

 www.qualiMaster.eu

QualiMaster

A configurable real-time Data Processing Infrastructure
mastering autonomous Quality Adaptation

Grant Agreement No. 619525

Deliverable D4.2

Work-package WP4: Quality-aware Configuration and Adaptation of Stream

Processing Pipelines

Deliverable D4.2: Quality-aware Processing Pipeline Adaptation V1

Deliverable Leader SUH

Quality Assessor Ekaterini Ioannou

Estimation of PM spent 29

Dissemination level PU

Delivery date in Annex I 31.07.2015

Actual delivery date 31.07.2015

Revisions 19

Status Final

Keywords: Quality-aware configuration, quality-aware adaptation, enactment
pattern analysis, quality taxonomy, adaptation components,
adaptive crawling, event detection, tool support

QualiMaster Deliverable 4.2

Page 2 (of 70) www.qualimaster.eu

Disclaimer

This document contains material, which is under copyright of individual or several QualiMaster
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license from
the proprietor of that information.

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster
consortium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage suffered
by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for any
use that may be made of the information contained herein.

© 2015 Participants in the QualiMaster Project

QualiMaster Deliverable 4.2

Page 3 (of 70) www.qualimaster.eu

List of Authors

Partner Acronym

MAX

LUH

SUH

SPRING

TSI

Authors

-

Patrick Siehndel, Claudia Niederée

Holger Eichelberger, Cui Qin, Roman Sizonenko

Stefan Burkhard

Gregory Chrysos

QualiMaster Deliverable 4.2

Page 4 (of 70) www.qualimaster.eu

Table of Contents
1. Introduction ... 7

2. Adaptation Scenarios .. 9

2.1 Adaptation Scenario Template ... 9

2.2 QualiMaster Adaptation Scenarios ..10

2.2.1 Changing Data Streams ...11

2.2.2 Detection of Social Web Events ...12

2.2.3 User Triggered Adaptations ...13

2.2.4 Processing Errors ..15

2.2.5 Requested Resource Reallocation ...16

2.2.6 Propagation of adaptation effects...17

2.3 Prioritization of the scenarios ..17

3. Concepts and Design ...19

3.1 Quality Taxonomy ...19

3.2 Configuration Meta Model ...21

3.2.1 Arbitrary Field Types ..22

3.2.2 Item Names ...25

3.2.3 Descriptive Text ...25

3.2.4 Access to Hardware-based Execution ...25

3.2.5 Automated Integration Support ..26

3.2.6 Development Support ..26

3.2.7 Future Work ...27

3.3 Enactment patterns ...27

3.3.1 Experimental Setup..28

3.3.2 Experiment Analysis ..29

3.3.3 Change functional parameter (EP-1) ..30

3.3.4 Select algorithm from processing family (EP-2) ..31

3.3.4.1 Switch among simple algorithms without delay ...32

3.3.4.2 Switch among simple algorithms with delay ..32

3.3.4.3 Switch among sub-topologies without delay ..33

3.3.4.4 Switch among sub-topologies with delay ...34

3.3.5 Switch between hardware- and software-based processing (EP-4/ES-2)34

3.3.6 Parallelize processing elements (EP-5/EP-6) ...36

3.3.7 Strategies for State Transfer (ES-11) ...37

3.3.7.1 Warming up strategy ...39

3.3.7.2 Direct State Transfer Strategy ...40

3.3.7.3 External storage strategy ..41

3.3.8 Conclusions and Future Work ..42

QualiMaster Deliverable 4.2

Page 5 (of 70) www.qualimaster.eu

3.4 Adaptation specification ..43

3.4.1 Mapping Monitored Information into rt-VIL ...43

3.4.2 Transactional Change History ..45

3.4.3 Calls as Parameters ...45

3.4.4 Type aliases ..47

3.4.5 Future work ..47

4. Component Realization ..49

4.1 IVML Reasoner ...49

4.1.1 Historical Background ..49

4.1.2 Reasoning Process ..50

4.1.3 Realization State ..52

4.1.4 Reasoning Performance ..52

4.1.4.1 Configuration Experiments ..52

4.1.4.2 Experiments on the QualiMaster Configuration ...56

4.1.5 Future Work ...57

4.2 QualiMaster Infrastructure Configuration Tool ...58

4.3 Adaptive Crawling ...60

4.3.1 Adaptation Strategies ...61

4.3.2 Evaluation Measures ...61

4.3.3 Used Datasets ...61

4.3.4 Evaluation Results ...62

4.3.4.1 Evaluation of Relevance ...62

4.3.4.2 Measuring Adaptation Latency ..63

4.3.5 Conclusion and Future Work ..63

4.4 Event Prediction In Social Media ...64

4.4.1 Content Based Event Prediction ..65

4.4.2 Implementation Details ..65

4.4.3 Summary ...65

4.5 Adaptation Specification Language (rt-VIL) ...66

5 Summary and Outlook ...68

6 References ..69

QualiMaster Deliverable 4.2

Page 6 (of 70) www.qualimaster.eu

Executive Summary

In the QualiMaster project, quality-aware configuration aims at framing the configuration and
adaptation space before execution of the infrastructure and the pipelines running on the
infrastructure. Based on the quality-aware configuration, the quality-aware adaptation monitors
and analyzes the execution and decides about changes at runtime to achieve given processing
performance and result quality requirements in changing environments. To realize the vision of
configurable and adaptive Big Data analysis pipelines, tailored approaches to configuration and
adaptation as well as realizing components and tools are needed.

In this deliverable, we report on both, recent improvements and extensions to the concepts
underlying the configuration and adaptation approach in QualiMaster as discussed in previous
deliverables as well as the related tool and infrastructure components realized so far. On the
conceptual side, this includes in particular a discussion of the adaptation scenarios foreseen in
QualiMaster, but also the extension of the quality taxonomy, the improvement of the
configuration model and the runtime instantiation language as well as results from the ongoing
analysis of the enactment patterns. On the component side, we report on the actual state of the
constraint reasoning used in both, configuration and adaptation, the QualiMaster infrastructure
configuration tool, the runtime instantiation language, the adaptive crawling and the event
detection indicating potential adaptation needs from social Web data.

QualiMaster Deliverable 4.2

Page 7 (of 70) www.qualimaster.eu

1. Introduction
Quality-aware configuration and adaptation of data processing pipelines is at the heart of the
QualiMaster project. Configuration aims at defining the potential customization options for the
infrastructure in terms of the Configuration Meta Model as well as an actual Configuration for a
certain infrastructure installation. This happens before running the infrastructure by executing
the QualiMaster infrastructure instantiation process, which is driven by the respective
Configuration and produces a specifically configured variant of the infrastructure including the
pipelines to be executed. The configured resource pool, the available data processing
algorithms, the topological structure of the configured pipelines as well as quality constraints
and Service Level Agreements SLAs expressed in terms of runtime observations frame the
potential adaptations of the processing at runtime. During the execution of the pipelines, the
runtime observations prescribed in the Configuration Meta Model are bound by monitored
values, the quality constraints and Service Level Agreements are evaluated and lead to runtime
changes of the data processing through the Adaptation Layer of the QualiMaster infrastructure.

Realizing the vision of configurable and adaptive data processing pipelines requires several
ingredients, ranging from data streams to be analyzed over (families of) data analysis
algorithms, a Configuration Meta Model for describing the configuration of a certain analysis
setting, an adaptation approach integrated with the QualiMaster infrastructure as well as
realizing components and supporting tools. Basically, the challenges, requirements, concepts,
approaches and some initial tooling for performing quality-aware configuration and adaptation in
QualiMaster have been already presented in D4.1. In this deliverable, we discuss the states of
the first version of the software components realizing the quality-aware configuration and
adaptation of processing pipelines. During the course of the project, the discussions with the
other partners on the components to be provided by this work package, their interaction with the
results of the other work packages as well as the realization of the individual components
helped us in refining and extending our initial conceptualization. As this background is important
for understanding the work done so far, we will not only describe developed components and
their actual realization state in this deliverable, but discuss in particular the refinement and
extensions over the concepts of D4.1. As a scope for the concepts and the components, we
also discuss scenarios, which capture the intended adaptation that the QualiMaster consortium
aims at realizing and analyzing in the remainder of the project.

The deliverable is structured as follows: In Section 2, we summarize and prioritize scenarios
describing the intended adaptation for the QualiMaster infrastructure. In Section 3, we refine the
concepts discussed in D4.1 and present improvements of the Quality Taxonomy, the
Configuration Meta Model, and the Adaptation Language. We also discuss the actual state of
the ongoing analysis of the enactment patterns introduced in D4.1. Based on the extended and
refined concepts, we discuss in Section 4 the status of the individual components realized so far
in this work package, their validation as well as their envisioned integration into the QualiMaster
infrastructure. There, we discuss the state of the reasoning support, the QualiMaster
Infrastructure Configuration tool, the adaptive crawling and the Social Web event prediction and
the adaptation language. In Section 5, we conclude this deliverable and give an outlook on
future work in WP4.

QualiMaster Deliverable 4.2

Page 8 (of 70) www.qualimaster.eu

Relation to other deliverables:

• This WP takes the adaptation-related requirements discussed in D1.1/D1.2 as input,
refines the requirements (as done in D4.1), and realizes them as described in this
deliverable.

• D2.2 utilizes the algorithm-specific aspects of the quality taxonomy introduced in D4.1
and extended in this deliverable. As some data analysis components from WP2 are used
to support the adaptation, there is also a link to the algorithms described in D2.1 and
D2.2.

• Akin to D4.1 and D3.1, D4.2 and D3.2 are linked through the configuration of the
hardware-based processing, the integration of the hardware-based processing into the
pipeline execution, the hardware-related enactment patterns and the consideration of
hardware in the adaptation scenarios.

• D4.2 relies on, refines, extends and implements the concepts discussed in D4.1. In turn,
D4.1 discussed specific requirements drawn from D1.1/D1.2, which are in particular valid
for D4.2.

• D4.2 relies on D5.2 as components developed in WP4 and described in D4.2 are
integrated into the QualiMaster infrastructure in WP5. D4.2 will indicate links to work in
WP5, such as the evolution of the QualiMaster infrastructure instantiation process or
early integration of WP4 components into the QualiMaster infrastructure. The actual
state of the integration will be documented in D5.3 (due in the following months).

• D4.2 is also related to D6.1, in particular in terms of the application protocol that the
stakeholder applications use to subscribe to and communicate with the QualiMaster
application. As part of the communication, also user triggers can be sent to the
QualiMaster infrastructure to indicate user requests regarding the actual processing,
which can lead to adaptations of the running pipelines.

QualiMaster Deliverable 4.2

Page 9 (of 70) www.qualimaster.eu

2. Adaptation Scenarios
In this section, we discuss the relevant adaptation scenarios for the QualiMaster infrastructure.
We elicited these scenarios from all partners of the QualiMaster consortium, in particular the
industrial partners, in terms of bilateral or group discussions and initially collected them in a
shared online scenario document. The adaptation scenarios refine the actual adaptation
requirements to be covered by the QualiMaster adaptation approach (D4.1) and its realization.
However, the set of potential adaptation scenarios encompasses five scenarios, each with
several variants, so that we ultimately end up with more than 40 individual scenarios. Although
we aim at realizing as many (diverse) scenarios as possible, it is necessary to prioritize them in
order to focus on the most relevant ones first, also in synchronization with the actual realization
state of the data processing algorithms (WP2), the realization of hardware-based execution
WP3, the adaptation components discussed in this deliverable, the infrastructure (WP5), the
pipelines and the stakeholder applications (WP6),

In this section, we first discuss in Section 2.1 a template for describing adaptation scenarios. In
Section 2.2, we apply the template for describing the elicited adaptation scenarios. Finally, in
Section 2.3 we prioritize the scenarios for realization and evaluation.

2.1 Adaptation Scenario Template
We utilize a template to provide a systematic description of the adaptation scenarios we elicited.
As collecting adaptation scenarios is a specific form of collecting requirements, we rely
pragmatically on an extended kind of use case template [7], inspired by the one that we already
applied in D1.1 and D1.2.

An Adaptation Scenario is described using the following structure:

• Identification: Basically, each scenario receives a unique identification and, thus, the
following sections of this deliverable, as well as other deliverables, can make unique
references to them.

• Setting: An adaptation scenario describes the setting in which the desired or expected
adaptation happens.

• Trigger: A scenario is caused by a certain (internal or external) trigger, which we will
categorize in terms of the adaptation triggers we already introduced in D4.1. We repeat
them here for the convenience of the reader.

o Internal triggers, i.e., triggers caused by the QualiMaster platform itself, such as

� SLA constraint violation detected by the Monitoring Layer.

� Regular adaptation schedule, i.e., an internal trigger that is issued
regularly based on a configured update frequency. This trigger causes
either an adaptation or, in case that no enactment is needed, it may
cause an update of the common adaptation knowledge.

� Changes to the Configuration Model without restarting the pipelines, such
as SLA changes, modifications of the resource pool, etc.

� Errors in the Execution Layer, e.g., caused by data processing or by
dynamic changes at runtime. If specified in the adaptation behavior, this
may also lead to some form of recovery to the most recent successful
runtime configuration.

� Administrative events, such as start-up or shutdown of a pipeline or the
whole infrastructure.

o External triggers caused by data or the user, such as

QualiMaster Deliverable 4.2

Page 10 (of 70) www.qualimaster.eu

� External events, e.g., due to regular domain-specific calendars such as
the announcements of the central banks in the financial domain detected
from Web data.

� Unforeseen emerging events detected from Web data.

� User triggers issued by the QualiMaster applications, which shall be
considered of a lower priority than the other triggers.

• Adaptation paths: A scenario describes one or multiple potential adaptation paths
(inspired by the main scenario and exceptions in use case templates). An adaptation
path is given in terms of

o Cause of this path, which may also refer to a previously executed adaptation
path.

o Possible / expected effects on one or multiple quality parameters. We indicate an
increase of the respective parameter with (+), a decrease with (-) and a
parameter on the same level as before with (~).

o Possible follow-ups, i.e., adaptations leading to further adaptation paths in the
same or other adaptation scenarios.

• Variants: For similar scenarios, we describe a representation specific scenario and
indicate potential variants rather than elaborating all potential scenario variants. We also
present only one “direction” of a scenario, e.g., the increase of the volume of an input
data stream, but we consider the counter direction as an (implicit) variant, here the
decrease of the volume after some time. The counter scenario considers similar actions
as for the given scenario but supporting the counter direction of the adaptation.

Table 1 illustrates an empty adaptation scenario template. We apply this template and discuss
the potential adaptation scenarios in the next section.

Identifier

Name

Setting

Trigger

Adaptation paths Cause Possible effect Possible follow-ups

Variants

Table 1: Template for describing adaptation scenarios.

2.2 QualiMaster Adaptation Scenarios
In this section, we discuss the potential adaptation scenarios that we collected from the partners
of the QualiMaster project. We categorized the individual scenarios as follows:

• Changing data streams: If a stream quality parameter, such as volume or velocity
changes, an adaptation of the data processing may be needed.

• Detection of Social Web events: Social Web event detection indicates actual or
upcoming (near-future) events, which may change the data or the quality properties of
the data streams. Actual events may lead to a changed focus of the processing while

QualiMaster Deliverable 4.2

Page 11 (of 70) www.qualimaster.eu

near-future events can allow changing that processing before the actual adaptation
trigger occurs at lower efforts or impacts.

• User triggered adaptations: The user requests a change of the processing through the
stakeholder applications, e.g., the number of market players considered in the
calculation, the analysis focus, or the precision of the computation.

• Processing errors: If a physical processing resource in the execution layer fails, e.g., a
Storm node dies, certain recovery actions must be carried out to sustain the processing.

• Requested resource reallocation: An infrastructure administrator explicitly requests a
change in the resource allocation, e.g., a pipeline is started or stopped and potentially
other pipelines must be adjusted to this new situation.

We structure this section according to the categorization given above and detail the individual
scenarios in terms of the template presented in Section 2.1. Furthermore, we give some
concluding remarks on propagation of adaptations in Section 2.2.6.

2.2.1 Changing Data Streams

A typical situation in data stream processing is that the characteristics of the data stream
change over time due to external reasons, e.g., the volume increases or the volatility decreases.
This requires actions in particular to avoid overload conditions of the infrastructure or negative
effects on other pipelines.

Identifier A-1

Name Changing Data Streams

Setting An oil platform sinks and the oil market becomes hectic. This leads to an
increased volume of that specific sector (possibly also of related sectors). The
impact on the respective QualiMaster pipeline depends on whether the
affected markets are actually relevant to the analysis. If the market segments
are relevant, the volume in the pipeline will also increase (this scenario will
cover that specific setting). At the same time quality measures might increase,
since there is an issue with this market sector and the user wants to observe it
more closely.

Trigger External factor (here, data volume increase)

Adaptation
paths

Cause Possible effect Possible follow-ups

Monitoring detects
sustained increasing
volume

• Data volume (+)

• CPU load (+)

• Computation
time (+)

• Change algorithms to reduce
load

• Allocate more computational
resources

• Input load shedding

Change algorithms to
sampling (may have
large impact on data
quality)

• Data quality (-) • Change further algorithms to
reduce load

• Change subsequent
algorithms or algorithm
parameters to improve
resource quality without
affecting output data quality
(if possible at all)

• Allocate more computational
resources

• Input load shedding

QualiMaster Deliverable 4.2

Page 12 (of 70) www.qualimaster.eu

Change algorithms or
algorithm parameters

• CPU load (-)

• Computation
time (-)

• Data quality (-)

• Allocate more computational
resources

• Input load shedding

Allocate more
computational
resources, e.g.,
reassign resources

• CPU load (-)

• Computation
time (-)

• Input load shedding

Input load shedding
(throw away data) to
prevent overload

• Data quality (-)

• CPU load (-)

• Computation
time (-)

Variants Other inherent Big Data stream characteristics, in particular volatility
(frequency of items) may change. Also the distribution of the data itself may
change and, thus, cause imbalances in the pipeline, which can ultimately lead
to similar adaptation paths.

2.2.2 Detection of Social Web Events

The future event detection and prediction algorithms are used to find events and related dates
that may happen in the future. By analyzing the stream of messages as well as news sources
the mentions certain dates together with related entities and keywords can lead to a prediction
of an event in the future. This prediction can be used to inform the user, notify the Adaptation
Layer about an upcoming event or automatically request a change of the pipeline to adopt
certain settings to the upcoming event. In contrast to the other adaptation changes, the (mid-
and long-term) detection of future events can lead to the scheduling of adaptations in the future
(proactive) as well as the notification of a certain adaptation time window, which may trigger a
counter adaptation after the expected event happened.

Identifier A-2

Name Detection of Future Events

Setting The event prediction algorithms collect several messages indicating that an
important election of CEOs will take place in the near future. The related sector
and company is of interest for the analysis so the pipeline needs to be adopted
to focus on this event and possible side events. We can expect an increase in
the number of related messages when the event occurs, additionally the
stream may contain new terms related to the involved persons.

Trigger External trigger (increase of time mentions related to a certain topic / stock)

Adaptation
paths

Cause Possible effect Possible follow-ups

Event prediction
indicates important event
related to company /
sector of interest (mid- or
long-term forecast).
Increase of messages
related to the specific
company

The event may lead to

• Data volume (+)

• CPU load (+)

• Computation time (+)

but without prediction
the information about a
certain event and its
side effect may be lost
in data analysis and,
thus affect the coverage
quality parameter.

• Prepare for change of
Algorithm (A-1)

• Adopt stream to focus
on event related
content

• Select algorithm for the
specific kind of event

• Reduce the
aggregation level, e.g.,
from hourly to a minute-
based aggregation
leading to a parameter

QualiMaster Deliverable 4.2

Page 13 (of 70) www.qualimaster.eu

change (A-1)

Prediction algorithms
detect new relevant
keywords / entities
(short-term forecast).
Adaptation of stream
processing to event
related messages can
lead to a change of
message types, (e.g.
more similar messages),
several messages
related to the same
entities.

Basically, such short-
term predictions may
affect the infrastructure

• Data volume (+)

• CPU load (+)

• Computation time (+)

but may also indicate a
reason for focusing the
analysis and, then,
improve different data
quality parameters.

• If possible, algorithms
can adapt to the new
type of messages, e.g.,
Named Entity
Recognition (NER) puts
focus on persons
instead of locations.

• Change the input
stream filtering to adapt
to new keywords /
entities to capture also
ongoing discussions
and emerging topics.

Variants Different types of events may lead to different adaptation paths and may
require different adaptations. Some events can cause a slow increase in the
number of related events, while other events just produce a short peak.
Priming events may lead to several adaptations also related to the collection of
other relevant content, while less influential events may be dealt with without
an influence to the collection of other data.
The type of the topic will also influence how the preparation for the future event
looks like.
This adaptation scenario can utilize different forms of focusing the data
analysis based on detected events such as reducing an aggregation level
(e.g., from hours to minutes) or increasing the neighbour level to consider also
further related entities such as market players.

2.2.3 User Triggered Adaptations

In this scenario, the user explicitly requests a change in processing by modifying some settings
in the stakeholder application. To some degree, it must not necessarily be obvious to the
application user that such a modification may cause a change of the processing. For example,
even patterns in the interaction of the user with the stakeholder application may implicitly lead to
such a request. However, as other more urgent adaptations may lead to goal or enactment
conflicts, we consider user triggers of lower priority during the adaptation and even ignore or
reject user triggers. For example, the Adaptation Layer may currently perform a change of the
processing to reduce the actually resource utilization in order to speed up another pipeline due
to an internal trigger issued by the Monitoring Layer, while a user trigger requests computation
at higher precision requiring more resources. In this case, the user trigger would be rejected.

QualiMaster Deliverable 4.2

Page 14 (of 70) www.qualimaster.eu

Identifier A-3

Name User triggered adaptation

Setting An institutional user wants to increase the number of market players in
his/her analysis. This might, for example, be the effect of some correlation
he/she has detected. In order to achieve the goal, the user wants to relax the
input filter of a QualiMaster pipeline.

Trigger Application User

Adaptation
paths

Cause Possible effect Possible follow-ups

Change source
parameter

• Data volume (+)

• CPU load (+)

• Computation time (+)

• Adjustment of Twitter
Selection required

• More CPU load on
subsequent data processing
elements

Change Twitter
stream selection
parameter

• Data volume (+)

• CPU load (+)

• Computation time (+)

• Latency (+)

• More CPU load on
subsequent data processing
elements

• Change of algorithms /
parameters to reduce load (if
possible without impact on
data quality - if such
algorithms exist)

Change
algorithm /
parameter

• CPU load (-)

• Data quality (-)

• Subsequent changes of
algorithms / parameters

Add set of
keywords to
streaming
algorithms

• Data volume (+)

• CPU load (+)

• Computation time (+)

• Latency (+)

• Structure of stream may
change if the messages
related to the new keywords
are the majority in the new
stream.

Variants • Modify the subscriptions to data sources. This leads to similar adaptation
paths, but may impact other pipelines sharing the same source.

• Change of the computation approach, e.g. to suggest a change of the
correlation computation (advanced user level).

• Change of the processing quality, e.g., accuracy. In particular, this
includes increases but also relaxation of the processing quality, which
may also lead to a “cheaper” computation.

• Modify how broad or narrow the stream is, i.e., to change the input
stream filtering for certain keywords.

• Focus the analysis on certain keywords / entities / hashtags / symbols
related to the sector or domain of interest or change the aggregation
level. This user trigger is an immediate form of the (scheduled) triggers
discussed in A-2.

QualiMaster Deliverable 4.2

Page 15 (of 70) www.qualimaster.eu

2.2.4 Processing Errors

Sometimes, errors in the Execution Layer can disturb the intended processing. Basically, a fault
such as a programming error in an algorithm, the pipeline, the infrastructure or the Execution
Systems can cause a processing resource to fail, in some cases just to be temporarily
unavailable. This may even be the case for the hardware-based processing, in particular if the
connection with the software side is interrupted or not properly closed so that a hardware
processing unit may actually be free for processing but still appears to be allocated. A mitigation
of this case can be of lower impact if the respective algorithm already runs in parallel. However,
also the enactment of an adaptation may fail so that a reconfiguration of the QualiMaster
infrastructure excluding the failing configuration shall be calculated.

Although Algorithm Providers as well as the Consortium aim at avoiding programming errors by
intensive tests and validations, they may appear anyway. Therefore, the partners decided to
build a default value mechanism into the generated pipelines, so that if an algorithm cannot go
on processing, at least other parts of the pipeline can continue analyzing data. In particular, in
Apache Storm an individual Worker may die due to a programming error in the algorithm or the
Execution System (here Storm, see D5.1 for details). Typically, the administrative setup allows
the operating system to observe the execution state of related processes (such as the
Supervisor processes in Storm) and perform a restart of the process if they fails. However, in
adaptive pipeline execution the actual algorithm must be reassigned as a specific form of
(recovery) adaptation. Subsequently, resources and processing tasks may need to be migrated
within the cluster in order to mitigate this situation.

Identifier A-4

Name Processing Error

Setting Data processing in the Execution Layer fails due to a bug in an algorithm.

Trigger Internal

Adaptation
paths

Cause Possible effect Possible follow-ups

Algorithm detects a
processing problem

• CPU load (-)

• Computation time (-)

• Latency (-)

• Data quality (-)

• Continue with default
values

• Processing node dies

• Restart processing

• Change resource
allocation (A-5)

• Change algorithm
(reassign task)

Continue with default
values

• CPU load (-)

• Computation time (-)

• Latency (-)

• Data quality (-)

• Restart (of selected)
processing elements

Processing node
dies

• Resource availability
(-)

• Change algorithm
(reassign task)

• Change resource
allocation (A-5)

Restart processing • Resource availability
(-)

• Change algorithm
(reassign task)

QualiMaster Deliverable 4.2

Page 16 (of 70) www.qualimaster.eu

Change resource
allocation (A-5)

• CPU load (+)

• Computation time (+)

• Latency (+)

• Data quality (+)

• Change algorithm

• Restart processing

Change algorithm
(reassign task)

• CPU load (+)

• Computation time (+)

• Latency (+)

• Data quality (+)

• Change resource
allocation

Variants Processing fails due to errors in an Execution System or due to problems
enacting an adaptation.

2.2.5 Requested Resource Reallocation

Administrative tasks on the QualiMaster infrastructure can request a change in the resource
reallocation. Actually, this may imply a (re)configuration of the resource pool.

• If the resource pool changes, suddenly more or less resources such as servers or
hardware processing units can become available.

• If the resource pool does not change, the resource consumers can change. For
example, if the Infrastructure Administrator requests to start or stop a pipeline, the
resources of other running pipelines may need to be considered for reallocation in order
to optimize the entire compute cluster for the new situation.

The new resources can be of the same or a different quality than actually allocated resources so
that quality parameters can change accordingly. Actually, administrative changes can be
announced or requested by a distinct trigger created by the administrator, e.g., which pipeline to
start / stop or which resources to change and how. In comparison to user triggers (A-3),
administrative triggers shall be considered of a higher priority by the QualiMaster infrastructure.

Identifier A-5

Name Requested Resource Reallocation

Setting The administrator requests the start-up of a new pipeline.

Trigger Infrastructure Administrator

Adaptation
paths

Cause Possible effect Possible follow-ups

Request to start a
new pipeline.

• Data volume (+)

• CPU load (+)

• Computation time (+)

• The pipeline fits into the
resource allocation of the
cluster so no adaptation
is needed.

• Running pipelines must
be adapted by changing
the resource allocation or
algorithms / parameters.

Change resource
allocation

• CPU load (~)

• Data quality (~)

• Subsequent changes of
algorithms / parameters

QualiMaster Deliverable 4.2

Page 17 (of 70) www.qualimaster.eu

Change algorithm
/ parameter

• CPU load (-)

• Data quality (-)

• Subsequent changes of
algorithms / parameters

Variants Alternatives are: stop pipeline, add new resources, disable existing
resources, and in the extreme case also stop less important pipelines.

2.2.6 Propagation of adaptation effects

In a multi pipeline setting (DoW task T4.4) an adaptation of one pipeline can lead to subsequent
adaptations in other running pipelines (cross-pipeline adaptation). For example, as already
mentioned in Section 2.2.5, starting a pipeline may lead to a resource shift among the pipelines
or even a reallocation of the hardware-based processing. Furthermore, resource conflicts can
lead to a relaxation of the current resource allocation within the modelled service level
agreements in order to satisfy resources required by other pipelines. Similar cases may also
occur as subsequent actions in a single pipeline, so that one adaptation causes further reactive
adaptations or scheduled / planned adaptations along the pipeline (called wavefront adaptation
in D4.1).

2.3 Prioritization of the scenarios
In Section 2.3, we presented 5 scenarios and more than 40 scenario variations. Please note
that in addition to the mentioned variants for each variant also the implicit counter direction
applies. Although we aim at realizing, testing and evaluating as many relevant scenarios as
possible, we prioritized the discussed scenarios based on discussion with the partners. This led
to the following prioritization sequence.

1. Changing data streams (A-1): For the typical adaptation scenario in data stream
processing, we focus first on volume changes of the input data streams, and as
secondary scenario changes to the variety.

2. Requested resource reallocation (A-5): Here we focus on starting and stopping pipelines
in the single as well as in the cross-pipeline case, in particular to utilize hardware-based
processing adequately. Actually, a simplified form of start-up adaptation is already
required if the initial algorithms of a pipeline shall be assigned dynamically. Currently, we
do not plan to realize further variants, as they are combinations of A-1 and A-3 at higher
adaptation priority than A-3, but explicitly triggered by QualiMaster tools such as the
QualiMaster infrastructure configuration tool (QM-IConf1).

3. We also aim at one specific variant of future event detection and adaptive filtering (A-2)
as well as selected user triggers (A-3), which requires the integration of the (extended)
stakeholder application protocol discussed in D6.1. We assigned here a lower priority
level due to the ongoing research, implementation and integration work of the related
components

4. Processing error (A-4): We focus on sustaining the processing when compute resources
die unexpectedly as well as switching to default values to support the development of
pipelines. For the beginning, we concentrate on working pipelines without exceptional
cases and take counter measures for processing errors into account during later stages
of the project.

If not already done or in progress (as for A-1 and A-5), we plan to realize for each scenario the
respective enactment mechanisms, the respective monitoring support (in collaboration with
WP2, WP3 and WP5), the adaptive analysis and planning as well as the integration into the top-

1
 In the meantime we decided to change the acronym of the QualiMaster Infrastructure Configuration tool from

QM-IC used in D1.2 and D4.1 to QM-IConf.

QualiMaster Deliverable 4.2

Page 18 (of 70) www.qualimaster.eu

level adaptation control-script (see D4.1 for more details). For each realized scenario (according
to the prioritization we aim at 7 individual scenarios), we will validate the functionality and
perform quantitative experiments to characterize the impact and the benefits of the adaptation
(as also suggested by the advisory board).

QualiMaster Deliverable 4.2

Page 19 (of 70) www.qualimaster.eu

3. Concepts and Design
Since the completion of D4.1, we updated, improved and realized several of the concepts
presented in D4.1, considering also the feedback given by the consortium, the reviewers and
the advisors. Further, we developed additional concepts. In this section, we present an update
of the concepts from D4.1 as well as new concepts and follow the logical sequence used in
D4.1, i.e., from the quality taxonomy over quality-aware configuration to adaptation. In
particular, we discuss updates for the following:

• QualiMaster Quality Taxonomy (Section 3.1)

• QualiMaster Configuration Meta Model (Section 3.2)

• Adaptation Enactment Patterns (Section 3.3)

• Adaptation Specification Language (Section 3.4)

3.1 Quality Taxonomy
The QualiMaster Quality Taxonomy collects and categorizes the relevant quality dimensions for
the project. As discussed in D4.1, we constructed the taxonomy from an explicit survey in the
consortium. Basically, the quality taxonomy follows the terminology and structure of ISO/IEC
25010 [20]2 with a specific extension towards Big Data quality parameters in the Scalability
dimension. As also indicated in D4.1, the QualiMaster Quality Taxonomy is intended to be
refined and extended if needed.

We decided to extend the taxonomy from D4.1 in two ways. One extension to the taxonomy
originates in the suggestions from the first year review, in particular to also take novelty,
diversification or user interaction into account. A second extension is triggered by the practical
realization of adaptation scenarios, in particular to adjust and to optimize the parallelization of
pipelines in order to respond to changing stream characteristics (A-1) as well as requested
resource changes (A-2, A-5) in terms of pipeline start-up and shutdown.

Figure 1 illustrates the updated Quality Taxonomy. Actually, we extended two dimensions,
namely resource utilization and functional suitability as we explain below.

In the resource utilization sub-dimension we added parameters supporting the analysis of the
parallelism of a pipeline. These are:

• Capacity: The actual utilization of a pipeline node in (0; 1). Higher values indicate an
overloaded pipeline node. The capacity can be computed by

�������� = 	
#��������	⋅	�	��
��

�

	⋅	 ����
 and corresponds to the capacity of a Storm Bolt3. Similarly,

the average capacity of an entire pipeline can be calculated.

• Parallelization: For each pipeline node we consider the actually used number of
executing units, e.g., for software-based processing the number of JVMs realizing Storm
workers.

In the algorithm suitability sub-dimension, we consider some additional quality parameters,
also to take up the review recommendations. These are:

• Novelty: The novelty dimension plays an important role for Information Retrieval (IR)
systems [28] and is also of high relevance for several algorithms within the QualiMaster
Infrastructure. Basically all algorithms or methods using stored Information can

2
 See also http://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

3
 Technically, Storm Spouts do not define the measures to calculate the capacity. Similarly, the Storm

measurements form Bolts acting as sinks in a pipeline lead to a capacity of 0. Thus, we obtain realize the capacity

based on own measurements.

QualiMaster Deliverable 4.2

Page 20 (of 70) www.qualimaster.eu

downgrade the relevance of old data in various ways. So novelty can be measured by
analyzing to which extend old data is used, and how old this data is. For instance, when
generating graphs on the relation between stocks the temporal change might be relative
important. Also the size of sliding windows or the period in which recalculations are
performed influences the novelty of the results. Additionally the change of elements can
be interpreted as novelty [9] relating this metric to anomaly detection. One scenario
where novelty might be considered is the visualization of relations or graphs, were new
patterns might be of special interest. Tuning the algorithms or methods towards novelty
can interfere with measures like relevance or completeness, experimental evaluations
will show which setup is optimal in which scenario.

• Diversity: Diversification aims at showing different facets of a result set [10]. For instance
in the area of IR the diversification of the search results makes sure that if the result set
contains elements belonging to different categories, for all of these categories some
elements are shown [1]. Similar measures can be used in the area of book

Figure 1: Updated Quality Taxonomy (changes marked by a thicker border).

Performance

Efficiency*

Functional

Suitability*

Time

behavior*

Resource

utilization*

QualiMaster Quality Taxonomy

Scalability

Throughput

Latency

Enactment delay

Memory

consumption

Accuracy

Believability

Relevancy

Physical devices

Volume

Dimensions/ sub-dimensions

Quality parameter

Legend

Market Player

Volatility

Volatility

Velocity

Bandwidth

Completeness

Similar parameters

Variety

Parallelization

Novelty

Capacity

Diversity

Serendipity

QualiMaster Deliverable 4.2

Page 21 (of 70) www.qualimaster.eu

recommendations [31]. In QualiMaster we can measure the diversity for several
algorithms or methods, e.g., stocks are grouped into different industry sectors, when
monitoring a specific domain, a user may also want to see how other elements out of
this domain are influenced, thus a diversification of the monitored elements may lead to
a higher user satisfaction.

• Serendipity: Serendipity is defined in the literature as a measure indicating how
surprising results returned for a user query by an information retrieval system are. In
many cases users are interested not only in relevant and diverse, but also in surprising
content [22]. In our work we are planning to incorporate this measure for evaluating our
algorithms in terms of surprising output. A deeper analysis of the relations within our
graphs (similar to those described in literature [4], see also D2.1) might lead to
interesting results which can be highlighted for the user.

One further potential influence to the adaptation and the processing quality could be the
interaction of the user with the stakeholder applications, as one can observe, e.g., in terms of
the clicks a user performs. On the one side, the stakeholder applications are outside the scope
of the infrastructure as they act as clients, i.e., they subscribe to one or multiple pipeline sinks
and display the analyzed data or perform user-specific post-processing of the received data.
Thus, we do not consider such user values as direct quality parameters of the QualiMaster
infrastructure. On the other side, the stakeholder applications are able to communicate user
requests in terms of user triggers (adaptation scenario A-3) to the QualiMaster infrastructure via
the application protocol described in D6.1. Thus, the user intentions that may be derived from
the user clicks could be observed by the stakeholder applications and, if significant and
relevant, turned into user triggers for the adaptation.

3.2 Configuration Meta Model
In deliverable D4.1, we introduced the concepts and design of the QualiMaster Configuration
Meta Model and detailed specific configurations of the QualiMaster infrastructure. In particular,
we discussed the QualiMaster Configuration Meta Model in terms of individual modules
(subsections in D4.1), specifying the introduced configurable elements as well as their
interrelations in terms of typed references and constraints. The Configuration Meta Model allows
the domain user to configure the resource pool supporting software- and hardware-based
execution (D4.1, Section 7.2.3), Data Management entities, in particular data sources and sinks
(D4.1, Section 7.2.4) and individual Data Processing Algorithms (D4.1, Section 7.2.5) as a
foundation for composing data processing pipelines. At its heart, the Configuration Meta Model
supports the topological configuration of Data Processing Pipelines (D4.1, Section 7.2.7)
consisting of data sources and sinks, data management elements for storing intermediary data,
Algorithm Families grouping algorithms of the same functionality (D4.1, Section 7.2.6), and
interconnecting data flows. To enable adaptation, the Configuration Meta model supports the
definition of Observables for monitoring run-time properties through quality parameters (D4.1,
Section 7.2.2), quality and SLA constraints as well as high-level Adaptation Settings allowing
the domain user to control certain aspects of the run-time adaptation (D4.1, Section 7.2.8). For
defining the Configuration Meta Model as well as individual configurations, we use the
Integrated Variability Modelling Language (IVML) [11, 13, 14, 19]4.

As indicated in D4.1, the Configuration Meta Model can be extended to reflect additional
configuration knowledge, in particular, to meet new or changed requirements drawn by the
research work in the QualiMaster project or requested by Infrastructure Users. In this section,
we discuss the most important changes to the Configuration Meta Model over the initial version
described in D4.1. We detail the changes by first describing the previous state given in D4.1,

4
 Historically, the “I” in IVML indicated the FP7 project INDENICA. In the mean time we decided to change

the name to indicate its wider application scope.

QualiMaster Deliverable 4.2

Page 22 (of 70) www.qualimaster.eu

discussing then the identified issues indicating the need for a change, and, finally, introducing
the changes that we made. Actually, we focus in this section on the modifications and assume
that the reader is already familiar with the concepts of the Configuration Meta Model and the
underlying modeling language IVML. For further details, please refer to D4.1.

The main modifications to the Configuration Meta Model are:

• Support for arbitrary field types in the input / output items defining the data flow at
individual pipeline elements, such as sources, sinks or processing elements. This allows
the Pipeline Designer / Algorithm Provider to work with domain specific types rather than
a limited set of predefined types.

• User-defined item names support the Algorithm Provider in semantically linking the
configuration with the derived elements in the implementation, such as the item or
algorithm interfaces.

• Textual description of algorithms providing additional descriptive information for
supporting reuse by a search functionality (as mentioned in D5.2).

• Technical access to the hardware-based execution, e.g., network ports to monitor the
available / used FPGAs or to change the hardware-based algorithm being executed.

• Artefact information enabling the automated integration and execution of pipelines and
the infrastructure. Here, we allow to configure the location of the Pipeline Elements
Repository and to define artefact specifiers for deploying individual pipelines as well as
the entire Configuration (Meta)5 Model as an artefact.

• Development support in terms of a debug mode, which allows optimizing pipelines for
production, in particular to disable logging, which can impact the pipeline performance.

Below, we will now discuss each modification in the sequence given above. Finally, we
conclude with potential future changes in Section 3.2.7. Please note that we changed the
Infrastructure Instantiation Process discussed in D5.2 accordingly to reflect the new capabilities
of the Configuration Model in the derived / generated artefacts.

3.2.1 Arbitrary Field Types

As described in D4.1, we use the IVML compound type Item (defined in the IVML module

Basics) to specify the items of a data stream handled by data sources, data sinks, algorithms
and algorithm families. Thereby, we use the type FieldType to characterize the type of
individual fields in the Item. In the previous design of the Configuration Meta Model, FieldType
has been defined as an enumeration denoting only basic types such as Integer, String, or
Boolean. Recently, the partners acting as Algorithm Providers identified an increased need to
pass domain-specific objects through a pipeline, such as an object representing a Twitter feed.
Initially, this led to the inclusion of the type Object into FieldType enumeration, inspired by the
respective class in Java. Although Object allowed us to defined pipelines on arbitrary domain-
specific types, it also imposed limitations. On the one side, due to the generality of Object (it
complies with every type), the static pipeline analysis defined through configuration constraints
was not able to detect whether a pipeline is (fully) composed correctly. On the other side, the
Object type required the Algorithm Provider to cast individual tuple fields back to the expected
type, leaving important aspects of pipeline (type) consistency in the hands of the Algorithm
Provider.
Thus, in discussion with WP2, we decided to extend the notion of the FieldType in the
Configuration Meta Model, allowing the configuration of arbitrary types provided by algorithm
implementations. The new design of the related parts is illustrated in Figure 2. In contrast to the

5
 Akin to D4.1, we refer with Configuration (Meta) Model to both, the definition of the types and

constraints in the Configuration Meta Model as well as a particular Configuration.

QualiMaster Deliverable 4.2

Page 23 (of 70) www.qualimaster.eu

initial version of the Configuration Meta Model, where we defined FieldType as an
enumeration, we reconstructed it now as a compound containing configurable elements for
capturing enough information of the specific type to generate, integrate and build actual as well
as future versions of QualiMaster pipelines. Consequently, all uses of FieldType became typed
references to the (singleton, shared) type definitions given in the configuration. To maintain
compatibility with the initial version of the Configuration Meta Model, we modeled the already
known (enumeration-based) types in terms of compound variables, defined them as built-in
types, and changed the existing configuration accordingly. Moreover, defining new types or
(carefully) changing existing types belongs now to the responsibilities of the Infrastructure
Administrator (potentially on behalf of or in collaboration with the Pipeline Designer).
As indicated in Figure 2, a FieldType can be detailed by five slots, which we discuss now.
Basically, a FieldType receives a unique name so that it can be identified and selected by a
domain user. The slot class must be configured with the fully qualified class name of the

implementing type, actually a Java class. If the implementing type is part of the default Java
libraries, no specific artifact containing the implementation needs to be configured. If the type
is domain- or application specific, artifact contains the Maven artefact specification of the
providing artefact. This is required to derive the correct Maven build specifications for the
interfaces and the pipelines. Due to the distributed nature of data processing in Apache Storm,
data types that shall be passed along with the data stream must be serializable, i.e., Storm must
be able to turn an instance into a form that can be sent through and received from network
connections. Basically, one can rely on the easy-to-apply default Java serialization (the specific
class and its fields must be serializable, i.e., at least transitively implement the Java interface
Serializable, or excluded from serialization). To achieve better performance (typically lower
latency and higher throughput), the use of the serialization mechanism built into Storm, namely
kryo6, is recommended. To enable kryo serialization, the data classes must provide type-specific
serialization code, either within specific methods of the class (akin to manual serialization in the

6
 http://code.google.com/p/kryo/

Figure 2: Updated Basics module of the Configuration Meta Model showing the

configurable FieldType and its relations.

QualiMaster Deliverable 4.2

Page 24 (of 70) www.qualimaster.eu

Java mechanism) or in terms of a (registered) type-specific serializer. As we aim at using the
more efficient kryo-based approach7 in later stages of the project, we decided to allow the
Algorithm Provider to follow either style. Therefore, the FieldType defines an (optional)
serializer slot indicating the fully qualified class name of the responsible kryo serializer as
well as an (optional) Maven artefact in serializerArtifact providing the serializer
implementation (typically the same as artifact).
For a better understanding of the FieldType configuration, we take a simple string list type
representing the basic types of the Java library as well as a domain-specific object type
representing a Twitter feed as examples to explain the required information of each configurable
element in both distinct cases. Figure 3 illustrates the definition of the FieldType in IVML as a
fragment of the Basics IVML module of the Configuration Meta Model as well as its constraint
requiring a unique name.

As shown in Figure 4, a descriptive name STRINGLISTTYPE8 is configured as type identification
of the string list type. The class needs to be configured by the qualified class name referring to
the fully implemented type, as shown in the example, java.util.List<String> refers to the
implementation class name of List in the Java library as well as its element type String. As

these types are already defined by types of the Java library, no artifact must be given.
Further, we rely on the default serialization of Java for the moment.

As a second example, we configure now a domain-specific type frequently used for the analysis
Actually, in the Semantic Web analysis algorithms in QualiMaster, Twitter feeds are represented
as a list of a Java type defined by an algorithm. As depicted in Figure 5, we call this type
LISTIFEXPERT. In addition to the qualified class name of the List defined in the Java Library,
the class configuration slot also defines the qualified implementation name of its element type,
here eu.qualimaster.types.IFExpert. Furthermore, we need to configure an artefact so that
the specific type IFExpert can be resolved, actually
eu.qualimaster:SpecificTypes:0.0.1-SNAPSHOT as given for the slot artifact. As above,

7
 Intended for later optimization phases of the project, which requires, in turn, changes to the pipeline
instantiation enabling kryo support for the generated classes.
8
 Actually, the priority pipeline already used this type to define the control stream for the correlation

computation. Thus, we redefined it using the same name to maintain compatibility and to avoid interface
changes.

 compound FieldType {
 NonEmptyString name;
 ClassString class;
 OptionalArtifactString artifact; // optional
 OptionalClassString serializer; // optional
 OptionalArtifactString serializerArtifact; // optional

}
setOf(refTo(FieldType)) types = {};
Constraint typeNamesUnique = types->collect(t|t.name).size()
 == types.size();

Figure 3: IVML fragment defining the FieldType.

 FieldType StringListType = {
 name = "STRINGLISTTYPE",
 class = "java.util.List<String>",
 };

Figure 4: IVML fragment specifying the configuration of an arbitrary type, here a list of

Strings.

QualiMaster Deliverable 4.2

Page 25 (of 70) www.qualimaster.eu

we rely on the default serialization of Java for the moment and do neither specify the serializer
nor its artefact.

3.2.2 Item Names

In addition to the introduction of the FieldType in the Basics module, we extended the
compound Item representing an input / output type to a pipeline element by a user-defined
name. Actually, adding a name does not seem to be a big deal, but it greatly affects the
understandability of the generated artefacts. Initially, we assumed that multiple items on the
input or output side of a pipeline element is a rather exotic case and, thus, in the multiple item
case, just numbered the types along their sequence of definition. However, already in the
QualiMaster priority pipeline, the sources emit two different streams, actually the data stream
and an internal control stream for the correlation matrix computation. Thus, WP2 soon issued a
change request that a meaningful identification of input / output data interfaces would be very
appreciated. Therefore, we introduced the configurable name of an item to support a human
understandable identification and to ease the communication between Pipeline Designer and
Algorithm Provider. The related change in Item is also illustrated in Figure 2.
This modification required changes to the pipeline consistency constraints. As indicated in D4.1,
the input items of a processing element must match the output items of the preceding data
source or processing element. We defined an additional constraint restricting that the input
name of a processing element must be equal to the output name of its preceding data source
and processing element akin to the previous type constraint.

3.2.3 Descriptive Text

As mentioned in D5.2, the QualiMaster Configuration Meta Model shall capture descriptive
information for algorithms providing a search capability on the description of algorithms. The
partners of the consortium currently playing the role of Algorithm Providers suggested this
change in order to support reuse, i.e., to search for already configured existing algorithms rather
than accidentally re-defining and re-developing algorithms. Thereby, a description in addition to
the (unique) name is beneficial.
As such a description can also be helpful to reuse other configuration parts in the QualiMaster
Configuration Meta Model, we defined a description for algorithms, but also for data sources,
data sinks, families as well as pipelines. The related search capability will be integrated into the
QualiMaster Infrastructure Configuration tool (QM-IConf) in the future.

3.2.4 Access to Hardware-based Execution

A particular capability of the QualiMaster infrastructure is to integrate software-based and
hardware-based data stream processing. As discussed in D4.1, the configuration type
MPCCNode models a Maxeler MPC-C series compute node consisting of a number of Central
Processing Units (CPUs) and Data Flow Engines (DFEs) for the hardware-based execution. So
far, the MPCCNode allowed configuring the (network) host address of a MPC-C node. However,

to enable adaptation of the hardware-based execution, the QualiMaster infrastructure needs
access to the configured compute nodes, on the one side to determine the available compute
resources at runtime and on the other side to enact changes in the processing, in particular to
load new algorithms on demand (enactment pattern ES-2 in D4.1).

 FieldType ListIFExpertType = {
 name = "LISTIFEXPERT",
 class = "java.util.List<eu.qualimaster.types.IFExpert>",
 artifact = "eu.qualimaster:SpecificTypes:0.0.1-SNAPSHOT"
 };

Figure 5: IVML fragment specifying the configuration of an arbitrary type, here a list of
Twitter IFExpert type.

QualiMaster Deliverable 4.2

Page 26 (of 70) www.qualimaster.eu

Therefore, we equipped the MPCCNode with a monitoringPort so that the Monitoring Layer of
the QualiMaster infrastructure can obtain resource information from the respective MPCCNode.
We also added a commandPort enabling the Coordination Layer to communicate adaptive
enactments such as algorithm changes to the respective MPCCNode. As we will explain in the
next section, the Configuration (Meta) Model itself becomes an artefact during infrastructure
instantiation and is accessible to the QualiMaster infrastructure, so that information like the
communication ports or the host address can be utilized.

3.2.5 Automated Integration Support

In the previous version of the infrastructure part of the QualiMaster Configuration Meta model,
information about the Processing Elements Repository was not made explicit. This imposes a
problem if the installation of the QualiMaster infrastructure shall happen in a setting where
location of the repository differs, i.e., a change of the infrastructure derivation process is
needed. Furthermore, the QualiMaster Infrastructure Configuration tool (QM-IConf) shall be
enabled to explicitly deploy versions of the pipelines that are considered to be stable for running
on the cluster (called acknowledgement in D1.1/D1.2).
Thus, we support now the configuration of the Pipeline Elements repositoryURL in the

infrastructure settings, which is taken over into the Maven build specifications generated during
the infrastructure derivation process.
For enabling the explicit deployment of stable pipelines through QM-IConf, we equipped the
individual pipelines (Pipeline type in the Configuration Meta Model) with a Maven artefact
specification (artifact), separated the instantiation of the individual pipelines and their build
processes in the infrastructure derivation, prepared the explicit deployment by installing
Sonatype Nexus9 as a user frontend of the QualiMaster Maven repository and prepared a
specific repository connector for QM-IConf, which is able to perform the deployment. It is worth
to note that the QualiMaster Configuration Meta Model now contains a constraint that limits
artefact specifications to the form groupId:artifactId:version akin to Maven.
Within the QualiMaster infrastructure, the artifact specification of a pipeline is used by the
Coordination Layer to download a pipeline before starting it. In order to obtain the artefact
specification, but also to consider the contained adaptation model in the Adaptation Layer, we
included an artefact specification for the entire Configuration (Meta) Model (modelArtifact)
and package the actual Configuration along with the Instantiation and Adaptation Model during
the infrastructure derivation. This artefact is then loaded from the Pipeline Elements Repository
by the Coordination Layer and provided to the upper layers of the QualiMaster Infrastructure so
that the QualiMaster infrastructure itself is configured through the Configuration Model.

3.2.6 Development Support

During the development of a pipeline, it is often helpful to have additional information on the
actual processing, partly consisting of information provided by Storm, partly of additional
information from the algorithms or the generated pipeline artefacts. However, such additional
information, e.g., through logging, can impact the runtime performance of a pipeline (as we also
found for logging information created by the IVML Reasoner, see Section 4.1 for more details).
Thus, we decided to introduce a debugging mode for individual pipelines in the configuration. In
particular, this debugging mode takes control over the logging of individual pipelines. As we
generate the integrative pipeline artefacts based on the Infrastructure Configuration, we can just
exclude debug code from code generation if the debug mode is disabled so that it cannot impact
the runtime performance of a pipeline.

9
 http://www.sonatype.org/nexus/

QualiMaster Deliverable 4.2

Page 27 (of 70) www.qualimaster.eu

3.2.7 Future Work

Until the end of the upcoming integration phase and the submission of D5.3, we plan to change
the Configuration (Meta) Model only for solving urgent problems. For the future, we consider the
following further extensions.

● Enable re-usable pipelines and support the generation of sub-topologies. As explained in
D5.2, sub-topologies implement distributed algorithms that are fully developed by
Algorithm Providers. However, the past experience with this development approach
showed that realizing an error-free sub-topology can be an obstacle, in particular to
developers, who are not fluent with Apache Storm. Furthermore, as the structure of a
manually developed sub-topology is not part of the Configuration, the Adaptation Layer
may run into trouble in reconfiguring (the resource usage of) such a topology. However,
realizing this extension requires intensive collaboration with the QualiMaster partners, as
it particularly shall support them in developing new pipelines.

● Provide sufficient configuration options to derive also the Storm and infrastructure
configuration files from the Infrastructure Configuration to ensure consistency.

3.3 Enactment patterns
Enactment of adaptive decision can happen in different parts of the QualiMaster platform and
the running pipelines as well as in different forms. In D4.1, we introduced 6 primary and 12
secondary enactment patterns, whereby the secondary patterns are intended to support and to
be combined with the primary patterns to achieve gap-free enactment, i.e., enactment with
minimal impact on the processed data streams. However, performing an enactment can be
limited by the underlying Execution System. In D4.1, we mentioned as future work an empirical
analysis of the enactment patterns to investigate whether the patterns can be realized at all in
the environment of the QualiMaster infrastructure as well as to determine their impact on the
quality parameters and the data processing. In this section, we discuss the initial results of an
ongoing analysis of the adaptation patterns, involving both, a technical discussion whether
already analyzed patterns can be realized, but also an empirical analysis of the effect of a
certain pattern.
So far, we focused our analysis in particular on patterns that are supported by actually
implemented enactment mechanisms such as commands provided by the Coordination Layer or
which appear most beneficial for to project. In more details, we analyzed (using the identifiers
defined in D4.1):

● Change functional parameter of algorithm (EP-1)
● Select algorithm from processing family (EP-2)
● Switch between software- and hardware-based processing (EP-4)
● Parallelize processing element (EP-5) combined with migration of processing (EP-6).

We discuss the results for the analyzed patterns in individual sections below. First, in Section
3.3.1, we start with the experimental setup. Then, in Section 3.3.3 we focus on EP-1, in Section
3.3.4 on EP-2, in Section 3.3.5 on EP-4 and, finally, in Section 3.3.6 on EP-5 / EP-6.
After completing D4.1, in particular our hardware partners identified issues in applying an
algorithm switch (EP-4) between software-based and hardware-based correlation computation.
After switching the correlation computation, the respective algorithm needs to rebuild the
algorithm state, which can be rather time consuming, e.g., at least one value per market player
involved in the correlation matrix is needed. The partners believe, that this can be solved by a
form of state transfer between the involved algorithms (ES-11), running both algorithms in
parallel (EP-5) until the end of the current analysis window is reached (ES-12). Thus, as a basis
for further work, we discuss the initial design of state transfer strategies in Section 3.3.7. In
Section 0, we conclude our work on enactment patterns and discuss future work.

QualiMaster Deliverable 4.2

Page 28 (of 70) www.qualimaster.eu

3.3.1 Experimental Setup

Analyzing a complex pipeline such as the QualiMaster priority pipeline for the effect of individual
enactment patterns is problematic, as it is difficult to control the experimental setting, i.e., the
dependent experimental variables. Thus, we decided to design specific test pipelines, which are
much easier to control and to observe.
A test pipeline consists of a test data source, at least one test family and a test data sink. The
test data source produces random integer values at a constant frequency. If not described
otherwise, the test data source in our experiments produces 1000 data items per second. As
working with real algorithms would not support us in controlling the experimental setting, we rely
on test algorithms that basically just emit the received integer data item. All pipeline nodes
produce time-stamp based logs for the analysis of the experiment as we detail below.
To emulate a certain (realistic) behaviour, we equipped our test algorithms with two specific
experiment-driven parameters, namely delay and the aggregation factor as we explain now:

● The delay defines how long (in milliseconds) a received tuple shall be postponed until it
is (re-)emitted, i.e., how long the test algorithm pretends to process a single data item.
Setting the delay to 0 implies that the received data item is emitted immediately.

● The aggregation factor (akin to the aggregation size in [3]) characterizes how many input
items are being aggregated by the algorithm until an output item is emitted, i.e., how
many output items shall be skipped (shedded) for a given input item. If the factor is 1, all
input items are emitted. Currently, we do not consider the case that input items are
multiplexed.

Figure 6 illustrates the most basic abstracted form of a test pipeline we are using. The test
pipeline is composed of three basic elements, i.e., a data source, a processing family and a
destination sink. In particular, the family is equipped with two simple algorithms which only pass
through the received data based on the given delay and aggregation factor. Dependent on the
respective experiment, we consider also more complex test pipelines. However, we aim at
keeping the pipelines as simple as possible in order to have a better understanding of the
execution environment and the pipeline. Please note that for example switching between sub-
topologies is subsumed by this abstraction, as due to technical reasons the layout of the
instantiated pipeline differs regarding switching between simple Java algorithms and sub-
topologies (as explained in more detail in D5.2).
As our experiments are based on a simple test pipeline described above, we configured a local
Storm cluster at SUH as experimental execution environment, in particular to perform pre-
experiments without disturbing the ongoing work on the cluster provided to the consortium by
TSI. In the future, we consider re-validating our results on the TSI cluster, in particular for more
complicated pipelines, for using hardware-based processing, or if we need more resources.
Akin to the TSI cluster, we installed on the SUH cluster:

● Linux (Ubuntu 12.04.4 LTS)
● Java (version 1.7.0_71)
● Apache Storm (version 0.9.3)

Figure 6: Overview of the abstract test pipeline.

QualiMaster Deliverable 4.2

Page 29 (of 70) www.qualimaster.eu

● Apache ZooKeeper (version 3.4.6)
● The most recent version of the QualiMaster infrastructure.

The experimental Storm cluster at SUH consists of one Storm Nimbus node acting as the
master node assigning tasks to Supervisors and five supervisors controlling the actual Worker
processes (cf. D5.1 for more details on Storm). Furthermore, we installed a small Zookeeper
sub-cluster, coordinating the Nimbus and Supervisors within a Storm cluster. To establish a
stable and reliable cluster, we configured the Zookeeper cluster for three Zookeeper nodes as
an ensemble, in particular following online sources10 recommending an odd number of
Zookeeper machines. All machines in the cluster are connected via Gigabit-Ethernet, which
allows a transfer rate of around 100MByte/s among the machines. In addition, we synchronized
the system clocks of the cluster machines using the Network Time Protocol (NTP) in order to
enable comparisons of the timestamp-based logs. Due to time synchronization, the actual time
difference among the machines is less than 3 ms.

3.3.2 Experiment Analysis

Basically, we are interested in the actual throughput / latency of the items (as defined by the
Quality Taxonomy) and also whether all items are processed (including the processing
sequence). Therefore, we log the individual elements at sources, sinks and processing
elements for later analysis. Individual items are logged as the form of comma-separated values
(CSV) file along with a timestamp indicating the arrival time (in milliseconds system time) and
the sequence number of the logged data item.
We analyze the experimental logs in Microsoft Excel, by first separating the timestamp and the
sequence number into two different columns, then deriving the timestamp in seconds and finally
obtaining a subtotal summarizing the number of data items in each second as aggregation unit.
We selected throughput in seconds as is a frequently used unit. In particular this complies with
the maximum deviation of the synchronized time in the cluster, which is several orders of
magnitude less than our aggregation unit. Therefore, the time series charts we derive from this
data indicates the number of items over timestamp in seconds rather than milliseconds. Due to
the aggregation, the produced logs do not exceed the maximum memory of Microsoft Excel,
which we use for analyzing the logs and producing time series charts. However, in case of
larger logs we will consider R11 or similar scalable systems.
For better control of the experiment, we prepare for each individual enactment pattern (at least)
one experimental script. Although we could link these scripts directly against Storm, we decided
to work with the QualiMaster infrastructure and to utilize the experiments also as an additional

10
 http://http://zookeeper.apache.org/

11
 http://www.r-project.org/

Figure 7: Throughput while running the test pipeline without interruption.

0

500

1000

1500

2000

2500

1
4
3
6
8
6
1
2
4
0

1
4
3
6
8
6
1
2
4
1

1
4
3
6
8
6
1
2
4
2

1
4
3
6
8
6
1
2
4
3

1
4
3
6
8
6
1
2
4
4

1
4
3
6
8
6
1
2
4
5

1
4
3
6
8
6
1
2
4
6

1
4
3
6
8
6
1
2
4
7

1
4
3
6
8
6
1
2
4
8

1
4
3
6
8
6
1
2
4
9

1
4
3
6
8
6
1
2
5
0

1
4
3
6
8
6
1
2
5
1

1
4
3
6
8
6
1
2
5
2

1
4
3
6
8
6
1
2
5
3

1
4
3
6
8
6
1
2
5
4

1
4
3
6
8
6
1
2
5
5

1
4
3
6
8
6
1
2
5
6

1
4
3
6
8
6
1
2
5
7

1
4
3
6
8
6
1
2
5
8

1
4
3
6
8
6
1
2
5
9

1
4
3
6
8
6
1
2
6
0

1
4
3
6
8
6
1
2
6
1

1
4
3
6
8
6
1
2
6
2

1
4
3
6
8
6
1
2
6
3

1
4
3
6
8
6
1
2
6
4

1
4
3
6
8
6
1
2
6
5

1
4
3
6
8
6
1
2
6
6

1
4
3
6
8
6
1
2
6
7

1
4
3
6
8
6
1
2
6
8

1
4
3
6
8
6
1
2
6
9

1
4
3
6
8
6
1
2
7
0

1
4
3
6
8
6
1
2
7
1

1
4
3
6
8
6
1
2
7
2

1
4
3
6
8
6
1
2
7
3

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

QualiMaster Deliverable 4.2

Page 30 (of 70) www.qualimaster.eu

validation of the QualiMaster infrastructure. Such an experimental script is a Java program,
which launches the respective commands provided by the Coordination Layer of the
QualiMaster infrastructure (cf. D5.2) such as starting or stopping the test pipeline as well as
switching algorithms etc. During an experiment, we run the respective script five times to detect
deviations and analyze the individual runs.
As part of pre-experiments, we figured out that a pipeline needs some time after its start-up to
stabilize the processing, i.e., the throughput around the expected value of 1000 items per
second. Figure 7 illustrates the throughput in terms of the number of items per second of the
data stream processing along with a running pipeline without any interruption or execution of
enactments. In the diagram, the pipeline takes around 14 seconds to stabilize the throughput
(indicated by the green triangle). We recorded some instability in throughput of a maximum
length of 50 seconds. According to the experience we made so far, these instabilities seem to
appear randomly and are potentially caused by the Storm framework. In the following sections,
in order to focus on the impact of individual enactment patterns, we will exclude the start-up
phase of the pipeline from the displayed charts and focus on the throughput during time period
around the enactment. Moreover, we will focus on the throughput measured at the end (Sink
node) of the test pipeline.
Below, we discuss the results of all script executions. Thereby, we will present representative
graphs for the data we obtained from the experimental logs.

3.3.3 Change functional parameter (EP-1)

Changing a functional parameter of an algorithm can be requested to change the processing of
an algorithm, e.g., to adjust an analysis window or to select a specific algorithm variant
implemented in the same algorithm. In an extreme form, the code of a software-based algorithm
can be re-instantiated to turn a certain (frequently used) parameter into a constant to optimize
the processing for performance (ES-4). However, without analysis it remains unclear whether
changing a functional parameter for an algorithm yields negative impacts on the data
processing. In case of a real algorithm, the effect of changing a parameter on the quality
parameters we are interested in depends on the implementation of the algorithm. Therefore, this
experiment just focuses on the basic mechanism of requesting the change of the parameter
until the algorithm is notified and leave experiments with real QualiMaster algorithms for future
analysis. Furthermore, we focus on changing parameter values at runtime leaving the option to
re-instantiate code (ES-4) for later experiments.
The actual mechanism behind the change of a functional parameter is provided by the central
memory of a Storm pipeline, the so called Zookeeper. Actually, the Zookeeper is a kind of
shared directory structure of Zookeeper nodes (ZNode), where each ZNode can carry payload
data. In particular, interested parties can be informed upon the change of a ZNode (observer
design pattern [17]), which is also utilized by Storm, e.g., to distribute Worker assignments to
the Supervisors. The Zookeeper can be accessed through the Curator framework12, which, in
turn, is used by the QualiMaster Coordination Layer to change respective ZNodes upon a
coordination command, here, changing a functional parameter for a certain processing element
in a given pipeline.

12
http://curator.apache.org/curator-framework/

QualiMaster Deliverable 4.2

Page 31 (of 70) www.qualimaster.eu

First, we focus on a parameter that does not have an actual effect on the algorithm. As an
effect, the throughput of the pipeline should not change. Figure 8 illustrates the effect of
changing such a functional parameter. In the diagram, the flag parameter arrives at timestamp
1436863074 s (green triangle). As indicated by Figure 8, this enactment causes almost no
fluctuation on the throughput.
However, a real algorithm will probably react somehow when a parameter is changed. We
illustrate this as an example of changing the delay of the actual processing node as shown in
Figure 9. Here, the complete effect of changing a functional parameter takes around 2 s, i.e.,
from enacting the change (indicated by the green triangle) it needs 2 s to propagate the effect
through the test pipeline to the sink node. Actually, we determined the time between sending the
respective command and the first effect at timestamp 1436428581 s to 20ms, while we recorded
the end of the effect 2 second later at 1436428582 s.
From the results analyzed above we conclude that changing a functional parameter is per se
not problematic, i.e., just sending and processing the respective command does not have
negative effects. However, the actual change to the data processing, here in terms of
throughput, depends on the affected algorithm and its position within the pipeline, so that
slowing down or speeding up an algorithm can yield subsequent ripple effects in the pipeline
and may require that following adaptations take this into account.

3.3.4 Select algorithm from processing family (EP-2)

Selecting an algorithm from its processing family, i.e., among alternative algorithms with
different quality tradeoffs, is at the conceptional heart of the QualiMaster project and, thus, EP-2
is one of the key enactments. Akin to changing a parameter of an algorithm at runtime, EP-2 is
implemented in the QualiMaster infrastructure through a change in the Zookeeper directory,

Figure 8: Throughput while analyzing the effect of changing a functional parameter.

0

200

400

600

800

1000

1200

1400

1
4
3
6
8
6
3
0
6
5

1
4
3
6
8
6
3
0
6
6

1
4
3
6
8
6
3
0
6
7

1
4
3
6
8
6
3
0
6
8

1
4
3
6
8
6
3
0
6
9

1
4
3
6
8
6
3
0
7
0

1
4
3
6
8
6
3
0
7
1

1
4
3
6
8
6
3
0
7
2

1
4
3
6
8
6
3
0
7
3

1
4
3
6
8
6
3
0
7
4

1
4
3
6
8
6
3
0
7
5

1
4
3
6
8
6
3
0
7
6

1
4
3
6
8
6
3
0
7
7

1
4
3
6
8
6
3
0
7
8

1
4
3
6
8
6
3
0
7
9

1
4
3
6
8
6
3
0
8
0

1
4
3
6
8
6
3
0
8
1

1
4
3
6
8
6
3
0
8
2

1
4
3
6
8
6
3
0
8
3

1
4
3
6
8
6
3
0
8
4

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

Figure 9: Throughput while sending a delay parameter to the executed algorithm.

0

200

400

600

800

1000

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

QualiMaster Deliverable 4.2

Page 32 (of 70) www.qualimaster.eu

leading to notification of the respective topology element, actually a Bolt.
As already indicated above for, due to technical reasons, we need to differentiate the following
two base cases:

● Switch among simple algorithms
● Switch among sub-topologies

For both base cases, we analyze the respective effects with and without delays, as we aim at
evidence whether switching with a filled (input) buffer13 may lead to a backlog of items. Such a
backlog may then anyway be processed by the algorithm that was active before the switch as
the underlying Storm framework does not know about switching algorithms. Originally, we
observed such a situation in an early version of the Priority Pipeline, but at that time we could
only speculate about the respective root cause. Similarly, ripple effects of an algorithm switch in
later parts of a pipeline are important to understand, as we will consider this in our ongoing
analysis and in the design of the state transfer in Section 3.3.7. Below, we discuss now the two
base cases, each with and without intentional delay caused by a processing element.

3.3.4.1 Switch among simple algorithms without delay

In this section, we analyze the effects of switching a simple Java algorithm without delay. Figure
10 illustrates the throughput in terms of the number of items per second during the experiment.
We perform a switch from Alg1 to Alg2 at timestamp 1432199588 s and record further 13
seconds to capture for potential effects on the throughput.
Comparing the throughput before and after switching the algorithm shows that the amount of the
processed items remains nearly constant. Thus, we conclude that performing an algorithm
switch of a simple Java algorithm which processes the input items immediately does not cause
negative effects.

3.3.4.2 Switch among simple algorithms with delay

In contrast to the previous experiment, we discuss now the effects of switching from an
algorithm with delay to an algorithm without delay. Therefore, we wait until the pipeline reaches
a stable state, enact then the delay on Alg1 to validate the delay effect first, wait some time and
switch then to Alg2. As we tested with different delay parameters, the reduced number of items
is proportional to the given delay, e.g., a 30 ms delay leads to 30 times less items of the
expected throughput of 1000 items per second, i.e., around 33 items per second. In this
experiment, we use a representative delay of 30 ms, but we made similar observations with

13

 Technically, Storm aims at immediately transferring processed items to the next Worker, which buffers them in

its input queue and dispatches them as soon as possible to the input queue of the responsible Executor. The

Executor fetches them item-by-item and calls the processing method of the implementing Bolt.

Figure 10: Throughput while switching among simple algorithms (no delay).

0

100

200

300

400

500

600

700

800

900

1000

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

QualiMaster Deliverable 4.2

Page 33 (of 70) www.qualimaster.eu

other values of the delay parameter.
As shown in Figure 11, we wait until the pipeline reaches a stable processing 1000 items per
second. At 1436428580 s (the first triangle highlight) we enact the delay parameter, which leads
to a ripple effect of around 2 s as mentioned in Section 3.3.3. The delay decreases the
throughput 33 items per second. After 10 s running the algorithm with 30 ms delay, we switch
from the slow algorithm Alg1 to Alg2 running without delay. This happens specifically at
timestamp 1436428590 s (the second triangle highlight) and causes a spike in the throughput of
around 5000 items per second for duration of 3 seconds. As we are not operating the pipeline at
the limit of the available resources (we also performed some initial experiments at 15000 items
per second), the pipeline can quickly recover and process the actual backlog. After this time, the
pipeline regained the stable throughput of around 1000 items per second.
In order to verify these results, we repeated the same experiment with different delay
parameters, i.e., the respective delay of 50 ms and 100 ms. The results show that the slow
algorithm leads to a backlog of items in (more precisely before) its executing Bolt and the items
are queued in the internal buffer provided by Storm but processed directly after switching in
terms of an event peak. This is due to the queue mechanism of Storm, which prevents the data
loss and guarantees the data being completely processed. Actually, this mechanism could also
help us migrating the queued items from the originally active algorithm to the changed one and
to avoid that the original algorithm keeps on processing. Therefore, we plan to analyze the
effect of explicitly rejecting (rather than accepting) items in the disabled sub-topology.

3.3.4.3 Switch among sub-topologies without delay

The switching experiments discussed so far take only simple Java algorithms into account. As
the QualiMaster priority pipeline involves sub-topologies, i.e., explicitly distributed Storm
algorithms, we are also interested in the effects caused by switching from / to a sub-topology
and whether the effects differ from simple Java algorithms. Akin to Section 3.3.4.1, we discuss
in this section experiments with sub-topologies running without delay and focus on delays in the
next section.
In this experiment, the actual switching to another sub-topology-based algorithm happens at
timestamp 1436459531 s. As depicted in Figure 12, the throughput before and after the
switching point remains nearly constant, namely around 1000 items per second. Akin to the
case of switching to a simple Java algorithm, we conclude that the switching among sub-
topology-based algorithms without delay does not harm the data processing of the pipeline.

Figure 11: Throughput while switching among simple algorithms (delay).

0

1000

2000

3000

4000

5000

6000

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

2

1

QualiMaster Deliverable 4.2

Page 34 (of 70) www.qualimaster.eu

3.3.4.4 Switch among sub-topologies with delay

In this section, we discuss switching a sub-topology-based algorithm running with a certain
delay. Akin to the experiment in Section 3.3.4.2, we first wait until the stable state, enact then
the delay of 30ms on Alg1, wait for some time and switch then to Alg2.
Figure 13 shows the throughput in terms of the number of items for switching from a delayed
sub-topology algorithm to a non-delayed sub-topology algorithm. The enactment of the delay on
Alg1 happens at timestamp 1436459957 s (the first triangle highlight). As indicated by Figure
13, the throughput is reduced to 33 items per second akin to Section 3.3.4.2. At timestamp
1436459967 s (the second triangle highlight), we switch the processing family to the non-
delayed sub-topology algorithm Alg2. Instead of coping with the queued items immediately as
appeared in the case of switching a simple algorithm with delay, in this experiment, the
processing of the backlog items is deferred by 3 seconds (the third triangle highlight), which
actually seems to be caused by Storm framework. To explain this effect, we analyzed the
timestamps of the arrived items. By comparing the timestamps of the items, we realized that
after switching the delayed sub-topology of Alg1 is still processing its backlog of items. We can
also see from the diagram at timestamp 1436459979 s (the fourth triangle highlight) the
throughput starts to reduce and returns back to the expected throughput (1000 items/s) after 5
seconds processing the queued items in the previous delayed sub-topology. The backlog of
items is due to the queuing mechanism of Storm, which guarantees that the data fully
processed and prevents accidental data loss. In particular, in this case, the sub-topology-based
algorithm consists of the Spouts/Bolts so that the items are queued on the algorithm level
instead on the family level as this happened in the experiment described in Section 3.3.4.2.
For the moment, we conclude that a gap-free switching between sub-topology based algorithms
of significantly different latency needs further consideration. As one option, we will analyze also
here the effect of explicitly rejecting items in the disabled sub-topology. Further, we aim at
analyzing whether disabling the processing guarantees of Storm could help. Ultimately, we may
take an explicit buffer transfer (ES-1) into account, although this will require a modification of
Storm.

3.3.5 Switch between hardware- and software-based processing (EP-4/ES-2)

As indicated in D3.1, the reconfigurable hardware is integrated along with the QualiMaster
infrastructure aiming at a performance gain of the data processing, in particular, for the
optimized hardware-based data processing algorithms. Basically, a flexible interface between
Storm and Maxeler has been implemented as a communication framework between the
QualiMaster pipeline and the reconfigurable hardware. In order to verify the impact of the
hardware integration on the enactment of adaptation decisions, in this section we aim at figuring
out whether and how the switching to hardware-based processing affects the throughput of a
running pipeline.

Figure 12: Throughput while switching among sub-topologies (no delay).

0

200

400

600

800

1000

1200

1
4
3
6
4
5
9
5
0
1

1
4
3
6
4
5
9
5
0
2

1
4
3
6
4
5
9
5
0
3

1
4
3
6
4
5
9
5
0
4

1
4
3
6
4
5
9
5
0
5

1
4
3
6
4
5
9
5
0
6

1
4
3
6
4
5
9
5
0
7

1
4
3
6
4
5
9
5
0
9

1
4
3
6
4
5
9
5
1
0

1
4
3
6
4
5
9
5
1
1

1
4
3
6
4
5
9
5
1
2

1
4
3
6
4
5
9
5
1
3

1
4
3
6
4
5
9
5
1
4

1
4
3
6
4
5
9
5
1
5

1
4
3
6
4
5
9
5
1
6

1
4
3
6
4
5
9
5
1
7

1
4
3
6
4
5
9
5
1
8

1
4
3
6
4
5
9
5
1
9

1
4
3
6
4
5
9
5
2
0

1
4
3
6
4
5
9
5
2
1

1
4
3
6
4
5
9
5
2
2

1
4
3
6
4
5
9
5
2
3

1
4
3
6
4
5
9
5
2
4

1
4
3
6
4
5
9
5
2
5

1
4
3
6
4
5
9
5
2
6

1
4
3
6
4
5
9
5
2
7

1
4
3
6
4
5
9
5
2
8

1
4
3
6
4
5
9
5
2
9

1
4
3
6
4
5
9
5
3
0

1
4
3
6
4
5
9
5
3
1

1
4
3
6
4
5
9
5
3
2

1
4
3
6
4
5
9
5
3
3

1
4
3
6
4
5
9
5
3
4

1
4
3
6
4
5
9
5
3
5

1
4
3
6
4
5
9
5
3
6

1
4
3
6
4
5
9
5
3
7

1
4
3
6
4
5
9
5
3
8t

h
e

 n
u

m
b

e
r
 o

f
it

e
m

s

timestamp(s)

QualiMaster Deliverable 4.2

Page 35 (of 70) www.qualimaster.eu

In this experiment, the family element of the test pipeline is equipped with a simple software
Java algorithm (adopted from the previous experiments) and a hardware-based algorithm
implemented in the same style. Technically, the hardware algorithm batches 1000 data items,
and then passes them to the Maxeler hardware located at TSI and, finally, returns back the
processed data items. Akin to the software test algorithms the hardware-algorithm just passes
through the data according to the given parameters of delay and aggregation. It is noteworthy
that the hardware-based algorithm is actually integrated by a Storm sub-topology including a
Bolt sending data items to the hardware and a Spout receiving the data from the hardware (cf.
D3.2 for the design of the integration). Furthermore, it is important to indicate that we kept the
experimental setting as described in Section 3.3.1, i.e., the software pipeline is running at SUH
while the hardware is running at TSI, although this may affect latency and throughput due to the
geographical distribution. In future, we plan further experiments that run only on the TSI side to
avoid such effects.
Figure 14 illustrates the throughput while switching from the software-based algorithm to the
hardware-based algorithm. The pipeline is first running using the software-based algorithm. At
timestamp 1437644175 s (indicated by the green triangle), we switch the running algorithm to
the hardware-based algorithm. Figure 14 indicates that the throughput during the switch to the
hardware algorithm is reduced to, in the diagram, to around 400 items per second. Currently we
believe that the reduction of the throughput during the switch is due to the on-demand
initialization of the communication with the remote hardware at TSI and the communication
delay mentioned above. Further it is interesting that after the switch, in contrast to the plain
Storm pipelines discussed in the previous sections, the throughput reaches the exact rate of
data items emitted by the source, namely 1000 items per second. Already for our experimental
setting this indicates that integrating hardware-based co-processors can be beneficial in

Figure 13: Throughput while switching among sub-topology-based algorithms (delay).

0

500

1000

1500

2000

2500

1
4
3
6
4
5
9
9
5
1

1
4
3
6
4
5
9
9
5
2

1
4
3
6
4
5
9
9
5
3

1
4
3
6
4
5
9
9
5
4

1
4
3
6
4
5
9
9
5
5

1
4
3
6
4
5
9
9
5
6

1
4
3
6
4
5
9
9
5
7

1
4
3
6
4
5
9
9
5
8

1
4
3
6
4
5
9
9
5
9

1
4
3
6
4
5
9
9
6
0

1
4
3
6
4
5
9
9
6
1

1
4
3
6
4
5
9
9
6
2

1
4
3
6
4
5
9
9
6
3

1
4
3
6
4
5
9
9
6
4

1
4
3
6
4
5
9
9
6
5

1
4
3
6
4
5
9
9
6
6

1
4
3
6
4
5
9
9
6
7

1
4
3
6
4
5
9
9
6
8

1
4
3
6
4
5
9
9
6
9

1
4
3
6
4
5
9
9
7
0

1
4
3
6
4
5
9
9
7
1

1
4
3
6
4
5
9
9
7
2

1
4
3
6
4
5
9
9
7
4

1
4
3
6
4
5
9
9
7
5

1
4
3
6
4
5
9
9
7
6

1
4
3
6
4
5
9
9
7
7

1
4
3
6
4
5
9
9
7
8

1
4
3
6
4
5
9
9
7
9

1
4
3
6
4
5
9
9
8
0

1
4
3
6
4
5
9
9
8
1

1
4
3
6
4
5
9
9
8
2

1
4
3
6
4
5
9
9
8
3

1
4
3
6
4
5
9
9
8
4

1
4
3
6
4
5
9
9
8
5

1
4
3
6
4
5
9
9
8
6

1
4
3
6
4
5
9
9
8
7

1
4
3
6
4
5
9
9
8
8

1
4
3
6
4
5
9
9
8
9

1
4
3
6
4
5
9
9
9
0

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

1

3

4

2

Figure 14: Throughput while switching between software- and hardware-based
processing algorithms.

0

200

400

600

800

1000

1200

t
h

e
 n

u
m

b
e

r
 o

f
it

e
m

s

timestamp(s)

QualiMaster Deliverable 4.2

Page 36 (of 70) www.qualimaster.eu

situations where the hardware can be utilized adequately (see D3.2 for a related discussion).
Please note that in this experiment, we do not consider the delay parameter as we did in the
previous experiments. Our aim of this experiment is to have a first impression of the effect of the
integration of software- and hardware-based algorithms. Thus, we scheduled further
experiments with the delay parameter and to conduct experiments on the TSI cluster to avoid
network communication latencies.

3.3.6 Parallelize processing elements (EP-5/EP-6)

According to D4.1, EP-5 aims at parallelizing a processing element, i.e., to utilize additional
resources in parallel to speed up data processing or to compensate computationally intensive
processing elements. Therefore, Storm offers the rebalance operation, which allows defining at
runtime a new number of workers for the pipeline / topology as well as the individual number of
executors to be utilized per processing element, i.e., per Spout or Bolt. The tasks represent
clones of Bolts that can be used to process grouped data or to define residual capacity for
scaling up a cluster. The number of tasks is fixed by the topology definition and constant at
runtime. In any case, the main Storm topology invariant holds, namely that

#�	
����
�	 ≤ #�����

This requires that each logical task is processed by at least one physical executor and limits the
scalability of a Storm cluster, i.e., it is advisable to start a topology with a certain number of
provisional tasks. Dependent on the actual task / executor assignment produced by the
pluggable Storm scheduler (strategy design pattern [17]), a Worker JVM can host multiple
executors and an executor can handle multiple tasks. One extreme case is to run all executors
in one single JVM and tasks “sequentially”14 in one executor, which occurs in particular when
testing topologies on a local machine, the so called “local cluster”. In the other extreme case,
each executor runs in an own JVM and each task in an own executor.
According to the online documentation of Storm it seems that the rebalance operation aims at
optimizing the entire compute cluster and, thus, may rebalance even multiple dependent
topologies at once. The latter can be avoided using a specific scheduler, such as the Storm
isolation scheduler, which can prevent the reassignment of certain reserved resources.
However, during the rebalance operation, Storm stops, rearranges and starts the affected
pipelines, i.e., it causes the related data processing to pause for a certain time.
In this experiment, we aim at analyzing the characteristics of the rebalance operation and to
discuss alternatives, i.e., we use the rebalance operation to change the parallelism of a pipeline.
Therefore, we implemented a respective Coordination Layer command, which finally calls the
Storm rebalance operation for the indicated pipeline. The start-up setting of this experiment is
one worker and two executors. Figure 15 depicts the results of rebalancing the test pipeline,
here only by changing the number of workers for the entire pipeline from 1 to 2 at timestamp
1432202870 s (green triangle). Directly after sending the rebalance command, Storm stops the
actual pipeline, shuts down the individual workers and restarts new workers (JVMs). In
summary, this stops data processing for 8 seconds and causes a further instability of 10
seconds. Actually, Storm performs the same basic operations if the number of executors of a
certain processing element shall be changed. According to our experience, the processing
downtime increases with the complexity of the pipeline, i.e., depends on the affected number of
JVMs. As mentioned above, depending on the active Scheduler, Storm may even rebalance the
entire cluster involving also further pipelines. Thus, we conclude that with the recent Storm
versions a gap-free change of the parallelism of a pipeline is not possible.

14

 The actual sequence is determined in Storm by the predecessor pipeline element depending on the defined

grouping style, e.g., according to data fields, in a random manner, etc. Thus, thinking about a “sequential”

execution of the tasks is a simplification that might help to understand Storm at a glance.

QualiMaster Deliverable 4.2

Page 37 (of 70) www.qualimaster.eu

To achieve a gap-free enactment also in the case of changing the parallelism, we started to
investigate whether a modified version of Storm could allow changes of the parallelization at
runtime. Therefore, we analyzed the data structures and the internal processing of Storm. As
explained above, Storm stores its worker assignments in a central data structure on the
Zookeeper(s). This assignment defines the tasks that shall be executed on a certain worker /
executor. Basically, modifying this assignment can cause individual workers to stop and new
ones to start. However, certain conditions in the official version of Storm aim at avoiding such
“illegal” assignments. Thus, we followed the path of a changed assignment through the Nimbus,
Supervisor, Executor and Task code, modified the conditions and interpretation of the
assignments accordingly and, finally, adjusted the default shutdown functions of executors, the
item / tuple routing and enabled a queue transfer among old and new executors to avoid item
loss. In contrast to the experimental setup, we rely here on Storm version 0.9.5, which was the
most recent stable release when we prepared this deliverable. We selected that version,
because it contains improvements regarding fault tolerance and failover of workers, which we
expect to be beneficial for our modifications. Actually, these improvements in Storm will also
help realizing the processing error adaptation scenario (AS-5).
As a preliminary result on a local cluster running on a usual Intel Core i7 laptop with 16 GBytes
main memory, we can change the parallelism on the level of executors at runtime in a test
pipeline in less than 150 ms. During this reconfiguration time we run the old and the new
executors in overlapping fashion so that a potential downtime on the affected path is minimized
and the current processing of items can be completed. Actually, enacting the change can cause
a delay of several seconds, as the changed assignment is passed through the Storm
components mentioned above by actively polling the Zookeepers with a certain configurable
frequency. So far, as the other experiments described in this Section occupied our cluster, we
were not able to validate the change of parallelism on the level of workers (realizing EP-6), i.e.,
on a distributed cluster, but we are confident that we can achieve good results there. We
scheduled experiments dedicated to our modifications as soon as the validation of the new
functionality is successfully completed

3.3.7 Strategies for State Transfer (ES-11)

Additional challenges are added to the situation of adaptation-driven switching in the case,
where the processing is not stateless. If, for example, a processing element aggregates the
number of tweets about one stock in the last five minutes, it is not possible to switch between to
processing elements without taking this state into account. Optimizing the time needed to
perform the adaptation and minimizing the impact on the data streams (gap-free enactment)
requires a careful design of the algorithm switch (EP-2) for stateful components, which may
involve a generic form of state-transfer (ES-11). In this section, we discuss the initial design of

Figure 15: Throughput while rebalancing the number of workers for the test pipeline.

0

100

200

300

400

500

600

700

800

900

1000

1
4
3
2
2
0
2
8
6
4

1
4
3
2
2
0
2
8
6
5

1
4
3
2
2
0
2
8
6
6

1
4
3
2
2
0
2
8
6
7

1
4
3
2
2
0
2
8
6
8

1
4
3
2
2
0
2
8
6
9

1
4
3
2
2
0
2
8
7
0

1
4
3
2
2
0
2
8
7
1

1
4
3
2
2
0
2
8
7
2

1
4
3
2
2
0
2
8
7
3

1
4
3
2
2
0
2
8
7
4

1
4
3
2
2
0
2
8
7
5

1
4
3
2
2
0
2
8
7
6

1
4
3
2
2
0
2
8
7
7

1
4
3
2
2
0
2
8
7
8

1
4
3
2
2
0
2
8
7
9

1
4
3
2
2
0
2
8
8
0

1
4
3
2
2
0
2
8
8
1

1
4
3
2
2
0
2
8
8
2

1
4
3
2
2
0
2
8
8
3

1
4
3
2
2
0
2
8
8
4

1
4
3
2
2
0
2
8
8
5

1
4
3
2
2
0
2
8
8
6

1
4
3
2
2
0
2
8
8
7

1
4
3
2
2
0
2
8
8
8

1
4
3
2
2
0
2
8
8
9

1
4
3
2
2
0
2
8
9
0

1
4
3
2
2
0
2
8
9
1

1
4
3
2
2
0
2
8
9
2

1
4
3
2
2
0
2
8
9
3

1
4
3
2
2
0
2
8
9
4

1
4
3
2
2
0
2
8
9
5

1
4
3
2
2
0
2
8
9
6

1
4
3
2
2
0
2
8
9
7

1
4
3
2
2
0
2
8
9
8

1
4
3
2
2
0
2
8
9
9

1
4
3
2
2
0
2
9
0
0

1
4
3
2
2
0
2
9
0
1

1
4
3
2
2
0
2
9
0
2

1
4
3
2
2
0
2
9
0
3

1
4
3
2
2
0
2
9
0
4

1
4
3
2
2
0
2
9
0
5

1
4
3
2
2
0
2
9
0
6

1
4
3
2
2
0
2
9
0
7

1
4
3
2
2
0
2
9
0
8

1
4
3
2
2
0
2
9
0
9

1
4
3
2
2
0
2
9
1
0

1
4
3
2
2
0
2
9
1
1

N
u

m
b

e
r

o
f

T
u

p
le

s

timestamp (s)

QualiMaster Deliverable 4.2

Page 38 (of 70) www.qualimaster.eu

different strategies combining enactment patterns to achieve gap-free switching of stateful
processing elements in a data processing pipeline. We start with an overview on related work,
discuss then the dimensions to be considered for a design as well as three strategies to enable
the algorithm switch for stateful processing elements.
Maintaining the state of a reconfigurable software system is a research topic already for a
longer time. For example, in [29] Wemerlinger and Fiadero use Category Theory to describe the
system state and potential adaptations. In that work, the authors discuss the transfer of the state
between old and new components to realize component replacement and introduce specific
situations when reconfigurations of individual components can happen, such as the quiescent
state, where a component is not interacting with other components so that it can be
disconnected and removed safely from the system. For distributed CORBA-based systems,
Almeida et al. allow in [2] replacement, migration, addition, and removal of components, which
explicitly provide access to their state as well as specific lifecycle operations, such as
passivating a component. Transferring the state of a component can particularly be seen as a
dynamic update. For service-oriented systems, [25] aim at a dynamic update connector, which
combines request buffering (ES-1), request redirection (ES-8) and state transfer (ES-11) to
achieve a form of gap-free update, namely continuous availability of services, i.e., no
interruption and only minor decline of the quality during the update. Moreover, Zhang and
Cheng use in [30] state diagrams and temporal logic to model state transfer in adaptive software
systems. Also in distributed stream processing systems, some research work addresses the
problem of state transfer. For example, in [23], Rundensteiner et al. perform state relocation of
data stream operators that run out of memory, i.e., the authors move parts of the state to the
persistent memory and load it back if possible. Castro Fernandez et al. suggest in [15] a set of
state management primitives for data stream processing systems, namely checkpoint, backup,
restore and partition, to achieve fault tolerance and to enable cloud scaling. In particular, the
authors distinguish between the processing state consisting of key-values and the most recent
timestamps handled by a processing element, the buffer state and the routing state. Actually,
the management primitives in that work focus on scalability rather than algorithm switching and
need further refinement. Further, Nasir et al. discuss in [21] a practical load-balancing approach
considering the state of operators in key-grouping data stream operations. In summary,
maintaining the state of components in a reconfigurable system is still a challenging research
question as noted by Gheis et al [18], in particular, if state operations shall be generic and
certain properties shall be ensured, e.g., gap-free enactment and short adaptation time.
In this section we distinguish the original processing element and the target processing element,
where the original processing element is the one that does the processing before the switch and
the target processing element is the one that is supposed to take over the processing after the
switch. Please note that following the pipeline terminology introduced in D4.1, the term
processing element may be a single algorithm, but in particular also a distributed algorithm
realized by a sub-topology.
Obviously the state managed by a processing element (and taken into account for its
computation) might vary widely in complexity as well as in the time period covered by the state.
This will also require different switching strategies (protocols) for managing the state transfer
between the original and the target processing element. As indicated in D4.1, such
reconfiguration protocols (inspired by [BoyerGruberPous13]) can be defined in the enactment
phase of our adaptation control language rt-VIL. In this first discussion of state transfer, we will
focus on some frequent cases, without claiming to fully cover all cases that might occur. The
state transfer discussion will be further extended in subsequent deliverables, in particular the
upcoming D5.3, also taking up the experiences gathered with the application of the switching
strategies.
In this deliverable we consider three main switching strategy, which fundamentally distinguish in

the way the state is transferred:

QualiMaster Deliverable 4.2

Page 39 (of 70) www.qualimaster.eu

1) Warming-up strategy, which builds up the required state information in the target

processing element before switching,

2) Direct Transfer Strategy, which actually transfers state information between the two

processing elements and

3) External Storage Strategy, which relies as implied by the name on external storage of the

state.

Of those three, the direct transfer strategy requires the most complex switching protocol and is

discussed in different variants. Those switching strategies are discussed below together with

their advantages and disadvantages.

3.3.7.1 Warming up strategy

This switching strategy accumulates the cases, where the target processing element needs
some warming up, before getting into a state, where it can produce valid results. The rough idea
here is that the original and the target processing element run in parallel until the target
processing element has accumulated sufficient state information to deliver valid results.
Running processing elements in parallel, discussed in terms of active operator replication in
[15], can lead to a duplication of the resource usage, but in contrast to [15] or similar works, we
do not aim at keeping this allocation for a longer time (in the sense of passive replication in
[15]), but just for a temporary period enabling a consistent and timely switch among stateful
algorithms.
For original and target processing elements to run in parallel incoming items have to be
presented to both processing elements. This also implies increased resource consumption for
the transition time.
A frequent case for the warming up is the aggregation over a (not too large15) time window of
length tw (sliding or fixed window). In this case, switching can be performed, when the target
processing element has seen items covering time span tw.
In more detail, the switching strategy will do the following (see also Figure 16): At time t0, upon
switching request the incoming stream will be duplicated and presented to both the original and
the target processing element as illustrated in Figure 16 a). Both elements will process the
stream in parallel for the time window tw. During this time window, only the results from the

15

 Note, that for larger time windows such as days and beyond the strategy of running both processing elements in

paralell would be too expensive.

Figure 16: Warming up strategy.

original

target

target

replacing

original

replacing

a)

b)

c)

Switching/ synchronization

pipeline element

Active processing element

Passive processing element

Active data stream

Active data stream

Legend

QualiMaster Deliverable 4.2

Page 40 (of 70) www.qualimaster.eu

original processing element should be used, since the target processing element is still warming
up accumulating its first valid state as shown in Figure 16 b). At time point, t0+ tw the target
processing element can start delivering results. At this point in time the original processing
element can be discarded and the results from the target processing element can be used in the
processing pipeline as indicated in Figure 16 c). Thus the overall switching time in this case is
tw.
Note, that the windows used by the original processing element and the one used by the target
processing element are not completely in synch. This may lead to a small result discrepancy at
the time of switching between the result streams. However, the advantage of this switching
method is that is makes no further assumptions about the processing elements (and the
algorithms used by them).
Another situation that can be covered by the Warming up strategy is the need for a set up time,
i.e. the situation, where the target processing element needs some time tsetup before being able
to start processing elements from the stream. In our setting this might be the time that is needed
to load an algorithm into the reconfigurable hardware. Obviously, this time has to be taken into
account both for stateless and stateful processing. The overall switching time, in this case adds
up to tsetup+ tw.

3.3.7.2 Direct State Transfer Strategy

In cases, where the state is too complex to be rebuild in a warming up phase (see above), state
information can be directly transferred between the original and the target processing element
before the target processing element starts processing. Obviously, such a state transfer is
coupled with a delay in processing (the time that is needed for the state transfer), which
depends on the size and complexity of the state information and the connectivity between those

Figure 17: Direct state transfer strategy.

original

target

a)

original

target

state transferb)
�

�

original

target

c)

�

original

target

d)

QualiMaster Deliverable 4.2

Page 41 (of 70) www.qualimaster.eu

processing elements.
The basic idea of the Direct State Transfer is illustrated in Figure 17. Starting with an original
and a target processing element, the input stream items are buffered and duplicated as shown
in Figure 17 b) � and the state of the original processing element is transferred to the target
processing element as depicted in Figure 17 b) �. Depending on the actual strategy, the output
stream must be synchronized as we discuss below (Figure 17 c)) in order find an appropriate
point in time to switch among the processing elements (Figure 17 d)). For all Direct State
Transfer Strategies it is required that the participating processing elements agree on a format, in
which state information is transferred and on a protocol for this transfer.
In case, the state transfer time is rather small, a variant of Direct State Transfer, which we call
Simple State Transfer Strategy can be used. With this strategy, at time t0, when the switching
request arrives, the original processing element is stopped and its current state is transferred to
the target processing element. Subsequently the input stream is routed to the target processing
element, which then starts processing the stream at time t0+ ttt, where is the time required for
the state transfer. Please note, that this strategy creates a gap in the result stream of length ttt
(plus the latency of the processing element).
For cases, where the state transfer time is too large to tolerate the result gap implied by it16,
more complex switching protocols are required in the context of the state transfer. For avoiding
the gap on the result stream, it is possible to continue running the original processing element
during the state transfer, which produces results during this time. This implies that some type of
synchronization is afterwards required between the results produced by the original processing
element and the target processing element (Figure 17 c)). Note, that the items already
processed by the original processing element cannot simply be dropped for the target
processing element, since they are required for updating the state. We summarize this subclass
of Direct State Transfer Strategies under the term Post-synchronized State Transfer.
A precondition for the envisioned synchronization is that the target processing element (at least

temporarily) processes the items in the stream faster than the original processing element. Only

in this case it is possible to create an output stream, which neither contains neither a gap nor a

duplication of results. For synchronization we envision three possible approaches:

• Input synchronization will switch between original and target processing element, once

the target processing element has overhauled the original processing element in terms

of the input items processed. The assumption above ensures that this will happen.

Technically this requires additional mechanisms for the synchronization.

• Semantic result synchronization will define synchronization points based on the

knowledge how the results are created and selects the actual switching point based on

those switching points.

• Generic result synchronization compares the result streams produced and performs

the switch, when the result streams are sufficiently correlated or similar enough for a

given period of time.

3.3.7.3 External storage strategy

For very large state information and for state information covering very long time frames, it
might make sense to resort to external storage, which is shared between the original and the
target processing element. This approach clearly requires more interaction between the
methods used in the original and the ones used in the target processing element: they have to
agree, in which format accumulated status information is stored and how it can be accessed.
The data management layer foreseen in the QualiMaster architecture is closely related to this
idea.
For deciding about the use of external storage, it is important to balance several parameters,
such as the frequency and time delay, for accessing the external information and the size of the

16

 This might also depend on the application settings, in which the respective pipeline is operating.

QualiMaster Deliverable 4.2

Page 42 (of 70) www.qualimaster.eu

accumulated status during stream processing and the implied overhead for a direct status
exchange.
During normal processing, the original processing element persists (parts of) its state (regularly)
to an external store as shown in Figure 18 a). If all of the accumulated status information is in
the external store, switching can be done directly as indicated in Figure 18 b) utilizing enactment
pattern EP-2 (see also Section 3.3.4 for more details). In this case switching time is equal to the
time the target processing element needs for loading enough status information from the
external store (a refinement of [23]) such that it can start its processing. This can be considered
as setup time tsetup as in the case of the warming up strategy. Since writing into the storage
requires some overhead, there might also be status information, which is not (yet) in the
external storage. This might be information queued (or prepared) for being written out or more
short term information, which is supposed to be aggregated (e.g., to hourly statistics) before
being written to external storage. In the case of queued information, the original processing
element can be passivated leaving it still time to write out its status, before the target processing
element takes fully over.
For short term status information, which is not in the external store one of the strategies
described above can be chosen.

3.3.8 Conclusions and Future Work

Enacting adaptive changes on a real-time data stream processing system aiming at gap-free
enactment is a challenge. As a basis to make rational decisions about the design of enactment
strategies and related adaptation protocols, we presented the results of an initial analysis of the
enactment patterns introduced in D4.1. Basically, the results show that enactment in Storm
typically comes with a basic command delay of 20-30 ms. While the results for the simple
algorithms and parameters are encouraging, the experiments also show that even for a “simple”
algorithm switch among real-world sub-topologies, further patterns must be considered such as
the effect of buffering. The analysis there also provided evidence for assumptions made for
observations on real-world pipelines. Actually, the gap-free change of the parallelization in a
Storm cluster is a technical challenge. Therefore, we started to perform experimental

Figure 18: External storage strategy.

original

target

a)
(incremental) state update

(partial) state read

original

target

(incremental) state update

b)

QualiMaster Deliverable 4.2

Page 43 (of 70) www.qualimaster.eu

modifications in Storm, which we also consider as a last resort for the algorithm switch among
sub-topologies. Moreover, we designed and discussed alternatives for state transfer among
algorithms in order to speed up the enactment or even to achieve gap-free enactment.
In the future, we will continue this analysis and work on solutions for the detected issues. This
will also act as a foundation for realizing the state transfer strategies described in this section.

3.4 Adaptation specification
In deliverable D4.1, we discussed the design of the adaptation cycle in QualiMaster, the
Runtime Variability Instantiation Language (rt-VIL) to be used as a control language for
specifying the adaptive behaviour of the QualiMaster infrastructure, and, the intended
integration. As discussed in D4.1, rt-VIL combines concepts from adaptation languages, in
particular Stitch [6], namely strategies and tactics, with concepts from the Variability
Instantiation Language (VIL) [11, 12], which we use for (pre-runtime) instantiation of software
product lines, such as the QualiMaster pipelines (as detailed for the infrastructure derivation
process in D5.2). In the mean time, rt-VIL has been realized and (initially) integrated with the
QualiMaster infrastructure as we will detail in Section 4.5. In this section, we discuss additional
concepts that are beneficial as part of rt-VIL. We identified these concepts while describing the
first adaptation specifications for the QualiMaster priority pipeline using rt-VIL.
The new concepts are:

● Explicit monitoring mapping phase supporting the configuration of runtime quality
parameters (Section 3.4.1).

● Transactional change history enabling rollback and simplifying the development of
adaptation specifications (Section 3.4.2).

● Calls as parameters increasing the reuse of existing model parts (Section 3.4.3).
● Type aliases simplifying the use of complex adaptation- and instantiation specific types

(Section 3.4.4).

In the remainder of this section, we briefly summarize the high level concepts of rt-VIL
presented in D4.1 and detail then new concepts.
According to the concepts presented in D4.1, the variability modeling language IVML [11, 13,
14, 19] is used to describe the Configuration Meta Model with consistency constraints and, in
terms of a specific configuration the relevant structural aspects for the adaptation such as the
pipelines and quality constraints. The Configuration Meta Model already defines variables that
represent the system state at runtime, i.e., it allows expressing quality constraints before
runtime of the platform and takes these constraints into account as soon as the system state is
known through monitoring. The adaptation is then defined using rt-VIL, i.e., it takes the system
state characterized by monitored information into account and modifies only those parts of the
configuration to indicate the new desired system state that shall be enacted. Before enactment,
the constraints are validated in order to ensure that the enactment will lead to a valid
configuration. As the modifications and the related enactments can be considered as
instantiation at runtime, it is natural to us to use the existing Variability Instantiation Language
(VIL) as a basis for rt-VIL.

3.4.1 Mapping Monitored Information into rt-VIL

Mapping information from the QualiMaster Monitoring Layer into the execution environment of
rt-VIL (in the Adaptation Layer) needs some specific considerations. Basically, it appears to be
an obvious approach that the monitored information is transferred using some QualiMaster
specific program code. However, programming the traversal of a (typed) topological
configuration such as QualiMaster pipeline involves a certain effort, as the related interfaces of
EASy-Producer are rather generic, i.e., handling different specific types becomes quickly rather
complex, and using the interfaces requires explicit exception handling. Furthermore, evolving
the (pipeline) configuration model along with the code is a rather tedious and error-prone task.

QualiMaster Deliverable 4.2

Page 44 (of 70) www.qualimaster.eu

As alternatives, rt-VIL now offers two ways of realizing the mapping of monitored information
adequately, namely

● As a language capability, i.e., the mapping is directly specified in rt-VIL. Basically, VIL as
the underlying language of rt-VIL is designed to support traversals of (typed) topological
configurations, in particular relying on the dynamic dispatch capabilities of VIL rules. This
allows specifying conveniently type-specific instantiation, e.g., specific instructions for
processing elements, sources and sinks. Furthermore, specifying the link between
monitoring and adaptation in rt-VIL allows domain users to adjust and extend the
mapping along with modifications and extensions of the underlying Configuration Meta
model. One specific extension example is the monitoring of additional quality parameters
(REQ-C-11 in D4.1), which requires the definition of additional runtime variabilities in the
Configuration Model as well as handling them in the adaptation specification. Here, the
QualiMaster Infrastructure Configuration Tool (QM-IConf) can assist domain users, as
the required changes can be performed in a consistent manner, shielding the user from
technical details (REQ-C-14 in D4.1).
Thus, we introduce an optional explicit monitoring mapping phase into rt-VIL. Akin to
other optional capabilities in rt-VIL, the mapping phase is defined by overriding the
predefined rule

bindValues(Configuration config, mapOf(String, Real) bindings)

Mapping the monitoring values can now happen within this rule, e.g., also changing the
scale of individual values if needed for specifying the adaptation. Furthermore, defining
the mapping can be stated in a rather domain-specific way by using specific types
provided by the system under adaptation. In Figure 19, we depict an rt-VIL example for
mapping the pipeline quality parameters / observables to runtime variables. This
example uses a domain-specific helper type named FrozenSystemState to access

the monitored values.

 bindValues(Pipeline p, FrozenSystemState state) = {

 String n = p.name;

 p.latency = state.getPipelineObservation(n,
 TimeBehavior.LATENCY);
 p.throughputItem = state.getPipelineObservation(n,

 TimeBehavior.THROUGHPUT_ITEMS);
 p.throughputVolume = state.getPipelineObservation(n,
 TimeBehavior.THROUGHPUT_VOLUME);

 p.accuracyConfidence = state.getPipelineObservation(n,

 FunctionalSuitability.ACCURACY_CONFIDENCE);
 p.accuracyErrorRate = state.getPipelineObservation(n,

 FunctionalSuitability.ACCURACY_ERROR_RATE);
 p.capacity = state.getPipelineObservation(n,
 ResourceUsage.CAPACITY);

 p.executors = state.getPipelineObservation(n,
 ResourceUsage.EXECUTORS);

 map(Source s : p.sources) {
 bindValues(s, p, state); // dynamic dispatch
 };

}
Figure 19: Binding monitoring values in rt-VIL for the QualiMaster infrastructure.

● Through the language infrastructure. While the explicit mapping of monitoring values in
rt-VIL is extensible and can help understanding the actual adaptation for a technical

QualiMaster Deliverable 4.2

Page 45 (of 70) www.qualimaster.eu

expert, it may also be an obstacle to performance, as also unneeded monitored values
are transferred. Thus, as a programmed alternative, one can use the rt-VIL language
infrastructure to perform an on-demand mapping. Actually, in VIL configured values can
be obtained through specific types that are created dynamically based on the
Configuration Model, e.g., through types such as ProcessingElement, Source or

Sink. Accessing configured values happens through specific operations of these types.

If the monitored information is associated to qualified names uniquely identifying the
individual elements of a pipeline (in particular in the multi-pipeline case), these accessor
operations can be modified in a way that they return the monitored value. To construct
these qualified names, either the pipeline elements must refer to their containing pipeline
(this is currently not the case, see D4.1) or (domain-specific) structural information about
the pipeline model parts (the pipeline definition is in the same IVML namespace) must
be taken into account.

Currently, we consider the explicit mapping based on the language capabilities as more
appropriate, but we may switch to the programmed language infrastructure based approach if
we any experience performance problems.

3.4.2 Transactional Change History

In D4.1, we indicated that changes to the runtime configuration leading to inconsistencies may
be repaired or reverted. As repair operations can be rather domain specific, we equipped rt-VIL
with a generic default behaviour in case that the reasoning detects consistency issues.
Basically, we track every change of the runtime configuration performed by rt-VIL. To be able to
revert changes caused by individual strategies or tactics and to consider an alternative strategy
or tactic on a lower ranking position, we designed a transactional history for the changes to the
configuration. Upon execution, strategies and tactics open a transaction, which can either be
reverted if validation of the respective strategy or tactic fails, or committed. Currently, we
consider this as the default strategy to handle detected configuration inconsistencies, so that the
domain users do not need provide a certain specification. In addition, a rt-VIL specification can
override the default behaviour if needed.
For enactment, the runtime configuration can be projected to the changed parts of the
configuration, i.e., only variables changed due to the execution of strategies or tactics (not by
the mapping of monitoring values discussed in Section 3.4.2) become visible in order to simplify
the specification of the enactment. However, in the case of topological configurations such as
the QualiMaster pipelines, the projection to changed variables is not sufficient. Let us consider
that the adaptation would require the switch of a certain algorithm in an algorithm family
(enactment pattern EP-2). Then the projection would return exactly the changed runtime
variable holding the actual algorithm of a family, but the context of the variable, i.e., the family
and the containing pipeline would be omitted. As the context can be important during
enactment, e.g., to traverse the changed pipelines and to schedule wavefront adaptations, rt-
VIL now provides access to the context in terms of configured IVML references, i.e., the
containing topologies and the specification of enactments can focus on the changes while taking
the context of the change into account.

3.4.3 Calls as Parameters

As part of our work on the adaptation scenarios, here AS-1, we developed an initial algorithm to
analyze the parallelism in a Pipeline / Storm topology. Actually, this algorithm must traverse the
topological structure of a given pipeline. As also the mapping of the monitored information, the
enactment of the adaptive decisions as well as the algorithm assignment at the start-up of a
pipeline (adaptation scenario AS-2) require a traversal, we recognized that the respective VIL
rules (for dynamic dispatch) are repeated in multiple places of the rt-VIL specification. As this is
a clear obstacle to consistency, reuse and evolution, we decided to extend VIL/rt-VIL/VTL with
the concept of functions that can be passed as parameters, namely call parameters. This is

QualiMaster Deliverable 4.2

Page 46 (of 70) www.qualimaster.eu

inspired by programming languages such as C (function pointers) or functional languages such
as Lisp (lambda functions), which even have been adopted in recent versions of the Java
programming language.
Basically, a function parameter allows passing a function A (in VIL/rt-VIL a rule, in VTL a sub-
template definition) into a function B and to call A from within B. In case of topology traversals,
this enables to separate the walkthrough operations from the calculation / collection of the
result, which happens in another function given as a parameter to the traversal function. Figure
20 illustrates the basic form of this language concept in terms of a generic traversal of a
QualiMaster pipeline defined by the traverse rule, which receive a parameter of type callOf,

a (function) call parameter is determined by the rule func, which collects in this example just

the nodes in the sequence of traversal. The application of this generic traversal is indicated by
the comment at the bottom of Figure 20, i.e., by executing traverse on a specific pipeline in

combination with func.

traverse(Pipeline pip, sequenceOf(PipelineNode) result,

 callOf(PipelineNode, sequenceOf(PipelineNode)) call) = {

 map (Source src : pip.sources) {
 traverse(src, result, call);
 }

}

traverse(PipelineNode node, sequenceOf(PipelineNode) result,

 callOf(PipelineNode node, sequenceOf(PipelineNode)) call) = {
 call(node, result);
}

traverse(ProcessingElement elt, sequenceOf(PipelineNode) result,
 callOf(PipelineNode node, sequenceOf(PipelineNode)) call) = {

 call(elt, result);
 map (Flow f : elt.output) {

 if (!done.contains(f.destination)) {

 done.add(f.destination);
 traverse(f.destination, result, call);
 }

 }
}

// further cases through dynamic dispatch

func(PipelineNode node, sequenceOf(PipelineNode) result) = {

 result.add(node);
}

// application: traverse(p, func);

Figure 20: Generic traversal of a topology with call parameters.

In contrast to existing languages, which typically bind function parameters statically, VIL/rt-VIL
performs dynamic dispatch even on functions passed through a call parameter, i.e., the rule
func in Figure 20 can be overridden by more specific types for node in order to perform more

specific actions. As VIL/rt-VIL also considers refining scripts, later extensions, e.g., to the
Configuration Meta Model, can easily be considered.

QualiMaster Deliverable 4.2

Page 47 (of 70) www.qualimaster.eu

However, the traversal illustrated in Figure 20 is still limited to the stated parameters of the call,
i.e., collecting a different result is not possible in this example. This level of flexibility can be
achieved in VIL/rt-VIL through the combination of a type that can hold any instance (called Any

in VIL, similar to Object in Java) and dynamic dispatch on (function) call parameters. Revisiting
the example in Figure 20, the call type can also be

callOf(PipelineNode, Any)

so that (after changing the traverse rule accordingly) the result instance and the function

passed as arguments finally determine the operation for call to be executed during the

execution. As a consequence, the different forms of traversals in existing VIL/rt-VIL scripts can
be unified and (even late domain-specific) extensions to the Configuration Meta Model can be
considered.

3.4.4 Type aliases

Actually, the examples shown in Section 3.4.2 suffer from repeated complex parameter types,
which are already slightly simplified using Any instead of a specific type. This is similarly to the

specification of the QualiMaster infrastructure derivation process, where complex map and
collection types are used. As a conclusion of this observation, we decided to extend VIL/rt-
VIL/VTL with the concept of a type (alias) definition akin to IVML, which, in turn, was inspired by
the respective concept in the C programming language. Revisiting Figure 20 again, we can now
declare for example

typedef TCallType callOf(PipelineNode, Any);

defining the new type TCallType as an alias of callOf(PipelineNode, Any) and use the

alias type accordingly in the traverse rules

traverse(ProcessingElement elt, Any result, TCallType call) = {

 //...

}

3.4.5 Future work

The current version of rt-VIL provides a solid basis for the specification of the adaptation in
QualiMaster. As part our actual work on the adaptation scenarios, we specified strategies and
tactics as well as entire algorithms in rt-VIL. Future work will be focusing on the integration of
optimization algorithms to determine the most beneficial plans, on integrating the prediction of
quality parameters as well as further domain- and application-specific functionality. As part of
this work, we aim at understanding which parts are better done within rt-VIL itself, within the rt-
VIL library as types or operations, within the rt-VIL runtime environment, the (IVML) reasoning
support or within the QualiMaster infrastructure. Furthermore, we aim at understanding how to
differentiate reusable generic functionality, domain-specific (stream-processing related)
functionality and application-specific functionality. Some components which deserve such an
integration will be presented in the next section. Furthermore, we aim at evaluating the
approach as well as the scenarios and their performance of rt-VIL as well as the overall benefit
of the adaptation in QualiMaster.
Finally, we started to develop initial concepts for the cross-pipeline and reflective adaptation.
While basics of both tasks from the work plan have already been considered in the basic design
of rt-VIL, e.g., to develop a resource distribution algorithm for one and multiple pipelines in rt-
VIL, to prototype the start-up scenario for multiple pipelines or to foresee that an rt-VIL model
can be changed (at runtime) by the reflective adaptation, more conceptual work will be done in
the next months and aligned with the existing concepts and tools.
As a further contribution, WP4 started to perform a mapping study for acquiring performance
and data quality knowledge from the algorithm, enabling the tradeoff-making for algorithm
families and the prediction of changes of the performance / data quality of entire pipelines.

QualiMaster Deliverable 4.2

Page 48 (of 70) www.qualimaster.eu

Based on this mapping study, the measurement and collection of adaptation knowledge will be
performed in a close collaboration of WP2 and WP4 in the next months and integrated into the
domain-specific part of rt-VIL.

QualiMaster Deliverable 4.2

Page 49 (of 70) www.qualimaster.eu

4. Component Realization
So far, we presented the evolution of the concepts foreseen by WP4 to achieve quality-aware
configuration and adaptation. For turning these concepts into reality, WP4 realized related
(infrastructure) components and tools and prepared them for the integration with the
QualiMaster infrastructure. In this section, we provide an overview on the individual
components, their realization and (where applicable the current) validation state. Following the
sequence of topics used so far, we discuss in this section the following:

● IVML reasoner used as a common component in quality-aware configuration and
adaptation (Section 4.1)

● QualiMaster Infrastructure Configuration Tool QM-IConf (Section 4.2)
● Adaptive Crawling enabling dynamic pipeline sources (Section 4.3)
● Social Web Event Prediction supporting the proactive pipeline adaptation (Section 4.4)
● Adaptation Specification and Instantiation language rt-VIL (Section 4.5)

4.1 IVML Reasoner
As briefly introduced in D4.1, IVML is a highly expressive language that provides modeling
concepts and elements for creating complex Configuration Meta Models and related
Configurations. As IVML supports Non-Boolean types, collections, user-defined types such as
compounds, quantors and iterators over ground instances as well as user-defined functions
supporting dynamic dispatch, this implies a non-trivial problem of checking whether a specific
configuration is valid or to derive unspecified values from already given configuration values
(value propagation). To solve these tasks, we designed and implemented the IVML reasoning
component (aka SSE reasoner) that is integrated in the EASy-Producer Tool and, thus, in the
QualiMaster Infrastructure configuration tool (QM-IConf) and in the QualiMaster infrastructure.
In this section, we discuss first the historical background of the IVML reasoner in Section 4.1.1,
then the reasoning process underlying the actual version used in QualiMaster in Section 4.1.2,
the actual state of the realization in Section 4.1.3 and recent results from performance
experiments in Section 4.1.4. We conclude in Section 4.1.5.

4.1.1 Historical Background

In its history, the IVML reasoner evolved from an integrated customized third-party tool to a
unique built from scratch component. Due to complexity and expressiveness of IVML most
existing solvers or model checking tools cannot be applied for model validation and value
propagation as we showed in an extensive analysis in [8]. As a result and by taking into account
experience drawn from several industrial projects, we conclude there that a rule (evaluation)
engine is a solid basis for the IVML reasoning support. However, to achieve encompassing
reasoning, in particular to also support rather rare configuration situations, we expect that a
combination with a conventional solver could be beneficial, e.g., working on a reduced instance
of configuration provided by the rule engine or by integrating solving capabilities into a rule
engine.
Following this hypothesis, our initial implementation was based on the Jess rule engine17 due to
its established efficiency and wide applicability in academia. However, the actual license of
Jess, which prevents the inclusion into an existing (open source) system, caused us to switch to
Drools Expert18, an open source rule engine implementation, unfortunately accompanied by a
loss in performance.
In the QualiMaster project, two further issues aggravated the downsides of using Drools as a
basis for reasoning:

17
 http://www.jessrules.com

18
 http://www.drools.org/

QualiMaster Deliverable 4.2

Page 50 (of 70) www.qualimaster.eu

1) The modeling concepts we apply for enabling the configuration of complex topological
configurations of pipelines such as typed references, container iterators and dynamically
dispatched user-defined functions (as detailed in D4.1) are not adequately supported by
Drools and would require significant mapping effort to emulate them using Drools
concepts. Furthermore, these IVML concepts require deep control over the rule
execution process, which is not accessible to us as it is a black box.

2) Although we improved our initial Drools implementation based on regular performance
experiments, the time needed for translating and loading the IVML model into the Drools
knowledge base and to perform reasoning would not allow runtime reasoning as we
envision it as part of the adaptation cycle introduced in D4.1.

Finally, we decided as part of our work on configuration and adaptation components in
QualiMaster to equip EASy-Producer with the capability to evaluate individual (constraint)
expressions and, in turn, to realize on this basis a reasoner that does not depend on any third-
party tools. The IVML reasoning capability becomes a fundamental part of QM-IConf and the
adaptation cycle in the QualiMaster infrastructure.

4.1.2 Reasoning Process

The reasoner is designed to conduct validation of IVML model as well as value propagation, i.e.,
the derivation of actually unknown values from given values through (propagation) constraints.
As input, the IVML reasoner receives an IVML Configuration Meta Model and a specific
Configuration, which structurally complies with the given Configuration Meta Model. As
explained in D4.1, an IVML model is stated in terms of a project, the modularization unit in
IVML. Such a project defines its own scope of imports of other IVML projects, type definitions,
typed variables and constraints. Three basic rules apply for IVML models:

● A variable (including slots of a compound type) may have a default value, more precisely
a default expression, which can refer to other default values. Default values must be
evaluated before any other scope constraint is evaluated.

● Except for the default value explained above, the actual value of a variable can only be
changed once within the scope of the same. In other words, a default value can be
overridden and an already assigned value can only be overwritten by the same value in
the same project.

● Imported projects can contain values that are needed to evaluate the constraints in the
importing project and, thus, must be evaluated before the constraints of the importing
project. Except of project imports19, which are evaluated in the given sequence and
before other constraints, there is no predefined sequence for the constraints in an IVML
model. This allows the domain engineer to define constraints without much knowledge
about the actual evaluation and reasoning process. Variables in imported projects (if
visible) can be overwritten once in the importing project.

Basically, the constraints in an IVML model are either assignment constraints that derive values
from expressions and assign them to a variable or validation constraints that check the validity
of a configuration.
The reasoning process in the IVML reasoner consists of three main phases:

1. Pre-processing – gathers information on the constraints and builds the constraint base
to reason on.

2. Constraint evaluation – evaluates the specified constraints including re-evaluation of
dependent constraints upon change of individual variable values until convergence.

3. Post-processing – creates the reasoning result, in particular detailed information about
failed (sub-)expressions and their involved variables.

19
 Actually, IVML also provides the concept of nested eval scopes, which indicate a similar precedence as

import statements. As we do not use evals in QualiMaster, we will not consider this concept any further.

QualiMaster Deliverable 4.2

Page 51 (of 70) www.qualimaster.eu

We will now provide details on the individual reasoner phases.

During pre-processing, all constraints in the current scope are collected and added to a
constraints base. After collection, the constraints base consists of:

● Default value constraints – value assignment expressions for default values of variable
declarations. For consistent handling of the reasoning process, these assignments are
represented internally as constraints.

● Type constraints – consistency constraints defined along with type definitions, e.g., in
the QualiMaster Configuration Meta Model the NonEmptyString type.

● Project scope constraints – constraint directly defined in the project scope.
● Compound constraints – constraints defined for variables of compound type. These

constraints become only effective if a variable of the respective compound type is
defined. In particular, compound constraints include the assignment expressions for the
default values of compound slots.

● Constraint variables – constraints assigned to a constraint variable. As illustrated in
D4.1, IVML has the capability of overwritable constraints represented as variables of
type Constraint. Actually, the content of such a variable is treated as an usual

constraint and evaluated along with the other constraints (unless changed through an
assignment constraint). In QualiMaster, we use this specific form of constraint for two
purposes. 1) As EASy-Producer can assign customizable messages to individual
variables, we utilize the constraint variable to obtain a user-supporting message in case
that the respective constraint fails. 2) We utilize collections of constraints to allow the
user to configure SLA constraints for certain model elements such as sources, sinks or
processing elements.

● Annotation constraints - include the default values, assignments and validation of IVML
annotations20, which allow an orthogonal classification of variables. In QualiMaster, we
use annotations for indicating runtime variables, i.e., variables that become effective at
runtime of the infrastructure through monitoring and adaptation.

● Imported constraints – type, project, compound constraints or constraint variables
defined by imported projects, i.e., no default value constraints.

As next step we create a variable-constraint mapping between the variables used in a constraint
and the constraint itself. Actually, this mapping is inspired by the well-known RETE-algorithm
[16] and leads to a simplified way of ensuring constraint re-evaluation upon value changes of
dependent variables.
After pre-processing is done and all relevant information on the actual constraint base is
collected, the constraint evaluation phase starts. Within this phase, constraints in the
constraint base are evaluated and, if required, re-evaluations due to changes of dependent
variables are performed. As indicated above, the constraint evaluation phase effectively starts at
the leaves of the import hierarchy and performed bottom-up. Constraint evaluation stops if the
reasoning converges, i.e., no more constraints are scheduled for evaluation. In more details:

● If the value of any variable in a constraint is not defined, the constraint is not evaluated
at this point.

● If the evaluation of a constraint fails it is registered as failed constraint. If a value
assignment fails, e.g., as a value already has been assigned in the same scope, the
variable is registered as a failed assignment.

● If a constraint evaluated successfully it is registered as valid constraint (i.e., removed
from failed constraint register). If a value of the variable is changed during the
evaluation, the dependent constraints stored in the constraint base are scheduled for re-
evaluation.

20
 As the original concept name “attribute” overlaps a frequently used concept in feature modeling, we

recently renamed this concept to “annotation”.

QualiMaster Deliverable 4.2

Page 52 (of 70) www.qualimaster.eu

When all constraints in the constraints base of the current scope are evaluated, they are filtered
to determine those constraints that should be passed on as imported constraints. Default
constraints, annotation handling constraints and all simple assignments (assignments that hold
only constant values) are filtered out.
In the end all relevant variables of this particular scope are frozen. Freezing might affect all
variables, only specified variables or variables that meet a defined condition (managed by
annotation validation constraint in the freeze block)
After all project scopes are evaluated, the post-processing phase starts. In this phase all failed
assignments (variables) and constraints are converted into a reasoning result message and
provided as a reasoning output. If none of the constraints failed, the message indicates that
there is no conflict and the configuration can be considered as consistent.
Actually, the full process of normal reasoning is needed only if intentionally all constraint shall
be evaluated, e.g., to validate a new configuration without actually modifying it. If we can trust in
the actual value of certain IVML variables, we can speed up this process through incremental
reasoning for runtime. This is the case in runtime reasoning as described by the QualiMaster
adaptation cycle in D4.1. There, the configured values used for platform instantiation are
considered as immutable, and, thus they are frozen before instantiation. Thus, the Monitoring
Layer and the Adaptation Layer just need to fill the non-frozen runtime variables with actual
values and the reasoning can leave out the default values and the plain value assignments
(used to describe a configuration in IVML) for frozen variables.

4.1.3 Realization State

In this section, we provide a brief overview on the actual support of the constraint evaluation
and the reasoning for IVML modeling concepts. Most of the IVML concepts were already briefly
introduced in D4.1. A more detailed explanation is given in [19]. The concepts and the
realization state (“+” for realized, “-“ for currently not supported) is illustrated in Table 3 and
Table 2. This indicates that the IVML reasoner and its underlying constraint evaluation are
rather advanced and will be completed soon to provide full IVML capabilities to QualiMaster and
for future extensions of the Configuration Meta Model.
Akin to EASy-Producer and its languages such as IVML, VIL and rt-VIL, the IVML reasoner is
subject to automated regression testing on IVML models during continuous integration.
Currently, we validate the IVML reasoner with 76 test cases, 10 of them are defined or based on
different versions of the QualiMaster Configuration (Meta) Model.

4.1.4 Reasoning Performance

For reasoning on configurations, performance, in particular execution time is one of the crucial
indicators. This is in particular true for reasoning at runtime. In this section, we describe now two
forms of empirical performance results: 1) on typical experiments for Software Product Line
configurations, and 2) distinct experiments on the QualiMaster configuration.

4.1.4.1 Configuration Experiments

In Software Product Line engineering, the complexity of a configuration reasoning problem is
typically expressed in terms of the variable-constraint ratio, i.e., as described in [24] variables
and constraint ratio is typically 10:1 in large-scale real world variability models. We described an
initial experiment to test reasoning performance on IVML models in [8]. There, we performed
reasoning on several artificially generated models with different variable-constraint count:

• 10 variables and 1 constraint

• 100 variables and 10 constraints

• 1000 variables and 100 constraints

QualiMaster Deliverable 4.2

Page 53 (of 70) www.qualimaster.eu

The variables are of type Boolean, Real and Integer. Three levels indicate the complexity of
generated constraints based on the number of operations performed in the constraint.

● Level 1: Simple constraints of 2 variables/constants one Boolean operator.
Example:
a and b (for Booleans), a > b (for Integers and Reals).

● Level 2: Concatenation of 3 variables/constants by 2 Boolean operators.
Example:
(a = b) xor (c <= 2).

● Level 3: Concatenation of 5 variables/constants by 4 Boolean and arithmetical operators.
Example:
(a <= 15) xor (b - c >= d)

The measures were collected by executing each model ten times for every reasoner (Jess,
Drools, Drools v2 and the IVML reasoner), average time calculates. Table 4 and Figure 21
present the results. The test were conducted on Intel Core i7-3520M CPU 3,90 GHz, RAM 6,00
GB, Windows 7 64-bit.
Test results represented in Table 4 represent performance issues of historical IVML reasoning
support development described in Section 4.1.1. We see that Jess outperformed both versions
of our Drools implementations. Only with the introduction of the custom designed IVML reasoner
we were able to achieve better or comparable results observed for Jess.

IVML concept Status

project +

boolean +

integer +

real +

string +

enumerations +

container +

type derivation and
restriction

+

compounds +

null values +

decision variables +

constraints +

constraints as variables + (currently be re-
evaluated during
reasoning)

configurations +

Table 3: Realization status of IVML core
concepts.

IVML concept Status

annotations +

extended compounds +

referenced elements +

project versioning +

project composition +

project interfaces +

partial configuration +

freezing configurations +

partial evaluation (eval
blocks)

-

Table 2: Realization status of advanced
IVML concepts.

QualiMaster Deliverable 4.2

Page 54 (of 70) www.qualimaster.eu

Nr Number of elements Jess Drools Drools v2 IVML
reasoner

 Variables Constraints Reasoning time (milliseconds)

Complexity Level 1

1 10 1 147 1778 47 1

2 100 10 88 2132 234 24

3 1000 100 375 8333 1841 305

Complexity Level 3

4 10 1 34 1895 142 1

5 100 10 92 2677 218 11

6 1000 100 853 14460 2106 331

Table 4: Reasoning performance of IVML reasoner and the historic reasoners.

Figure 21: Comparison of the IVML reasoner and the historical reasoners.

For a more detailed evaluation and comparison we performed an additional series of
experiments on artificially generated models with only Boolean variables, Level 3 constraints
and variable-constraint ratio of 1:3 and 1:1.
The experiments were performed on the machine described above. Due to the different support
of IVML concepts, we focused this time on the two most recent approaches, Drools v2 and the
IVML reasoner. We executed the reasoner on each model 10 times. We also measured not only
the total reasoning time, but specific time for all three reasoning phases introduced above (as
well as comparable phases for Drools v2). Table 5 summarizes the results.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3

Jess

Drools

Drools v2

IVML reasoner

0

2000

4000

6000

8000

10000

12000

14000

16000

4 5 6

Jess

Drools

Drools v2

IVML reasoner

ExperimentsExperiments

Time (ms) Time (ms)

QualiMaster Deliverable 4.2

Page 55 (of 70) www.qualimaster.eu

 Reasoners

Number of
elements

IVML reasoner Drools v2

V
a
ri
a
b
le
s

C
o
n
s
tr
a
in
ts

T
o
ta
l

(m
s
)

P
re
p
ro
c
e
s
s
in
g

(m
s
)

E
v
a
lu
a
ti
o
n

(m
s
)

P
o
s
tp
ro
c
e
s
s
in
g

(m
s
)

T
o
ta
l

(m
s
)

P
re
p
ro
c
e
s
s
in
g

(m
s
)

E
v
a
lu
a
ti
o
n

(m
s
)

P
o
s
tp
ro
c
e
s
s
in
g

(m
s
)

variables : constraints = 1 : 3

100 300 40 30 8 2 3151 3135 16 0

300 900 251 229 17 5 10390 10312 78 0

500 1500 614 587 21 6 15609 15484 125 0

1000 3000 2632 2581 44 7 35536 35224 312 0

1500 4500 5878 5803 65 10 62711 62243 437 31

variables : constraints = 1 : 1

100 100 25 18 6 1 1451 1435 16 0

300 300 111 98 11 2 4212 4166 46 0

500 500 257 241 12 4 6136 6105 31 0

1000 1000 1014 991 16 7 12527 12465 62 0

1500 1500 2176 2149 22 5 21201 21060 141 0

Table 5: Detailed performance test.

As shown in Table 5 and Figure 22, the actual version of the IVML reasoner outperforms Drools
v2 significantly in total reasoning time. The main reason is a more efficient and controlled pre-
processing phase of the IVML reasoner. Drools Expert creates a KnowledgeBase21, a repository
of all the application's knowledge definitions. It contains rules, processes, functions, and type
models and aims at speeding up the reasoning process for the application area Drools is
designed for. This is done internally as a black box process and takes up to 80% of the pre-
processing time.

Figure 22: Total time measurement.

21
 http://docs.jboss.org/jbpm/v5.1/javadocs/org/drools/KnowledgeBase.html

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000

IVML reasoner

Drools v2

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

IVML reasoner

Drools v2

Constraints Constraints

Time (ms)Time (ms)

QualiMaster Deliverable 4.2

Page 56 (of 70) www.qualimaster.eu

The constraint evaluation is also more efficient in IVML reasoner (Figure 23).

Figure 23: Constraint evaluation time measurement.

The only phase in which Drools v2 outperforms the IVML reasoner is the post-processing
phase. This is due to a more complex processing of failed elements in the IVML reasoner, when
the reasoning result contains not only the failed element itself, but a textual comment and a
detailed hint where the problem is located.

4.1.4.2 Experiments on the QualiMaster Configuration

So far, we presented results for artificially created models. In the QualiMaster project in
particular the (runtime) reasoning time on the QualiMaster Configuration (Meta) Model is of
particular interest. This differs from the previous models in the sense that it consists of less
variables, may scale to arbitrary size due to the openness of the topological pipeline
configuration and contains non-trivial and complex constraints (as we explained in D4.1 for the
pipeline constraints). In this experiment, our goal is to analyze the performance of the IVML
reasoner for both normal and incremental reasoning types. The normal reasoning typically
happens on user side in the QualiMaster infrastructure configuration tool (QM-IConf), while
incremental reasoning is part of the Monitoring and the Adaptation Layer. We performed the
experiments in the same way as previous discussed above, i.e., we use the same computer and
for 10 executions of the experiment we report the average reasoning time.

The IVML reasoner performs the reasoning operations on the QualiMaster Configuration (Meta)
Model in very good reasoning time of less than 200 ms. The results are shown in Table 6 and
Figure 24. As indicated above, incremental reasoning works on a partial set of relevant
constraints and, thus, can avoid the evaluation of the more than 2000 (instantiated) constraint of
the Configuration (Meta) Model. Actually, incremental reasoning is 37% faster than the normal
one. That allows the reasoner to be used both in building a configuration in interactive manner,
for headless infrastructure instantiation and for runtime validation as part of the QualiMaster
adaptation cycle.

 Normal Incremental

Number of variables 176 176

Number of (instantiated)
constraints

2531 141

Reasoning time (ms) 191 121

Table 6: Normal and incremental reasoning comparison.

0

50

100

150

200

250

300

350

400

450

500

0 1000 2000 3000 4000 5000

IVML reasoner

Drools v2

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

IVML reasoner

Drools v2

Constraints Constraints

Time (ms)Time (ms)

QualiMaster Deliverable 4.2

Page 57 (of 70) www.qualimaster.eu

Figure 24: Normal and incremental reasoning comparison.

As part of our experiments, we also figured out that internal logging in the reasoner during
development can slow it down significantly. Basically, for logging we compose complex strings
indicating the constraint under reasoning, the actual variable settings etc. For disabling the
reasoning, we used the constant-on-compile technique [26], i.e., forced the Java compiler to
remove all logging statements from the code based on a constant. Our experiments show that
the IVML reasoner without logging is by almost 40% faster that with logging (see Figure 25).
Based on this all logging is disabled in all releases. To ensure this, we plan to apply EASy-
Producer to instantiate a debugging enabled reasoner for releases and nightly builds. Actually,
these results inspired us to add a debug / development mode for pipelines to the QualiMaster
Configuration (Meta) Model as described in Section 3.2.6.

Figure 25: Effect of deactivated / removed logging calls on reasoning.

4.1.5 Future Work

Although the reasoning on Configurations in general and on the QualiMaster model in particular
is quite fast and provides the required IVML reasoning capabilities for the QualiMaster project,
we plan to improve the IVML reasoner in several dimensions:

● Currently, the reasoner re-evaluates too many constraints as e.g., indicated in Table 6.
Here, we aim at optimizing the dependency structure and the constraint base handling,
e.g., by recent rule evaluation concepts for selecting constraints for re-evaluation.

● Include optimizations for runtime reasoning, e.g., to exclude even more complex
constraints defined only on frozen configuration values.

● Perform specific reasoning operations to support the adaptation, e.g., the derivation and
validation of adaptation plans in rt-VIL.

The IVML reasoner is part of EASy-Producer and was made available as part of the recent
(Open Source) release in July 2015.

0

50

100

150

200

250

Normal Incremental

Time (ms)

0

50

100

150

200

250

300

350

With logging Without logging

Time (ms)

QualiMaster

Page 58 (of 70)

4.2 QualiMaster Infrastructure Configuration Tool
The QualiMaster Infrastructure Configuration Tool (QM
configuring the QualiMaster Infrastructure. In particular, it enables users to define pipelines in a
graphical way using a drag & drop editor and it allows users to check the validity of the
configuration using the IVML reasoner (Section
While simple modifications of the Configuration Meta Model can easily be handled by QM
itself, as it interprets the structure of the Configuration Meta Model during tool runtime, more
complex changes such as introducing arbitrary types as discussed in Section
program changes of the QualiMaster specific editors
along with the Configuration Meta Model so that input / output
specific) data types can be added or modified and data types can be used in input / output
items.
Moreover, as indicated in D4.1, we extended QM
user to define structural as well as SLA constraints on the model elements, the individual
pipelines and their pipeline elements. Again, this editor integrates functionality provided by
EASy-Producer, here partial / embedded xText editing capabilities on IVML constraint
expressions, but also requires specific integration into the QM
illustrates the constraint editor in the cont
editor (lower part of the dialog in
capabilities from EASy-Producer and, thus, is able to support
IVML constraints (although we expect that for SLA constraints simple relational expressions of
variables and constants or derived values will be sufficient). In addition to the plain editor, the
constraint editor dialog also displays the available variables in the actual context of the
Configuration Meta Model.
As prescribed by the QualiMaster architecture presented in D5.1/D5.2, the QualiMaster
Infrastructure Configuration Tool QM
time. The underlying functionality for developing and maintaining rt
Configuration Core as described above by reusing the rt

Figure 26: Pipeline constraint editor with content assist and constraint selection dialog.

QualiMaster Infrastructure Configuration Tool
The QualiMaster Infrastructure Configuration Tool (QM-IConf) supports the domain user in
configuring the QualiMaster Infrastructure. In particular, it enables users to define pipelines in a

a drag & drop editor and it allows users to check the validity of the
configuration using the IVML reasoner (Section 4.1).
While simple modifications of the Configuration Meta Model can easily be handled by QM

it interprets the structure of the Configuration Meta Model during tool runtime, more
complex changes such as introducing arbitrary types as discussed in Section
program changes of the QualiMaster specific editors in QM-IConf. Thus, we evolved QM
along with the Configuration Meta Model so that input / output items can be named, (domain
specific) data types can be added or modified and data types can be used in input / output

4.1, we extended QM-IConf with a constraint editor, allowing the
user to define structural as well as SLA constraints on the model elements, the individual
pipelines and their pipeline elements. Again, this editor integrates functionality provided by

Producer, here partial / embedded xText editing capabilities on IVML constraint
expressions, but also requires specific integration into the QM-IConf editors
illustrates the constraint editor in the context of the priority pipeline. Basically, the constraint
editor (lower part of the dialog in Figure 26) inherits also the highlighting and content

Producer and, thus, is able to support the user in specifying full OCL
IVML constraints (although we expect that for SLA constraints simple relational expressions of
variables and constants or derived values will be sufficient). In addition to the plain editor, the

g also displays the available variables in the actual context of the

As prescribed by the QualiMaster architecture presented in D5.1/D5.2, the QualiMaster
Infrastructure Configuration Tool QM-IConf acts as a frontend for rt-VIL at design / development
time. The underlying functionality for developing and maintaining rt-VIL scripts is provided by the
Configuration Core as described above by reusing the rt-VIL language implementation. Akin to

: Pipeline constraint editor with content assist and constraint selection dialog.

 Deliverable 4.2

 www.qualimaster.eu

IConf) supports the domain user in
configuring the QualiMaster Infrastructure. In particular, it enables users to define pipelines in a

a drag & drop editor and it allows users to check the validity of the

While simple modifications of the Configuration Meta Model can easily be handled by QM-IConf
it interprets the structure of the Configuration Meta Model during tool runtime, more

complex changes such as introducing arbitrary types as discussed in Section 3.2 require
IConf. Thus, we evolved QM-IConf

can be named, (domain-
specific) data types can be added or modified and data types can be used in input / output

IConf with a constraint editor, allowing the
user to define structural as well as SLA constraints on the model elements, the individual
pipelines and their pipeline elements. Again, this editor integrates functionality provided by

Producer, here partial / embedded xText editing capabilities on IVML constraint
IConf editors. Figure 26

ext of the priority pipeline. Basically, the constraint
) inherits also the highlighting and content-assist

the user in specifying full OCL-like
IVML constraints (although we expect that for SLA constraints simple relational expressions of
variables and constants or derived values will be sufficient). In addition to the plain editor, the

g also displays the available variables in the actual context of the

As prescribed by the QualiMaster architecture presented in D5.1/D5.2, the QualiMaster
at design / development

VIL scripts is provided by the
VIL language implementation. Akin to

: Pipeline constraint editor with content assist and constraint selection dialog.

QualiMaster

Page 59 (of 70)

the arbitrary types for pipeline elemen
extended to provide access to the adaptation specification and its simulation environment as
shown in Figure 27. As already indicated in D4.1, we consider r
defining or maintaining the adaptive
experience as requested by REQ
and be made available in the same ca
which will then only open on a specific request.
Due to the internal changes in QM
the QualiMaster partners needed to replace their loca
including their local workspaces and the specific (uncommitted) changes they made to the
Configuration. To avoid such replacements of the entire tool and the workspace, we decided to
include QM-IConf into the con
collect upon successful builds all required bundles and to create a continuous (nightly) Eclipse
update site for QM-IConf (as we already do for EASy
enabled the self-update capabilities of QM
Although this complicates the release process of QM
installed into an empty RCP environment, it allows our partners to stay up
evolution of the Configuration Meta Model and QM
Furthermore, the QualiMaster consortium decided to provide a demonstration release of QM
IConf to the interested public. As external parties do not have access to the Subversion
repository storing the QM-IConf model (actually, it is located in the QualiMaster development
repository), we added a demonstration mode to the QM
appropriate version of the Configuration (Meta) model with the tool. In detail,
mode does not require a login, but also disables the model update / commit, the RCP update
and enables a reset functionality for the model, so that the user can recover even from extreme
accidental changes. Along with the demonstration v

22
 http://qualimaster.eu/?page_id=247

Figure 27: rt-VIL editor with simulation settings dialog and rt

the arbitrary types for pipeline elements, the graphical configuration tree of QM
extended to provide access to the adaptation specification and its simulation environment as

. As already indicated in D4.1, we consider rt-VIL as the expert level of
defining or maintaining the adaptive behaviour in QualiMaster. Further levels for users with less

REQ-C-14 in D4.1 will be realized in the remainder of the project
and be made available in the same category of the configuration tree, hiding the rt
which will then only open on a specific request.
Due to the internal changes in QM-IConf in order to comply with the Configuration Meta Model,
the QualiMaster partners needed to replace their local installation several times, in particular
including their local workspaces and the specific (uncommitted) changes they made to the
Configuration. To avoid such replacements of the entire tool and the workspace, we decided to

IConf into the continuous build environment for the QualiMaster components, to
collect upon successful builds all required bundles and to create a continuous (nightly) Eclipse

IConf (as we already do for EASy-Producer). Based on this update site, we
update capabilities of QM-IConf, i.e., the underlying Eclipse RCP platform.

Although this complicates the release process of QM-IConf, as the bundles must be explicitly
installed into an empty RCP environment, it allows our partners to stay up
evolution of the Configuration Meta Model and QM-IConf.
Furthermore, the QualiMaster consortium decided to provide a demonstration release of QM
IConf to the interested public. As external parties do not have access to the Subversion

IConf model (actually, it is located in the QualiMaster development
repository), we added a demonstration mode to the QM-IConf tool, so that we can ship an
appropriate version of the Configuration (Meta) model with the tool. In detail,
mode does not require a login, but also disables the model update / commit, the RCP update
and enables a reset functionality for the model, so that the user can recover even from extreme
accidental changes. Along with the demonstration video22 on QM-IConf, this version of QM

ge_id=247, https://www.youtube.com/watch?v=iwwCvJzD31k

VIL editor with simulation settings dialog and rt-VIL context menu (overlay
for illustration).

 Deliverable 4.2

 www.qualimaster.eu

ts, the graphical configuration tree of QM-IConf has been
extended to provide access to the adaptation specification and its simulation environment as

VIL as the expert level of
in QualiMaster. Further levels for users with less
will be realized in the remainder of the project

tegory of the configuration tree, hiding the rt-VIL editor,

IConf in order to comply with the Configuration Meta Model,
l installation several times, in particular

including their local workspaces and the specific (uncommitted) changes they made to the
Configuration. To avoid such replacements of the entire tool and the workspace, we decided to

tinuous build environment for the QualiMaster components, to
collect upon successful builds all required bundles and to create a continuous (nightly) Eclipse

Producer). Based on this update site, we
IConf, i.e., the underlying Eclipse RCP platform.

IConf, as the bundles must be explicitly
installed into an empty RCP environment, it allows our partners to stay up-to-date with co-

Furthermore, the QualiMaster consortium decided to provide a demonstration release of QM-
IConf to the interested public. As external parties do not have access to the Subversion

IConf model (actually, it is located in the QualiMaster development
IConf tool, so that we can ship an

appropriate version of the Configuration (Meta) model with the tool. In detail, the demonstration
mode does not require a login, but also disables the model update / commit, the RCP update
and enables a reset functionality for the model, so that the user can recover even from extreme

IConf, this version of QM-

https://www.youtube.com/watch?v=iwwCvJzD31k

VIL context menu (overlay

QualiMaster Deliverable 4.2

Page 60 (of 70) www.qualimaster.eu

IConf has been made available through the QualiMaster Web site23 as well as a specific Web
site on topological configuration at SUH24. Furthermore, in July 2015, a new (Open Source)
release of the Configuration Core EASy-Producer has been published and announced.
Although QM-IConf was significantly extended, further work is needed, to fulfil the requirements
from D1.1/D1.2 and to improve its user support. The following improvements were either
suggested by the reviewers or, in the meantime, by the partners, in particular during the
technical work day at the Chania consortium meeting in May 2015:

● Support for simplifying the configuration of individual algorithms, in particular their input-
and output items as well as the runtime parameters is in development. Initially, an
upload functionality into the pipeline elements repository was foreseen, but due to the
decision of the consortium to rely on Maven, directly selecting a Maven artefact and
interpreting its contents seems to be more appropriate. Therefore, we started to equip
the algorithm artefacts with a specific manifest, which either points to the distinct (Java)
algorithm so that it’s actually supported interface can be derived by analyzing the code
or which contains the full interface specification (in case of a hardware-based algorithm).
Here, the technical side, i.e., reading the manifests, retrieving the dependent artefacts
and the code analysis is realized, while the integration into QM-IConf is under
development.

● Support for specifying Maven artefacts. Currently, the user needs to input Maven
artefact specifications as a string consisting of the group identification, the name and the
version of the artefact. However, this is rather inconvenient and error prone, as the user
needs either to know the repository structure by heart or to utilize a web browser and to
copy the respective specification parts into QM-IConf. Thus, we plan to follow the
suggestions of the partners to realize a selection component, which allows the user to
select from the repository tree as far as possible rather than typing a full Maven artefact
specification.

● We plan to modify the reasoner integration so that it is automatically executed when
saving the model rather than on explicit request. Also here, the partners made first
positive experience if a modelled configuration, which looks consistent at a glance, does
not correctly translate into code, e.g., as during the infrastructure derivation process
Maven complains about inconsistencies. Running the reasoner when saving the model
can prevent this (as also suggested by the partners).

● First steps have been undertaken to highlight validation errors in the graphical user
interface of QM-IConf rather than showing just a list of errors. While marking the
individual editor components (such as text fields) or even graphical elements in the
pipeline editor such as pipeline elements and data flows is working, we are currently
extending the post-processing step of the reasoner so that more detailed information
about failed constraints and variables is provided. This integration with QM-IConf is
ongoing work.

In addition, dependent on the changes we decide for the Configuration Meta Model as
discussed in Section 3.2.6, further capabilities will be integrated into QM-IConf.

4.3 Adaptive Crawling
In this section we present the current state of the adaptive crawling component with a focus on
first evaluation results and a comparison of different strategies for the adaptation of data
streams. An initial description of the component was given in D2.1 in Section 5.1.

23
 http://qualimaster.eu/?page_id=256

24
 http://www.sse.uni-hildesheim.de/topological-configuration

QualiMaster Deliverable 4.2

Page 61 (of 70) www.qualimaster.eu

4.3.1 Adaptation Strategies

A first set of strategies on how to adapt a stream of collected messages from Twitter to get a
stream with high recall and precision was described in Deliverable 2.1. The two main strategies
described there are the

• Adaptation of the stream based on co-occurring keywords (or hashtags / cashtags)
which are monitored within sliding windows of different sizes.

• Expansion of the used keywords for the filtering based on background knowledge from
DBpedia or Wikipedia.

One of the main problem of these two strategies is the fact that adding a very generic keyword
like “apple” can result in a stream which is no longer focused on the main areas of interest.
One way to deal with this problem is to evaluate new keywords first before they are added to the
real stream used in the QualiMaster infrastructure. This evaluation can be done by using just
this keyword as source for a new stream and evaluating the new stream based on its relevance
for the given domain.
Another way to evaluate new keywords is to add these keywords to the stream and evaluate
how the stream changes over time due to the inclusion of the new keyword. In case the overall
focus of the stream changes to much the keyword can be removed and marked as irrelevant to
prevent the use of the keyword in the future.

4.3.2 Evaluation Measures

In D2.1 we analyzed how different strategies perform in terms of relevance of the collected
tweets. We showed that the collection co-occurring terms is a very promising approach for
expanding the number of used keywords while keeping the relevance at a relative high level.
For this section we will not only focus on the evaluation of the relevance of the collected tweets,
but also include the latency for adapting the stream to an upcoming event. These metrics are
connected to each other; a faster reaction to new keywords in the stream comes at the cost of
possible wrong adaptations, which would reduce the relevance. Since the relevance of the
stream is always dependent on what a user might consider as useful it is important to evaluate
how broad or narrow a stream gets, dependent on the chosen parameters.
For measuring relevance we manually evaluated, whether the suggested keywords are useful
for expanding the stream. In comparison to the automatic evaluation this gives very direct
insight into the influence of different parameters on the resulting adaptation.
For measuring the latency for the adoption of the stream we decided to use a set of well known
events, which are related to a defined set of keywords. In a scenario like this we can perform
various experiments and analyze how different parameters influence the time it takes for the
adoption.

4.3.3 Used Datasets

For evaluating different parameters and different quality metrics we mainly used the following
two different datasets:

• Dataset-1 is a collection of stock related tweets gathered between October 2014 and
June 2015. It consists of about 5,000,000 million Tweets. A detailed description of this
dataset can be found in D2.2.

• Dataset-2 was collected during the group phase of the soccer world championship in
2014 and contains about 17 Million Tweets. The tweets were collected using a set of
keywords related to Soccer and Brazil.

The different datasets allow us to set up various experiments and repeat them with different
parameters. One alternative to this controlled experimental environment would be to use several
adaptive crawlers at the same time with varying parameters and compare the results
afterwards.

QualiMaster Deliverable 4.2

Page 62 (of 70) www.qualimaster.eu

4.3.4 Evaluation Results

For the evaluation we focus on the quality of the resulting stream in terms of Relevance and
Latency of the adaptive streaming.
For measuring the relevance of the stream we focus on the possible candidates for adaptation.
These candidates can be hashtags or cashtags as well as normal keywords. The first selection
of these candidates is based on a sliding window. The sliding window moves over a defined
number of tweets, or over a defined period of time. All keywords and hashtags belonging to the
tweets inside the sliding window are stored in a Hashmap containing the keywords and the
number of occurrences inside the sliding window. If the number of occurrences exceeds a
certain number, the corresponding Hashtag or keyword is considered to be very relevant for the
stream and added as a filter.
The two main parameters we can change in this evaluation scenario is the size of the window
and the threshold for the occurrences within the window. We analyzed different sizes and
different thresholds in terms of their usefulness for an adaptive streaming approach.

4.3.4.1 Evaluation of Relevance

The first evaluation was performed on Dataset-1. We run our adaptive crawling algorithms over

the data and evaluated how many of the candidates where related to the stock market. We

choose to vary the window size between 1000 and 100,000 and the threshold between 10% and

80%.
Table 7 shows the number of possible candidates for the different setups. It is obvious that
larger windows decrease the number of possible candidates, as well as larger thresholds. It is
more unlikely for a window of a size of 10000 tweets to be filled with 10% of tweets containing a
certain keyword than it is for a window of size 10000. The main advantage of larger windows is
the reduced vulnerability against spam. Our observations of Twitter showed that spammers tend
to create short bursts of irrelevant messages in a short time. These messages are capable of
filling up a small sliding window and leading the stream towards irrelevant content. Due to the
short time periods in which these spammers are active, larger windows are not that easily
flooded with spam messages.
Besides the number of possible candidates we also analyzed how many of these candidates are
relevant for the given domain. This test was performed manually by looking a 100 random
selected candidates and validating their relevance. The results of this analysis are shown in
Table 8. We can see that the results show some patterns, for small windows of size 1000 –
5000 the best ratio is gained with a threshold around 20%. With larger windows, this value
decreases.

Threshold Precentage

5 10 20 30 40 50 60 70 80 90

W
in

d
o

w
 S

iz
e

 1000 494 268 165 64 38 34 23 22 22 2

2000 319 191 73 29 24 7 2 1 1 1

5000 184 108 33 9 2 1 0 0 0 0

10000 141 59 14 2 1 0 0 0 0 0

15000 81 39 8 1 1 0 0 0 0 0

20000 91 22 5 1 1 0 0 0 0 0

Table 7: Number of Candidates for Stream Expansion

QualiMaster Deliverable 4.2

Page 63 (of 70) www.qualimaster.eu

For verifying the evaluation results we performed the same set of experiments on Dataset-2, the
results of these experiments are comparable to the ones with Dataset-1 and show that many
possible selections of windows size and threshold may be considered to be used, depending on
the requirements of the user.

4.3.4.2 Measuring Adaptation Latency

For the evaluation of the time, it takes for the stream to be adapted to a new keyword, we
performed a series of experiments on Dataset-2. The advantage of this Soccer World Cup
Dataset is the existence of a number of well-defined events, namely the different Games during
the tournament, all these games were commented using special hashtags indication the two
teams of a match. For instance, a hashtag like #BraGer indicates that the content of the Tweet
is related to the game between Brazil and Germany. For a series of 10 Games from different
phases of the tournament, we analyzed if the adaptation can find the game and how long before
the match the adaptive stream would use the hashtag as a new filter depending on window size
and threshold.

The results of this series of experiments are shown in Table 9 and Table 10. We can see that
smaller windows with smaller thresholds can find more of the events, this is expected as
described in the previous section. The average amount of minutes was in most of cases around
30 minutes which would be enough time for adding the required hash tags to the filters of the
stream.

4.3.5 Conclusion and Future Work

In this set of evaluations we performed a series of experiments in order to choose good
parameters for a running adaptive streaming component. While the final choice of the
parameters always depends on the requirements of the user, this set of evaluations allows us to

Threshold Precentage

5 10 20 30 40 50 60 70 80 90

W
in

d
o

w
 S

iz
e

 1000 11% 11% 17% 15,60% 8,57% 8,82% 4,34% 4,54% 4,54% 0,00%

2000 11% 17% 20,55% 10,34% 8,33% 0,00% 0,00% 0,00% 0,00% 0,00%

5000 21% 25% 27,27% 11,11% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

10000 20% 27,11% 21,40% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

15000 24,69% 31% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

20000 29% 27% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Table 8: Percentage of relevant candidates for Stream Expansion.

Threshold Precentage

0.1 0.5 1 5 10 20 30 40 50 60 70 80 90

W
in

d
o

w
 S

iz
e

2000 14 12 12 10 9 8 7 7 7 7 7 7 7

5000 13 12 11 8 8 7 7 7 6 6 6 5 5

10000 12 11 10 8 7 7 6 5 4 4 4 4 4

20000 12 10 9 7 7 5 4 4 4 4 3 2 1

40000 11 9 8 7 5 4 4 2 2 2 2 2 1

Table 9: Found matches (out of 16).

QualiMaster Deliverable 4.2

Page 64 (of 70) www.qualimaster.eu

select predefined parameter sets, matching the users requirements. At the current state a
completely autonomous adaptation component is still in danger of adding less relevant
keywords to the stream, therefore we plan as future work a live on the fly evaluation of new
keywords. Additionally we will investigate how the output of other components can be integrated
into the adaptive streaming component. Of special interest is here the integration of results from
the graph streaming component for evaluating how new parts are connected, the user profiling
component for allowing different weights for different tweets based on the user profile and the
input from the event prediction and event detection components.

4.4 Event Prediction In Social Media

On-line adaptation of pipeline parameters to an event in the data sets typically results in a delay
of certain duration where some event relevant messages can be lost. Such an adaptation can
be optimized or carried out before the event, in case latter could be predicted in advance
(adaptation scenario A-2). Forecasting of events is typically a difficult and erroneous task.
However occurrence of some events (e.g., such as scheduled or re-occurring ones) can be
predicted with a certain accuracy. Also, often chains of events can be created based on
historical data (flood follows tsunami follows earthquake) and, of course, insider information
leaks, which often result in rumors in social media can be considered as event predictions.
In social media people often try to forecast or predict future events (examples shown in Figure
28). The source for predictions can be rumors, thoughts, or some background information.
Another source of predictions can be scheduled events such as those appearing in Yahoo
calendar.
In the deliverable D2.1 in the Section 6.3.1 we presented use case 8 with calendar based event
extraction. Extracted events can be directly presented to financial experts and further used for
adaptation of the pipeline. Another source for prediction is content base event prediction,
described in Section 4.4.1.

Figure 28: Sources for event forecasts in social media (examples).

Threshold Percentage

0.1 0.5 1 5 10 20 30 40 50 60 70 80 90 Average

2000 44,24 24,23 28,50 46,82 35,20 18,15 18,61 19,19 19,80 20,76 17,18 17,84 18,34 25,30

5000 29,72 36,41 29,72 17,93 33,45 19,80 17,47 18,84 19,69 20,99 23,25 19,61 19,78 23,59

10000 24,23 29,72 46,82 33,45 19,80 18,84 20,99 19,61 24,99 25,12 25,20 25,41 25,66 26,14

15000 28,50 46,82 35,20 19,80 18,84 19,61 25,12 25,41 26,08 23,05 26,46 37,03 37,22 28,40

20000 28,28 35,20 18,15 18,84 19,61 25,41 23,05 37,03 37,35 37,76 41,23 48,27 9,55 29,21

Average 30,99 34,48 31,68 27,37 25,38 20,36 21,05 24,02 25,58 25,54 26,66 29,63 22,11

Table 10: Average Adaptation Time before Event (Minutes).

QualiMaster Deliverable 4.2

Page 65 (of 70) www.qualimaster.eu

Although we doubt that accurate automatic event prediction will be possible in the near future,
tools, able to forecast events related to financial areas, could provide an interesting and useful
information source for financial experts.
In this Section we will describe a pipeline component for estimating future events for certain
market players using social data streams as described in Use Case 11 (according to the
numbering in D2.1).

4.4.1 Content Based Event Prediction

In a recent previous work [27] we have shown that the frequency of past event mentions in
news corpora can be linked to importance of this event. Also, the longer the time period after the
event where it is mentioned in the news, the more influential was the event.
Often people discuss in social media about upcoming events or rumors. Example tweets are
shown in Figure 28. A natural language parser can be exploited to parse out the date mentioned
in the tweet about a certain stock and save it in a database. In case the extracted date is
situated in the future, we can consider this tweet as prediction for some event related to the
mentioned market player.

Use Case 11 Extracting future events from social data streams

Description Detect future date mentions in social media streams as future events

Input
• Social media streams

• (optionally) a user query

Steps

1. Receive social media streams
2. Detect future date mentions (such as ”next week” or ”in

September”)using NLP parser
3. Acquire context information from the data item
4. Extract related market player name from the data item
5. Save mentioned time event along with the context information

aggregated from all tweets mentioning this date and market player.

Output
A set of contextual features (e.g. keywords) describing an event, which can
be used to adapt the monitoring of news feeds or social media streams in
order to focus on the emerging event.

4.4.2 Implementation Details

Accurate date extraction including both implicit (e.g., next week) and explicit (e.g., Mar 24)
temporal expressions is vital to our approach. We use the SUTime (Stanford Time Parser)
state-of-the art toolkit [5] for this task.
Algorithm 1 describes the main steps. First the market player name is extracted from the tweet,
following by a set of date mentioned. Each date is compared to some reference date (in our
case with current time). In case the extracted date is situated in the future, it will be added to the
calendar as event estimation, relevant for the extracted market player.

4.4.3 Summary

The most important task for the algorithm evaluation is to acquire a suitable ground truth (see
Section Event Detection in Deliverable D2.2). Similar to the Event Detection component, our
plans are to create a testbed with real events relevant to a set of market players and a set of
tweets gathered from that periods in close collaboration with WP5. Our quality evaluation will be
in terms of accuracy and visualized through precision recall curves. We will test both algorithms
of the family, namely the calendar based and content based approaches. Finally we plan to
perform to analyze closer the underlying tweets and gain insights into the structure of

QualiMaster Deliverable 4.2

Page 66 (of 70) www.qualimaster.eu

predictable events and introduce additional measures, such as diversity of event facets we are
able to extract.
Additionally, we will focus on the influence of the predicted events on the quality measures of
the QualiMaster Quality Taxonomy. This requires not only the collection of test data with real
events, but also a detailed description about how certain events influenced the quality
parameters. We assume that based upon a data collection like this, a set features can be found,
which allows a prediction not only for the time of an event, but also for its possible influence on
the pipeline. Then, the event prediction component can provide the Adaptation Layer with
distinct triggers on predicted events, their temporal duration and their forecasted impact on
certain quality parameters.

4.5 Adaptation Specification Language (rt-VIL)
Based on the initial and refined concepts of rt-VIL presented in D4.1 and discussed in Section
3.4, we realized rt-VIL as a component for both, the Configuration Core (EASy-Producer) and
the QualiMaster infrastructure. In this section, we discuss the realization state of rt-VIL. We start
with the Configuration Core, i.e., the realization of rt-VIL in EASy-Producer. Then we briefly
explain the integration of the Configuration Core with QM-IConf and the QualiMaster
infrastructure (to be detailed in the upcoming deliverable D5.3). Finally, we discuss in the state
of the generic and extended type system / language library of rt-VIL, which is responsible for
supporting domain-specific modeling of the adaptation behavior for the QualiMaster
infrastructure and initial measures of the execution performance of rt-VIL.
For the Configuration Core, we utilized the existing language infrastructure of VIL as a solid
foundation, which already implements the structure and the evaluation of expressions and VIL
rules as well as the VIL type system. On top of this infrastructure, we realized the rt-VIL
grammar, the related (extended) xText editor, the executable rt-VIL model as well as an (initial)
rt-VIL simulation environment allowing the user to execute a rt-VIL specification with given script
parameters and (runtime) configuration values. For short, rt-VIL has been implemented as
described in D4.1 and Section 3.4 of this deliverable. As part of this, the IVML reasoner (Section
4.1) has been integrated with the rt-VIL language environment so that the validity of the
changed configuration can be ensured. As described in D4.1, rt-VIL consults the reasoner as
default activity after at the end of a strategy / tactic, which may lead to the detection of
invalidities and trigger the transaction based rollback of the configuration described in Section
3.4.2). For testing rt-VIL, we implemented more than 30 language specific test unit cases
complementing the more than 250 scenario and unit test cases for VIL and VTL. Akin to the
other domain-specific languages of EASy-Producer, these test cases are used for automated
regression tests while building EASy-Producer on the continuous integration server of the
Software Systems Engineering Group of SUH provided to the QualiMaster partners.

QualiMaster Deliverable 4.2

Page 67 (of 70) www.qualimaster.eu

For the configuration of the QualiMaster infrastructure, the user interface level of rt-VIL
(language infrastructure including the editor and the simulation environment) have been
integrated into the QualiMaster infrastructure configuration tool (QM-IConf) as already
mentioned in Section 4.2. Furthermore, an initial integration of the non-interactive parts of rt-VIL
with the QualiMaster infrastructure has been performed, so that the Coordination Layer can
load the respective models, the Monitoring Layer can utilize the rt-VIL monitoring mapping
(Section 3.4.1) and the reasoner (Section 4.1) to detect SLA violations and, finally, the
Adaptation Layer can execute rt-VIL specifications and determine as well as enact required
changes to the QualiMaster infrastructure at runtime. We will detail the integration of rt-VIL into
the QualiMaster infrastructure in the upcoming deliverable D5.3.
As indicated above, rt-VIL is used in both, the configuration side and the runtime side of the
QualiMaster infrastructure. In the Configuration Core (EASy-Producer), rt-VIL acts as a generic
language adaptation control language, without particular knowledge about the System Under
Adaptation, in our case the QualiMaster infrastructure. In contrast, in QM-IConf the user shall be
able to utilize domain-specific concepts such as descriptors for the resources that can lead to
adaptations (reflecting the quality taxonomy from D4.1 and Section 2), the adaptation events
indicating particular adaptation needs, and the coordination commands for requesting specific
enactments from the Coordination Layer. As already indicated in D4.1, these domain-specific
concepts become part of a (domain-specific) version of rt-VIL in terms of individual types
extending the rt-VIL type system. However, these types must also be backed by the real
functionality25, such as accessing detailed information of the events or executing a certain
coordination command in the Coordination Layer. Therefore, we realized a type library
component, that can be integrated with the QualiMaster infrastructure, QM-IConf and optionally
with EASy-Producer. The integration with EASy-Producer is needed to allow experienced users
to consistently work on the detailed levels of the Configuration Meta Model, the platform
instantiation process as well as on the adaptation specification in the same tool. From the
perspective of EASy-Producer, the type library is a QualiMaster-specific extension of EASy-
Producer. For QM-IConf and EASy-Producer the type library component plays the role of an
OSGi/Eclipse bundle that can be installed into Eclipse RCP (for QM-IConf) or Eclipse (for EASy-
Producer). It contains the respective parts of the QualiMaster infrastructure so that the type
library can be executed during rt-VIL simulation runs. For the QualiMaster infrastructure, the
type library component is deployed as a Maven artefact, which directly binds against the
infrastructure functionality. In summary, the type library consists of 10 types representing
coordination events, 8 types representing adaption events, 5 types representing observables
and, thus, the QualiMaster quality taxonomy and an additional type simplifying the mapping of
monitored information. As these types must comply with the actual implementation, we derive
the information about the types directly from the actual Maven artefacts of the QualiMaster
infrastructure implementation using Java reflection analysis and certain Java annotations to
guide the reflection analysis. To ensure the consistency, this can be performed as part of the
continuous integration. As mentioned in Section 3.3, in the future we will extend the rt-VIL type
library and, for domain-specific functionality also the type library component with optimization
functions to support and determine adaptation plans.

25
 In case of the rt-VIL simulation environment, some functionality such as the actual execution of a

coordination command shall only be available as a stub as it actually shall not be executed during a
simulation, e.g., the actual modification of a running instance of the QualiMaster infrastructure.

QualiMaster Deliverable 4.2

Page 68 (of 70) www.qualimaster.eu

5 Summary and Outlook
Quality-aware configuration and adaptation are core topics of the QualiMaster project. They
enable flexibility before runtime (configuration) and at runtime (adaptation). In this deliverable,
we provided an update on the concepts and the realization state of the components foreseen to
realize both, configuration and adaptation.
Regarding configuration, we discussed extensions of the Configuration Meta Model driven by
recent experience with the approach, which allow us to model and configure the data
processing in QualiMaster in a more flexible way. Subsequently, we evolved and improved the
platform instantiation process as well as the user tooling, namely the QualiMaster Infrastructure
configuration tool (QM-IConf). One central component of QM-IConf is the IVML reasoner, which
was developed, improved and evaluated in the QualiMaster project and showed good
performance in practical as well as in experimental settings.
Regarding adaptation, we performed fundamental experiments for the enactment patterns
introduced in D4.1, discussed strategies to perform efficient algorithm switching using state
transfer, implemented adaptation components such as adaptive crawling and event prediction
from Social Web data and realized and validated the initial version of the runtime instantiation
and adaptation language rt-VIL. Furthermore, we started realizing the adaptation scenarios.
Currently, we concentrated on Changing Data Streams (A-1), in particular regarding
parallelization and Requested Resource Allocation (A-2), regarding adaptive pipeline start-up,
but the described components also build a foundation for Future Event Prediction (A-2). The
scenarios are supported by work on automatically determining and optimizing the parallelization
of a pipeline, for which we realized an encouraging prototypic modification of Storm for runtime
changes of the parallelization, designed an initial algorithm for resource distribution and realized
it in rt-VIL. Although we started with a single pipeline case here, we already planned an
extension for the multiple-pipeline case on the entire cluster.
The next tasks of our future work are to continue the analysis of the enactment patterns, in
particular regarding combinations of patterns to make the switch of algorithms more effective
and to achieve gap-free enactment (using buffering and state transfer). This work may indicate
the need to further modifications to the underlying Stream processing system, for which we aim
at submitting a patch to the Storm community. A further important topic in the next months is to
determine the adaptation knowledge for switching among algorithms and for setting parameters.
Therefore, we started a mapping study on automatically obtaining performance and data quality
measures. Based on existing work, we will then analyze in close collaboration with WP2 and
WP3 the algorithm families to acquire empirical algorithm models. We also will use this as a
foundation for the (dynamic) pipeline analysis and turn the knowledge into rt-VIL adaptation
specifications, validate and analyze them. Further, we will combine the experience we obtain
from this work with the upcoming concepts for cross-pipeline adaptation and reflective pipeline
adaptation, where the respective tasks defined in the DoW just started last month.

QualiMaster Deliverable 4.2

Page 69 (of 70) www.qualimaster.eu

6 References
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In
International Conference on Web Search and Web Data Mining (WSDM '09), pages 5–14,
2009.
[2] J. P. A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transparent
dynamic reconfiguration for corba. In International Symposium on Distributed Objects and
Applications (DOA '01), pages 197–207, 2001.
[3] H. Berthold, S. Schmidt, W. Lehner, and C.-J. Hamann. Integrated resource
management for data stream systems. In Proceedings of the 2005 ACM Symposium on Applied
Computing, SAC '05, pages 555–562, New York, NY, USA, 2005. ACM.
[4] I. Bordino, Y. Mejova, and M. Lalmas. Penguins in sweaters, or serendipitous entity
search on user-generated content. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, pages 109–118. ACM, 2013.
[5] D. Chen and C. D. Manning. A fast and accurate dependency parser using neural
networks. Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, 2014.
[6] S.-W. Cheng, D. Garlan, and B. Schmerl. Stitch: A Language for Architecture-based
Self-adaptation. J. Syst. Softw., 85(12):2860–2875, 2012.
[7] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2000.
[8] INDENICA Consortium. Variability Engineering Tool (interim). Technical Report
Deliverable D2.4.1, 2012. http://www.indenica.eu.
[9] D. Dasgupta and S. Forrest. Novelty detection in time series data using ideas from
immunology. In Proceedings of the international conference on intelligent systems, pages 82–
87, 1996.
[10] M. Drosou and E. Pitoura. Search result diversification. SIGMOD Record, 39(1):41–47,
2010.
[11] H. Eichelberger, S. El-Sharkawy, C. Kröher, and K. Schmid. EASy-producer: Product
Line Development for Variant-rich Ecosystems. In International Software Product Line
Conference (SPLC '14) - Volume 2, pages 133–137, 2014.
[12] H. Eichelberger and K. Schmid. Indenica variability implementation language: Language
specification, version 0.93. Technical report, 2014. http://projects.sse.uni-
hildesheim.de/easy/docs/vil_spec.pdf.
[13] H. Eichelberger and K. Schmid. Mapping the Design-Space of Textual Variability
Modeling Languages – A Refined Analysis. International Journal on Software Tools for
Technology Transfer, pages 1–26, 2014. published online:
http://link.springer.com/article/10.1007/s10009-014-0362-x.
[14] H. Eichelberger and K. Schmid. IVML – A DSL for Configuration in Variability-Rich
Software Ecosystems. In Software Product Line Conference (SPLC '15) Vol. 2, 2015. to appear.
[15] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating scale
out and fault tolerance in stream processing using operator state management. In International
Conference on Management of Data (SIGMOD '13), pages 725–736, 2013.
[16] C. L. Forgy. Expert systems. chapter RETE: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem, pages 324–341. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1990.
[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley, 2000.
[18] K. Geihs, C. Evers, R. Reichle, M. Wagner, and M. U. Khan. Development support for
qos-aware service-adaptation in ubiquitous computing applications. In Symposium on Applied
Computing (SAC '11), pages 197–202, 2011.
[19] C. Kröher H. Eichelberger, S. El-Sharkawy and K. Schmid. Indenica variability modeling
language: Language specification, version 1.22. Technical report, 2014. http://projects.sse.uni-
hildesheim.de/easy/docs/ivml_spec.pdf.

QualiMaster Deliverable 4.2

Page 70 (of 70) www.qualimaster.eu

[20] ISO. Software engineering-Software product Quality Requirements and Evaluation
(SQuaRE) Quality model, CD 25010.2, 2011.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733.
[21] M. A. U. Nasir, G. De Francisci Morales, D. Garcá-Soriano, N. Kourtellis, and Serafini M.
The power of both choices: Practical load balancing for distributed stream processing engines.
In International Conference on Data Engineering (ICDE '15), pages 137–148, 2015.
[22] H. L. O'Brien. Exploring user engagement in online news interactions. Proceedings of
the American Society for Information Science and Technology, 48(1):1–10, 2011.
[23] E. A. Rundensteiner, L. Ding, Y. Zhu, T. Sutherland, and B. Pielech. Cape: A constraint-
aware adaptive stream processing engine. In N. A. Chaudhry, K. Shaw, and M. Abdelguerfi,
editors, Stream Data Management, volume 30 of Advances in Database Systems, pages 83–
111. 2005.
[24] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Variability Model of the
Linux Kernel. In 4th International Workshop on Variability Modeling of Software-intensive
Systems (VaMoS 2010), 2010.
[25] J. Shen, X. Sun, G. Huang, W. Jiao, Y. Sun, and H. Mei. Towards a unified formal model
for supporting mechanisms of dynamic component update. SIGSOFT Softw. Eng. Notes,
30(5):80–89, September 2005.
[26] M. Svahnberg, J. van Gurp, and J. Bosch. A Taxonomy of Variability Realization
Techniques. Software – Practice and Experience, 35(8):705–754, 2005.
[27] G. Tran, E. Herder, and K. Markert. Joint graphical models for date selection in timeline
summarization. ACL, 2015.
[28] S. Vargas. Novelty and diversity enhancement and evaluation in recommender systems
and information retrieval. In ACM SIGIR Conference on Research and Development in
Information Retrieval, (SIGIR '14), page 1281, 2014.
[29] M. Wermelinger and J. L. Fiadeiro. Algebraic Software Architecture Reconfiguration.
SIGSOFT Softw. Eng. Notes, 24(6):393–409, 1999.
[30] J. Zhang and B. H. C. Cheng. Model-based development of dynamically adaptive
software. In Proceedings of the 28th International Conference on Software Engineering (ICSE
'06), pages 371–380, 2006.
[31] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation
lists through topic diversification. In International conference on World Wide Web (WWW '05),,
pages 22–32, 2005.

