives in real-time the sample stream. The connection 

to the Streaming API is implemented in Spout 1 of the illustrated Storm 

topology. Spout 1 then simply emits all the tweets that are received from the 

Twitter API to the next Bolt in the topology, namely Bolt 1, which in turn filters 

the tweets stream by looking up in a table of market players that is stored in 

HBase. Bolt 1 then emits only tweets that mention at least one of the listed 

marketed players. Bolt 2 receives the filtered stream from Bolt 1 and 

computes the frequency of the tweets per market player. Bolt 2 then omits a 

continuous stream of tuples as the final outcome of the pipeline. Each of the 

tuples in the output stream consists of a timestamp and a list of top-k market 

players.  

2. Financial data pipeline, illustrating the connection of the QualiMaster 

infrastructure to the API of Spring for receiving the real-time streaming data, 

the use of multiple bolts with simple arithmetic calculations, and the 

interconnection with reconfigurable hardware. More specifically, Spout 1 

performs the connection to the API of SPRING and receives the real-time 

financial data. Received data go through a series of bolts. Bolt 1 performs 

normalization and Bolt 2 increases the data value. Bolt 3 receives the filtered 

                                                

19 https://stream.twitter.com/1.1/statuses/sample.json 

https://stream.twitter.com/1.1/statuses/sample.json
https://stream.twitter.com/1.1/statuses/sample.json


QualiMaster Deliverable D5.1 

Page 36 (of 44)  www.qualimaster.eu 

 

stream from Bolt 2 invokes reconfigurable hardware (i.e., Maxeler dataflow 

engines), which performs an additional numerical calculation over the data 

value. The final bolt, i.e., Bolt 4, is responsible for providing a continuous 

stream of tuples as the final outcome of the pipeline.  

 

 

Figure 6: Storm UI showing the execution of the financial data pipeline. 

 

Figure 5 shows an illustration of the twitter pipeline (top image) and of the financial 

data pipeline (bottom image), which were used for verifying the integration and 

testing of the created QualiMaster infrastructure. In both pipelines, SPASS-Meter is 

used for monitoring the execution. Figure 6 shows the execution details for the 

financial data pipeline and Figure 7 the Twitter pipeline, as provided by Storm UI. 

More specifically, Storm UI shows that this pipeline contains one spout and four 

bolts and for each spout/bolt we can see the size of the emitted and transferred 

information. 

 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 37 (of 44)  

 

In addition to the execution of these two pipelines, initial experiments have been 

carried out with EASy-Producer in order to validate the required modeling and 

instantiation capabilities for QualiMaster. Therefore, an initial configuration meta 

model for EASy-Producer in IVML has been set up which models essential 

properties of the cluster hardware, the reconfigurable hardware, the processing 

families and the pipelines. Based on this configuration meta model, an initial 

platform instantiation process using VIL and VTL has been defined. Finally, an 

example configuration based on the financial data pipeline has been created. This 

configuration has been used as input to the initial platform instantiation process and 

code artifacts matching the manual implementation have been derived successfully. 

More precisely, the topology (using another naming scheme for the processing 

elements) as well as stub spouts and bolts were generated. The generation of full 

code artifacts for spouts and bolts will be available as soon as the detailed 

architecture of the processing elements is defined (as part of deliverable D5.2). We 

also tested the Twitter pipeline described above. Also here, the STORM topology 

can be generated, but the use of HBase is currently not reflected in the 

configuration model. As historical data will be handled by the Data Management 

Layer in future, the configuration meta model and the platform instantiation process 

will be modified as soon as the detailed design of this layer is available. Then, the 

respective parts of EASy-Producer and a stabilized version of the configuration 

meta model will be integrated with the QualiMaster infrastructure.  

 



QualiMaster Deliverable D5.1 

Page 38 (of 44)  www.qualimaster.eu 

 

 

Figure 7: Storm UI showing the execution of the Twitter pipeline. 

 

 

For monitoring the execution of the pipelines, we integrated SPASS-meter into the 

Storm execution system for the infrastructure setup. Therefore, we configured 

Storm and SPASS-meter so that we are able to generically monitor the resource 

consumption of all executed Storm spouts and bolts on the distributed worker 

machines. Currently, the results are recorded into individual log files, one per JVM 

spawned and utilized by Storm to execute the spouts and bolts defined defined by 

the pipelines. As soon as the architecture of the Storm processing elements with 

respect to QualiMaster data sources, data sinks, data management elements and 

(algorithm family based) data processing elements is detailed, we will adjust the 

monitoring to focus on the actual algorithms. Furthermore, SPASS-meter will be 

prepared for the integration and integrated with the Monitoring Layer and the 

Coordination layer in order to provide resource consumption information at runtime 

to the QualiMaster infrastructure and to enable adaptive monitoring. 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 39 (of 44)  

 

5.2 Execution Environment 

We created the execution (and development) environment of QualiMaster on a 

cluster. We used an existing distribution instead of individually installing each the 

required systems and manually performing the verification of their interconnection. 

Thus, we focused only on installing and verifying the required systems that were 

not included in the specific distribution.  

 

 

Figure 8: The systems composing the QualiMaster execution environment.  

 

More specifically, we used the Cloudera express distribution20, version 5.0.2. 

Cloudera is a popular distribution since it allows the fast and easy installation, 

configuration, and deployment of applications based on Apache Hadoop and 

related technologies. There are other distributions that can be used, for example 

the Hortonworks distribution21. We selected the Cloudera distribution because it has 

been present longer than Hortonworks and has a larger number of customers. 

 

The following list provides the projects incorporated in the Cloudera distribution that 

are either currently needed by the QualiMaster infrastructure or we have future plan 

in which these systems might be used: 

● ZooKeeper (version 3.4.5) 

● Hbase (version 0.96.1.1) 

● Pig (version 0.12.0) 

● YARN (version 2.3.0) 

 

We also incorporated systems that are required for the QualiMaster Infrastructure 

and are not included in the Cloudera distribution. These are: 

● Apache Storm (version 0.9.1) 

● Elasticsearch (version 1.0) 

                                                

20 http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html 
21 http://hortonworks.com/ 



QualiMaster Deliverable D5.1 

Page 40 (of 44)  www.qualimaster.eu 

 

 

Figure 8 shows the systems composing the QualiMaster execution environment. As 

shown, in addition to the systems used from the Cloudera distribution, QualiMaster 

also used Storm, Elasticsearch, and reconfigurable hardware. The latter 

corresponds to a Maxeler MPC-C Series node and communication with this node is 

performed using standard TCP sockets. 

 

  

Figure 9: Architecture of MaxNode. 

 

The reconfigurable hardware, i.e., the Maxeler MPC-C Series node, is an 

independent computer node and every procedure has to setup communication with 

the machine. Thus, the QualiMaster infrastructure also incorporated and can use 

the 2 MPC-C series nodes located at the Technical University of Crete. A 1U MPC-

C series machine is a server-class HPC system with 12 Intel Xeon CPU cores, 

92GB of RAM for the CPUs and 4 dataflow compute engines (using Virtex 6 

FPGAs) closely coupled to the CPUs with 24GB of RAM each. Every node can 

typically provide the computational performance of 20-50 standard x86 servers. 

Each dataflow engine is connected to the CPUs via PCI Express (2GB/s), and 

DFEs within the same node are directly connected with the MaxRing interconnect.  

Figure 9 shows the architecture of the Maxeler Node. 

 

Please note that the execution environment will be further extended in order to 

allow continuous testing and integration of future algorithms and processes. The 

corresponding description and discussion will be included in the upcoming WP5 

deliverables. 

 

  



Deliverable D5.1 QualiMaster 

© QualiMaster Page 41 (of 44)  

 

6 Conclusions  

In this deliverable, we described the QualiMaster infrastructure in terms of the 

incorporated layers, tools, and external systems. More specifically, we have 

provided an overview of the designed QualiMaster infrastructure along with a 

discussion about the flow between the infrastructure’s tools and layers. We have 

also given a description of our initial execution environment, which we plan to build 

and extend during the following months. In addition, we provided overviews of the 

external systems incorporated in QualiMaster and a discussion on the reasons that 

led to their selection among the other available options. We also provided the 

details of the infrastructure layers and tools, grouped according to the lifecycle 

phases they belong to, i.e., configuration, start-up time, or runtime lifecycle phases. 

Furthermore, we explained the current status of the QualiMaster infrastructure and 

sketched our plans for the following months. 

 

In the following months, and especially until the end of the year, the consortium has 

made plans for extending and enhancing the architecture and implementation of the 

QualiMaster infrastructure. In particular, we plan to work in three main directions. 

The first direction is to work on the detailed design of the layers and tools that will 

be incorporated in the QualiMaster infrastructure.  

 

The second direction is starting the integration of the QualiMaster infrastructure. 

This includes the implementation of the two repositories (i.e., processing elements 

repository and pipeline repositories) and the implementation of the tools and layers.  

The goal is to have a first version running by the end of the year.  

 

The third direction is to implement and verify the priority pipeline (Section 1.2). For 

this direction, we need to have the major tools and layers already implemented and 

working with the infrastructure, but also additional algorithms and components, 

such as the algorithm for computing the correlations between multitude market 

players. 

 

As scheduled in the DoW, this deliverable describes the initial version of the 

QualiMaster infrastructure. It will be followed by the stabilized design (D5.2, due in 

month 12), the first version of the integrated infrastructure (D5.3, due in month 21), 

and the final version of the infrastructure (D5.4, due in month 33). This deliverable 

as well as the future WP5 deliverables, accompanies the current version of the 

created QualiMaster infrastructure. 



QualiMaster Deliverable D5.1 

Page 42 (of 44)  www.qualimaster.eu 

 

References 

[ES14]  H. Eichelberger, K. Schmid. Flexible Resource Monitoring of Java Programs, 
Journal of Software and Systems (93), 2014. 

[ALR14] M. Acher, R. E. Lopez-Herrejon, R. Rabiser, A Survey on Teaching of Software 
Product Lines, In Variability Modelling of Software-intensive Systems (VAMOS), 
2014. 

[B13] D. Beuche. Modeling and building product lines with pure::variants. In International 
Software Product Line Conference (SPLC) Workshops, 2013. 

[BMK+11] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker de Brum, S. Weigert, and C. 
Fetzer. Scalable and Low-Latency Data Processing with Stream MapReduce. In 
CloudCom, 2011. 

[BRN+13] T. Berger, R. Rublack, D. Nair, J. Atlee, M. Becker, K. Czarnecki, and A. 
Wasowski. A Survey of Variability Modeling in Industrial Practice. In Variability 
Modelling of Software-intensive Systems (VaMoS), 2013. 

[CHE05] K. Czarnecki, S. Helsen, U. Eisenecker. Staged configuration through 
specialization and multilevel configuration of feature models, Software Process: 
Improvement and Practice, vol. 10, issue 2, 2005. 

[CN02] P. Clements, L. Northrop. Software Product Lines - Practices and Patterns, 
Addison Wesley, 2002. 

[DPR00]                A. Dandalis, V. Prasanna, and J. Rolim. An Adaptive Cryptographic Engine for 
IPSec Architectures. In Proceedings of IEEE Symposium on Field-Programmable 
Custom Computing Machines, 2000. 

[DSE98]           A. Dollas, E. Sotiriades, A. Emmanouilides. Architecture and Design of GE1, a 
FCCM for Golomb Ruler Derivation. In Proceedings, 6th International IEEE 
Symposium on FPGA's for Custom Computing Machines, 1998. 

[EEKS14] H. Eichelberger, S. El-Sharkawy, C. Kröher, K. Schmid, EASy-Producer - Product 
Line Development for Variant-Rich Ecosystems, International Software Product 
Line Conference (SPLC), 2014 (accepted). 

[EKS11] S. El-Sharkawy, C. Kröher, and K. Schmid. Supporting Heterogeneous 
Compositional Multi Software Product Lines. In International Software Product 
Line Conference (SPLC), Volume 2, 2011. 

[EP00]                  A. Elbirt, and C. Paar. An FPGA implementation and performance evaluation of 
the Serpent block cipher. In Proceedings of the Eighth ACM/SIGDA International 
Symposium on FPGAs 2000. 

[ES12] H. Eichelberger, K. Schmid. Erhebung von Produkt-Laufzeit-Metriken: Ein 
Vergleich mit dem SPASS-Meter-Werkzeug. In Proceedings of the DASMA Metrik 
Kongress (MetriKon), 2012 (in German). 

[HHPS08] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic Software Product Lines, 
IEEE Computer (41), 4, 2008. 

[HLA98]     R. Hudson, D. Lehn, P. Athanas. A run-time reconfigurable engine for image 
interpolation. In Proceedings of IEEE Symposium on FPGAs for Custom 
Computing Machines, 1998. 

[HSM00]            W. Huang, N. Saxena, and E. McCluskey. A Reliable LZ Data Compressor on 
Reconfigurable Coprocessors. In Proceedings of the 8th International IEEE 
Symposium on FPGA's for Custom Computing Machines, 2000. 

[IND+12] INDENICA project consortium. Open Variability Modeling Approach for Service 
Ecosystems, Deliverable D2.1, 2012, via http://www.indenica.eu [validate: June 



Deliverable D5.1 QualiMaster 

© QualiMaster Page 43 (of 44)  

 

2014] 

[IVML] IVML team, IVML Language Specification,  http://projects.sse.uni-
hildesheim.de/easy/docs/ivml_spec.pdf [validated: June 2014] 

[JIns] JInspired, Opencore – Enterprise Software Resource Metering & Application 
Performance Metric Monitoring, Available at: http://opencore.jinspired.com/ 

[K08] C. W. Krueger. The BigLever Software Gears Unified Software Product Line 
Engineering Framework. In International Software Product Line Conference 
(SPLC), 2008. 

[KBD03]          C. Kachris, N. Bourbakis, A. Dollas. A Reconfigurable Logic-Based Processor for 
the SCAN Image and Video Encryption Algorithm. International Journal of Parallel 
Programming 31(6), 2003. 

[KM00]             H. Kim and W. Mangione-Smith. Factoring large numbers with programmable 
hardware. In Proceedings of the Eighth ACM/SIGDA International Symposium on 
FPGAs ACM/SIGDA International Symposium on FPGAs, 2000. 

[LC97]            Y. Li and W. Chu. Implementation of single precision floating point square root on 
FPGAs. In Proceedings of FCCM, 1997. 

[LCTL00]                M. M Leong, O. Cheung, K. Tsoi, and P. Leong. A Bit-Serial Implementation of the 
International Data Encryption Algorithm IDEA. In Proceedings of IEEE Symposium 
on Field-Programmable Custom Computing Machines, 2000. 

[LLR+99]              W. Luk, T. Lee, J. Rice, N. Shirazi, P. Cheung. Reconfigurable Computing for 
Augmented Reality. In Proceedings of IEEE Symposium on FPGAs for Custom 
Computing Machines, 1999. 

[LMWL00]          K. Leung, K. Ma, W. Wong, and P. Leong. FPGA Implementation of a Microcoded 
Elliptic Curve Cryptographic Processor. In Proceedings of the 2000 IEEE 
Symposium on Field-Programmable Custom Computing Machines 2000. 

[LSR07] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in Action - 
The Best Industrial Practice in Product Line Engineering, Springer, 2007. 

[M98]  M. Shand, L. Moll. Hardware/software integration in solar polarimetry. In 
Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 
1998. 

[MFB11] A. Martin, C. Fetzer, and A. Brito. Active Replication at (Almost) No Cost. In 
SRDS, 2011. 

[NRNK10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream 
Computing Platform. In International Conference on Data Mining Workshops 
(ICDMW), 2010. 

[P00]             C. Patterson. High Performance DES Encryption in Virtex(tm) FPGAs Using 
Jbits(tm). In Proceedings of IEEE Symposium on Field-Programmable Custom 
Computing Machines, 2000. 

[PBL05] K. Pohl, G. Böckle, F. van der Linden. Software Product Line Engineering: 
Foundations, Principles, and Techniques, Springer, 2005. 

[PR97]          C. Paar and M. Rosner. Comparison of arithmetic architectures for Reed-Solomon 
decoders in reconfigurable hardware. In Proceedings of FCCM, 1997.  

[PVH99]               M. Piacentino, G. VanderWal, M. Hansen. Reconfigurable Elements for a Video 
Pipeline Processor. In Proceedings of IEEE Symposium on FPGAs for Custom 
Computing Machines, 1999. 

[RH97]        M. M. Rencher, B. Hutchings. Automated Target Recognition on Splash 2. In 
Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 
1997. 



QualiMaster Deliverable D5.1 

Page 44 (of 44)  www.qualimaster.eu 

 

[RHE+10] R. Rabiser, W. Heider, C. Elsner, M. Lehofer, P. Grünbacher, and C. 
Schwanninger. A flexible approach for generating product-specific documents in 
product lines. In International Conference on Software Product Lines (SPLC), 
2010. 

[RHM+08] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke, W. 
Hasselbring. Kieker: Continuous monitoring and on demand visualization of Java 
software behavior, Proceedings of the IASTED International Conference on 
Software Engineering (SE), 2008. 

[SAA95]          N. Shirazi, P. Athanas, and A. Abbott. Implementation of a 2-D Fast Fourier 
Transform on an FPGA-Based Custom Computing Machine, 1995. 

[SDA00]             E. Sotiriades, A. Dollas, and P. Athanas. Hardware-Software Codesign and 
Parallel Implementation of a Golomb Ruler Derivation Engine. In Proceedings 8th 
International IEEE Symposium on Field-Programmable Custom Computing 
Machines, 2000. 

[SDD00]           P. Stogiannos, A. Dollas, V. Digalakis. A Configurable Logic Based Architecture 
for Real-Time Continuous Speech Recognition Using Hidden Markov Models. 
VLSI Signal Processing 24(2-3), 2000. 

[SPEC] SPEC corporation, SPECjvm2008 benchmark suite, http://www.spec.org/jvm2008/  

[VIL] VIL team, VIL Language Specification, http://projects.sse.uni-
hildesheim.de/easy/docs/vil_spec.pdf [validated: June 2014] 

[WL99]          M. Weinhardt and W. Luk. Pipeline Vectorization for Reconfigurable Systems. In 
Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 
1999. 

 


