
 

 
          www.qualiMaster.eu  

 
 

 

QualiMaster 

Quality-aware Processing Pipeline Modeling 

 

Grant Agreement No. 619525 

 

 

 

Deliverable D4.1 

 

 

 

 

Work-package WP4: Quality-aware Configuration and Adaptation of Stream 
Processing Pipelines 

Deliverable  D4.1: Quality-aware Processing Pipeline Modeling 

Deliverable Leader SUH 

Quality Assessor Ekaterini Ioannou  

Estimation of PM spent 10 

Dissemination level PU 

Delivery date in Annex I 31.12.2014 

Actual delivery date 31.12.2014 

Revisions 8 

Status Final 

Keywords: Quality-aware configuration, platform instantiation, quality-aware 
adaptation, enactment patterns, quality taxonomy, tool support 

  



QualiMaster Deliverable 4.1 

Page 2 (of 112)  www.qualimaster.eu 
 

Disclaimer 

This document contains material, which is under copyright of individual or several QualiMaster 
consortium parties, and no copying or distributing, in any form or by any means, is allowed without 
the prior written agreement of the owner of the property rights. 

The commercial use of any information contained in this document may require a license from the 
proprietor of that information. 

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster 
consortium warrant that the information contained in this document is suitable for use, nor that the 
use of the information is free from risk, and accepts no liability for loss or damage suffered by any 
person using this information. 

This document reflects only the authors’ view. The European Community is not liable for any use 
that may be made of the information contained herein.  

 

 2014 Participants in the QualiMaster Project 

  



Deliverable 4.1 QualiMaster 

© QualiMaster Page 3 (of 112)  
 

List of Authors 

Partner Acronym 

 

MAX 

LUH 

SUH 

SPRING 

TSI 

Authors 

 

- 

Mohammad Alrifai 

Holger Eichelberger, Cui  Qui, Roman Sizonenko 

Stefan Burkhard 

Gregory Chrysos 

  

  

 

  



QualiMaster Deliverable 4.1 

Page 4 (of 112)  www.qualimaster.eu 
 

Table of Contents 
Table of Contents ........................................................................................................................... 4 
Executive summary......................................................................................................................... 5 
1 Introduction .............................................................................................................................. 6 
2 Terminology and Basic Concepts ............................................................................................. 8 
2.1 Terminology ....................................................................................................................... 8 
2.2 QualiMaster Pipeline Execution Model ............................................................................. 10 

3 Challenges and Approach ...................................................................................................... 11 
4 Related work .......................................................................................................................... 14 
4.1 Quality Parameters and Quality Analysis ......................................................................... 14 
4.1.1 Software Quality ........................................................................................................ 14 
4.1.2 Data Stream Processing Quality ................................................................................ 15 
4.1.3 Data Quality Analysis ................................................................................................. 18 

4.2 Configuration.................................................................................................................... 19 
4.3 Adaptation ........................................................................................................................ 21 

5 Requirements ......................................................................................................................... 24 
5.1 Requirements for the QualiMaster Configuration Model ................................................... 24 
5.2 Requirements for the QualiMaster Adaptation Model ....................................................... 26 

6 QualiMaster Quality Dimensions and Quality Analysis ............................................................ 27 
6.1 Quality Survey .................................................................................................................. 27 
6.2 Quality Taxonomy ............................................................................................................ 29 
6.2.1 Performance Efficiency .............................................................................................. 29 
6.2.2 Functional Suitability .................................................................................................. 32 
6.2.3 Scalability .................................................................................................................. 33 
6.2.4 Summary ................................................................................................................... 34 

6.3 Pipeline Quality Analysis .................................................................................................. 35 
7 QualiMaster Configuration Model ........................................................................................... 36 
7.1 Configuration Modeling Overview ..................................................................................... 36 
7.2 QualiMaster Configuration Meta Model ............................................................................ 38 
7.2.1 Configuration Meta Model Overview .......................................................................... 38 
7.2.2 Observables .............................................................................................................. 40 
7.2.3 Resource Pool (Execution Layer) .............................................................................. 41 
7.2.4 Data Management ..................................................................................................... 43 
7.2.5 Data Processing Algorithms ....................................................................................... 46 
7.2.6 Algorithm Families ..................................................................................................... 47 
7.2.7 Data Processing Pipelines ......................................................................................... 48 
7.2.8 Adaptivity ................................................................................................................... 52 
7.2.9 Infrastructure ............................................................................................................. 53 

7.3 Tool Support .................................................................................................................... 53 
8 QualiMaster Adaptation Model ............................................................................................... 57 
8.1 Approach Overview .......................................................................................................... 57 
8.2 Enactment Patterns.......................................................................................................... 59 
8.2.1 Pattern Structure ....................................................................................................... 59 
8.2.2 Primary Enactment Patterns ...................................................................................... 60 
8.2.3 Secondary Enactment Patterns ................................................................................. 64 
8.2.4 Application of Enactment Patterns ............................................................................. 70 

8.3 Flexible Adaptation Behavior Specification ....................................................................... 70 
8.3.1 Concept Overview ..................................................................................................... 71 
8.3.2 VIL Core Concepts .................................................................................................... 74 
8.3.3 rt-VIL Language Elements ......................................................................................... 75 

8.4 Tool Support .................................................................................................................... 84 
9 Conclusion and Future Work .................................................................................................. 86 
10 References .......................................................................................................................... 89 
Appendix A: QualiMaster Configuration Meta Model in IVML ........................................................ 98 
Appendix B: rt-VIL Grammar ....................................................................................................... 111 
 



Deliverable 4.1 QualiMaster 

© QualiMaster Page 5 (of 112)  
 

Executive summary  
Quality-aware configuration and runtime adaptation provides flexibility before, and, at runtime in 
the QualiMaster project. Configuration targets flexibility before runtime in terms of a consistent 
customization of a real-time data analysis platform in order to support users and developers in 
applying, extending and adopting the QualiMaster approach. Runtime adaptation aims at flexibility 
at execution time, i.e., to cope with suddenly occurring or even unforeseen changes of the 
environment, e.g., to handle a massive increase of data volume due to hectic market times while 
keeping the quality of the data analysis. Configuration and adaptation are closely related, as the 
configuration determines the adaptation opportunities, i.e., the adaptation space, and the 
adaptation needs to take configuration settings into account in order to act according to the 
preferences of the users.  

This deliverable reports on the concepts, models and tools developed in the project to realize 
quality-aware configuration and adaptation. Thus, the main topics of this deliverable are quality, 
configuration and adaptation in QualiMaster. As a basis for configuration and adaptation, we 
discuss a common quality taxonomy derived from a quality survey we conducted. Regarding 
configuration, we provide detailed insights into the quality-aware Configuration Meta Model, the 
automated instantiation of the configuration for customization of software artifacts and the tooling, 
which allows infrastructure users perform the configuration including the resource pool, the 
algorithm families and the data analysis pipelines. Finally, we discuss our approach to quality-
aware integration in terms of an adaptation specification language integrated with the configuration 
approach as well as enactment patterns to realize dynamic modifications in the running 
QualiMaster platform. 
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1 Introduction 
In this deliverable, we discuss the fundamental concepts for modeling the quality-aware 
configuration of the QualiMaster infrastructure before runtime as well as the dynamic adaptation 
and optimization of the QualiMaster platform at runtime. In particular, this deliverable describes our 
approach on how to unify these two distinct phases in the software lifecycle of the QualiMaster 
platform and, thus, respective approaches in these two fields of research and development. 

In QualiMaster, configuration refers to the activities for consistently customizing and tailoring the 
capabilities of a certain infrastructure instance for a given setting. One particular example for such 
a setting is the application of the QualiMaster infrastructure to the analysis of systemic risk in the 
financial domain on the cluster hardware for example the one used in the project at the Technical 
University of Crete. Performing this customization includes the definition of the physical (general-
purpose as well as reconfigurable) hardware used for computation in terms of a heterogeneous 
resource pool, the algorithms and algorithm families, the data analysis pipelines as well as quality 
constraints, e.g., formalizing external service level agreements (SLAs). Ultimately, the 
configuration activities lead to a consistent configuration, which allows the automatic 
customization, packaging and deployment of the artifacts constituting the QualiMaster 
infrastructure for the particular setting. These configuration activities aim at high degree of flexibility 
in order to support the application and adoption of the QualiMaster solution by domain experts, 
and, from a wider perspective, also at easing application and adoption of the project results even in 
other application domains. 

In contrast, adaptation refers to the (autonomous) modification of the configured and running 
platform in order to cope with unforeseen changes in the environment. In QualiMaster, runtime 
adaptation allows, e.g., to react appropriately on input load changes to efficiently use the 
computational resources or to automatically focus the risk calculation in hectic market times on 
dynamically selected markets to provide analysis results of high relevance to the user. Therefore, 
we rely on the concept of an adaptive data analysis pipeline, i.e., the specification of the data flow 
and the data processing in terms of algorithm families. An algorithm family groups algorithms with 
the same analysis semantics, but different quality, performance or resource tradeoffs. Selecting 
the most appropriate algorithms in a data analysis pipeline in order to optimize the processing for 
the actual situation is one of the most important tasks of the adaptation in QualiMaster. 

In general, we aim at a unified quality-aware configuration and adaptation model for real-time (low-
latency) data stream processing. Thereby, we understand the term “unified” in two flavors. First, 
we aim at the unification of configuration and adaptation, in the sense that the configuration 
activities before runtime determine the adaptation space at runtime. Some examples that detail 
and limit the adaptation space are the heterogeneous resource pool, the algorithm families and 
their member algorithms, the specified processing pipelines as well as the quality constraints. 
Second, we aim at a unified treatment of software- and hardware-based execution, in particular to 
configure the presence of reconfigurable hardware and to dynamically utilize software as well as 
hardware-based execution in an opportunistic way. Achieving both unification flavors imposes 
several research challenges that we discuss in this deliverable and focus on in the work of WP4. 

To achieve the overall goal, we rely on proven concepts and technologies from the area of 
Software Product Line Engineering (SPLE) [31, 96, 111]. SPLE is a successful approach to mass 
customization, configuration, tailoring, and reuse of software systems. Thereby, a software system 
is not considered as a single system, but rather as software product line (SPL), a family of similar, 
but differently configured systems. SPLE is successfully applied in different industrial settings, 
such as embedded systems or information systems and enables to manage complex 
configurations while reducing time-to-market as well as development efforts. Deriving a specific 
member from a product family (in QualiMaster the configured infrastructure instance) includes the 
configuration of the product (the QualiMaster platform), it’s validation, and, finally, its derivation, 
i.e., turning the configuration into (software) artifacts. While traditional SPLE focuses on pre-
runtime customization, Dynamic Software Product Lines (DSPL) [67, 71] aim at runtime (re-
)configuration as one approach to realize adaptive software systems. However, current DSPL 
approaches typically utilize concepts and techniques from SPLE, but focus exclusively on the 
runtime aspects rather than linking configuration and runtime. Unifying aspects of SPL and DSPL 
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and exploiting their common aspects and mutual benefits in the domain of adaptive real-time data 
stream processing is at the heart of the work in WP4. 

This deliverable is structured as follows. In Section 2, we introduce terminology and basic 
concepts, e.g., the execution model for adaptive QualiMaster data analysis pipelines. Based on 
this terminology, we discuss in Section 3 the (research and development) challenges for our work 
in WP4 and introduce our overall approach. In Section 4, we provide an overview on the state of 
the art for configuration and adaptation approaches for software systems in general and for data 
stream processing infrastructures in particular. In Section 5, we analyze the requirements for our 
work on configuration and adaptation in QualiMaster drawn from the Description of Work (DoW) 
and other related deliverables such as D1.2 and D5.1. In Section 6, we detail the quality 
dimensions relevant for the QualiMaster project. The remainder of the deliverable focuses then on 
the configuration model and the adaptation model. Although the adaptation behavior is (initially) 
specified along with the configuration before runtime and relies on the QualiMaster Configuration 
(Meta) Model, we discuss configuration and adaptation in two sections according to their point in 
time when they mainly affect the QualiMaster infrastructure, i.e., configuration time and runtime. 
Thus, in Section 7, we discuss the Configuration (Meta) Model, its configurable elements and 
constraints. Further, we give an insight into the actual tool support for configuration used in 
QualiMaster. In Section 8, we discuss the QualiMaster Adaptation Model, in terms of the 
adaptation cycle, the concepts of the adaptation specification language as well as the state of the 
related tool support. In Section 9, we conclude this deliverable and give an outlook on future work 
in WP4. In the appendix, we provide an overview on the actual specification of the configuration 
meta model from Section 7 as well as the (initial) grammar of the adaptation specification language 
discussed in Section 8. 

 

Relation to other deliverables:  

• D4.1 is based on the use cases and requirements collected in D1. 2. A brief analysis of the 
requirements relevant to WP4 is given in Section 5. Further, WP4 conducted a consortium 
internal quality survey in order to create a common quality taxonomy for the project. 
Although we report on the quality taxonomy in Section 6, this is a form of requirements 
elicitation that indicated further requirements in D1.2. 

• D2.1 relies on the algorithm-related aspects of the quality taxonomy discussed in Section 6 
of this deliverable. 

• D3.1 and D4.1 are loosely linked through the configuration of the hardware-based 
processing, in particular to reflect the Maxeler hardware used in the QualiMaster project, 
the generation of hardware connectors during platform instantiation, the opportunistic 
execution of analysis algorithms on reconfigurable hardware as well as common 
understanding of the quality of the data processing. 

• D4.1 relies on D5.1, in particular the organization of the Configuration Meta Model as well 
as the design of the Adaptation Model in terms of the architecture of the QualiMaster 
infrastructure. In turn, the work on realizing the concepts of D4.1, the underlying monitoring, 
the infrastructure configuration tool support and the infrastructure derivation process links 
D4.1 to D5.2. 
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2 Terminology and Basic Concepts 
This section defines the basic terminology used in this deliverable in Section 2.1 and the basic 
concepts on adaptive data stream analysis pipelines in Section 2.2. 

2.1 Terminology 
We now provide an overview on the basic terminology for this deliverable. This section is based on 
the DoW and terms defined in D1.2, i.e., terms are partly repeated here for convenience, but 
explained in the context of the project and the work in this work package. 

• The QualiMaster infrastructure consists of an environment for adaptively executing data 
stream pipelines as well as related tools for configuring and managing that environment. 
We will call the execution environment the QualiMaster platform, or platform for short. 

• The Configuration Meta Model (Variability Model1 in SPLE) defines the valid configuration 
space, i.e., the configurations that describe meaningful and executable systems. This 
configuration space is defined in terms of configurable elements (called “variabilities” in 
SPLE), which may represent optional, alternative or multiple selections from related value 
domains. Further, constraints among the configurable elements express 
interdependencies, such as inclusions or mutual exclusions and impose further limitations 
of the validity of a configuration. The Configuration Meta Model is defined by the 
QualiMaster consortium using a textual modeling language and can be adapted or 
extended by expert users in order to apply the QualiMaster infrastructure to other settings 
or domains. 

• A Configuration determines the actual settings of the configurable elements defined by the 
underlying Configuration Meta Model for a specific instance of the QualiMaster 
infrastructure for a given analysis setting. In particular, this includes the definition of the 
domain-specific analysis algorithms or data processing pipelines. A configuration is valid if 
it structurally complies to and fulfills all constraints defined by the Configuration Meta 
Model. The configuration can be defined and validated by an Infrastructure User (cf. D1.2) 
through the QualiMaster infrastructure configuration tool. 

• The derivation or instantiation of the QualiMaster platform is the activity of tailoring the 
generic (template) infrastructure towards the application setting described by a valid 
Configuration. The derivation of the platform happens before its runtime, in particular before 
any adaptation activities are carried out. We focus on an automatic derivation of the 
platform by creating, modifying and deleting infrastructure artifacts as specified by the 
Configuration. In particular, this includes the derivation of the implementation of the 
adaptive data analysis pipeline for the actual execution system (Apache Storm) as well as 
the integration of the domain-specific (manually programmed) data analysis algorithms. As 
we describe in more detail in the following sections, the platform derivation is defined in 
terms of a Domain-Specific Language (DSL) so that modifications or extensions of 
derivation process or the Configuration Meta Model can be turned into software artifacts 
without modifying the underlying tool support. 

• As introduced in D1.2, a quality parameter [101] is a measurable and quantifiable property 
of a computational element (also other terms are used in literature, e.g., quality dimension 
or quality attribute or quality property depending on the community [56]). A computational 
element can be a data processing algorithm, a data flow, a data analysis pipeline or a 
physical compute resource. Examples for quality parameters are numbers of items per time 
unit (data flow or data pipeline level), execution time or memory usage (compute resource 
level). We refer to a quality parameter as a single measurement. Monitoring is the activity 
of performing such measurements. We distinguish between primitive quality parameters 

                                                      
1
 Typically, this kind of model is called “Variability Model” in SPLE. Due to a possible mismatch with the 
terminology of the Data Stream community, we use in the QualiMaster project the term “Configuration Meta 
Model” instead. 



Deliverable 4.1 QualiMaster 

© QualiMaster Page 9 (of 112)  
 

directly measured by the infrastructure or the hardware and derived quality parameters 
defined in the Configuration (such as a domain-specific kind of throughput). 

• As in D1.2, we call (the capture of) the evolution of a quality parameter over time in a 
certain setting a quality characteristic, e.g., the behavior of a stream-based correlation 
calculation processing algorithm under high load. Typically, quality parameters cannot be 
considered as constant, so that mathematical or statistical means must be applied to 
capture quality characteristics appropriately. Quality characteristics are defined for 
individual algorithms, propagated to algorithm families (through the selection of the actual 
algorithm) and, ultimately, to the end-to-end quality characteristics of a data processing 
pipeline. 

• Quality of Service (QoS) refers to measurable and quantifiable quality parameters of a 
software product [37]. As we discuss in Section 4.1, standards are in place that aim at 
characterizing typical QoS parameters. Typically, the negotiated QoS a system must 
provide is captured in terms of Service Level Agreements (SLA). 

• Adaptation (or adaptive execution of a pipeline) refers to autonomous changes determined 
and carried out by the QualiMaster platform in order to maintain the actual QoS of the data 
analysis and the efficiency of the use of physical computing resources. In contrast to the 
configuration activities before startup, adaptation happens at runtime of the QualiMaster 
platform. In turn, the adaptive execution relies on the configuration that implicitly defines the 
boundaries and the validity of the autonomous activities. 

• Enactment or execution of an adaptation decision refers to the implementation of a decision 
made by the QualiMaster platform at runtime, e.g., by changing individual algorithms or 
algorithm parameters. 

• Reactive adaptation is triggered by monitoring of the actual system state, e.g., to identify 
violations of SLAs. Reactive adaptation is performed when monitored values are outside 
the boundaries (given by the Configuration) and an immediate reaction is required. 
Reactive adaptation aims at a nearly immediate reaction on a situation and does not 
include planning or prediction of quality properties. 

• Proactive adaptation aims at anticipating the short-term future development of the 
environment. This includes planning activities, the prediction of immediate quality 
properties or characteristics, the anticipation of unwanted situations or the prediction of the 
short-term evolution of the adaptation model along with impact records or recorded quality 
characteristics. 

• Reflective adaptation aims at improving the quality of the configuration and the adaptation 
on meta-level on a large time scale. Therefore, the reactive adaptation in QualiMaster 
analyzes the overall operation of the infrastructure and the effects / impacts of reactive and 
proactive adaptation over time. Reactive adaptation aims at providing insights for the 
improvement of the configuration, the use of adaptation strategies or their refinement so 
that human Infrastructure Users (Platform Administrator, Adaptation Manager, and Pipeline 
Designer as introduced in D1.2) can improve and optimize the behavior of a running 
QualiMaster platform. Please note that we will not discuss the concepts for reflective 
adaptation in this deliverable, as the related task 4.4. is scheduled to start in month 18 of 
the project. 

• Cross-pipeline adaptation aims at optimizing the pipeline execution across multiple running 
pipelines, in particular to free resources for value-added resource-consuming (offline) 
analysis tasks. Although we actually prepare the configuration and the platform instantiation 
for cross-pipeline execution as we will discuss in Section 7, the related task 4.5 is 
scheduled to start in month 18 of the project. Thus, we will not detail concepts for cross-
pipeline adaptation in this deliverable. 
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2.2 QualiMaster Pipeline Execution Model 
Pipelining is a well-known implementation technique for high performance architectures [75]. The 
idea is to break down the computation logic of a computing structure into sub-components and 
arranging them as a sequential chain, in analogy to a physical pipeline, so that the output of each 
element is the input of the next. Pipelining increases the concurrency in the computation by 
allowing processing k items at a time in a k-stages pipeline, thus increasing throughput.   

In QualiMaster, a real-time data processing pipeline is a directed graph composed of algorithms 
(more precisely sources, processing families and sinks as we discuss below) that are put together 
to accomplish a specific data analysis task. Example tasks are: 

• Analyzing the co-dependency matrix of a set of market players using financial streams of 
stock tick data. 

• Analyzing the sentiment of user posts in the Twitter stream with respect to a market player. 

Each pipeline receives a stream of (structured or unstructured) raw data as input (e.g., Twitter or 
stock market streams) and produces one or more streams of analysis results as output (e.g., time 
series of the sentiment analysis, or correlation measurement of a pair of market players). 

In QualiMaster, a data processing pipeline consists of the following types of components: 

• Data sources, which provide the raw input data. As discussed in D4.1, the data sources are 
handled by the Data Management Layer, in particular to avoid storing the same raw input 
data multiple times. 

• Processing elements, which perform the actual data processing. Processing elements may  

o Represent an algorithm family and, thus, facilitate the execution of a dynamically 
selected algorithm from the respective families. 

o Interact with the Data Management Layer (see D5.1) and provide functionality to 
store or access intermediary processing data in terms of historical data. The actual 
data to be stored is determined during the design of the containing pipeline. 

• Data sinks represent the conceptual endpoints of a pipeline and provide analysis results to 
the applications via the Data Management Layer. 

• Data flows link sources with processing elements and sinks. 

There can be different pipeline structures/compositions that fulfill the same task, known as 
execution paths. Typically, execution paths are implicit, i.e., by exchanging algorithms within their 
respective family, different execution paths are realized. Furthermore, there may be explicit 
alternatives designed into the pipeline in order to be decided at runtime, e.g., depending on quality 
metrics used in a pipeline constraint. The actual realization can be done using one concrete 
algorithm (or a combination of several algorithms) from the same family. Hence, there can be 
several implementations of the abstract pipeline depending on the selected execution path and the 
actual methods used in for each step. Thus, a QualiMaster data processing pipeline can be seen 
as a family of execution paths, i.e., dynamically instantiated pipelines.  
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3 Challenges and Approach 
Achieving the overall goal of realizing a unified configuration and adaptation model for real-time 
data stream processing imposes several challenges. We describe the most relevant challenges for 
the QualiMaster project in this section, provide further detailed relations to related work in Section 
4 and to the model concepts in Section 7 and 8, respectively.  

C1 Unification of configuration and adaptation: Various approaches are described in 
literature that either focus on the (pre-runtime) configuration of systems or on (runtime) 
adaptation. However, approaches that unify both aspects, i.e., transfer configuration 
knowledge to runtime to support valid adaptation, contribute to a recent research topic as 
encouraged in keynotes such as [8, 68]. Please note that we aim at changing properties of 
the QualiMaster infrastructure at runtime rather than enumerating the potential alternative 
artifacts and selecting them at runtime as done in some related approaches, such as [6, 
119]. In QualiMaster, this unification happens in terms of the Configuration (Meta) Model 
and the Adaptation Behavior Specification Model. On the one side, the Configuration Meta 
Model defines the space of valid infrastructure configurations. In particular, the QualiMaster 
Configuration Meta Model allows capturing runtime configurable elements (e.g., the actual 
selected algorithms for the processing families or individual quality parameters) as well as 
constraints on them such as SLAs. The values of these configurable elements are 
determined at runtime and, in turn, the runtime constraints become active at runtime, 
possibly leading to constraint validations adaptation must cope with. On the other side, the 
QualiMaster Adaptation Behavior Specification Model allows defining the adaptation 
behavior of the QualiMaster platform. This model relies on the (traditional and runtime) 
configurable elements and determines the adaptation behavior for different triggers, in 
particular violations of the runtime configuration constraints defined in the Configuration.  

C2 Unification of software and hardware-based execution: Opportunistic usage of 
specialized hardware resources is a core concept of the QualiMaster project. Thus, a 
configuration of the QualiMaster infrastructure defines the available resource pool in terms 
of both, general purpose and specialized hardware. Please note that also the absence of 
specialized hardware is a configuration and, thus, limits the resource pool and the runtime 
adaptation opportunities. The configuration of the resource pool is used to opportunistically 
allocate analysis algorithms to the physical resources at runtime. In addition, data analysis 
algorithms (regardless whether they are designed for software- or hardware-based 
execution) as well as their quality parameters are treated in a unified way, i.e., they can be 
assigned to the same family in the Configuration and they are selected dynamically at 
runtime based on needs and available resources. 

C3 Topology configuration: Adaptive data analysis pipelines are a further core concept of 
the QualiMaster project. Actually, a data analysis pipeline as described in Section 2.2 (or, 
more generally, a data analysis network or graph) can be represented by a topology. In 
SPLE, a topology is a set of interconnected configurable elements [16], which possibly form 
a hierarchy, a graph, etc. Configuring topologies in an integrated (rather than hybrid) way 
has been identified as an actual research challenge in SPLE [16], in particular as most 
configuration modeling approaches do not support (theoretically infinite configurations 
through) topologies at all. However, topological configuration needs also a domain-specific 
form of (graphical) tool support as noted in [16]. 

C4 Flexible automated instantiation: One particular goal of configuring a QualiMaster 
infrastructure (more precisely the QualiMaster platform) is to ease the specification of data 
analysis pipelines by domain users and, in particular, the adoption to other application 
settings and domains. In order to be executed, a configuration must be turned into software 
artifacts such as a Storm implementation2. Some of the benefits of SPLE are achieved by 
turning the configuration automatically into software artifacts, thus, avoiding tedious and 
error-prone manual customization activities. Following these experiences, we perform in 

                                                      
2
 A laid out distributed Storm processing algorithm is also called a topology. We will always use the term 
“Storm topology” for this form of implementation and “topology” for connected configuration structures. 
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QualiMaster an automated instantiation of the platform based on a given configuration. This 
supports Platform Administrators in concentrating on their expertise rather than realizing 
adaptive topologies or even manually integrating software- and hardware based algorithms 
into such a topology. However, as application settings differ in practice, automated 
instantiation must be flexible, customizable by experts and, ultimately, provide support for 
topology configurations. Although improved concepts for flexible automated instantiation 
are designed in WP4, the actual QualiMaster infrastructure instantiation process is 
developed and realized in WP5 and, thus, discussed in D5.2. 

C5 Flexible adaptation specification: Akin to a fixed instantiation process, a fixed realization 
of the adaptation is an obstacle for practical adoption. Thus, we aim at a flexible 
configuration and specification of the adaptive behavior of the QualiMaster platform for a 
certain application setting. In particular, the specification approach shall support the 
Adaptation Manager to adjust the adaptation behavior as needed. The research for such 
approaches is one particular topic on the roadmap for software engineering for adaptive 
software systems [27]. Moreover, in QualiMaster we aim at providing different forms of 
support for different user groups ranging from “knobs” on the user interface to details 
settings in the tool support for the (expert) Adaptation Manager. 

C6 Combination of data and technical quality: In close collaboration with WP2 (cf. D2.1), 
WP4 aims at a unified treatment of different quality parameters ranging from technical and 
resource properties over generic data quality parameters up to user-defined domain-
specific quality parameters. In contrast to related work (as we discuss in Section 4.1), we 
aim at characterizing, analyzing and aggregating these properties for adaptive data 
analysis pipelines consisting of complex user-defined analysis algorithms (rather than a 
fixed set of generic, but parameterizable operations as usual in literature). 

C7 Adaptation for real-time big data analysis: QualiMaster aims at the analysis of real-time 
big data streams. While this is already a challenge for the design of the data analysis 
algorithms in WP2 and WP3, it is also a challenge for adaptation. In particular reactive and 
proactive adaptation aim at coping with changes in the environment in short time frames. 
While determining the adaptation decision shall be fast, it must not necessarily happen in 
real time. In contrast, the enactments of the adaptation decisions on the QualiMaster 
platform shall as far as possible not taint the real-time (low-latency) properties of the data 
streams.  

These challenges motivate the approach that we take for configuration and adaptation. An 
overview of our approach is depicted in Figure 1. The Configuration Meta Model defines the 
configuration space for QualiMaster infrastructures in terms of configurable elements and 
constraints. Constraints restrict the values that can be assigned to the configurable elements. 
Please note that constraints can link several configurable elements, for example selecting the 
financial data source of SPRING implies that successor algorithm can process the output of that 
data source. The Configuration defines the settings for a specific application domain and a given 
infrastructure. If we refer to both, the definition of the configuration space and at least one specific 
configuration we use the term “Configuration (Meta) Model”, as done for example in Figure 1. The 
Adaptation Model specifies the behavior of the (reactive and proactive) adaptation at runtime 
based on the Configuration Meta Model and the event / command types of the platform (an implicit 
complementing “architecture model”). The Adaptation Model can, for example, be formulated in 
terms of a domain-independent and a domain-specific part. Furthermore, the reflective adaptation 
may indicate changes to the Configuration Meta Model, the actual Configuration as well as the 
Adaptation Model. 
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Most of the configurable elements must be determined before startup of the QualiMaster platform, 
in particular the resource pool, the algorithms, the families and the processing pipelines. The 
instantiation of the QualiMaster platform denoted as � in Figure 1 is driven by the configurable 
elements that are known prior to runtime. As part of the platform instantiation, (software) artifacts 
are created, modified, deleted, packaged, or deployed. As discussed in Challenge C1, some 
configurable elements reflect runtime information, such as actual measurements for quality 
parameters. This is indicated in Figure 1 by the graphical separation of the box representing the 
Configuration Meta Model. In particular, these runtime configurable elements and the constraints 
defined on them determine the adaptation space, actually a subspace of the space of valid 
configurations. 

At startup time or runtime of the QualiMaster platform, the actual state of the platform �‚ is 
represented in terms of the runtime configurable elements, e.g., the selected algorithms or 
measured quality parameters. This state is still subject to the respective constraints (e.g., SLAs). 
Violations of these constraints detected by monitoring and runtime reasoning � will cause a 
specific form of adaptation trigger, and, thus, an execution of the adaptation model. Examples for 
further adaptation triggers are regular schedules or user triggers issued by the QualiMaster 
applications. The adaptation model specifies the adaptive behavior based on (runtime) 
configurable elements. This may involve the QoS database �, which stores quality characteristics, 
enaction impact statistics, adaptation execution logs and, possibly, a runtime model of the running 
infrastructure for proactive adaptation. As part of its execution, the adaptation model changes the 
actual configuration to reflect the desired state after adaptation. The desired state must comply 
with the constraints of the Configuration Meta Model as analyzed by the runtime reasoning �. In 
case of a valid (runtime) model, the state described in the runtime configuration � is finally 
enacted � and leads to a modification of the QualiMaster platform at runtime. Reflective 
adaptation may lead to changes of the Configuration or the Adaptation Model.  

  

 

Figure 1: Configuration and adaptation approach overview. 
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4 Related work 
In this section, we discuss existing work and approaches related to the quality-aware configuration 
and adaptation required in QualiMaster. Thereby, we follow the main topics of this deliverable 
reflected in the overall structure of this deliverable, i.e., quality parameters, configuration and 
adaptation. Thus, we start in Section 4.1 with a discussion of quality parameters in software 
systems and, in particular, in data stream analysis systems as well as an overview on 
(aggregating) quality analysis approaches in that field. In Section 4.2, we provide an overview on 
related work in the configuration of software systems. Finally, in Section 4.3, we discuss related 
work on adaptation, in particular on adaptive software systems and runtime adaptation in data 
stream analysis systems. 

4.1 Quality Parameters and Quality Analysis 
In the following paragraphs we review quality parameters that have been proposed in standards for 
software in general, and, in particular, data stream processing systems. It is important to note that 
we aim at quality parameters that describe the processing at runtime, i.e., for the actual data 
processing rather than the development or product quality of the data processing infrastructure. As 
a result, this section provides the basic terminology for discussing the quality properties and 
characteristics to be considered in QualiMaster. These properties and characteristics will be 
discussed in Section 6. 

We structure our discussion into software (product) quality as a basis for the terminology (Section 
4.1.1) and quality parameters in data stream processing (Section 4.1.2). Typically, the quality 
parameters referring to technical or data quality focus on the quality at a certain point during data 
processing, e.g., at a data source, an operator or a data sink. For overall optimization of the data 
processing and, in particular, for later cross-pipeline execution, it is important to derive the 
(aggregated) quality parameters for a complex data stream analysis consisting of multiple 
processing steps, i.e., in QualiMaster the aggregated quality of a data processing (sub-)pipeline. 
We discuss approaches to determine the aggregated quality in Section 4.1.3. 

4.1.1 Software Quality 

The basic terminology for software (product) quality is defined in standards, such as ISO/IEC 
25010 [80]3 and the recent successor of ISO/IEC 9126 [79]. ISO/IEC 25010, defines eight 
characteristics of software (product) quality, namely functional suitability, reliability, performance 
efficiency, operability, security, compatibility, maintainability, and transferability. Each characteristic 
consists of further sub-characteristics. Note that, most of these characteristics focus on software 
development and product quality rather than on runtime quality (of the data processing). Thus, for 
QualiMaster the following characteristics and sub-characteristics are relevant: 

• Functional suitability, in particular accuracy, i.e., the degree to which the software provides 
the right or specified results for the required degree of precision. 

• Reliability in all defined sub-characteristics, namely 

o Availability, i.e., the degree to which software is operational and available when 
required for usage. 

o Fault tolerance, i.e., the degree to which the software can maintain a specified 
level of performance in case of software faults or of infringement of its specified 
interface.  

o Recoverability, i.e., the degree to which the software product can re-establish a 
specified level of performance and recover the data directly affected in the case of a 
failure. 

• Performance efficiency, namely  

                                                      
3
 See also http://iso25000.com/index.php/en/iso-25000-standards/iso-25010  
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o Time-behavior, i.e., the degree to which the software product provides appropriate 
response times, processing times and throughput rates when performing its function 
under stated conditions. 

o Resource utilization, i.e., the degree to which the software uses appropriate 
amounts and types of resources when performing its function under stated 
conditions. 

As agreed in the DoW (Section B1.1.1), security / data protection is not in the focus of 
QualiMaster. Functional suitability, reliability and performance efficiency will be considered as a 
basis for the quality taxonomy in Section 6. Furthermore, the consortium aims at complying with 
the non-runtime characteristics of ISO/IEC 25010, namely operability, compatibility, maintainability, 
and transferability as part of the tool, infrastructure and application development activities. 

In addition to taxonomies, generic (even tailorable) quality description approaches are known from 
the representation of quality parameters in software architectures (e.g., OMG MARTE [109]) or 
from a measurement-perspective in terms of the OMG Software Metrics Metamodel [110]. 
However, regarding specific parameters, we do not analyze software engineering approaches 
here, but discuss an overview on quality properties in data stream processing in the next section. 

4.1.2 Data Stream Processing Quality 

We now discuss typical measures of quality properties from the data analysis perspective and in 
particular from the perspective of data stream processing. In general, several classifications and 
taxonomies for data quality are published, including the Total Data Quality Management (TDQM) 
classification [133, 143], the Redman classification [116], the Data Warehouse Quality (DWQ) 
classification [83], the classification of Naumann [106], the classification of Liu & Chi [98], the 
Accessibility-Interpretability-Relevance-Credibility (AIRC) classification in [19] or the data stream 
mining classification in [55]. A more comprehensive overview on a basic set of parameters, namely 
accuracy, completeness, consistency and timeliness, and their definitions can be found in [11]. 
However, the terminology used in these publications is often quite diverse. Thus, this section 
contributes to a common terminology for quality dimensions and properties in QualiMaster. First, 
we discuss the concepts of these classifications and taxonomies. Then, we review the quality 
parameters we found during an (informal) literature survey on data stream processing approaches 
in terms of the ISO/IEC 25010 and show also weaknesses of the new ISO/IEC standard for the 
field of data (stream) processing. 

Below, we categorize the quality properties from the classifications discussed above in terms of the 
ISO/IEC 25010 standard. We also indicate the data stream processing approaches we identified 
during our survey that actually target these quality parameters. For completeness, we will provide 
a mapping to all ISO/IEC 25010 characteristics although only functional suitability, reliability and 
performance efficiency are relevant to the runtime adaptation in QualiMaster. 

• Functional suitability. This characteristic is generally addressed by the related software 
implementation functionality dimension in DQW [83], the methodological quality of [55] as 
well as partly by the collection / application dimensions in [98]. In particular, the sub-
characteristic accuracy is frequently targeted by data stream processing approaches (also 
listed in the TDQM, the DQW classification as well as [19, 98, 106, 116]). However, 
additional and partially more specific data quality sub-characteristics as identified in the 
classifications above are not defined by the ISO/IEC 25010, probably as the characteristics 
in the standard terminology of ISO/IEC does not apply to all kinds of software systems. We 
discuss these specific quality parameters based on the classifications and the individual 
approaches below. 

• Reliability. This characteristic is (partly) addressed by the related software implementation 
quality aspect as well as by data usage accessibility in the DQW classification [83], the 
intellectual dimension in [106] or partly by the Collection dimension in [98]. For example, 
the TelegraphCQ system in [26] provides a reliability-based service “knob” for data flows. 

• Performance efficiency. This corresponds to the software efficiency aspect of the software 
implementation dimension in DQW [83], to the timeliness and amount of data properties as 
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part of contextual quality in TDWM, the technical dimension in [106], the application and 
organization dimensions in [98], the relevance-timeliness dimension in [19] or to the 
reaction time aspect of the temporal quality in [55]. Please note that in these classifications, 
timeliness is frequently defined in terms of the age of the data or the information instability 
(volatility) (see also [11]) rather than processing time or real-time aspects. 

o Several approaches actually target the time-behavior sub-characteristics of ISO/IEC 
25010, for example in terms of timeliness (processing time or punctuality) [59, 87, 
93, 103, 145], item latency [25, 122], response time [122] or  throughput [1, 2, 25] or 
bandwidth [87] (akin to the QoS dimension in [106] defined in terms of transmission 
rates). 

o Some approaches also consider resource utilization in terms of memory usage [25, 
87, 122] or (battery) power [87]. It is interesting to note that the classification of Liu 
and Chi [98] explicitly considers storage efficiency in terms of utilized space. 

• Operability (the degree to which the software product can be understood or learned). This 
ISO/IEC 25010 characteristic corresponds to the accessibility category and the 
representational category in TDQM [143] as well as the usability aspect of the software 
implementation quality characteristic and the data usage quality (except for availability and 
security) in DQM [83]. 

• Security (the protection of system items from accidental or malicious access, use, 
modification, destruction or disclosure). This ISO/IEC 25010 characteristic corresponds to 
the access security in TDQM [143], the security aspect of the data usage quality in DQM 
[83] and partly to the application dimension in [98]. Please note that we mention this 
dimension here only for completeness, because security and privacy are not in the scope of 
QualiMaster as agreed in the DoW (Section B1.1.1).  

• Compatibility (the ability to exchange information or to share the same hardware/software 
environment) is targeted by the data interpretability aspect (in particular for the 
communication with legacy systems) of the data quality dimension of DQM [83], the 
interpretability dimension in [19], the interpretability aspect of the content dimension in [106] 
and partial aspects of the presentation dimension in [98]. 

• Maintainability (the degree to which the software can be modified in order to maintain it). 
This ISO/IEC 25010 characteristic corresponds to the maintainability aspect of the software 
implementation quality dimension in DQW [83]. 

• Transferability (the degree to which the software product can be transferred among 
environments). This ISO/IEC 25010 characteristic corresponds to the portability aspect of 
the software implementation quality dimension in DQW [83], but also to the format 
portability aspect of [116]. 

As discussed for the functional suitability characteristic, several quality parameters that are in 
particular relevant for data stream processing are not explicitly mentioned in the ISO/IEC 25010 
standard. Actually, they fit however into the “accuracy” dimension of ISO/IEC 25010 as this aims at 
the degree to which the software provides the right or specified results within the needed degree of 
precision [80]. We provide now an overview on these quality parameters we identified either as 
part of the taxonomies or as part of reviewing further research approaches. Several of the 
properties are (at least to some degree) application specific as stated in [59]. 

• Accuracy refers to the integrity of the data, i.e., the extent to which data is correct, reliable 
and certified free of error [143]. Further synonyms listed in [143] are accurate, correct, 
flawless or precise. In DQW [83] and also in [98], accuracy of the data is only related to the 
data entry process at the sources. In [19], accuracy is one aspect of credibility (see also 
below), while in [106] accuracy is an aspect of the content dimension. Confidence is one 
possible measurement for reliability [59]. Some approaches specifically targeting accuracy 
are [25, 59, 93, 103]. 
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• Objectivity is the extent to which data is unbiased (unprejudiced) and impartial [143]. 
Objectivity is also listed as part of the classifications in [98, 106]. 

• Believability is the extent to which data is accepted or regarded as true, real and credible in 
[106, 143] (called credibility in DQW [83], or trustworthiness in [98]). Please note that in 
[19], creditability is an own dimension consisting of accuracy, completeness and 
consistency. Some approaches targeting confidence are [93, 103]. 

• Reputation is the extent to which data is trusted or highly regarded in terms of their source 
or content [143]. Reputation is also listed in the classification in [106]. 

• Relevancy is the degree to which data is applicable or helpful for the task at hand [143]. 
Relevancy is also listed in [98, 106]. 

• Value-added is the extent to which data is beneficial and provides advantage from its use 
[143]. This parameter is also listed in [106]. 

• Completeness is the extent to which data is sufficient breadth, depth and scope for the task 
at hand [143] and also listed in [19, 98, 106, 116]. More technically, this is frequently 
measured as the number of delivered vs. expected items [83, 59]. This quality property is 
considered by several approaches, in particular in terms of item drops [1, 2, 59, 93, 103, 
145] or miss ratios [89, 145]. 

• Consistency is the degree to which a value adheres to defined (application or task-specific) 
constraints, in particular other data [59, 103, 116]. This parameter is also listed in [19, 98, 
106] 

• Volume to be processed, e.g., in terms of processed items [59, 89, 93, 103, 122]. 

• Volatility of the data stream, i.e., the frequency of change, either of the data [11, 19, 103, 
116] or of the data stream, considered as smoothness / burstiness of the input data in [25] 
or as signal frequency in [122]. Some definitions such as [19] also relate volatility to the age 
of the data. 

• Item characteristics such as value range, distribution and size [87]. 

• Temporal quality, e.g., in terms of applied time range or time granularity [55]. 

 

Several approaches on quality parameters in data stream processing discussed above focus 
exclusively on monitoring and adaptation based on technical or resource quality aspects as 
summarized in Table 1. More recent approaches target combinations of technical / resource quality 
and generic data quality aspects such as item drop or throughput as also indicated in Table 1. 
Recently, the integration of user- or application-defined data quality was identified as a challenge 
[58, 86, 87, 122], which requires capabilities to flexibly define such quality parameters. 

In QualiMaster, we also aim at considering a reasonable combination of relevant quality 
parameters ranging from technical / resource properties over generic stream properties up to 
application-defined data quality parameters, in particular for the financial (use case) domain. In 
contrast to existing systems discussed above such as Aurora [2], TelegraphCq [26], Borealis [1], 
Rtstream [145], QStream [122], MavStream [25], PIPES [93], CluStream [87], QualiMaster aims at 
complex user-defined data stream analysis algorithms rather than a fixed set of (parameterizable) 
stream analysis operator such as aggregate, join, filter or sample (challenge C6). Actually, the 
work in [123] based on IBM System S and SPADE supports user-defined stream processing 
operators, but is limited to a certain programming DSL (preventing the integration of reconfigurable 
hardware). In QualiMaster, the combination of quality properties and user-specified algorithms 
contributes to Challenge C1 on unifying configuration and adaptation as quality parameters and 
their taxonomy must be defined, attached to the relevant configurable elements, and characterized 
by constraints during configuration time in order to become active at runtime. In addition, deciding 
on the set of relevant quality properties is also affected by Challenge C2, as one must consider 
that hardware-based execution typically implies constant resource consumption (determined as 
part of the compilation and layout process for reconfigurable hardware). Moreover, additional 
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specific quality parameters must be considered such as the switching time as an aspect of time 
behavior (as uploading a new algorithm, i.e., reprogramming the reconfigurable hardware, may 
take a few seconds and even an activated algorithm may need some settling time to produce valid 
results), additional network usage for integrating the reprogrammable cluster or the availability and 
optimal use of (free) DFE boards at runtime. 

4.1.3 Data Quality Analysis 

In QualiMaster, data quality analysis focuses on two distinct fields, namely the analysis of quality 
characteristics for individual algorithms, e.g., to provide quality input for adaptation, as well as the 
analysis of aggregated characteristics for entire pipelines. We discuss both topics in this section, 
while we focus in particular on the analysis of aggregated characteristics. 

Analyzing and profiling individual data analysis algorithms for certain quality properties is a 
common practice in data engineering, social web analysis and software performance engineering, 
as for example described in [89, 46, 73]. In particular, for analyzing technical quality 
characteristics, several tools are available such as ArcheOpterix [4, 142], LibReDE [131] or 
PerfExplorer [74]. We aim at evaluating such tools for supporting the development of (distributed) 
data analysis algorithms in WP2 and for supporting the runtime decision making process during 
adaptation.  

The analysis of aggregated quality parameters composed from algorithms as a data analysis 
pipeline is still a challenge. We focus on the data stream analysis case in the remainder of this 
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Table 1: Frequently addressed quality dimensions (x = supported, for time behaviour, t = 
processing time, k = latency, v = volume, p = throughput, b = bandwidth) 
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section. Basically, we distinguish existing approaches into formal, formalized as well as 
approximate approaches. We will discuss examples for these approaches below. 

In formal approaches, the quality parameters of the individual data analysis algorithms are 
modeled manually and then composed, either in terms of symbolic calculation or through 
aggregations. For example, an overall queuing network analysis of the MavStream system based 
on fixed operators is discussed in [25]. In this case, the result is, after extensive mathematical 
work, a set of formulae characterizing individual quality properties (based on distribution 
assumptions, simplifications, etc.). A more pragmatic (formalized) way is based on the estimation 
of quality parameters per data processing operator / algorithm and to derive aggregated quality 
parameters using aggregation formulae as done in [92, 93]. Instead of using aggregation functions, 
the authors in [89] model the stream processing system based on Petri nets (MEDAL approach) 
and derive quality parameters from the system model. However, all these formalized approaches 
rely on the assumption that basic quality parameters can be described or at least approximated in 
terms of (complete) mathematical functions. Basically, such formalizations are required for all data 
involved processing operators / algorithms and all quality parameters, again relying on 
assumptions or approximations. Other approaches are even more pragmatic, rely on measuring 
the quality characteristics (prior to runtime or at runtime) such as [73] and perform an approximate 
(quantized) aggregation for the entire data stream analysis system. This is done, for example, for 
throughput by [137, 138, 144, 152] and for error propagation by [82]. In order to predict the quality 
parameters of data stream analysis systems, some approaches such as [82] rely on simulation. 
Although approximate approaches can be applied to arbitrary data analysis algorithms (they 
become more precise the more information is available about the algorithms [12]), they may 
require (offline) profiles of the algorithms at hand during the startup phase and may struggle in 
case of deployment to a different hardware settings. On solution to the hardware dependency 
problem is parametric information as described for parametric performance specification in [95]. 
Further, approximate approaches may require updates of their profiles at runtime (as e.g., done in 
[73]) in order to provide the runtime adaptation with actual information on the quality 
characteristics. 

As QualiMaster aims at the composition of arbitrary (user-defined) analysis algorithms, formal or 
formalized approaches are not applicable without putting a burden on the user or the algorithm 
engineer. Thus, the work in QualiMaster will rely on offline and online sampling of quality 
properties as well as approximate aggregation of quality properties for data analysis pipelines 
(Challenge C6). 

4.2 Configuration 
Software Product Line Engineering (SPLE) [31, 96, 111] is a successful industry-relevant approach 
to mass customization, configuration, tailoring, and reuse of software. Several examples are 
known in which SPLE helped to significantly reduce the time-to-market as well as costs while 
increasing the quality of the product. For example, as recently reported, the AEGIS product line by 
Lockheed Martin and the U.S. Department of Defense helped saving 80 million dollars over 3 
years [65]. Please note that focus here exclusively on Software Product Line Engineering as 
agreed in the DoW. However, it is interesting to note other approaches to software configuration 
exist such as software factories [64], knowledge-based configuration [134], or (plain) model-based 
engineering [21]. 

In contrast to single system development, a Software Product Line (SPL) develops a family of 
similar, but differently configured systems. One of the fundamental concepts to manage such 
families is variability modeling, i.e., explicitly defining the differences between the individual 
systems (called configurable elements or variabilities) as well as the interdependencies among 
them. Coping with the complexity of such configurations, e.g., several thousands of decisions with 
interdependencies are reported in literature [15], is one of the key topics in SPLE. Deriving a 
specific member from a family includes the specification of its configuration, the validation of the 
configuration, and, finally, turning the configuration into artifacts, e.g., modifying, deleting or 
generating configuration files or source code as well as compiling, packaging and possibly 
deploying the derived product. 
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Over the years, several approaches to the modeling of variabilities and configurations of a product 
line have been developed. Currently, the most frequently used family of approaches in industrial 
practice is feature modeling [15], which was initially introduced in [88]. Basically, the configurable 
element in a feature model is called a feature, frequently characterized as a user distinguishable 
functionality of a system [30]. A feature model consists of a feature tree, i.e., if a parent feature is 
selected, its sub-tree is enabled for more detailed configuration (similar de-selection). Features 
may be mandatory, optional or alternative and can be part of multiple selections. Typically, 
inclusion and exclusion constraints can be stated to further restrict the configuration space. Further 
approaches include decision modeling [38, 121, 129], orthogonal variability modeling [111] and 
several others. Today, many variations of these basic approaches exist, for example feature 
models with cardinalities on multiple selections as a form of implicit constraint [91] as well as 
approaches supporting rather complex forms of configurable elements or constraints up to first-
order logic, as, e.g., identified for textual variability modeling languages in [45, 48]. Recently, a 
consortium submitted the Common Variability Language (CVL) [66] to the Object Management 
Group (OMG) as a proposal for a standard. For some of these approaches the semantic 
equivalence of their modeling concepts has been shown, e.g., for free feature diagrams in [124] 
and for basic decision modeling and feature modeling in [49]. 

Due to the tree characteristics of feature models, many tool realizations focus on a graphical 
representation of variability models, either as a tree structure such as a file system explorer or a 
graph. Decision models are frequently rendered as tables, while orthogonal variability models are 
also typically displayed as a graph, frequently linked to UML [107] diagrams. In contrast to 
“traditional” variability modeling languages, recently several textual variability modeling 
languages have been invented such as CVM/VSL [117], TVL [29], Clafer [7] or IVML [34, 139]. A 
recent systematic analysis of textual variability modeling languages is described in [45, 48]. Many 
textual variability modeling languages, in particular the most recent ones, provide concepts that 
enable complex configurations, in particular Non-Boolean variability, complex constraint 
languages, evolution, ecosystem support or even some form of references among configurable 
elements (with quite diverse semantics).  

Topologies (in the sense of connected structures such as graphs according to [16]) can be used to 
represent the physical and logical structure of alarm systems [16], embedded systems [16], 
warehouse layouts [32] or the topology of a data processing pipeline in QualiMaster. Although the 
need for topologies is not new, only few approaches target the modeling of such interconnected 
structures and many of the variability modeling approaches mentioned above (Clafer [7] and CVL 
[66] were considered in [16]) do not provide (comprehensive) support for the modeling of 
topologies [16, 44]. Recently, the integrated variability modeling of topologies has been identified 
as a research challenge in SPLE [16]. One approach to realize topological configurations is to 
keep the topology in another type of model and to combine variability modeling such as feature 
modeling with external configuration formats in a heterogeneous variability modeling approach, 
as, e.g., proposed in [50]. However, the modeling of such configurations is not integrated, difficult 
to manage as different types of models and tools must be combined and the abilities to specify 
constraints across the integrated models are typically limited. Berger et al. [16] rely on the UML 
[107] for variability modeling of topologies as none of the considered variability modeling 
approaches provided sufficient support. However, the authors aim at limiting valid connections in 
topologies through specific types using multiple inheritances among different containment 
hierarchies. As known from object-oriented modeling, such an approach leads to an inflation of the 
inheritance hierarchy. Another approach to topologies in configuration is rather simple and relies 
on typed references among configurable elements. References among configurable elements are 
known for a longer time, e.g., in terms of feature references [39], but typically these references are 
not typed, i.e., they can connect arbitrary configurable elements, and, if used in feature trees, do 
not support arbitrary (graph) topologies. References among configurable elements can (depending 
on their actual semantics [45, 48]) enable integrated modeling of topologies as also explained in 
[44]. Depending on the actual constraint language, further restrictions of the structure of a topology 
can be stated in terms of constraints. In contrast to many other approaches, IVML [34, 139] 
provides these capabilities as support for topology configurations was one of the industrial 
requirements in the FP7 project INDENICA [34]. In QualiMaster, this integrated topological 
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variability modeling enables the configuration of the infrastructure along with its data processing 
pipelines in an integrated manner.  

As described above, a variability model describes the configuration opportunities and a 
configuration defines the actual values for a certain setting. If the configuration complies with all 
constraints of the variability model, it can be used for instantiation, i.e., for turning the values into 
artifacts such as source code. Please note in staged approaches, such as [39], a configuration 
must not be complete in order to drive a (partial) instantiation. However, there is currently little 
conceptual support for automating the instantiation of a product line. Actually, many research 
approaches rely on so-called instantiators, i.e., manually programmed plug-ins that perform the 
instantiation of one or multiple artifact types. Industrial tools, such as pure::variants [17], provide 
artifact-specific instantiation languages (as well as integrations to generic model transformation 
languages). Recently, further artifact specific languages have been proposed such as TDL for use 
cases [150]. In contrast, one generic approach to variability instantiation is the Variability 
Instantiation Language (VIL) [36, 42, 140], which was also developed in the INDENICA project. In 
particular, VIL is integrated with IVML and enables the instantiation of topologies as this is required 
in QualiMaster. 

In summary, there is a broad range of variability and configuration modeling languages, 
approaches and (research) tools for software product lines available. To our very best knowledge 
there is only one available integrated approach that supports the actual configuration requirements 
of QualiMaster, provides flexibility for future extensions and supports the realization of the 
configuration challenges discussed in Section 3. Thus, we will use IVML as variability modeling 
language (supports challenge C1 through so-called attributes, Challenge C2 by combining different 
support for hardware and software configuration and Challenge C3 through references and 
complex constraints) and VIL as variability instantiation language (supports Challenge C2 for 
generating the software / hardware integration, Challenge C3 through generation capabilities for 
references and Challenge C4 through flexible language-based definition of the instantiation). Both 
languages, IVML and VIL are realized and integrated in the Open Source toolset EASy-Producer 
[42]. However, EASy-Producer is designed as a tool for software (product line) engineers rather 
than for domain users such as data stream engineers or Infrastructure Users (D1.2). Thus, as 
initially described in D5.1, we develop in the QualiMaster project a domain-specific configuration 
frontend that supports the needs of domain experts in configuring the QualiMaster infrastructure 
and its data analysis pipelines, the latter in graphical and interactive way. 

4.3 Adaptation 
In this section, we provide an overview on related work in terms of resource-aware adaptation and 
characterization of software resources, specification of adaptive behavior, proactive / evolutionary 
adaptation as well as adaptation in data stream processing. 

To enable resource-aware adaptation in a software system, a characterization of the actual 
resource consumption of the system or, preferably, its individual parts (such as components) is 
needed. In software design, these qualities (also called non-functional properties) are typically 
modeled as additional information attached to the parts, e.g., in terms of (actual) consumption and 
related constraints as done in WSLA [100], CQML [118], SLang [128], utility functions [10, 130], 
average measurements for certain operation (load) levels [148], interval resource usage functions 
[99], probability distributions [81, 95, 142] or a framework of actual measures, sampled resource 
usage functions, statistical characterizations and resource usage contracts in OMG MARTE [109]. 
While most of these approaches consider resource consumption as aggregated values, other 
approaches on simulating quality properties of software architectures consider abstractions from 
the execution environment. Having such abstractions at hands, resource profiles become 
deployable on other infrastructures as, e.g., the CPU cycle time becomes a parameter of the 
profile. For example, PALLADIO [12] relies on resource demand specifications, which are turned 
into resource uses based on the actual (specification of the) execution environment and parametric 
(component) constraints. While some approaches consider the replacement of resources such as 
[72], others try to select the best runtime configuration out of a given set of configurations such as 
[6] or to solve resource problems by runtime selection of partially pre-instantiated artifacts, as, e.g., 
done in [119]. Although we also aim at instantiating artifacts for optimization or to take alternative 
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pipelines through instantiation at runtime into consideration, we primarily aim at changing system 
properties at runtime, thus, unifying typical techniques from adaptive software systems with 
(dynamic) software product line approaches. Further, some work considers not only technical 
software quality, but combines this with measures of the functional quality, such as data quality 
[58, 86] as already discussed in Section 4.1.2. 

Most of the approaches to self-adaptive systems rely on rules or utility functions for the 
specification of the adaptation behavior [113]. On the one side, policies or rules, sometimes also 
called event-condition-action rules, are popular approaches to define adaptation behavior (e.g. in 
[41, 78, 151]) and may even be connected with other adaptation components such as monitoring 
as, e.g., recently done in MONINA [35, 78]. In order to be understandable and maintainable, some 
approaches represent rules in a hierarchical form and even introduce dynamic rule selection, e.g., 
taxonomies in [112], the strategy-tactics-action-based language Stitch [28] (designed for system 
administrators) or its successor S/T/A [73]. In contrast, utility functions can target individual quality 
properties or represent a combination of multiple properties, e.g., in terms of the compound utility 
discussed in [63] and enable a more continuous form of adaptation. On the other end, there are 
formal approaches to the specification of adaptation such as FORMS [147] or ActivForms [77]. 
While the authors of [77] focus on the verification of the adaptation components and realize the 
interpretation of an adaptation language, they also point out the issues of a formal approach, in 
particular the required expert knowledge on formal methods. 

Allowing the developer or Infrastructure User to specify the adaptive behavior may lead to a 
significant specification effort and enable a rather open adaptation space. To avoid inefficient 
adaptation mechanisms, the adaptation space is frequently restricted to a meaningful subspace. 
For example, in component-based systems (the QualiMaster infrastructure with its individual 
algorithms can be considered as a component-based system) replacing a component may require 
a certain safe state [146] that can only be reached by certain sequences of passivating, modifying 
connectors, removing and re-enabling component instances. While some approaches aim at 
specifying these architectural rules, such as properties and constraints [53], reconfiguration 
protocols [20] or rules for hierarchical reconfiguration of nested components [69], others aim at 
deriving such sequences automatically, e.g., as evolutionary adaptation paths in [114, 153]. 
However, as a single component instance may be used in various different contexts as noted in 
[13], architectural rules may still not limit the adaptation space in an effective way. Here, some 
approaches rely on auxiliary models to characterize the adaptation space, such as profile guided 
composition models (based on context attributes taken from a variability-decision space of a 
DSPL) [3], quality attributes in variability models [84] or the co-specification of context [119] or 
hardware [120] variability. 

Several classifications of adaptation approaches are described in literature, such as [5, 24, 27], but 
they are rather diverse regarding the proposed classification dimensions. Among these 
dimensions, two are of particular relevance to QualiMaster, namely whether an approach is 
anticipating (i.e., it is able to consider upcoming changes and plan for them, also called proactive 
adaptation) and whether the adaptive system supports (self-)evolution over its lifetime. Typically, 
anticipating adaptation relies on predicting the future context, i.e., how quality properties will 
behave in the short-term future as, e.g., done for memory consumption in [126, 127], workloads in 
[70, 97] or QoS properties in [73]. In contrast, some approaches aim at anticipating adaptivity 
through self-evolution of the adaptation model. For example, the Keep Alive Model (KAMI) 
approach is based on discrete time Markov chains and achieves self-evolution through a Bayesian 
estimator in [62] or parameter updates in [51]. Further, KAMI may consider multiple alternative 
execution flows of the adaptive system [61] and work on several kinds of models such as 
continuous time Markov chains [52] or Bayesian decision models [14], the latter combining 
probability and utility for decision making. Other kinds of evolution aim at characterizing the drift of 
quality properties over time in terms of linguistic values [141]. One specific topic in using self-
evolving adaptation models is their initialization. Examples are initialization from other models 
(e.g., goal models in case of the Bayesian decision models in [14]), offline training [3, 97], online 
learning [3, 51, 52, 62] or online testing [81]. 

Adaptation in data stream processing typically focuses on (fixed) stream processing operators 
discussed in Section 4.1.3. On prominent mean to adapt stream processing is load shedding 
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(sometimes also called data admission), i.e., dropping out data items to avoid infrastructure 
overload [1, 25, 136, 145]. Further means are switching to approximate calculation such as 
sampling or interpolation [93, 122], changing the analysis window size [93], the available compute 
resources per stream operator [87], in that work in terms of parameter adaptation, to re-route items 
[1, 122] or to change among fixed query plans at runtime [122]. Thereby, work such as [1] focuses 
on flexible tradeoffs. More recent work also focuses on learning about adaptations in (big) data 
analysis infrastructures or even composing analysis flows. For example, in [18] the authors use 
machine learning and planning to optimize the selection of the most appropriate data analysis flow 
among a fixed set of flows composed from typical data stream operators. For reflective 
adaptation4, we will take this and similar approaches into account as a basis for the related 
QualiMaster concepts. In contrast, [115] aims at automatically composing such flows specified in 
terms of flow patterns such as input/output tagging, inherited substitutable algorithms, algorithm 
parameters and structural variations such as optional components. Also other work such as [61] 
discussed above aims at adapting processing flows. 

Although the work of [115] has some conceptual overlaps with QualiMaster, we aim at algorithms 
given in a general-purpose programming language or, even in terms of hardware-based execution, 
a combination of reactive, proactive and reflective adaptation, a wider range of tradeoffs, as well as 
flexibility through integrating configuration with adaptation (Challenge C1, Challenge C5). 
Moreover, QualiMaster targets the analysis of real-time streams, i.e., determining the next feasible 
adaptation must be fast, but enacting the adaptation must not taint the real-time properties of the 
stream or provide techniques to cope even with complex adaptations (Challenge C7). 

  

                                                      
4
 Please consider that the related task T4.4 is scheduled to start in month 18 of the project. 
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5 Requirements 
In this Section, we detail the specific requirements for the configuration and adaptation of the 
QualiMaster infrastructure, in particular its instantiation for the financial domain to perform systemic 
and real-time risk analysis. Therefore, we analyzed the requirements from the QualiMaster 
deliverables D1.2 and D5.1 as well as the DoW for the QualiMaster project. In this section, we 
summarize our findings in terms of requirements that are relevant to the modeling of configuration 
and adaptation and relate the individual requirements to the respective source document if 
applicable. In particular, we do not discuss requirements that describe the administrative operation 
of an infrastructure, e.g., starting or stopping the infrastructure or the pipelines, as such operations 
are in the responsibility of WP5. 

Following the overall structure of the deliverable, we structure the discussion in this section into 
requirements for modeling the configuration (at configuration time) in Section 5.1 and the 
adaptation (at startup and runtime) in Section 5.2. However, this distinction cannot easily be made 
for all requirements, as some requirements actually support the adaptation, but detail configuration 
requirements. We will list such requirements along with the configuration requirements in Section 
5.1. In the remainder of this deliverable, we will use the unique requirements identifiers introduced 
in this section to indicate their realization in terms of concepts, configurable elements, and model 
structures, etc. 

5.1 Requirements for the QualiMaster Configuration Model 

In this section, we discuss the requirements that primarily refer to the QualiMaster configuration 
(meta) model. Please note that the configuration of visualization algorithms has been removed 
from the infrastructure configuration use cases in D1.2. 

REQ-C-1 Application Users do not need to know details about the configuration of the 
QualiMaster platform, in particular not how the platform can be or is configured as stated in 
D1.2 (Section 2.1). In particular, Application Users must not modify pipelines as stated in 
D1.2 (Section 5). 

REQ-C-2 The Platform Administrator must be able to administrate the physical computing 
resources for software-based execution as stated in D1.2 (UC-PA10 and UC-PA11). 
Example properties of the physical computing platforms are their resources, the network 
identification, etc. 

REQ-C-3 The Platform Administrator must be able to administrate reconfigurable hardware 
units (such as MAXELER Data Flow Engines) as stated in D1.2 (UC-PA11 and UC-PA12). 
Based on personal discussions with experts from MAXELER, the available number of 
Central Processing Units for communication and control processes, the available number of 
DFEs for processing hardware-based algorithms and a network address / port is sufficient 
to characterize the MPC-C series cluster (see also D5.1, Section 6.2), which is used in the 
QualiMaster project. 

REQ-C-4 The QualiMaster infrastructure must support multiple and various real-life data 
sources (at least financial domains and web data as stated in D1.2 (Section 6.1.1), possible 
with each source having a different type of data as stated in D1.2 (REQ-DS1). The Platform 
Administrator must be able to configure the data sources as stated in D1.2 (UC-PA7). 

REQ-C-5  Akin to the data sources, the Platform Administrator must be able to configure the 
data sinks as stated in D1.2 (UC-PA7), i.e., the physical points where the communication 
with the application happens. The QualiMaster consortium decided to also record the 
output types at data sinks in order to define the data supported handover to the 
applications. 

REQ-C-6 The Platform Administrator must be able to administrate the storage of data as 
stated in D1.2 (Section 2.2) and D5.1 (Section 5.3.1). This includes the recording of 
historical data at the configured data sources or sinks as stated in D1.2 (REQ-DS3) and 
detailed in D5.1. 
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REQ-C-7 The Platform Administrator must be able to administrate software- as well as 
hardware-based algorithms providing metadata such as the containing algorithm family, the 
name of the algorithm, the inputs and outputs, functional parameters as well as the actual 
implementation in terms of an algorithm package as stated in D1.2 (UC-PA3, UC-PA4, UC-
PA5, UC-PA6). Based on typed data sources, in particular for the financial domain, the 
QualiMaster consortium agreed to describe the inputs and outputs in terms of stream data 
items with fields and types. Thereby, “unstructured” streams mentioned in UC-PA3 and UC-
PA7 shall be represented in terms of a generic, serializable type leaving the option that 
further experience allows to make the notion of “unstructured” streams more specific. 

REQ-C-8 The Platform Administrator must be able to administer the pool of algorithm families. 
In D1.2 (UC-PA3, UC-PA4, UC-PA5, UC-PA6), algorithm families are treated implicitly as 
part of administrating the algorithms (REQ-C-6). Consequently, families know their 
contained algorithms and exhibit the common “interface”, i.e., the accepted input / output as 
well as the functional parameters. 

REQ-C-9 The Pipeline Designer must be able to define the structure of data processing 
pipelines in terms of pipeline elements. Pipeline elements include data sources, data sinks, 
data processing elements (referring to algorithm families) and the data flow among the 
pipeline elements as stated in D1.2 (UC-PD1 and UC-PD2). Further, specific pipeline 
elements for storing intermediary processing data in the data management layer must be 
provided as stated in D5.1 (Section 4.3.1). According to D1.2 (REQ-DS2), the QualiMaster 
infrastructure must support filtering of data according to criteria, i.e., within a data 
processing pipeline either as a data processing element referring to a filter family or as a 
generic parameterizable data stream operation. The set of generic data stream operations 
to be supported is currently in discussion in the consortium. The integration of historical 
data into a data processing pipeline as stated in D1.2 (REQ-DS3) may happen through 
specific data sources or directly through the implementation of individual data processing 
algorithms. If possible, the configuration of pipelines shall be supported through a graphical 
editor, as the QualiMaster consortium believes that this simplifies the configuration tasks 
and supports the future adoption of the QualiMaster solutions. 

REQ-C-10 The Pipeline Designer must be able to execute a static analysis of the feasibility of 
the designed pipelines as stated in D1.2 (UC-PD1 and UC-PD2), e.g., by type checking as 
mentioned in D1.2 (Section 7.1.1), i.e., type conformance checking of the data analysis 
pipelines based on the input and output field types of the data sources and algorithm 
families, respectively. 

REQ-C-11 The Adaptation Manager must be able to define and specify means for measuring 
quality parameters. This includes quality characteristics of the different data processing 
elements, methods for measuring different data processing elements and methods for 
estimating the end-to-end quality of pipelines as stated in D1.2 (Section 2.2, as well as UC-
AM1 and UC-AM2). 

REQ-C-12 The Adaptation Manager must be able to define prediction mechanisms for quality 
parameters for proactive adaptation as stated in D1.2 (Section 2.2 as well as UC-AM4). 

REQ-C-13 The Adaptation Manager must be able to define a set of “adaptation rules” on the 
pipeline level for reactive and proactive adaptation as stated in D1.2 (Section 2.2 as well as 
UC-AM3 and UC-AM4).  

REQ-C-14 The Adaptation Manager must be able to specify the high-level settings of the 
adaptation mechanism and even change them at runtime as stated in D1.2 (UC-AM6 in 
D1.2). This extends REQ-C-13, which can be considered as a configuration of the 
adaptation behavior on a higher level of detail also requiring more knowledge about 
adaptation in QualiMaster. 

REQ-C-15 The QualiMaster infrastructure must provide support for the execution and 
optimization multiple pipelines, i.e., cross-pipeline execution and optimization as stated in 
the DoW. 
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5.2 Requirements for the QualiMaster Adaptation Model 
In this section, we detail the requirements that are specific for the QualiMaster Adaptation Model. 
In contrast to the requirements discussed in Section 5.1, which mostly involved human actions, we 
discuss here requirements that aim at the autonomous adaptation behavior of the QualiMaster 
infrastructure. 

REQ-A-1 An Application User must be able to pass triggers to the platform through the 
application GUI as stated in D1.2 (Section 2.1). This is a specific way of causing adaptation 
from the viewpoint of an Application User as stated in D1.2 (Section 5). However, the 
Application User may not be aware that he/she is triggering an adaptation as for example a 
“knob” may provide options to cause such triggers. However, the QualiMaster infrastructure 
may refuse such triggers as they are considered of lower priority than internal adaptation 
causes, e.g., caused by monitoring SLAs. 

REQ-A-2 The QualiMaster infrastructure must support dynamic means to exploit mechanisms 
to maximize computational performance as stated in D1.2 (REQ-Q4). 

REQ-A-3 The QualiMaster infrastructure must provide means to autonomously measure and 
optimize its resource usage as stated in D1.2 (REQ-Q5). 

REQ-A-4 The QualiMaster infrastructure must support timeliness in the processing of real-
time data streams in order to produce up-to-date (real-time) analysis results as stated in 
D1.2 (REQ-Q1). 

REQ-A-5 The QualiMaster infrastructure must support means to customize the coverage of 
the data sources to produce a comprehensive market analysis as stated in D1.2 (REQ-Q2). 
This may happen automatically, but also be realized through application triggers (cf. REQ-
A-3). 

REQ-A-6 The QualiMaster infrastructure must support means to specify the accuracy of the 
performed calculation as stated in D1.2 (REQ-Q3). Changing the accuracy may happen 
automatically, but also based on application triggers (cf. REQ-A3). 

REQ-A-7 The QualiMaster infrastructure must provide means to characterize and react on the 
content quality of the data processing (cf. REQ-Q6 in D1.2). 

REQ-A-8 The QualiMaster infrastructure must measure and cope with scalability aspects in 
Big Data architectures (cf. REQ-Q7 in D1.2) 

REQ-A-9 The Platform Administrator must be able to monitor the pipeline operations as 
stated in D1.2 (UC-PA15).  

REQ-A-10 The Adaptation Manager must be able to monitor and analyze the execution of 
adaptation rules. This shall be supported by the reflective adaptation indicating when 
configuration or “adaptation rules” shall be adjusted to further optimize the operation of the 
pipelines as stated in D1.2 (Sections 2.2 as well as UC-AM5). 

REQ-A-11 The QualiMaster pipeline must support switching between hardware- and software-
based stream processing at runtime as stated in D5.1 (Section 2.2). Further, switching 
algorithms in a family at runtime must be supported as the basic adaptation concept in 
QualiMaster as envisioned in the DoW. 

REQ-A-12 The QualiMaster infrastructure must support (dynamic) pipeline analysis to 
determine the potential impact of an adaptation on a whole pipeline, in particular for quality 
parameters requested by REQ-A-2 - REQ-A-8. 

We will use the unique requirements identifiers in the remaining sections in order to indicate the 
realization of the individual requirements along with the concepts of the configuration and 
adaptation model. 

  



Deliverable 4.1 QualiMaster 

© QualiMaster Page 27 (of 112)  
 

6 QualiMaster Quality Dimensions and Quality Analysis 
In this section, we discuss the quality dimensions that the QualiMaster consortium identified for the 
work in the QualiMaster project. Akin to Section 4.1, the focus of this section is not on 
development, process or product quality. The focus of this section is on the runtime quality, i.e., 
parameter that can only be measured at runtime in order to determine whether the infrastructure is 
working under good conditions, to figure out whether deviations occurred and, in case of 
deviations, what adaptations at runtime shall be enacted. The quality parameters are of particular 
importance for WP4 to design and realize the adaptation. These quality parameters are also 
important for the other work packages: 

• WP2 uses the quality dimensions to characterize individual algorithms. In this regard, but 
also to avoid overlaps among the deliverables, we present the current state on all 
QualiMaster quality dimensions here, but detail the algorithm specific parts for WP2 in 
D2.1.  

• WP3 relies on the quality dimensions to contribute and consider specific parameters for 
hardware-based algorithm execution. 

• WP5 uses the quality dimensions to design and realize the QualiMaster infrastructure 
enabling monitoring, processing and adaptation enactment according to the quality 
parameters. 

• WP6 utilizes the quality dimensions to communicate the analysis results to the Application 
User, and support (a limited set of) mechanisms to issue actual requests to the 
infrastructure (“user triggers”).  

Thus, determining the quality parameters and their taxonomy, the quality dimensions, is a 
foundational step in QualiMaster, which also contributes to a common quality terminology. 

In fact, determining the quality parameters is an incremental process. On the one side, the quality 
parameters drive and foster the quality-related work in the work packages as indicated above. On 
the other side, research on algorithms, pipelines and adaptation may indicate that defined quality 
parameters do not lead to expected results, cannot be measured as intended, need to be refined, 
discarded extended. Moreover, insights from the evaluation as well as increased collaboration with 
stakeholders and practitioners due to results from the research and development work in the 
project may lead to new quality parameters. Thus, the QualiMaster consortium created an initial 
set of quality parameters based on a consortium internal quality survey. Furthermore, the 
consortium considers the initial set of quality parameters discussed in this section as subject to 
revision during the course of the project and to be reported in subsequent deliverables. For 
example, we consider reliability as an aspect of operating the infrastructure and defer the 
consideration of related quality parameters to future work. As a consequence, work and 
approaches on algorithms, configuration, and adaptation must be flexible so that quality 
parameters can be added, redefined, adjusted or removed if needed. 

In Section 6.1, we report on the quality survey we conducted to determine the initial set of quality 
parameters for the QualiMaster project. In Section 6.2, we summarize the results of the quality 
survey in terms of a quality taxonomy for the project. Finally, in Section 6.3 we outline our plans for 
quality analysis, in particular on pipeline level. 

6.1 Quality Survey 
As discussed in Section 4.1, the terminology used for describing quality parameters is quite 
diverse. A similar diversity regarding runtime quality is inherently present in the QualiMaster 
consortium as it consists of researchers and practitioners from various fields, including financial 
software development, data stream processing, hardware-based processing and acceleration, 
social web analysis, and software engineering. After initial discussions on quality parameters, in 
particular within WP4, we decided to conduct an (informal) quality survey in the QualiMaster 
consortium. The aim of the survey was to collect the knowledge and opinion of all partners, and to 
obtain their personal feedback on the importance of individual quality parameters for the work in 
the QualiMaster project. In contrast to a personal discussion, the rationale of conducting a survey 
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was to give each participant the opportunity and the time to think carefully about proposed 
parameters (drawn from the DoW, D1.2 and the WP4 discussions), missing parameters as well as 
the relevance for the own field and the overall project. 

The core partners of WP4 structured the survey into a brief introduction and seven groups of 
quality parameters according to the individual parts of a pipeline (data source, analysis algorithms, 
data sink, data analysis pipeline) as well as infrastructure healthiness (as a basis for successful 
execution), user triggers (REQ-A-1) and infrastructure level adaptation settings (REQ-C-14). Within 
each group of quality parameters, we briefly explained the role of the group in the infrastructure as 
well as the individual quality parameters identified (in the terminology used by the consortium so 
far). Then, we asked for the relevance of the individual parameters in terms of a 5-level Likert 
scale5 ranging from very relevant to very irrelevant. We also provided options to enter an optional 
comment for each quality parameter and to suggest further parameters. Before asking for 
participation, we presented the quality survey to the staff members of SUH as an informal pre-
study to resolve issues before conducting the survey. The time frame for processing the survey 
document was two weeks. The survey was conducted in autumn of 2014. 

After receiving feedback from all partners, we summarized the answers using an Excel sheet, 
turned the scales into integers ranging from 4 (very relevant) to 0 (very irrelevant) and rated the 
quality parameters / triggers / settings in each group according to the average relevancy. As an 
initial indicator, we selected the top 50% rated parameters for inclusion into the initial quality 
taxonomy. Please note that the top 50% rated parameters may lead to more than half of the 
parameters as the average relevancy of several parameters may be rated equally. Further, we 
paid special attention to those parameters indicated by the DoW, D1.2 and those suggested by the 
participants. However, due to the limited size of the base population (and six received responses), 
we do not perform a statistical evaluation of the results here. 

Now, we briefly mention the selected quality parameters for the individual groups: 

• Data source quality: Item frequency, data volume and data integrity were ranked on the 
top positions. The comments on item frequency and data volume indicated that a strong 
variation is expected for both parameters at runtime, that the actual relevance may differ 
according to the investment horizon of the user and that both parameters may indicate a 
potential overload situation already at the source side of a pipeline. Also, data 
completeness was indicated as a relevant parameter. In addition, burstiness / volatility of 
the data were mentioned as a potential quality parameter. A further technical requirement 
was indicated in terms of the data update frequency characterizing the need for reloading 
the data schema such as daily changing market players. 

• Algorithm quality: Data confidence, item latency, correctness and expected switch time 
(between algorithms, in particular software and hardware) were ranked on the top 
positions. However, in order to estimate and reduce the computational cost, we consider 
also memory consumption as a quality parameter in QualiMaster (due to REQ-A-3). Based 
on the algorithms considered in WP2, future research will indicate whether the startup time 
required to obtain stable results (after a dynamic switch of algorithms) needs to be taken 
into account in the future.  

• Overall pipeline quality: Execution latency (all participants ranked this as very relevant), 
aggregated correctness, aggregated confidence, and throughput were ranked on the top 
positions. Further, the overall CPU time consumed by a pipeline was suggested, but, as 
software-based and hardware-based execution work according to different principles, this 
needs deeper investigation if actual work indicates a relevancy of this parameter. 

• Data sink quality: Item frequency, data volume and data confidence were rated as the 
most relevant parameters, in particular to characterize the expected output quality on the 
Application User side. Please consider that further latency or disruption may happen during 
the internet transmission of results from the QualiMaster infrastructure to the Application on 
user side. Volatility of considered market players was suggested as a domain-specific 

                                                      
5
 http://en.wikipedia.org/wiki/Likert_scale  
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parameter during the discussions before the quality survey, but currently (indicated by the 
comments) not ranked as very relevant. 

• Infrastructure quality / healthiness: The number of (available) physical devices, i.e., 
resources, the actually used devices, and the actual connection bandwidth were ranked as 
important infrastructure quality parameters. Further, the comments indicate that the relative 
speedup of individual algorithms, in particular software-based vs. hardware-based 
algorithms as well as statistical measures of the parameters shall be collected in order to 
characterize algorithms as well as the overall infrastructure. 

• User triggers: The number of stocks to be processed (impacting the data source volume), 
the market depth and the target confidence were ranked as the most important (mostly 
domain-specific) triggers. A rather close rating indicates the importance of the number of 
markets as well as filter terms for the social network streams. Further, the selection of 
market player pairs was suggested as a new trigger, as a stakeholder does not necessarily 
need all combinations of market players rather than the most important ones.  

• Infrastructure settings for the adaptation, i.e., the high-level “knobs” an Adaptation 
Manager may influence (REQ-C-14): Highly ranked settings are the relative importance of 
the quality dimensions as well as the tradeoffs to be considered for cross-pipeline 
adaptation. 

For creating the (initial) quality taxonomy, we classify the quality parameters mentioned above 
according to the discussion in Section 4.1. In contrast, user triggers and infrastructure settings 
represent additional requirements (as reflected in D1.2). In particular, the infrastructure settings are 
considered in the Configuration Meta Model and the user triggers in the (realization of the) 
adaptation model. 

6.2 Quality Taxonomy 
Based on the results of the quality survey described in Section 6.1 and the related work on runtime 
quality in software systems in general (Section 4.1.1) and, in particular, data stream analysis 
(Section 4.1.2), we introduce in this section the (initial) quality taxonomy for QualiMaster. As 
discussed above, this taxonomy may be subject to change based on future research results as 
well as feedback from the evaluations and the stakeholders. 

Figure 2 depicts the actual structure in terms of dimensions / sub-dimensions as well as the related 
quality parameters. As introduced in Section 4.1.1, we based the high-level structure on the 
ISO/IEC 25010 standard, added dimensions where needed and mapped the terms from the quality 
study to terms used in literature as discussed in Section 4.1.2. The high-level structure of our 
taxonomy consists of  

• Performance efficiency in terms of time-behavior and resource utilization aligned with 
ISO/IEC 25010 aiming at aspects within the QualiMaster infrastructure. 

• Functional suitability, in particular based on data/content-related quality parameters, also 
aligned with ISO/IEC 25010. 

• Scalability as an addition, in particular with a focus on (external) Big Data quality aspects. 

Below, we present and discuss the dimensions and parameters in the context of the QualiMaster 
project according to the structure of Figure 2. We indicate the intended measurements for the 
individual parameters in italics. 

6.2.1 Performance Efficiency 

QualiMaster focuses on processing of online data streams for real-time applications such as the 
risk analysis of financial markets. As discussed in Section 4.1.1, in the ISO/IEC 25010 standard 
[80] this dimension consists of time behavior and resource utilization.  
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6.2.1.1 Time Behavior 

Time behavior, in particular in quality parameters expressing timeliness is an important quality 
aspect that has to be handled by QualiMaster (REQ-A-4). The focus is to be able to provide an 
analysis of the input streams at a very low time granularity, in the sub-seconds time range as usual 
in the financial application domain. Consider, for example, a financial risk analysis application that 
measures the correlation between a set of market players of a certain portfolio based on live data 
streams of the trading of their stocks in stock markets. The goal is to provide a time series showing 
the measurement of the correlation between these market players that is updated at a time 
granularity that is, ideally, as low as the time granularity in which the input data stream is arriving.  

Based on the quality survey, we identified four quality parameters that address time behavior: 

• Latency: The difference in time granularity between the input stream and the output stream 
is called the latency of data processing, i.e., the delay between the arrival of new data and 
the reflection of this data on the output data stream. Basically, latency is caused by the 
data processing, in particular the processing algorithms and network transmissions in a 
distributed cluster. Latency can vary from an algorithm to another (also within the same 
family) and its measurement depends on the type of the algorithm. Please note that 
aggregating algorithms may change the semantics of the aggregated latency for multiple 
algorithms as we discuss in Section 8.3. On this level, latency corresponds to response 
time [106] (milliseconds resolution or, in the extreme case, execution time in nanoseconds 
resolution for CPU / processor time). Please note that due to the design process, the 
latency of hardware-based algorithms is determined during compilation time and constant. 
On one hand, for stream processing algorithms, the latency is measured as the delay 
between receiving a stream input item and producing its corresponding output item. On the 
other hand, for batch processing algorithms, the latency is measured by the overall 
computation time of the batch processing job. The design and development of processing 

 

Figure 2: The QualiMaster quality taxonomy (* indicates dimensions based on [80]) 
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algorithms in WP2 will take this quality parameter into account in order to minimize the 
processing latency by design. Please note that from a pipeline point of view, latency 
encompasses the entire data processing including effects of adaptation (see enactment 
delay below), data transmission among distributed processing units as well as 
management overhead of the processing framework. 

• Throughput: Is measured as amount of items that is processed per unit of time, i.e., items 
per second [1, 2, 25], or, in relation to the volume, as bytes processed per unit of time. 
Depending on the measurement, throughput is related to data volume or to latency, i.e., 
increasing volume at same processing rate decreases the throughput, while increased 
latency at constant volume decreases the throughput. Please note that we classified 
throughput under time behavior, as throughput was explicitly mentioned in this dimension in 
[80]. However, we also consider throughput as an important parameter to express the 
scalability of individual parts as well as the QualiMaster infrastructure in the Big Data 
context. Corresponding to latency, the aim of QualiMaster is to maximize the throughput of 
a given processing pipeline under varying conditions. 

• Enactment delay: The enactment delay is the time caused by the enactment of adaptive 
decisions due to the adaptation of the QualiMaster infrastructure, e.g., by changing the 
actual algorithm of a family, to (prepare and) realize a switch to or from hardware (thus, 
called switch time in the quality survey) or to adjust the overall data processing. For a 
catalog of enactment patterns, please refer to Section 8.2. Actually, enactment delay 
contributes to the (overall pipeline) latency and may be considered as a specific form of 
latency. As the enactment delay is one of the measurement to express the quality of the 
adaptation (the reaction time of determining adaptive decisions is another measurement, 
but considered of lower importance on real-time processing as discussed for Challenge 
C7), we introduce the enactment delay as specific parameter. The enactment delay may 
have impact on the latency / timeliness of a running pipeline only when an adaptation 
actually takes place. The aim of research and development in WP4 is to avoid (in the best 
case) or minimize this form of latency (Challenge C7).  

6.2.1.2 Resource Utilization 

The resource utilization characterizes consumption of computational resources (such as memory 
and physical devices used) by the QualiMaster infrastructure, and, in particular, the processing 
pipelines and determines the computational cost of the processing. The goal is to reduce the 
consumptions of resources where possible, which may lead to an overall reduction of energy 
consumption (except for temporary resources that may be needed for adaptation, cf. Section 8.2). 
Resources can be characterized in terms of physical and logical resources [46], i.e., whether they 
correspond to hardware or to units of the operating system, as well as intra-device or inter-device 
usage. In particular, QualiMaster aims at the optimization of intra-device and inter-device of 
physical resources. Please note that due to the design process, the internal resource utilization of 
hardware-based algorithms fixed during compilation time, while the amount of CPUs and Data 
Flow Engines (DFEs) used for computation can vary dynamically at runtime. There is typically a 
trade-off between the processing speedup that is gained by using re-configurable hardware and 
their computational cost. This is in particular true, as the amount of available CPUs and DFEs for 
hardware-based execution is limited due to their price compared to general-processing resources. 

Based on the quality survey, we consider the following resource utilization parameters: 

• Memory consumption represents the actual use of memory for a certain unit of the 
QualiMaster infrastructure on various levels of aggregation, e.g., on infrastructure level 
(inter-device utilization), on pipeline level (inter-device utilization), algorithm level (intra-
device utilization) or on device / machine level (intra-device utilization). Please note, that 
memory consumption is measured in memory allocation and unallocation, while memory 
consumption is a derived measure of the difference between allocation and unallocation 
[46]. Knowledge about the memory consumption (and their overuse) may indicate a reason 
for performance degradation. QualiMaster aims at balanced memory consumption on a 
minimized number of devices (computational cost), in order to cope with peak usages, 



QualiMaster Deliverable 4.1 

Page 32 (of 112)  www.qualimaster.eu 
 

provide resources for additional value-added computation and to allow multiple-pipelines to 
be executed optimally (to be addressed in the third period of the project).  

• Physical devices form the computational basis for the Execution Systems in the 
QualiMaster infrastructure. Knowledge about the number of actually used machines for 
software-based execution as well as the CPUs and DFEs for hardware-based execution on 
both, infrastructure and pipeline level is important to understand the actual (inter-device) 
resource utilization. Conversely, knowledge about the number of actually available 
machines, i.e., CPUs and DFEs availability, is an indicator of the healthiness of the 
infrastructure and characterizes the opportunities of migrating algorithms between software 
and hardware-based processing, to execute further pipelines or value-added computation.  

• Bandwidth refers to the actually used amount of bytes transferred via network among the 
devices used for software- as well as hardware-based execution (inter-device utilization). 
High utilization of network resources may cause performance and availability degradation 
within the heterogeneous compute cluster. 

Currently, additional resource-related quality parameters such as energy consumption were not 
explicitly addressed in the quality survey. However, through balanced memory consumption we 
aim to achieve a good baseline in terms of energy consumption and consider energy consumption 
as a potential future extension of the quality taxonomy, in particular having the (quantitative) 
analysis of the adaptation enactment patterns in Section 8.2 at hands. 

6.2.2 Functional Suitability 

This dimension aims at the right or specified results for the required degree of precision [80]. As 
QualiMaster focuses on data (stream) processing, functional suitability consists of data-related 
parameters (REQ-A-6, REQ-A-7), in particular (to a certain degree) domain-specific quality 
parameters. In QualiMaster, functional suitability specifically addresses the quality of the outcome 
at the individual data processing algorithms (potentially considered as subsequent input) as well as 
the overall outcome of a pipeline at its sinks.  

Due to the results of the quality survey, the functional suitability dimension of the QualiMaster 
quality taxonomy consists of: 

• Accuracy according to [143], i.e., the integrity of the data and measures the extent to 
which data is correct, reliable and certified free of error. On the one side, this includes the 
accuracy / integrity of the source data. On the other side, we use this property to measure 
the accuracy of the data processing and analysis output. Both sides address REQ-A-6. The 
measurement of the data accuracy can vary from an algorithm to another, in particular 
across different research fields, depending on the concrete definition of the accuracy of the 
specific algorithms. In particular, we aim at two measurements, namely the  

o Confidence or precision value of a prediction or a classification algorithm 

o Error rate of an approximation algorithm representing the correctness of the 
processing. 

In particular, integrating the different notions of confidence among data stream processing 
and social web analysis, e.g., on pipeline level is a challenge (Challenge C6) as we discuss 
further in Section 6.3.  

• Believability is the extent to which data is accepted or regarded as true, real and credible 
in [143]. In general, the importance and the potential impact of the content of social media 
streams varies a lot depending on the source. We measure the data creditability based on 
the estimation of the creditability of the source or the authors of the content. This can be 
achieved, for example, by manually or automatically evaluating the popularity of a specific 
source (e.g., blog) or by measuring the influence of users in social networks, and taking this 
measurement as a basis for filtering the user-generated content in these networks. 

• Relevancy characterizes whether data is helpful for the task at hand [143]. This is in 
particular important for the (integration of) the social media analysis algorithms. One of the 
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challenges in processing and analyzing social media streams and web sources in general 
is finding and extracting relevant information with respect to the user query out of the large 
volume of unstructured or semi-structured and noisy data that comes from a variety of 
heterogeneous sources. By relevancy we refer to the estimation of the relevance of the 
processed content (e.g., a blog or a news item) to the user query (e.g., to a specific stock 
or market player). For example, measuring the similarity degree between the user query 
and the entities mentioned in an online post gives an estimation of the relevance of that 
post to the query, which in turn can be used to judge the reliability of the analysis that is 
done based on the content of this post. 

• Completeness: As described earlier in Section 4.1.2, completeness refers to the extent to 
which data is sufficient in breadth, depth and scope for the task at hand [143]. In 
QualiMaster we use this property to measure the completeness of the input streams (REQ-
A-5). This can be computed by measuring the coverage of the sources (e.g., in terms of 
stock markets, market players etc.), the sampling degree that is applied to the streams, 
and/or the recall of the applied algorithms (e.g., in classification algorithms). The goal is to 
maximize the completeness of the data as much as possible. However, this implies a trade-
off with other quality dimensions such as timeliness and cost efficiency.  

• Market Player Volatility: This quality parameter captures the domain-specific concept of 
variability in the financial domain. As explained in D1.2, we aim at measuring the volatility 
of markets, financial instruments and individual market players. As we expect a strong 
correlation between the systemic risk of a market player and its future volatility, we aim at 
using this quality parameter to judge the quality of the overall risk analysis independently of 
the calculations in the respective pipeline, and, if adequate, to adjust the processing 
dynamically to focus on those market players with an indication for high systemic risk. 

6.2.3 Scalability 

By scalability we refer to the capability of the QualiMaster infrastructure to process data at varying 
data volume, velocity, variety and volatility (burstiness). This mostly corresponds to the three 
dimensions of Big Data6, namely volume, velocity and variety (REQ-A-7). The particular aim of this 
dimension is to characterize whether and how the QualiMaster infrastructure as well as its parts 
copes with the Big Data challenges.  

According to the quality survey, we consider in this dimension the following: 

• Volume of the data stream, i.e., the aggregated amount of data items (or bytes) that are 
given to the system for processing [60, 40]. However, as amount itself is just an aggregated 
number, we will consider here volume per time unit instead, i.e., the volume aspect of 
throughput. According to the quality survey, this is important for both, data sources and 
data sinks. This can also be measured for the volume handled by batch processing. Please 
note that we focus on the classical Big Data V’s. In [40], also veracity (consistency, 
reliability and trustworthiness) as well as value (the added-value of data) were introduced. 
We handle veracity in terms of functional suitability and value by the algorithms / pipelines. 

• Velocity, i.e., the speed of the data in terms of data items per time unit (called item 
frequency in the quality survey, e.g., number of stock ticks per second or tweets per 
second). Mostly, velocity is referred as a general aspect of frequency [60]. Thus, we 
consider velocity as the element aspect of throughput (Section 6.2.1). Velocity can also be 
considered as the externally observed throughput at the data sources and an externally 
observable parameter at the user side through the data sinks. This parameter was 
considered as most important quality parameter for both, data sources and data sinks. 

• Volatility in the sense of technical burstiness, i.e., how data deviates over time. This was 
suggested as a measure in the quality survey. In particular, we aim at deviation of volume 
and velocity at data sources. Please note that the related parameter discussed in Section 
4.1 mostly focused on the age of the data. 

                                                      
6
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• Variety deals with the complexity of big data and information and semantic models behind 
these data, including the notion of structured, unstructured, semi-structured and mixed data 
(sources) [40]. For evaluation purposes, we aim at the number / types of streams (or data 
sources) that can be handled in parallel, such as the number of financial and social media 
streams. Variety can also be measured in terms of some domain-specific criteria such as, 
the number of financial markets or stocks that are analyzed simultaneously, or the depth of 
the market data streams.  

In particular, the parameters of the scalability section can be used to characterize external visible 
quality of the data processing in terms of SLAs, e.g., minimum velocity at data sources (to indicate 
that negotiated quality cannot be achieved due to external problems) or velocity expected at data 
sinks by the users. In addition, we plan to consider also scale out measures for evaluation, i.e., 
whether and how the QualiMaster infrastructure can scale out to existing machines in times of 
changing environmental conditions. Further, statistical calculations on these parameters can 
indicate the minimum, average or maximum capability of the QualiMaster infrastructure on a 
reference installation for a certain application case, e.g., at the QualiMaster installation at the 
Technical University of Crete. 

6.2.4 Summary 

In this section, we briefly summarize the quality dimensions introduced above and their expected 
trade-offs in terms of Table 2. Please note that we consider availability (as also discussed as a 
dimension [80] in Section 4.1) as a capability of an infrastructure provider, who offers the 
computation capabilities to customers rather than a quality of the platform itself. 

Tradeoffs Quality parameters Aim Quality 
dimension 

ID 

Q1.2, Q3 • Latency 

• Throughput 

• Enactment delay 

Real-time processing 
of streams and efficient 
processing of historical 
data 

Time Behavior Q1.1 

Q1.1, Q2, 
Q3 

• Memory consumption 

• Physical devices 

• Bandwidth 

Minimize consumption 
of computational 
resources (and energy) 

Resource 
utilization 

Q1.2 

Q1.1, 
Q1.2, Q3 

• Accuracy 

• Believability 

• Relevance 

• Completeness 

• Market Player Volatility 

Optimize the (domain-
specific) quality of the 
processing results 

Functional 
Suitability 

Q2 

Q1.2, Q2 • Volume 

• Velocity 

• Volatility 

• Variety 

Maximize the Big Data 
capability of the 
infrastructure 

Scalability Q3 

Table 2: Summary of quality dimensions and expected tradeoffs. 
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6.3 Pipeline Quality Analysis 
While most quality parameters discussed in Section 6.2 can be measured in isolation, e.g., for a 
certain algorithm or the entire infrastructure, some parameters must be aggregated in order to 
reflect the quality of a pipeline and to adapt the platform in this respect (Challenge C6). 
Furthermore, having methods for estimating aggregated quality of a pipeline at hands, pipeline 
analysis can be performed, either as part of the pipeline design (REQ-C-9), the adaptation (REQ-
A-12) or for reflective adaptation. In this section, we summarize the quality parameters on pipeline 
level (taken from the quality survey and represented in terms of the quality taxonomy) and indicate 
our plans for performing quality analysis in the remainder of the project. Please note that the 
quality parameters on algorithm level are taken up and discussed in D2.1. 

Based on the quality survey (Section 6.1) and the QualiMaster quality taxonomy (Section 6.2), we 
aim at the following quality parameters on pipeline level: 

• Data source: Velocity, volume, volatility (burstiness), accuracy (integrity), and 
completeness.  

• Data processing pipeline: Latency, throughput, and accuracy (in terms of correctness as 
well as confidence).  

• Data sink: Velocity, volume, accuracy (confidence) and volatility of market players. 

On the data processing pipeline level, the quality parameters must be aggregated from the 
measurements of the currently active algorithms, the data sources or data sinks, respectively. We 
plan to perform the aggregation for the individual quality parameters on data processing pipeline 
level as follows: 

• Latency: Measurement of the execution time consumed per item, considering that 
individual algorithms such as correlation computation may aggregate items, i.e., they 
combine multiple input items into one output item. For determining the overall latency, we 
plan to consider an aggregation factor per algorithm as suggested in [25]. Further, we aim 
at considering algorithm profiles and the aggregation factors to predict the expected latency 
based on the source velocity. 

• Throughput: Efficient monitoring, analyzing and predicting the throughput also on fixed 
data stream operations has be reported to be challenging [25, 137, 138, 144, 152]. Thus, 
we plan to rely on the approximate approach for estimating the throughput by Tatbul [137, 
138] for estimating the throughput of a pipeline. The core idea there is twofold: a) 
Throughput is propagated backwards through the pipeline, starting at the sinks in order to 
figure out whether the requirements there (SLAs) can be met at the sources with their 
actual quality properties. b) Approximate computing in terms of quantized quality functions 
represented as numeric tables. Initially, the tables represent the quality requirements at the 
sinks. During the analysis, the tables are propagated backwards through the pipeline and 
updated at each analysis step. While an analysis of an existing pipeline can apply this 
approach, supporting the adaptation must take alternative algorithms into account without 
calculating all alternatives. For this purpose, we aim at combining the backward 
propagation approach with ideas from [61] for adapting over networks with alternative 
paths. 

• Accuracy: For predicting the confidence, we plan to extend the approach by Tatbul 
mentioned above. For correctness in terms of errors, we plan to base our work on the 
forward propagation of errors through processing networks by Jaques-Silva et al. [82]. 
However, here the challenge is to find a combination between algorithms with proven 
quality guarantees and such with soft quality statements such as social web analysis 
algorithms in close collaboration with WP2. 

Work on data pipeline analysis is scheduled for future work in the QualiMaster project due to the 
focus on realizing the priority pipeline in the first period and as than working versions of the 
algorithms, priority pipeline and the infrastructure are available and quantitative experiments also 
on initial realizations of the pipeline quality analysis can be performed. 
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7 QualiMaster Configuration Model 
In this section, we discuss our approach to the quality-aware configuration of the QualiMaster 
infrastructure. As discussed in Section 4.2 as well as in D5.1, we use the EASy-Producer toolset 
[42] a basis for our work and, in particular, rely on its configuration modeling language IVML, the 
INDENICA Variability Modeling Language, and VIL, the Variability Instantiation Language, 
developed in previous research projects such as FP7 INDENICA7. In Section 7.1, we give a brief 
introduction into the concepts of IVML. In Section 7.2, we discuss the Configuration Meta Model for 
the QualiMaster infrastructure and the realization of the related requirements from Section 5.1. 
Thereby, we visualize the IVML concepts rather than presenting the complete IVML models. 
Please note that the whole Configuration Meta Model is given for illustration in Appendix A in terms 
of IVML. The Configuration Meta Model is then transformed into implementing software artifacts 
using the QualiMaster platform instantiation process. We describe this process in more detail in 
Deliverable D5.2 along with the current state of the architecture QualiMaster Infrastructure. Finally, 
in Section 7.3 we give a brief overview on the actual state of the tool support, i.e., EASy-Producer 
in general and the QualiMaster infrastructure configuration tool that is realized on top of EASy-
Producer. 

7.1 Configuration Modeling Overview 
In this section, we provide a brief overview on the concepts of IVML, the language to define the 
Configuration Meta Model as well as specific configurations of the QualiMaster infrastructure. IVML 
is a textual approach to model a Configuration Meta Model based on decision modeling concepts 
(cf. Section 4.2 for other approaches). 

In IVML, a project is the top-level language element that identifies the configuration space of a 
certain (software) project. In terms of a product line, such a project can represent reusable artifacts 
as well as (partially) instantiated artifacts of a product. Within a project, the relevant configurable 
elements are defined. In contrast to many other approaches [45, 48], configurable elements in 
IVML are expressed as in terms of typed decision variables (variables for short) inducing a 
(strongly) typed language. A decision variable represents a decision the user has to take while 
defining the configuration of a product, e.g., whether and how much reconfigurable hardware is 
present in a certain QualiMaster installation setting. The IVML type system consists of basic types 
(Boolean for alternative decisions, Integer, Real, String for Non-Boolean decisions), enumerations 
(for alternatives) compound types and container types (for multiple selections) over all the 
previously mentioned types. A compound type groups multiple configurable elements into a single 
named user-defined unit (similar to structs or records in programming languages). This allows 
combining semantically related decisions from which each element has to be configured 
individually. The project language element also serves as modularization unit, i.e., an IVML model 
can be composed from various projects through imports, which makes the declared types and 
decision variables available to the importing project. In QualiMaster, model composition helps us to 
organize the Configuration (Meta) Model akin to the architecture of the infrastructure, i.e., to 
increase the understandability of the model, but also to separate the model parts along the groups 
of Infrastructure Users defined in D1.2 and to support (physical) access protection. 

In addition to the definition of own compounds, IVML allows the derivation of new types based on 
existing types in two ways, namely refinement and type derivation. The refinement of a compound 
makes all of its decision variables available to refined compounds, which may add further decision 
variables (similar to sub-classing in object-orientation). Compound refinement enables extensibility, 
an important capability for open world scenarios such as service-based systems or software 
ecosystems. In QualiMaster, this capability enables us, e.g., to define a basic type for 
reconfigurable hardware as well as the specific types used in the project, such as the MAXELER 
MPC-C series. If other types of reconfigurable hardware shall be used later in the project or after 
the end of the project, the Configuration Meta Model (and similarly the infrastructure derivation) 
can be extended accordingly. The derivation of types allows the introduction of new types based 
on the restriction of existing types (such as positive Integers as a restriction of Integers). A specific 

                                                      
7
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form of type derivation is type aliasing, i.e., the use of an existing type via a different name without 
limiting expression, e.g., to distinguish quality parameters through their type. 

One particular capability of IVML is to support references among configurable elements, similar to 
typed pointers in a programming language. References allow sharing a configurable element and, 
in particular, to model connected structures (we call them topologies). This enables us to model 
QualiMaster data processing pipelines. Thereby, we extensively use refined compounds, on the 
one side to limit the valid connections among pipeline elements and on the other side to allow 
future extensions. 

Basically, a decision variable accepts any value of its type, including null, a value indicating that a 
variable is not configured. Constraints further restrict the possible values of a decision variable, 
thus narrowing the (valid) configuration space. For example, reconfigurable MAXELER hardware 
without Data Flow Engine (DFE) boards are not allowed in QualiMaster (we give more complex 
examples for algorithm and pipeline constraints in Section 7.2). IVML constraints are inspired by 
the OMG Object Constraint Language (OCL) [108], which supports first-order logic constraints (on 
ground instances) in combination with relational and arithmetic expressions. Therefore, the 
notation of IVML constraints as well as the semantics of constraints is rather similar to OCL. 
However, we did not take over all concepts from OCL, particularly not those specifying the 
application of constraints in the context of UML concepts. In contrast to OCL, IVML supports side 
effects by value assignments and value propagations to express effects on a product line 
configuration. Further, IVML provides more convenient type selection mechanisms, in particular 
dynamic dispatch of user-defined constraint functions, so that type-specific constraints can be 
modeled in an extensible manner. In addition, IVML allows defining constraints as decision 
variables. Initially, this was intended to disable individual constraints on purpose. In QualiMaster, 
we use this capability to naturally express user defined (collections of) constraints such as data 
sink SLAs and to distinguish between constraints defined by the QualiMaster consortium and user 
defined constraints. However, for specifying SLAs we expect that a limitation of the IVML 
constraint language to relational and arithmetic constraints will be required so that these 
constraints can efficiently be processed by the QualiMaster adaptation (see Section 8). 

In IVML, projects as well as individual decision variables can be attributed by further 
information. In QualiMaster, we use this additional information to model the so called binding 
time, i.e., the point in the software lifecycle when the decision for a specific value must be made. 
This enables us to distinguish between configurable elements that must be specified for the 
instantiation of the QualiMaster platform, and configurable elements for which the value is known 
only at runtime, i.e., where the constraint evaluation and the effect of constraints is postponed into 
runtime under the control of the adaptation. 

While decision variables are defined in the Configuration Meta Model, the actual value of the 
variable to be instantiated, e.g., the number of available DFE boards, is defined by a 
configuration. A configuration must comply with Configuration Meta Model in terms of structure 
(decision variables and types). Further, a valid configuration fulfills all constraints and can be 
used for the instantiation of the QualiMaster platform, i.e., invalid configurations shall not be 
instantiated and, thus, prevent erroneous execution before deployment. In contrast to many other 
related languages, in IVML a configuration can be expressed using the same concepts as for 
defining the Configuration Meta Model, in particular using value assignments. Further, IVML 
supports the freezing of decision variables in order to specify the configuration of values that shall 
be considered during instantiation. This is required to enable partial and staged configurations, 
e.g., to pre-configure the generic QualiMaster infrastructure generically for the financial domain. 
Defining a configuration is supported by several means, ranging from concepts to tool support. On 
the conceptual side, default values defined in the Configuration Meta Model allow a basic pre-
configuration. On the tool side, the definition of the Configuration Meta Model as well as the 
configuration is supported by the EASy-Producer toolset [42]. Therefore, EASy-Producer provides 
specific editors, model validation through constraint evaluation and constraint propagation, i.e., the 
(conditional) derivation of actual values of decision variables from other decision variables. The 
latter two capabilities are realized by a specific reasoning mechanism for IVML models. 
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Please note that IVML offers even more modeling capabilities, which are currently not required in 
QualiMaster, such as conditional / versioned imports or variability interfaces to hide decision 
variables intended for multi-party product line settings such as software ecosystems. 

In terms of syntax and concepts, IVML is inspired by related variability modeling languages such 
as CVL [66], CVM/VSL [117], TVL [29] or Clafer [7], but also by programming languages such as 
Java or C. As stated above, regarding constraints, IVML was mainly inspired by OCL [108]. 
Relying to some degree on existing language concepts was a conscious decision to provide 
practitioners with familiar concepts and to reduce the learning curve. Previous experience with 
industrial partners showed that IVML can quickly be learned and applied by computer experts after 
some basic introduction in product line engineering in general and IVML concepts in particular. 

7.2 QualiMaster Configuration Meta Model 
In this section, we describe the Configuration Meta Model for the QualiMaster infrastructure. The 
Meta Model is defined by the QualiMaster consortium and supports the configuration and 
instantiation of the QualiMaster platform for a certain physical and application setting. Usually, this 
model will not be changed by the user groups defined in D1.2, but it can be adapted by 
experienced users as part of an adoption of the QualiMaster approach. 

In this section, we discuss the model mainly in terms of its design and concepts visualized in a 
UML-like graphical notation8, in particular as a favor for the reader so that no deeper IVML 
knowledge is needed. Further, we discuss IVML fragments for the individual parts of the model to 
explain how the Configuration Meta Model is specified and the rationales behind the individual 
concepts. For the complete Configuration Meta Model and an example of a QualiMaster 
Configuration in IVML syntax, please refer to Appendix A. 

In Section 7.2.1, we provide an overview on parts of the Configuration Meta Model and then 
discuss the details of the individual parts in individual subsections. Please note that the 
Configuration Meta Model reflects the current state of discussion and will probably be extended 
and refined in the future course of the project to reflect additional configuration knowledge. In 
particular, we aim at detailed knowledge on the Execution Systems to support the Infrastructure 
Users in setting up and bootstrapping the QualiMaster infrastructure in their specific setting. 

7.2.1 Configuration Meta Model Overview 

The Configuration Meta Model particularly aims at the configuration of the real-time data stream 
processing in the QualiMaster infrastructure, i.e., it specifies the  

• Observables and quality parameters that can be monitored (REQ-C-11, REQ-C-12),  

• Hardware pool for software- and hardware-based execution (REQ-C-2, REQ-C-3),  

• Configuration of the data management layer (REQ-C-4, REQ-C-5, REQ-C-6),  

• Data processing algorithms for real-time data stream processing (REQ-C-7),  

• Algorithm families consisting of algorithms (REQ-C-8),  

• Data processing pipelines (REQ-C-9, REQ-C-10), which are modeled as a data flow 
topology, 

• High-level adaptation settings for the Adaptation Manager (REQ-C-14), and  

• Pipelines selected for execution (REQ-C-15) as a global infrastructure setting. 

                                                      
8
 There are several similarities but also differences between UML and IVML. For example, the basic data 
types are rather similar, IVML compounds can be understood as UML classes without methods and multiple 
inheritance, IVML references can be seen as the only kind of association, the constraint language is similar, 
etc. Due to the different modeling scopes of IVML and UML, there are also differences such as that IVML 
allows global variables, there is no package merge in IVML, IVML supports conditional imports, IVML 
supports a more specialized form orthogonal information (attributes) and the constraint languages differ in 
particular capabilities and semantics, e.g., configuration constraints are not always free of side effects. 
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The design goal of the Configuration Meta Model is to capture the information needed to statically 
check the feasibility of a platform before instantiation and to actually instantiate the platform for a 
specific application setting. In particular, this includes technical configuration knowledge that is 
gathered during the QualiMaster project. Further, wherever possible and adequate, we aim at an 
Execution System independent model, so that configuration information and the instantiation 
process can be transferred across (different versions) of Execution Systems. 

The structure of the Configuration Meta Model is organized according to the QualiMaster 
infrastructure design as described in deliverable D5.1. In addition, the Configuration Meta Model 
consists of a Basics package, which declares common types such as the derived types 

NonEmptyString or PositiveInteger as well as compound types such as Parameter or 

Item for specifying data sources, data sinks, algorithms and algorithm families. Figure 3 provides 

an overview on the Configuration Meta Model and its configurable elements (without their 
individual details) mostly in terms of IVML compound types, refinement of compound types and 
typed references among them. In particular, the references among the compound types of the 
configurable elements in the Pipeline Repository part form the topology that allows modeling 

the structure of data processing pipelines in terms of QualiMaster concepts (REQ-C-9), in 
particular algorithm families and access to the data management layer. 

 

Figure 3: Overview of the QualiMaster Configuration Meta-Model. 
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Below, we will detail the parts of the Configuration Meta Model in individual subsections in the 
sequence given above. Thereby, each subsection will first give a short motivation, discuss the 
configurable elements and, finally, explain the constraints that apply for the respective configurable 
elements. Please note that the realization of the Configuration Meta Model is separated according 
to the structure shown in Figure 3 and finally linked together to form a common model using the 
model composition mechanism of IVML. The configuration is organized similarly and separated 
into individual physical folders (also the Configuration Meta Model is located an own folder) to 
support access protection according to the Infrastructure User roles described in D1.2.  

7.2.2 Observables 

The observables part of the QualiMaster Configuration Meta model details the information that can 
be observed in the QualiMaster infrastructure at runtime. In particular, observables are quality 
parameters according to the quality taxonomy discussed in Section 6.2. As the monitoring of 
further technical information may be required to support adaptation, operation and maintenance, 
we use the more general term observables for this model part. The remaining model parts rely on 
the definitions given in the observables part to declare runtime variables for the observables and 
quality parameters. Figure 4 illustrates the observables model part. 

Basically, all observables can be expressed in terms of basic IVML types. However, we use a 
specific derived type for each observable / quality parameter to support the identification of the 
related runtime variables during (runtime) reasoning and adaptation (this is not shown in Figure 4). 
Further, we define a compound hierarchy acting as descriptors for observables, namely 
Observable, QualityParameter and ConfiguredQualityParameter. Observable aims at a 

base type for future extensions by technical observables. QualityParameter represents built-in 
quality parameters according to the quality taxonomy in Section 6.2. 
ConfiguredQualityParameter denotes user-configured quality parameters according to REQ-C-
11 and REQ-C-12. Both types of descriptors for quality parameters are stored in individual sets (in 
the figures we depict this as a relation between the Infrastructure and the configured 

instances), while the built-in quality parameters are directly frozen in this model part. Derived 
quality parameters can be stated in terms of default values, either as value expression or through a 
specific user-defined function. Ultimately, user-defined quality parameters lead to a refinement of 
the predefined types of the Configuration Meta Model described below and require specific tool 
support as well as a code extension (cf. Section 7.2.5) of the QualiMaster infrastructure for 
monitoring (REQ-C-11) and prediction (REQ-C-12). 

Basically, the constraints defined for the used derived data types apply, such as that some strings 
must not be empty. In addition, the configured quality parameters must have unique type names. 

 

 

Figure 4: The observables in the Configuration Meta Model including quality parameters. 
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7.2.3 Resource Pool (Execution Layer) 

The configuration of the QualiMaster infrastructure specifies the resource pool underlying the 
Execution Layer (see D5.1/5.2), i.e., the physical machines that can be used for executing 
pipelines and data analysis algorithms. The hardware level covers both, software-based and 
hardware-based execution as stated in REQ-C-2 and REQ-C-3. First, we discuss the configuration 
of software-based and then the configuration of hardware-based execution. 

The aim of the configuration of the software-based execution is the specification of the compute 
nodes and servers that are actually available for executing QualiMaster pipelines. In the 
Configuration Meta Model, this is reflected in the configurable element Machine (see Figure 5), 

which describes a general-purpose machine. Machine is characterized in terms of its (network) 

name, the available resources (memory, processors, and processor frequency), the 
communication ports used within the cluster, and the machine role of the machine in the cluster 
installation. A set of default ports is used by Apache Storm in absence of a specific configuration. 
Currently, the following machine roles are foreseen: Manager and Worker. For distributed real-time 
processing on Apache Storm, the manager role corresponds to the Nimbus nodes and the worker 
role to the Storm Supervisor nodes. Please note that a sufficient number of communication ports 
must be configured so that the amount of workers required by the pipelines to be executed can be 
fulfilled, as otherwise Storm rejects the execution of pipelines. Thus, having the communication 
ports available at configuration time is important for REQ-C-10. All configured Machine instances 

are stored in a collection representing the part of the resource pool for software-based execution. 
Further, this model part defines the infrastructure healthiness quality parameters bandwidth (per 

machine), available machines and used machines according to Section 6.2. 

Due to technical reasons (partly imposed by Apache Storm) the following constraints apply: 

• At least one Worker must be assigned so that pipelines can be executed. 

• At least one Manager must be assigned so that the cluster can be managed centrally. 

• Manager machines must not have configured communication ports as this is handled 
dynamically by Nexus / Storm. 

• Worker machines have either configured communication ports or receive the default ports 
of Apache Storm. 

• Machines must have unique names, i.e., machines must be uniquely identifiable. 

For illustration, Figure 6 depicts a fragment of the related IVML specification of the Configuration 
Meta Model (runtime variables are not shown) in terms of a language unit (project) declaring the 

MachineRole enumeration type and the Machine compound type as well as defining the 

constraints described above. The depicted project utilizes some types defined in the imported 
project Basics such as NonEmptyString, PositiveInteger, MemorySize, Frequency 

or PortInteger. In particular, the specialized types avoid repeated declaration of their limiting 

 

Figure 5: Part of the Configuration Meta Model for software-based execution. 
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constraints and can be used by the tool support to offer specialized editors, e.g., allowing ports to 
be specified in user-friendly ranges rather than individual numbers. The IVML fragment also 
attributes additional information to all model elements, here, the binding time of the individual 
decision variables. While the default variable binding happens during instantiation / compilation 
(the traditional SPLE binding time), some variables are marked for runtime binding, i.e., as runtime 
decision variables, such as bandwidth in Machine or usedMachines in the global scope. The 

machines for software-based execution that are available in the heterogeneous resource pool are 
configured in the machines collection. 

Please note that constraints in Figure 6 are given in two different scopes, namely within the 
compound type and directly in the project. A constraint stated in a compound type C restricts the 
configuration of C, i.e., the constraint is applied to all instances of C by implicit all-quantification. In 
Figure 6, the two constraints in Machine target the (conditional) configuration of ports depending 

on the configured worker role. The second constraint may lead to a value propagation if the value 
of ports is not configured or to an equality check else, and potentially to a validation error if the 

equality condition does not hold. In contrast, constraints in the project scope can be applied to 
global decision variables only and may need explicit quantification.  

In Figure 6, the two global constraints at the end of the fragment ensure that at least one machine 
instance of each role is configured (implying that at least two machines are configured). The 
constraint relating available ports to configured pipelines will be discussed along with the 
infrastructure settings in Section 7.2.9. 

In summary, the configuration of the general purpose machines realizes REQ-C-2. 

project Hardware { 
  import Basics; 
  import Observables; 
 

  attribute BindingTime bindingTime = BindingTime.compile to Hardware; 
 

  enum MachineRole {Manager, Worker}; 
 

  compound Machine { 
    NonEmptyString name; 
    MemorySize memory;     
    PositiveInteger processors;    
    Frequency frequency;  
    setOf(PortInteger) ports; 
    MachineRole role;   
    // machine-specific runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Bandwidth bandwidth; 
    } 
     
    // managers do not have configured ports 
    role == MachineRole.Manager implies ports.isEmpty();  
    // workers without configured ports receive the default Storm ports 
    role == MachineRole.Worker and ports.isEmpty() implies ports == {6700, 6701, 6702, 6703}; 
  } 
    
  setOf(Machine) machines;  
   
  // At least one manager must be assigned 
  machines->exist(machine|machine.role == MachineRole.Manager); 
  // At least one worker must be assigned 
  machines->exist(machine|machine.role == MachineRole.Worker); 
.. // Machine names must be unique 
  machines->collect(m|m.name).size() == machines.size(); 
 
  // global runtime variables 
  assign(bindingTime = BindingTime.runtime) to { 
    UsedMachines usedMachines; 
    AvailableMachines availableMachines; 
  } 
} 

Figure 6: IVML fragment specifying the for configuration opportunities  
for software-based execution. 
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While the QualiMaster infrastructure requires the presence of general-purpose cluster machines, 
hardware-based execution is optional, in particular to enable the use of the QualiMaster 
infrastructure also in settings where no reconfigurable hardware is (yet) present or reconfigurable 
hardware is considered as too expensive. In case reconfigurable hardware is present, the 
configuration defines the environment for the dynamic migration of analysis tasks to and from 
reconfigurable hardware at runtime. In general, reconfigurable hardware may range from the 
different hardware series provided by Maxeler over the series provided by other vendors of 
reconfigurable hardware to Graphics Processing Units (GPU). A specific kind of reconfigurable 
hardware may require different information for configuration, instantiation or adaptation at runtime. 
Thus, in the Configuration Meta Model, reconfigurable hardware is modeled in an extensible way, 
e.g., also for later load testing or adoption as described in the DoW, rather than in the generic way 
we used for general-purpose hardware. While the HwNode defines the quality parameter 

bandwidth, the MPPCNode defines the quality parameters for used / available CPUs and DFEs 
according to Section 6.2. The configurable elements for configuring hardware-based execution are 
depicted in Figure 7. 

The root configurable element hardware-based execution is HwNode. HwNode defines only the 

(descriptive) name of the hardware board or cluster of boards, respectively. In QualiMaster, we 
currently focus on the Maxeler MPC-C series for hardware-based execution. Therefore, according 
to the MPC-C series node architecture (see REQ-C-3 or D5.1, Section 6.2) the specific 
configurable element MPPCCNode can be configured with the available number of Central 

Processing Units (CPUs) and Data Flow Engines (DFEs). The host address allows connecting to 
the underlying hardware in order to access the functionality of the MaxelerOS, which manages the 
CPUs and DFEs. Please refer to D3.1 for further details. All configured HwNode instances are 

stored in a collection accessible to the Infrastructure. 

The constraints for the Hardware-based execution are implied by the types used for defining 
MPPCCNode, i.e., the number of CPUs and DFEs must be positive (rather than possibly negative or 

0 as for the general type Integer). Further, HwNodes must be uniquely identifiable via their name. 

In summary, the configuration capabilities provided by the Configuration Meta Model for hardware-
based execution realize REQ-C-3. 

7.2.4 Data Management 

The Data Management Layer of the QualiMaster infrastructure is responsible for the management 
of the physical data sources, data sinks and for automatically storing input and output data 
according to certain storage strategies (see D5.1). In particular, this enables multiple pipelines to 
use the same logical source from the data management layer, i.e., storing raw input as historical 
data cannot be triggered by multiple pipelines. Further, the Data Management Layer also supports 
persisting temporary streaming data generated by processing elements (as specified in the 

 

Figure 7: Part of the Configuration Meta Model for hardware-based execution. 
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processing pipelines) as well as historical data for batch processing. 

As shown in Figure 8, the common configuration options are defined in DataElement and include 

the (descriptive) name, the storageLocation, the data management strategy as well as 

additional strategy-related data such as the timeline (e.g., keep data for at maximum timeline of 

40 days) or the cutofCapacity (e.g., to keep at maximum 1TBytes of historical data). Finally, a 

DataElement enables the specification of user defined constraints, in particular SLA 

constraints for the refining compounds that rely on the runtime variables defined there. 

Since data streams are typically unbounded in size and time, storing all results of the continuous 
stream processing is not feasible. Therefore, some strategies for regular storage cleanup are 
required. The problem we are tackling here is quite similar to the caching problem in operating and 
storage systems. Thus, we adopt some of the widely used caching strategies to decide on which 
items should be kept and which items have to be replaced by newly arriving items. Given a 
limitation on the storage capacity of the infrastructure, say k Bytes (cutoffCapacity), the data 

management layer simply keeps adding new items to the storage space until the maximum 

 

Figure 8: Part of the Configuration Meta Model representing the configuration of the Data 
Management layer. 
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capacity k is reached.  

We consider the following strategies upon arrival of news data items to be stored:  

• First-in First-out (FIFO): This a simple strategy that removes the oldest items from the 
storage space in order to insert the new item. 

• Least Frequently Used (LFU) [154]: This strategy keeps track of user access to the content 
of the storage. It also logs the frequency of accessing each item. When the 
cutoffCapacity is reached, new items replace the least frequently accessed items. The 

idea is that those least frequently accessed items are estimated to be least relevant for the 
users and hence the cost of replacing them should be low.  

• Least Recently Used (LRU) [85]: This strategy is similar to the LFU except that the system 
here logs the time at which each item has been most recently accessed. This allows 
ordering the items based on their access history. The least recently accessed items are 
considered to be less relevant for the users and therefore are candidates for replacement.  

• Combination of LFU and LRU: It is also quite common that a combination of the LFU and 
LRU strategies is used like the work of [102] in order to have a better estimation of 
importance of the items and reduce the risk to replace an item that might still be of use in 
the future. 

The strategies described above are represented by the enumeration 
DataManagementStrategy. 

A DataSource is a refined DataElement and denotes the actual physical source as well as the 

types of the input items. An input item may consist of multiple named and typed fields representing 
the typed sequence of individual data in a data stream. The related Item type is inspired by the 

Apache Storm notion of data streams and defined in Basics. Further, Item is composed of a list 

of Fields carrying (a descriptive) name and type information. A DataSource may be configured 

at runtime through a set of functional Parameters, e.g., to control the abonnement of markets or 

market players as well as to define filter terms directly on the source. The sourceCls refers to the 

actual implementation class of the data source, e.g., to retrieve financial raw data from the 
SPRING source using a specific protocol or to access data from Twitter (cf. Section 7.2.5). A 
DataSource declares runtime variables that represent runtime quality properties according to the 

quality taxonomy in Section 6.2, such as the volume or the volatility. 

Akin, a DataSink is a refined DataElement, which passes the output items to the QualiMaster 

applications. A sink may have functional parameters such as credentials. Further, a 
PersistentDataElement is also a refined DataElement, representing intermediary data to be 

accessed from the pipelines. Both elements will be refined, e.g., by added decision variables, 
depending on the access needs of the QualiMaster applications and the realization of the Data 
Management Layer. Akin to DataSource, a DataSink defines the respective runtime variables 

for quality properties. 

Most of the constraints for the Data Management Layer are implied in the types used for defining 
the variables. We model the data management strategy as an enumeration, some constraints are 
required to link timeline or cutoffCapacity with the configured strategy. Later extensions 

of the Configuration Meta Model may represent strategies as compound types, thus simplifying the 
constraints through refined data types. Further, data sources and data sinks must be uniquely 
identifiable via their names for code generation during platform instantiation. 

In summary, the types defined for the configuration of the Data Management Layer realize REQ-C-
4, REQ-C-5, and REQ-C-6. In particular, the functional parameters help realizing REQ-A-1 at data 
source level. 
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7.2.5 Data Processing Algorithms 

This part specifies the configuration of the data processing algorithms. A data processing algorithm 
realizes a specific analysis task, can be adjusted via functional parameters (e.g., by runtime 
adaptation) and can be implemented in terms of a  

• Plain Java algorithm,  

• Pre-laid out Storm topology (considered as a black box algorithm),  

• Single hardware-based algorithm or  

• Library of hardware-based algorithms that may cover an entire sub-pipeline, potentially with 
optional algorithms at the beginning or end of the sub-pipeline or even alternative 
hardware-based algorithms. 

Please refer to D5.2 for a more detailed description of the four algorithm forms. 

The data processing algorithm part of the Configuration Meta Model illustrated in Figure 9 covers 
these four implementation forms. However, configuring these different alternatives, in particular the 
different choices in alternative 4) may be an error-prone and tedious activity. Thus, in QualiMaster, 

 

Figure 9: Part of the Configuration Meta Model representing the configuration of the data 
processing algorithms.  
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the implementation of algorithms is physically represented as an extension package 
(alternatively, it may contain code modules for data sources or monitoring), which carries 
knowledge about the contained algorithm, e.g., the respective implementation alternative, the 
implemented input / output types as well as the (known) quality characteristics. Loading this 
package into the Algorithm Repository via the QualiMaster infrastructure configuration tool will 
perform the required configuration activities and simplify the configuration. Although it might be 
possible to capture all this information in the Configuration Meta Model, we decided to store the 
implementation specific information as well as the quality properties in a database in the Data 
Management Layer as this will unify and simplify the tradeoff making at runtime. This is due to the 
design goal of the Configuration Meta Model to capture the information that is needed to perform 
static feasibility checks and to perform the infrastructure derivation. Thus, the Configuration Meta 
Model can abstract over the different implementation forms in terms of the Algorithm type. The 

notion of a data processing algorithm in this configuration part abstracts over the different 
implementation forms. Further, the Infrastructure knows all configured Algorithm instances. 

The input / output of an algorithm are formalized by the Item type as already introduced in Section 

7.2.4. In addition, the operation (and the quality) of an algorithm may be influenced by functional 
parameters that can be changed at runtime possibly influencing the quality characteristics of the 
algorithm (as described for data sources in Section 7.2.4), such as the window length to be 
processed or filter criteria. An algorithm may also specify the direct predecessor it depends on. 

Currently, this is mainly intended to capture the relevant dependencies in libraries of hardware 
algorithms described above and to perform static feasibility checks on the configuration, in 
particular the pipelines. 

Currently, the constraints for the configuration of the Data Processing Algorithms are implied in the 
types used for defining the variables. Please note that this is in particular true for unique field 
names as well as unique parameter names. Further, algorithms must be uniquely identifiable via 
their names for code generation during platform instantiation and adaptation. 

The Algorithm type and its related configurable elements described in this Section realize REQ-

C-7. In particular, the algorithm parameters help realizing REQ-A-1 for certain algorithms. 

7.2.6 Algorithm Families 

Algorithm families group data processing algorithms with similar functionality, but different quality 
characteristics and tradeoffs. Basically, the part of the Configuration Meta Model for algorithm 
families follows the modeling for Algorithms as shown in Figure 10. An algorithm family defines the 
input and output types of its members and the (common) set of functional parameters that all 
family members shall support. Thus, an algorithm family abstracts over the contained algorithms 
and does not take implementation level information into account.  

As depicted in Figure 10, a Family is configured by its name, input / output item types, functional 

parameters (cf. Section 7.2.4 and 7.2.5) as well as the member algorithms of the family. Further, 
an algorithm Family defines the same runtime variables for quality parameters as an Algorithm 

and, in particular, a runtime variable containing the actualMember to be executed. The runtime 

variables for quality parameters are bound by constraints to the actualMember. The 

actualMember enables to define and enact algorithm changes at runtime (cf. Section 8) as well as 

the specification of (pipeline) constraints. As usual, the Infrastructure knows all configured 

Family instances. 

Due to the semantic relations described above, we defined several constraints defined on the 
Algorithm Families (in addition to the binding of quality properties mentioned above). In particular, 
these constraints must be validated when the membership relations are changed, especially when 
new members are added. 

• An algorithm family must contain at least one algorithm. 

• The input item fields and types of all member algorithms must match the input types of the 
algorithm family. Thus, the input sent to the family can be processed by all members of the 
family. 
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• The output item fields and types of all member algorithms must match the output types of 
the algorithm family. Thus, the output produced by any member of the family corresponds 
to the output of the family. 

• The functional parameters of a family contain all functional parameters of all member 
algorithms. Thus, it is open to an individual algorithm whether it actually implements a 
certain parameter, e.g., changing a window size may not be possible for all kinds of 
algorithms.  

• Families must be uniquely identifiable via their names, in particular for code generation 
during instantiation and adaptation. 

In summary, the configuration options for processing families fulfill REQ-C-8. 

7.2.7 Data Processing Pipelines 

The concept of adaptive data processing pipelines is one of the core ideas of the QualiMaster 
project. According to the pipeline execution model described in Section 2.2, the data stream is 
provided by a Data Source to the pipeline for processing. The data stream flows through a number 
of data processing elements, each representing either 

• An Algorithm Family, i.e., a set of alternative algorithms to be selected dynamically at 
runtime. 

• A Data Management element in order to store intermediary information produced while 
processing a data stream in the Data Management Layer. 

 

Figure 10: Part of the Configuration Meta Model representing the configuration of the 
algorithm families. 
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• A Generic Data Stream Processing Operation such as filter, select or project as also used 
by approaches discussed in Section 4.1.2. Actually, the set of generic stream processing 
operations to be provided by the QualiMaster infrastructure is in discussion. 

Finally, the data stream reaches a specified Data Sink and can be visualized or processed by 
applications. Thus, the concepts of a QualiMaster data processing pipeline correspond to an 
extended data flow graph as frequently used for specifying the data processing in the data stream 
community (see e.g., [25, 82]). There, a data flow is stated in terms of sources, sinks and data 
stream processing operations, i.e., QualiMaster extends the traditional notion of a data flow graph 
by Algorithm Families and Data Management operations. Please note that workflow languages 
such as the Business Process Execution Language9 are typically control-flow oriented and provide 
procedural concepts such as (while) loops that do not apply to data stream processing. In contrast, 
control-flow oriented languages may be used to specify or visualize the internal behavior of 
algorithms except for (black box) sub-topologies. 

Figure 11 visualizes the configurable elements for data processing pipelines. We call all 
configurable elements that can be used in a pipeline a PipelineElement. In general, a 

PipelineElement can be configured by user-define pipeline constraints. A PipelineNode is a 

refined PipelineElement running on a certain number of Workers (parallelism) that 

represents a Source (references a DataSource from Section 7.2.4), a Sink (references a 

DataSink from Section 7.2.4) or an actual ProcessingElement. A ProcessingElement can 

either be a FamilyElement representing a processing Family (see Section 7.2.6), a data 

                                                      
9
 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html  

 

Figure 11: Part of the Configuration Meta Model representing the configuration of data 
processing pipeline topologies. 
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DataManagementElement causing storage actions to a certain PersistentDataElement in 

the Data Management Layer (see Section 7.2.4) or a StreamOperationElement (currently not 

further specified, but intended to represent generic stream operations such as filter, project, join, 
etc.). A Flow represents the connection between two adjacent PipelineNodes in a pipeline. 

Basically, the semantics of a flow is that all items of the declared types from the start point are 
transported to the end point of the flow. If the end point declares less item types in the same 
sequence as the start point then we consider this as an implicit projection. If the end point declares 
more types, multiple input flows can be joined implicitly. Finally, a Pipeline is defined via its data 

sources, which link via flows to processing elements, etc. Further, a Pipeline can be configured 

in terms of its required number of worker nodes, its message passing timeout and by user-defined 
pipeline constraints. Further, the Infrastructure knows all configured Pipeline instances. 

According to the quality taxonomy discussed in Section 6.2, the Pipeline compound defines 

runtime decision variables in order to provide access to the results of the pipeline quality analysis 
(REQ-A-12, cf. Section 6.3). 

Please note that in the Configuration Meta Model, the connection between pipeline nodes through 
flows represents a graph, i.e., the topology of a data processing pipeline through typed 
configuration references. Please note also that Configuration Meta Model for the data processing 
pipelines is tailored for the pipelines that are supported by the QualiMaster approach and the 
realizing infrastructure, i.e., we aim at avoiding illegal pipelines (such as not starting with a source) 
already in the configuration. As more pipeline capabilities may become available or needed during 
the project, we will evolve the Configuration Meta Model accordingly. 

Based on the previous model parts and their constraints, the following constraints apply to 
pipelines (and realize REQ-C-10): 

• Processing pipelines must be structurally valid, i.e., processing elements must be 
connected correctly. A pipeline must have at least one source. Data sources are the only 
pipeline nodes that have no input flow while data sinks are the only pipeline nodes that 
have no output flow. 

• Processing pipelines must be type conformant. The input items of a processing element 
must match the output items of the preceding data source or processing element. More 
precisely, there must be an overlap between the input items and the output items of the 
preceding elements in order to allow implicit stream joins and projections. Data 
Management elements forward their input to their output and are, thus, transparent. The 
input item types must match the data source must match the output item types of the 
preceding processing element. 

• Pipelines must be uniquely identifiable via their names, in particular for code generation 
during pipeline instantiation and adaptation. 

The realization of the pipeline part of the Configuration Meta Model shown in Figure 11 in terms of 
IVML is illustrated in Figure 12. Basically, the compounds and their refinement hierarchy shown in 
Figure 12 correspond to the pipeline concepts discussed above (StreamOperationElement is 

omitted). As explained above, the first pipeline constraint is mainly expressed due to the types of 
pipeline elements and the typed references. In addition, the constraint in Flow avoids that data 

flow goes back to a source and the constraint in Pipeline requires that a valid pipeline has at 

least one source. The specification of the type conformance constraint is “distributed” across the 
model elements and relies on (internal) decision variables defined in PipelineNode representing 

the input and output types. This is due to the fact that a DataManagementElement is considered 

as being transparent to the data flow (input item types are the same as output item types). 
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// project scope, imports and attributes omitted 
 

abstract compound PipelineElement { 
  NonEmptyString name; 
  setOf(Constraint) constraints = {}; // user constraints 
} 
 

compound Flow refines PipelineElement { 
  refTo(PipelineNode) destination; 
  destination.typeOf() <> Source; 
} 
 

abstract compound PipelineNode refines PipelineElement{ 
  Items inputTypes; 
  Items outputTypes; 
} 
 

compound Source refines PipelineNode { 
  setOf(refTo(Flow)) output; 
  refTo(DataSource) source; 
  inputTypes = source.input; // take over types from source, pass through and check type 
  outputTypes = inputTypes; 
  typeCheck(self, output); 
} 
 

// Sink omitted as similar to Source, generic stream operation type omitted 
 

compound ProcessingElement refines PipelineNode { 
  setOf(refTo(Flow)) output; 
  typeCheck(self, output); // check types for all processing elements 
} 
 

compound FamilyElement refines ProcessingElement { 
  refTo(Family) family; 
  inputTypes = family.input; // take over types from family 
  outputTypes = family.output; 
} 
 

compound DataManagementElement refines ProcessingElement { 
  refTo(PersistentDataElement) dataManagement; 
  inputTypes = outputTypes; // transparent to processing 
} 
 

compound Pipeline { 
  NonEmptyString name; 
  setOf(refTo(Source)) sources; 
  PositiveInteger numworkers; // timeout omitted 
  setOf(Constraint) constraints = {}; 
  sources.size() > 0; 
  // runtime variables omitted 
}  
 

sequenceOf(refTo(Pipeline)) pipelines; // name uniqueness constraint omitted 
 

// number of workers is less then reserved ports for machines  
pipelines->apply(refTo(Pipeline) pipeline; Integer totalNumWorkers = 0 |  
  totalNumWorkers = totalNumWorkers + pipeline.numworkers) <= machines->apply(Machine machine; 
  sequenceOf(Integer) usedPorts = {} | usedPorts.union(machine.ports.asSequence())).size(); 
 

def Boolean typeCheck(PipelineNode src, setOf(refTo(Flow)) output) = 
  output->forAll(f|typeCheck(f.destination, src)); 
 

  //explicit propagation 
  def Boolean typeCheck(PipelineNode src, PipelineNode dst) =  
    if isDefined(dst.inputTypes) and isDefined(src.outputTypes)  
      then src.outputTypes.overlaps(dst.inputTypes)  
      else dst.inputTypes == src.outputTypes endif; 

Figure 12: IVML fragment specifying the Configuration Meta Model for pipeline topologies. 
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Thereby, the input and output item types of data sources, data sinks and families act as anchor 
points and the constraint becomes effective due to side effects, namely value assignment and 
value propagation. Thereby, known item types are assigned incrementally, while remaining types 
are either set correctly through the type check or, if already assigned and input / output types do 
not match, cause a validation failure. In more detail, for a Source the input corresponds to the 

input of the physical data source just passed through to the output of the source. Akin, for a Sink 

the output is determined by the physical data sink and passed through from its input. Input and 
output of FamilyElements depend on the specification of the underlying family. Further, in the 

future, generic data stream operations (StreamOperationElement is omitted in Figure 12) may 

change the data items, i.e., the output depends on the configuration. Type checking is actually 
performed by the function typeCheck, which considers all flows of a given pipeline node and 

either leads to a value propagation or, if values are known, requires that the input types of the 
destinations are a sub-sequence of the preceding output types. typeCheck is applied as a 

constraint in Source as well as generically in processingElement. Please note that this 

“distributed” constraint could also be specified through a set of specific functions and dynamic 
dispatch, but the specification would be more complicated. Also recursive functions may be used, 
but this would require explicit cycle checking (not needed in the actual model as always only two 
pipeline nodes are compared) and may impact the efficiency of constraint validation. 

In summary, the data processing pipelines part of the Configuration Meta Model utilizes the 
capabilities required by Challenge C3 and realizes requirement REQ-C-9. In this section, we 
modeled QualiMaster data processing pipelines as a specialized IVML topology. The QualiMaster 
platform instantiation process (cf. D5.2) turns this topology into an implementation for Apache 
Storm. In Section 7.3, we discuss how configuration can be done using the QualiMaster 
infrastructure configuration tool, a domain-specific configuration frontend supporting the user in 
configuring such specialized topologies in terms of data processing pipelines. 

7.2.8 Adaptivity  

The adaptivity part of the Configuration Meta Model targets the high-level “knobs” and settings an 
Adaptation Manager can change in order to influence the adaptive behavior without deeper 
knowledge on the adaptation behavior specification. Please note that this model part is not the 
Adaptation Model, which specifies the adaptive behavior. The Adaptation Model will be introduced 
in Section 8. 

According to the quality survey described in Section 6.1, the configuration of the quality tradeoffs 
and the cross pipeline tradeoffs shall be available to the Adaptation Manager. Basically, this model 
part defines weights to be assigned to the individual quality parameters as illustrated in Figure 13. 
Thus, the compound QualityParameterWeighting combines a reference to a quality descriptor 
defined in the observables part in Section 7.2.2 with a weighting. The decision variable 
pipelineImportance captures then all weights. We use the same compound (for now) to 

 

Figure 13: Overview on the adaptation part of the Configuration Meta Model. 
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describe the importance of the cross-pipeline tradeoffs, stored in crossPipelineTradeoffs. 

Furthermore, we allow changing the updateFrequency of the regular adaptation schedule (either 0 
to disable the regular schedule or more than 500 milliseconds). We declare these settings as 
runtime variables, as they may potentially be changed at runtime, and provide default values. 

This model part realizes requirement REQ-C-14. 

7.2.9 Infrastructure 

The infrastructure part of the QualiMaster Configuration Meta Model links all the individual model 
parts discussed above in order to describe the configuration of the overall QualiMaster 
infrastructure / platform for a certain setting. 

Currently, configuring the QualiMaster infrastructure allows selecting the pipelines to be 
instantiated and executed (REQ-C-15), i.e., the infrastructure part mainly consists of a collection 
decision variable, which specifies the selected pipelines. Thus, we do not illustrate this model part 
in terms of a figure. Future versions of this part may also contain details about the installed 
Execution Systems, the repositories or the technical communication information needed to 
communicate with the individual layers of the QualiMaster infrastructure, in particular the 
Coordination Layer. 

The infrastructure part defines one constraint, which requires that the number of workers required 
by all selected pipelines must be less or equal than the number of reserved ports for all machines 
in the cluster. An erroneous configuration may prevent Storm from starting pipelines 
(incrementally). This contributes to the realization of REQ-C-10. Due to future configuration 
knowledge, this constraint may be refined in subsequent versions of the Configuration Meta Model. 

7.3 Tool Support 
Tool support is required to enable the user to define a configuration, validate it, execute the 
platform instantiation and, in if required for adopting the QualiMaster infrastructure, to adjust the 
Configuration Meta Model or the specification of the platform instantiation (Challenge C4, cf. D5.2 
for more details). We utilize two specific tools for this purpose, namely the QualiMaster 
infrastructure configuration tool and EASy-Producer, a prototypical SPLE tool developed by SUH. 
While the QualiMaster infrastructure configuration tool supports the domain users in configuring 
their platform, EASy-Producer is used for defining and changing the Configuration Meta Model and 
the derivation process. Please note that EASy-Producer does currently not provide domain-specific 
capabilities, while the QualiMaster infrastructure configuration tool is a domain-specific frontend 
supporting the Infrastructure Users in their tasks. In this section, we give an overview on the 
current state of both tools and, in particular, the improvements over existing work that already have 
been done during the QualiMaster project. We start with the QualiMaster infrastructure 
configuration tool and discuss the improvements for EASy-Producer afterwards.  

The QualiMaster infrastructure configuration tool (QM-IC for short as in D1.2) aims at 
simplifying the configuration of the QualiMaster infrastructure for the infrastructure users, namely, 
Infrastructure Administrator, Pipeline Designer and Adaptation Manager. As described in D5.1, 
QM-IC tool is based on the Configuration Core, which consists of EASy-Producer. QM-IC tool is 
being developed in the QualiMaster project. Where possible, it reuses functionality of EASy-
Producer, e.g., to load IVML or VIL models, to reason on IVML models or to execute VIL models 
for instantiation. However, EASy-Producer does currently not provide domain-specific capabilities 
required to support the QualiMaster Infrastructure Users in their tasks, in particular not for 
configuring data processing pipelines. Therefore, QM-IC tool acts as a domain-specific 
configuration frontend, which also shields Infrastructure Users from the generic SPLE capabilities 
of EASy-Producer. Please note that in another application setting, a domain-specific configuration 
tool could allow the user to model rooms with alarm zones, fire detectors and sirens required in the 
alarm system case [16], or (3D) racks and stapler cranes for configuring a warehouse layout [32]. 

On the user interface, QM-IC tool provides access to configuration tasks according to the parts of 
the Configuration Meta Model introduced in Section 7.2. These tasks are indicated on the left side 
of Figure 14, which shows a screenshot of configuration tool. Each of the tasks provides a specific 
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editor to support the configuration activities. 
Model are dynamically derived from the Configuration Meta Model
manually. Thus, the editors are automatically synchronized against the Configuration Meta Model. 

In particular, for configuring QualiMaster data p
a graphical drag & drop editor, which exactly supports the QualiMaster pipeline modeling concepts 
and the selection of already configured elements such sources, sinks or processing families
C-9). The graphical editor is shown on the right side of 
graphical data flow specification as usual in the data stream processing community
82]) as discussed in Section 7.2.7
QualiMaster. As an alternative, we considered 
[123], but the QualiMaster consortium 
data processing as more appropriate 
adoption. Actually, the graphical pipeline editor is generated using Eclipse Eugenia
based on an editor specification derived from the IVML pipeline model discussed in Section 
i.e., a synchronization with the Configuration Meta Model currently needs a regeneration and 
compilation of the editor components
pipeline elements (depicted in the lower right side of 
underlying IVML configuration and 

IVML and the domain-specific configuration frontend of 
QualiMaster infrastructure configuration tool 
of domain-specific configuration applications
consistency in Task T4.2) or in further work outside the project

                                                      
10
 http://eclipse.org/epsilon/doc/eugenia/

11
 https://www.eclipse.org/epsilon/  
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Following the refinements of the use cases in D1.2, QM-IC tool integrates the configuration 
functionality for all Infrastructure Users, in particular to provide a comprehensive overview on the 
configuration of a QualiMaster infrastructure. Thus, the views of the three infrastructure user 
groups are available in one tool, but also access protected based on user roles. As a 
consequence, a Platform Designer who is not a Platform Administrator may view the settings for 
the reconfigurable hardware but he/she is not permitted to change these settings. These 
permissions are obtained from the user authentication against the Pipeline Repository, which is 
required to access the Configuration (Meta) Model or to synchronize it back. Thus, the 
configuration tool also realizes REQ-C-1, i.e., (application) users do not have access to the 
configuration as the required permissions may not be granted to them. Finally, QM-IC tool allows 
executing the QualiMaster platform instantiation process (cf. D5.2). 

Although the current version of the Configuration tool supports most of the configuration and 
instantiation activities, several specific capabilities still need to be developed, such as the 
configuration of platform quality parameters (UC-PA1, UC-PA2), the adaptation rules and settings 
(UC-AM1-UC-AM4), the adaptation monitoring view (UC-AM5), the deployment and startup 
operations (UC-PA8, UC-PA9) as well as a user-friendly editor for SLA constraints. 

EASy-Producer [42] is an Eclipse-based research tool for the management and development of 
product lines, which provides particular support for hierarchical product lines, multi-product lines 
and Software Ecosystems. EASy-Producer has mainly be developed in FP7 INDENICA12 and 
maintained and improved in the national funded project ScaleLog. In QualiMaster, EASy-Producer 
has been maintained and improved to tackle the configuration challenges identified in Section 3. 
So far, we worked on the following topics in QualiMaster: 

• Topology modeling and instantiation: Actually, IVML was designed with capabilities for 
configuration references due to an industrial requirement in the INDENICA project [34]. 
However, so far this capability was not used intensively. Thus, expressing complex 
topology constraints was rather difficult, in particular in topologies over refinement 
hierarchies as we use them for data processing pipelines (cf. Section 7.2.7), where the 
evaluation of constraints depends on the actual type of object being evaluated. Object 
oriented systems handle this through polymorphism, script-like languages, such as VIL 
through dynamic dispatch. Inspired by type selection capabilities and the extensibility of 
VIL, we extended IVML constraints with dynamic dispatch, i.e., user-defined functions can 
now be called dynamically based on the actual parameter type. This also supports the 
formulation of some of the challenging constraint problems discussed in [16]. 

• Constraint evaluation and propagation: We revised the constraint evaluation mechanism 
of EASy-Producer. Our initial approach based on a rule-based truth maintenance system, 
such as Jess13 or Drools14 for constraint evaluation, model validation and value propagation 
[36]. However, that approach was not able to fulfill the specific constraint evaluation 
capabilities required for QualiMaster. Additionally, its resource consumption was too high 
for runtime reasoning, a functionality that we need for bridging the gap between SPLE and 
adaptive systems (Challenge C1). The revised mechanism is being implemented as part of 
the QualiMaster project. Early evaluations of the revised reasoning mechanism show its 
feasibility in terms of concept completeness for IVML and resource consumption, in 
particular for the expected QualiMaster configuration models. 

• Configuration access during the instantiation process: While specifying the first 
versions of the QualiMaster platform instantiation process we uncovered the need for a 
better integration between configuration (IVML) and instantiation (VIL), in particular to 
simplify the access to the actual configuration values and to improve the readability of the 
instantiation specifications. Initially, VIL was equipped with a generic form of integration 
based on a common type for decision variables and functions providing the access to the 
actual configuration value given in terms of the name of the configurable element. In 

                                                      
12
 http://www.indenica.eu  

13
 http://herzberg.ca.sandia.gov  

14
 http://www.drools.org/  
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QualiMaster, we extended this integration by turning the static but extensible VIL type 
system into a dynamic type system reflecting the IVML types in VIL. Since currently the 
specific types of an IVML model are available, also the content assist mechanisms of the 
EASy-Producer editors can support the user adequately and dynamic dispatch in VIL can 
even be used for IVML types. This capability helped us in specifying the QualiMaster 
platform instantiation process (cf. D5.2). 

• Runtime instantiation support: We extended the VIL set of operations with specific 
operations for runtime instantiation to support adaptation in QualiMaster, in particular with 
access to IVML runtime variables (they are not relevant in a traditional product line 
instantiation processes) as well as access to the model validation and automated value 
propagation (runtime reasoning). As part of the realization of the Adaptation Model, which 
is discussed in Section 8, these further specific capabilities will be added. 

In addition, many more detailed improvements have been carried out in the first year of the project, 
as, e.g., documented in the recent versions of the IVML [139] and VIL [140] language 
specifications. Both, the QualiMaster infrastructure configuration tool as well as the more generic 
EASy-Producer tool profit from all these improvements. 

The configuration activities in QualiMaster are supported by two specific tools. On the one side, the 
QualiMaster infrastructure configuration tool, which is being developed for QualiMaster, supports 
domain-specific configuration activities and QualiMaster specific concepts such as reconfigurable 
hardware, processing families and adaptive data processing pipelines. On the other side, the Open 
Source EASy-Producer toolset is the support for evolving and adopting the Configuration Meta 
Model and the platform derivation process of QualiMaster. Further, EASy-Producer is used as a 
basis for realizing the QualiMaster infrastructure configuration tool. As discussed in this section, 
further development for both tools is needed to support the full breadth of the QualiMaster use 
cases. 
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8 QualiMaster Adaptation Model 
In this section, we discuss the approach that QualiMaster takes to realize the specific adaptation 
challenges of distributed real-time data stream processing (in particular Challenges C1, C5, C6 
and C7). Further, in this section, we discuss how we will realize a flexible specification of the 
adaptation behavior, and, thus, the “adaptation rules” requested by REQ-C-13. 

We start with an overview on the adaptation approach in Section 8.1. In Section 8.2, we present 
patterns for enacting adaptation decisions on the QualiMaster platform, in particular for adapting 
the processing of real-time data streams. Then, in Section 8.3, we discuss the flexible specification 
of the (reactive and proactive) adaptation behavior integrated with the Configuration Meta Model. 
Finally, in Section 8.4, we will discuss the actual state of the related tool support.  

Please note that, in contrast to Section 7, this section presents the conceptual foundation of our 
work as the specification language, the enactment patterns and the adaptation components will be 
researched, realized and evaluated in the remainder of the QualiMaster project. Further, as 
already mentioned in Section 2, we do not detail the conception for reflective and cross-pipeline 
adaptation in this deliverable, as the related tasks are scheduled to start in month 18. However, 
during the preparation of the configuration and the adaptation behavior model, we already took 
both topics into account in order to support later research and integration. 

8.1 Approach Overview 
In this Section, we provide an overview on the QualiMaster adaptation approach and, thus, detail 
the initial overview given in Section 3. We structure this section along the MAPE-K cycle (monitor-
analyze-plan-execute over a common knowledge base) [22, 76, 90] and discuss how the individual 
parts of the cycle will be realized in QualiMaster. An overview is depicted in Figure 15. 

As indicated in Section 3, an important part of the knowledge base is the runtime configuration. It 
consists of the configuration used for the instantiation of the QualiMaster infrastructure and the 
runtime variables indicating the actual state of the system. Examples for runtime variables are 
selected algorithms, parameter settings and observables such as quality parameters. In particular, 
configuration values used during the instantiation of the QualiMaster infrastructure will be 
available, but, unless marked by specific IVML attributes, considered as constant during runtime. 
In contrast, runtime variables change during runtime (in particular quality parameters as observed 
by monitoring) or are being changed by the adaptation such as the currently selected algorithms. 

A prerequisite to adaptation is that the system being adapted is monitored. Basically, the quality 
parameters are defined in the Configuration Meta Model (see Section 7.2.2). All quality parameters 
that are either used in the (SLA) constraints of the Configuration Meta Model or in the specification 

 

Figure 15: MAPE-K adaptation cycle in QualiMaster (based on [76]) 
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of the adaptive behavior (see Section 8.2) are considered for monitoring (through the platform 
instantiation). While the values of the quality parameters are physically monitored in the Execution 
Layer (through instrumented code, generated code or existing interfaces as described in D5.1), the 
Monitoring Layer of the QualiMaster infrastructure receives, aggregates and, if required, persists 
the values in terms of quality profiles in the Data Management Layer. 

Next, the actual values of the quality parameters are analyzed. In the architectural blueprint of 
adaptive systems [76] as well as in many approaches in literature, this is done by an own 
component. However, in QualiMaster, the Monitoring Layer mainly acts as an aggregator and 
overall control mechanism for monitoring, while monitoring actually happens in the Execution Layer 
as indicated above. Thus, we realize the analysis tasks in the Monitoring Layer, in particular the 
regular analysis of SLA constraints defined in the Configuration and the pipeline quality analysis 
(REQ-A-12). This is due to the fact that we aim at minimizing the communication among the layers 
of the QualiMaster infrastructure so that the infrastructure components communicate only if 
actually needed. Therefore, upon startup of a pipeline, these constraints are loaded into the 
Monitoring Layer and inform the Adaptation Manager accordingly, e.g., in case of SLA constraint 
violations. 

Determining a plan for the adaptation based on the actual situation is the next step in the MAPE-K 
cycle. This is handled by the Adaptation Layer of the QualiMaster infrastructure, which becomes 
active on certain adaptation triggers. Currently, we foresee the following adaptation triggers: 

• Internal triggers, i.e., triggers caused by the QualiMaster platform itself, such as 

o SLA constraint violation detected by the Monitoring Layer. 

o Regular adaptation schedule, i.e., an internal trigger that is issued regularly based 
on the configured value of updateFrequency (cf. Section 0). This trigger causes 
either an adaptation or, in case that no enactment is needed, it may cause an 
update of the common knowledge. 

o Changes to the Configuration Model without restarting the pipelines, such as SLA 
changes, modifications of the resource pool, etc. 

o Errors in the Execution Layer, e.g., caused by data processing or by dynamic 
changes at runtime. If specified in the adaptation behavior, this may also lead to 
some form of recovery to the most recent successful runtime configuration. 

o Administrative events, such as startup or shutdown of a pipeline or the whole 
infrastructure. 

• External triggers caused by data or the user, such as 

o External events, e.g., due to regular domain-specific calendars such as the 
announcements of the central banks in the financial domain detected from Web 
data. 

o Unforeseen emerging events detected from Web data. 

o User triggers issued by the QualiMaster applications. Please note that these 
triggers shall typically be considered of a lower priority than the other triggers. 

Upon an adaptation trigger, the Adaptation Layer executes the actual Adaptation Behavior 
Specification, i.e., it freezes the actual quality properties temporarily for this particular execution 
and (dynamically) selects the adaptation strategy to be executed. Ultimately, the adaptation 
strategy determines the actions causing runtime changes in the QualiMaster platform. Thereby, the 
strategy causes changes in the runtime configuration, which require a validation based on the 
(runtime) configuration constraints, and, finally, leads to changes in the QualiMaster platform. 
Adaptation strategies (called “adaptation rules” in D1.2) are defined by the Adaptation Manager at 
configuration time and executed at runtime. However, further adaptation strategies may be added 
at runtime, e.g., as a form of enactment or due to the reflective adaptation. 

Finally, the adaptation decision leads to the enactment (execution) of the runtime configuration. 
Therefore, the changed runtime decision variables are turned into commands for the Coordination 
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Layer based on the Adaptation Behavior Specification. In case of multiple commands to be 
executed in one step, the Coordination Layer executes them in a transactional manner, taking care 
of the overall consistency of the Execution Systems (as described in D5.1). The Coordination 
Layer records such a transaction via the Data Management Layer in the adaptation log. This 
allows determining the impact of the adaptation decision as, e.g., and to dynamically select 
adaptation strategies as, e.g., done in [73]. 

All adaptation steps rely on common adaptation knowledge. Basically, this knowledge consists 
of the runtime configuration including the runtime and the pre-runtime settings, which were used 
for instantiating the running platform and pipelines. Due to the topological configuration of the 
pipelines, important customizable parts of the QualiMaster architecture are already reflected in the 
configuration. As indicated above, the runtime variables represent the actual state of the 
QualiMaster infrastructure relevant for adaptation at runtime. The common (runtime) knowledge is 
further complemented by an architectural model, i.e., the components that can be affected at 
runtime (such as events representing the triggers and the coordination commands) as well as the 
information stored in the Data Management Layer. For this purpose, the Data Management Layer 
contains tradeoff information among the individual algorithms (either collected at runtime or 
provided through the extension package manifests), impact information on the enactment of 
adaptation decisions, an adaptation log, etc. 

8.2 Enactment Patterns  
Enactment of adaptation decisions can happen in different parts of the QualiMaster platform as 
well as in different forms. In this section, we discuss enactment patterns capturing the potential 
enactments. The patterns have been identified by a systematic analysis of the QualiMaster use 
cases (D1.2), the QualiMaster infrastructure (D5.1) and the data stream processing literature (cf. 
Section 4.1) following the overall goal to adapt the data processing by avoiding / minimizing the 
impact on the real-time properties of the processed data streams (Challenge C7). 

The patterns we describe in this section are intended as a research plan for the first months of the 
second period of the project, i.e., they need to be analyzed, evaluated and, in case of successful 
evaluation, implemented through the adaptation specification. We plan to perform intensive 
experiments with the identified patterns to analyze their runtime behavior, their impact on the 
quality as well as their practical feasibility. This may lead to the exclusion of individual patterns, the 
refinement of existing patterns, but also the inclusion of new patterns. Although we discuss in this 
section patterns for the entire infrastructure, we focus in particular on the adaptation of the real-
time data stream processing, i.e., the data analysis pipelines. 

In Section 8.2.1, we introduce the structure we use for describing enactment patterns. Then we 
use the pattern structure to describe two main types of patterns, namely  

• Primary enactment patterns (Section 8.2.2) intended to change the data processing as 
requested by the adaptation strategies. 

• Secondary enactment patterns (Section 8.2.3) that can be combined with the primary 
pattern, i.e., optionally support the primary enactment patterns. Secondary patterns are 
intended to be executed explicitly by an adaptation strategy or applied implicitly by the 
Execution Layer. 

In Section 8.2.3, we illustrate the applications of some patterns in terms of an example. 

8.2.1 Pattern Structure 

In this section, we describe the structure we use for presenting and discussing the enactment 
patterns we identified for the QualiMaster infrastructure. As indicated above, future work may 
change the pattern set and, if required, also the pattern structure. 

Relying on a pattern structure is a well-established approach for reporting on software 
development knowledge. Originally, this was applied to describe design patterns [57]. In recent 
time, patterns have also been used to describe software architectures [23], programming 
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approaches in terms of idioms [23], or variability instantiation patterns [33, 43]. Thus, the top-level 
elements of the structure are rather standard. They include: 

• Identification: The identification of the pattern. 

o Name: Each pattern receives a meaningful name. 

o Identifier: Along with the name, each pattern receives a unique identifier in order to 
enable references, also for future deliverables. 

• Purpose: A short description of the situation to be solved by the pattern. 

• Context: The context restricts the situations in which the pattern is applicable. 

o Execution System: This details the QualiMaster Execution Systems (cf. D5.1) the 
pattern applies to, i.e., software-based or hardware-based execution (possibly 
qualified by “stream processing” or “batch”). 

o Synergies / Overlaps: We record whether (we expect that) this pattern has 
synergies or overlaps with other patterns, e.g., whether a pattern is (technically) 
subsumed by another pattern. 

• Approach: The approach the pattern takes to adapt the QualiMaster infrastructure at 
runtime. 

o Key idea: This describes the key idea how the enactment happens as well as 
similarities identified in literature. 

o Advantages / Disadvantages: A brief discussion of expected benefits or already 
identified issues, possibly along with alternative realization options. 

8.2.2 Primary Enactment Patterns 

In this section, we describe those patterns that are intended to change the data processing, in 
particular the real-time data stream processing in the QualiMaster infrastructure. The patterns are 
(without aiming at a specific sequence): 

� Change functional parameter of algorithm (EP-1) 

� Select algorithm from processing family (EP-2) 

� Perform load shedding (EP-3) 

� Switch between software- and hardware-based processing (EP-4) 

� Parallelize processing element (EP-5) 

� Migrate the execution of processing tasks (EP-6) 

We now discuss the individual patterns: 

EP-1 Change functional parameter of algorithm. 

Purpose: Affect and optimize the behavior and the qualities of an algorithm without 
switching to another algorithm in the same algorithmic family. 

Context:  

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: This pattern can be used to determine an approximate start 
value to reduce the startup time and to optimize the settling behavior of an algorithm, 
possibly affecting the internal state of the algorithm (ES-11). Further, this pattern can 
be realized by turning variable parameters into constants in order to optimize the 
runtime performance, e.g., though instantiation of algorithms at runtime (ES-4). The 
application of this pattern may be combined with switching between algorithms in the 
same family (EP-4), in particular between hardware and software, but also with a 
temporary parallelization in order to reduce the settling time (EP-5, ES-5). Changing 
functional parameters is used in some existing approaches, such as [87, 93, 122]. 
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Approach: 

• Key idea: The available functional parameters are specified as runtime variables in the 
configuration (see Section 7.2.5 and 7.2.6). These runtime variables can be changed 
by the adaptation, checked by the runtime reasoning, and, finally, sent as a functional 
parameter modification command by the Adaptation layer to the Coordination Layer. 
The Coordination Layer forwards the command to the responsible Storm Bolt, which 
calls the respective method of the algorithm family interface. This leads to a change of 
the parameter implementation, either directly in a single Java realization, via network in 
a hardware-based implementation or through the implemented means of a topology 
based algorithm. 

• Advantages / Disadvantages: Typically, changing an external parameter in an 
algorithm can be done very efficiently. The algorithm receiving the new parameter may 
change the behavior, its quality parameters (in particular time-behavior and functional 
suitability, cf. Section 6.2), but also cause a certain instability of the results for a certain 
(settling) time. 

EP-2 Select algorithm from processing family. 

Purpose: Select the optimal algorithm according to the current situation. 

Context: 

• Execution System: Software-based or hardware-based execution (stream 
processing). 

• Synergies / Overlaps: May require switching to hardware (EP-4), a change of the 
topology in case of topology-based algorithms (ES-8), a transfer of the internal state of 
the algorithm if possible (ES-11) or running algorithms in parallel (ES-5) in order to 
optimize the settling behavior. Switching among topologies can be realized by stream 
re-routing (ES-8) and may require explicit synchronization (ES-12). Akin to EP-1, also 
temporary parallelization can be applied to reduce the settling time (EP-5, ES-5).  

Changing a whole query plan (consisting of generic data stream operators) at runtime 
in order to optimize the quality is for example done in [122], the adaptation of general 
processing flows in [61] and the automated composition of processing flows based on 
flow patterns in [115]. 

Approach: 

• Key idea: Algorithm families are groups of algorithms with similar functionality, but 
different quality tradeoffs. Switching the actual algorithm used for processing can 
improve, but also decrease quality properties, potentially leading to quality impacts in a 
whole data analysis pipeline. The available algorithms are defined in the configuration. 
The algorithm family refers to the actual algorithm as a runtime decision variable. Akin 
to EP-1, changing the actual processing algorithm based on the executed adaptation 
strategies leads to a change of the runtime configuration, a runtime validation and, 
ultimately, to the respective algorithm switch command sent by the Adaptation Layer to 
the Coordination Layer. The coordination layer forwards the command to the right 
Storm Bolt using a Storm signal. The respective Bolt receives the signal and changes 
the active algorithm accordingly, possibly executing further secondary patterns based 
on further command send to the Coordination Layer. 

• Advantages / Disadvantages: The new algorithm may affect the quality parameters of 
the entire pipeline (in particular time-behavior and functional suitability, cf. Section 6.2), 
but also cause a certain instability of the results for a certain (settling) time. 

EP-3 Perform load shedding. 

Purpose: Reduce the data stream volume / load, in particular in cases of extreme load due 
to an increasing volume of the data streams. 
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Context: 

� Execution System: Software-based or hardware-based execution (stream 
processing). 

� Synergies / Overlaps: Load shedding can be enabled or controlled by a functional 
parameter (EP-1), a bypass of a load shedding algorithm (family) designed into the 
pipeline (ES-2), a bypass of an internal load shedding implementation in a Bolt (ES-2) 
or by changing the processing pipeline (ES-8). 

Approach: 

• Key idea: Exclude items from a data stream before they consume (additional) 
resources, as performed for example in [1, 25, 136, 145] and discussed in D2.1. As 
analyzed in literature, several positions for load shedding in data processing can be 
considered with different impact on quality parameters as well as on the processing 
result. Static load shedding is defined once based on a static analysis, while dynamic 
load shedding can be changed on demand, e.g., through a functional parameter. 
Dropping items is the simplest approach to load shedding, e.g., to discard items in a 
random fashion. Filtering is a semantic, but also more resource-consuming way of 
reducing the overall load due to a high data stream volume. 

• Advantages / Disadvantages: Discarding items from a data stream may affect the 
accuracy of the analysis. However, it is an approach to avoid overload in extreme 
situations, in particular if applied at (or shortly after) the pipeline data source. 

EP-4 Switch between software- and hardware-based processing. 

Purpose: Improve the performance by exploiting the parallel stream processing capabilities 
of reconfigurable hardware. 

Context: 

• Execution System: Hardware-based execution (collaborating with software-based 
execution). 

• Synergies / Overlaps: This pattern can be considered as a special case of EP-2, i.e., 
synergies and overlaps apply as discussed above. As hardware-based processing 
involves different types of hardware, stream re-routing (ES-8) is required upon 
switching. Further, switching to a hardware-based algorithm can require 
reprogramming of the reconfigurable hardware, i.e., uploading the correct algorithm to 
the DFEs (ES-2), potentially unloading an existing algorithm. Further, buffering (ES-1) 
or explicit synchronization (ES-12) may be required. 

Approach: 

• Key idea: Switching among software-based and hardware-based processing can be 
realized akin to EP-2, i.e., upon the decision of an adaptation strategy, an algorithm 
switch command is sent by the Adaptation Layer to the Coordination Layer. This may 
lead to a change of the actual algorithm uploaded to the reconfigurable hardware. 
Finally, the command leads to a Storm signal message received by the respective Bolt. 
As prepared by the platform instantiation (cf. D5.2), the receiving Bolt can switch 
among software-based and hardware-based processing, by enabling the respective 
family member, in the hardware case the generated hardware connector. 

• Advantages / Disadvantages: Switching of algorithms may cause quality changes as 
well as temporarily instable results through an algorithm-specific settling time. This 
enactment pattern requires stream re-routing. In particular, switching between 
software-based and hardware-based processing may increase the switching time (cf. 
Section 6.2.1.1) due potential reprogramming of the reconfigurable hardware. 

EP-5 Parallelize processing element. 

Purpose: Utilize additional resources for parallel processing.  
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Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: This pattern can be realized as a change of the physical 
processing topology (ES-8), e.g., as a special (implicit) case of EP-2 as actually done 
for hardware processing. Migration of processing tasks to other resources of the cluster 
may be required (EP-6). 

Approach: 

• Key idea: Use parallel stream-based processing to achieve better results by allocating 
more compute resources, potentially also on different physical machines. Please note 
that parallelizing a processing element is different from threading or spawning a further 
process (ES-5), as this happens on pipeline / topology level, i.e., data stream re-routing 
and dynamic data distribution (e.g., using the shuffling strategy in Storm) is required. 

• Advantages / Disadvantages: Applying this pattern requires additional compute 
resources and may increase the complexity of pipeline processing. Further, its 
realization depends on the actual capabilities of changing the physical processing 
topology or redistributing resources / migrating execution at runtime. 

EP-6 Migrate the execution of analysis tasks. 

Purpose: Perform the computation on additional or alternative resources. 

Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: This pattern can be understood as the generic super-pattern of 
changing algorithms across resources (EP-2), switching to hardware (EP-4) or 
parallelizing processing elements (EP-5). In addition, this pattern enables the use of 
alternative execution systems or further resources for software-based processing. We 
kept the individual patterns in order to analyze and discuss them separately. Migrating 
the execution may require the insertion or removal of data buffers (ES-1) 

Approach: 

• Key idea: Physically shift the processing within the cluster or even to external 
resources, i.e., resources outside the QualiMaster computer cluster. An Example for an 
external resource is a (private, public, hybrid) cloud if data can be processed there, e.g. 
due to legal or privacy issues. This can be done by rebalancing the distributed 
processing in Storm, but also by considering alternative Execution Systems in the 
Execution Layer. One example for alternative Execution Systems are Hadoop15 and 
Spark16,. Typically, Spark requires more memory resources (resource utilization), but 
offers a better processing performance (time-behavior), while Hadoop is more resource 
efficient, but also slower in processing.  

• Advantages / Disadvantages: Migration of tasks may require that respective 
resources are freed or even powered up. Depending on the available resources, 
alternative execution systems may (at least temporarily) run in parallel. This pattern 
may significantly increase the switching time (time-behavior) and lead to temporary 
instability of the analysis results. Switching to external systems may increase the 
latency, but also provide nearly unlimited resources, thus, enable processing even in 
extreme load situations while, potentially, sacrificing time-behavior quality (at least 
temporarily). Migrating processing tasks in Storm is supported by rebalancing a 
running topology, which actually causes an interruption of data processing. In contrast, 
dynamically migrating tasks including alternative execution systems can lead to an 
overall balanced processing, but requires adequate switching capabilities. 

                                                      
15
 http://hadoop.apache.org/  

16
 https://spark.apache.org/  
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Currently, the platform instantiation process (cf. D5.2) realizes the following enactment patterns for 
a generated Storm topology: Change functional parameter (EP-1), Switch algorithm (EP-2), and 
switch to / from hardware (EP-4). Further enactment patterns will be considered after a thorough 
analysis as indicated in Section 8.2. 

8.2.3 Secondary Enactment Patterns 

In this section, we describe additional (sub-)patterns, which can optionally be used to support or 
optimize the primary enactment patterns. In particular, multiple secondary patterns may be 
combined with a primary pattern. The patterns are (without aiming at a specific sequence): 

� Data buffering (ES-1) 

� Reprogram reconfigurable hardware (ES-2) 

� Bypass processing element (ES-3) 

� Instantiate algorithm (ES-4) 

� Execute tasks in parallel (ES-5) 

� Adapt monitoring (ES-6) 

� Bind / unbind algorithm (ES-7) 

� Re-route streams (ES-8) 

� Change Storm topology (ES-9) 

� Use less precise algorithm for settling results (ES-10) 

� Perform state transfer (ES-11) 

� Synchronize enactment and data processing (ES-12) 

We discuss now the individual patterns: 

ES-1 Data buffering. 

Purpose: Bridge gaps cause by dynamic enactments to avoid accidental loss of data or 
local overload. 

Context: 

• Execution System: Software-based or hardware-based execution (stream 
processing). 

• Synergies / Overlaps: Data buffers can, e.g., be used while algorithm switching (EP-
4), switching to hardware (EP-4) or execution migration (EP-6). 

Approach: 

• Key idea: Insert a data buffer, e.g., on the input side of a Bolt to temporarily store data 
items, defer processing, synchronize processing and enactment or avoid data loss. On 
the one side, switching and settling behavior of individual algorithms determine 
whether a data buffer is needed, e.g., through threshold values for the respective 
quality parameters. Based on actual quality parameters, the Adaptation Layer can 
decide about the need for a buffer, send a respective command to the Execution Layer 
and cause the dynamic insertion / removal of a data buffer in the respective Bolt. The 
buffer size may be controlled dynamically, e.g., based on actual quality parameters, 
either implicitly in the Bolt, or explicitly through the Coordination Layer. Please note 
that configuring a data buffer at runtime does not happen through functional 
parameters, but implicitly through mechanisms of the QualiMaster infrastructure. 

• Advantages / Disadvantages: A data buffer may temporarily affect the real-time 
properties of the data stream (latency), but enable synchronization or avoid data loss. 
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ES-2 Reprogram reconfigurable hardware. 

Purpose: Provide reconfigurable hardware with the algorithms to be executed. 

Context: 

• Execution System: Hardware-based execution. 

• Synergies / Overlaps: Reprogramming hardware-based algorithm may require the 
insertion or removal of data buffers (ES-1), bypassing software-based algorithms for 
switching (ES-2) or, if reconfigurable hardware must be freed, also switching back to 
software-based processing (EP-4). 

Approach: 

• Key idea: For executing a hardware-based algorithm, the underlying reconfigurable 
hardware must be reprogrammed, i.e., the compiled and laid-out algorithm must be 
uploaded to the DFE, in Maxeler environments through the Maxeler OS. This requires 
free DFE resources, i.e., either a DFE is available and can be used or a decision must 
be made whether the actual use of a DFE is not efficient in the current situation. The 
latter requires a switch back to software-based processing (EP-4). 

• Advantages / Disadvantages: Reprogramming reconfigurable hardware with a new 
algorithm typically may take up to seconds in which the related DFE is not available. 

ES-3 Bypass processing element. 

Purpose: Optimize quality parameters by simplifying the data processing or enable explicit 
alternatives in data processing. 

Context: 

• Execution System: Software-based or hardware-based execution (stream 
processing). 

• Synergies / Overlaps: Bypassing a processing element can be seen as a special case 
of changing pipeline topology (ES-8). 

Approach: 

• Key idea: Basically, bypassing a processing element realizes an optional algorithm, 
either explicitly or implicitly. An explicit optional algorithm is stated in the in the pipeline 
specification by a pipeline constraint. Implicit bypassing happens through the 
enactment of adaptive decisions, i.e., built-in without explicit specification by the user. 
On the one side, this may lead to a change of the pipeline topology, i.e., to exclude the 
processing element from processing and to avoid the execution of adaptation-related 
code. On the other side, this can also be realized within a Bolt, i.e., to accept input 
items and to directly bypass them. 

• Advantages / Disadvantages: Bypassing algorithms can avoid unnecessary 
processing and may optimize the time-behavior such as latency. Depending on the 
actual implementation of the bypass (pipeline level, Bolt level), this may also require 
global changes to the processing (if not already prepared by the platform instantiation 
or through ES-8). 

ES-4 Instantiate algorithm. 

Purpose: Optimize the time-behavior of software-based algorithms through the creation of 
variants in which functional parameters are replaced by constants. 

Context: 

• Execution System: Software-based execution. 

• Synergies / Overlaps: A static form of setting functional parameters (EP-1), which 
may be realized through binding / unbinding the implementation (ES-7). May require 
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data buffering (ES-1) during implicit switch (EP-2) of an algorithm to its dynamically 
created variant. 

Approach: 

• Key idea: Functional parameters can be used to enable or disable parts of the 
algorithm. Instead of checking parameter-dependent alternatives or calculating 
parameter-dependent values for every data item, constant parameters can improve the 
time-behavior of the execution, as unused alternatives can be removed by the compiler 
[125] or similar mechanisms. Replacing variable parameters by constants is a 
traditional variability implementation technique in software product lines [105, 135]. In 
contrast, replacing functional modules at runtime is an approach to realize variability in 
service-based systems [43, 33]. This pattern combines both approaches. Therefore, 
the algorithm code is processed, parameters are replaced by constants, the code is 
optimized, and loaded at runtime into the QualiMaster platform as a (runtime) member 
into the respective algorithm family. This causes a dynamic change of the configuration 
model. 

• Advantages / Disadvantages: Depending on the actual functional parameter, 
replacing a parameter by a constant may influence the quality parameters akin to 
setting a usual functional parameter (EP-1). Instantiating an algorithm at runtime is a 
non-trivial technical task. However, for hardware-based algorithms this pattern does 
not lead to significant runtime improvements according to the experience of Maxeler 
with hardware algorithms relying on several hundreds of parameters. 

ES-5 Execute tasks in parallel. 

Purpose: Execute tasks in parallel on the same machine in order to improve overall quality 
parameters and optimize the switching time and settling behavior. 

Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: (EP-5) may rely on this pattern for realization. Variant 
algorithms for parallelization may be created by instantiation at runtime (ES-4). 

Approach: 

• Key idea: Run two algorithms, either the same, members of the same family or 
variants due to (ES-4), in parallel within a processing element. On the one side, 
running algorithms in parallel, e.g., by using multiple physical CPUs, and internally 
distributing the input items can optimize the processing quality. On the other side, 
running algorithms in parallel on the same data can help to optimize the switching time 
and the settling behavior, e.g., switching to the new algorithm after it became stable 
while working on the same data. In addition, more complex adaptation actions can be 
executed in parallel in order to avoid impacts on the data processing. 

• Advantages / Disadvantages: On the one side, this pattern can be used to exploit 
further internal resources, such as CPUs on the same physical machine as well as to 
optimize the switching / settling behavior. On the other side, running algorithms in 
parallel consumes also more resources and may need explicit synchronization of 
processing and data items. 

ES-6 Adapt monitoring. 

Purpose: Reduce monitoring overhead by dynamically enabling or disabling monitoring or 
by changing the monitoring frequency. 

Context: 

• Execution System: Software-based execution. 

• Synergies / Overlaps: Changing instrumented code can be seen as a specific form of 
instantiating an algorithm with respect to monitoring probes (ES-4). 
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Approach: 

• Key idea: Typically, monitoring happens in addition to the normal operations and, thus, 
causes overhead. Avoiding monitoring overhead while obtaining the relevant 
information is an important goal in software measurement (as discussed, e.g., in [46]). 
In stable environments, i.e., quality parameters are considered as sufficiently confident 
and stable, this overhead can be reduced by disabling monitoring or changing the 
monitoring frequency if applicable. This can be achieved by disabling the entire 
monitoring or, on a different level of granularity, disabling monitoring probes for 
individual observables so that further processing of raw monitoring information does 
not happen. In case of frequently used (expensive) monitoring probes (such as for 
memory allocation in Java), a dynamic re-instrumentation of the code  can help saving 
more resources. 

• Advantages / Disadvantages: May temporarily increase the resource usage, affect 
quality parameters if re-instrumentation is required and affect quality parameters in 
case that monitoring is not performed if actually needed. 

ES-7 Bind / unbind algorithm. 

Purpose: Dynamically load needed and unload unused algorithms and their dependencies 
to save resources. 

Context: 

• Execution System: Software-based execution. 

• Synergies / Overlaps: Depending on the actual implementation, this pattern may 
support the switching of algorithms (EP-4) as well as the dynamic instantiation of 
algorithms (ES-4). 

Approach: 

• Key idea: Realize algorithms in terms of modules that make their dependencies 
explicit and use a module system that allows dynamic loading / unloading of 
components such as OSGi17 to optimize resource utilization. 

• Advantages / Disadvantages: As only running algorithms and their dependencies are 
kept in memory, less resources, in particular memory are consumed. However, explicit 
loading and unloading of algorithms may increase the switching time, lead to 
temporarily increased resource. 

ES-8 Re-route streams. 

Purpose: Switch among algorithms by changing the respective input / output streams. 

Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: Supports the realization of switching algorithms (EP-4), 
switching among software- and hardware-based execution (EP-4) as well as migration 
of analysis tasks (EP-6). Data buffers (ES-1) may be used in combination.  

Re-routing of data items is for example utilized in [1, 122]. 

Approach: 

• Key idea: Redirect a data stream among alternative implementations or Execution 
Systems, e.g., from software-based processing in Storm to hardware-based processing 
on Maxeler DFEs. 

• Advantages / Disadvantages: Re-routing a data stream may cause a gap in data 
processing so that data is accidentally lost. While Storm provides mechanisms for 

                                                      
17
 http://www.osgi.org/Main/HomePage  
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properly switching / filtering streams, switching within a Bolt, e.g., to reconfigurable 
hardware or a sub-topology by a network connection may require buffering. 

ES-9 Change Storm topology. 

Purpose: Adjust the pipeline implementation to cope with a changed environment. 

Context: 

• Execution System: Software-based execution (stream processing). 

• Synergies / Overlaps: Bypass processing elements (ES-2) or parallelize processing 
elements (EP-5) can be seen as a special case of changing a Storm topology. Data 
buffers (ES-1) as well as stream re-routing (ES-8) can support the realization. 

Approach: 

� Key idea: Changing the Storm topology of a data processing pipeline enables 
additional dimensions of flexibility, in particular to adjust the processing and to control 
resource utilization. A replacement topology can be obtained by creating a respective 
pipeline configuration and executing the QualiMaster platform instantiation process for 
that specific pipeline. 

� Advantages / Disadvantages: Changing a topology is a technological challenge as it 
changes a laid-out and allocated distributed processing topology. Currently, Storm 
does not provide support for this enactment pattern. However, there are several 
alternatives to enable dynamic changes of a Storm topology: 

• Change the topology by stopping the running one, i.e., disconnect the streams, 
buffer the data, stop the running topology, start the replacement topology and 
reconnect the streams. However, this causes an interruption of the data 
processing, and, thus taints the real-time properties of the data streams. 

• Start the replacement topology in parallel and connect the input streams also to 
the replacement topology. Keep both topologies running until the results of the 
replacement topology are stable, switch then the data streams from the data sinks 
to the applications, disconnect the input of the old topology and shut down the old 
topology. This approach requires that the resources for running the replacement 
topology are available, i.e., value-added processing may need to be temporarily 
disabled. Applying this approach will cause a significant peak resource usage, but 
does not cause (significant) impact on the data streams. 

• Spilt up the (logical) data processing pipeline into parts, which are executed as 
individual sub-topologies (not to be confused by sub-topologies realizing 
alternative algorithms). Then, an individual sub-topology can be replaced akin to a 
replacement topology, but with less impact on the overall infrastructure, i.e., 
running the replacement sub-topology it in parallel until the results are stable and 
then re-routing the streams accordingly. Although this approach may reduce 
flexibility and strategies for splitting a topology are needed, the peak resource 
usage shall be less impacting. 

• Lay out an augmented topology, i.e., a topology with potential alternatives, in the 
extreme case a kind of maximum topology. Although this allows switching among 
(anticipated) alternatives, it leads to increased overall resource utilization, in 
particular as several alternative paths and the occupied resources may actually not 
be used at all. 

ES-10 Use less precise algorithm for settling results. 

Purpose: Use an alternative, less precise but also less resource consumptive algorithm to 
reduce switching time and improve settling behavior.  
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Context: 

• Execution System: Software-based or hardware-based execution (stream 
processing). 

• Synergies / Overlaps: Parallelize processing element (EP-5) as well as changing the 
pipeline topology (ES-8) can support this pattern. Switching algorithms (EP-2, EP-4) 
are more complex as the less precise algorithm must be considered for switching / 
setup. State transfer (ES-11) can be an alternative to this pattern. 

Approach: 

• Key idea: Run a less precise algorithm such as summarization or sketching in parallel 
to the normal data processing and switch first to that algorithm until the actual 
alternative algorithm becomes stable and then to the alternative algorithm. 

• Advantages / Disadvantages: The switching time may be reduced as the change can 
happen immediately and, depending on quality requirements, the “real” alternative 
algorithm may take over faster. However, running an additional algorithm in parallel 
also consumes more resources. 

ES-11 State transfer. 

Purpose: Reuse the internal state of the running algorithm in order to reduce switching 
time and improve settling behavior. 

Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: This pattern can support the switching of algorithms (EP-4), but 
probably not across software- and hardware-based execution. Further, this pattern is 
an alternative to ES-10, i.e., running a less-precise algorithm in parallel. 

Approach: 

• Key idea: State-based algorithms require some time to build up a state and to produce 
stable results. Upon switching algorithms, the internal state of an algorithm is lost. The 
replacing algorithm needs to build up its internal state before results become stable. If 
applicable, the internal state of an algorithm can be transferred to the alternative 
algorithm while switching algorithms. 

• Advantages / Disadvantages: This pattern can reduce the startup time and improve 
the settling behavior, but requires algorithms with compatible internal states. The 
realization may need to follow some form of component reconfiguration protocol [20]. 

ES-12 Synchronize enactment and data processing. 

Purpose: Synchronize data processing and enactment to avoid inconsistent processing 
state or invalid processing results. 

Context: 

• Execution System: Software-based or hardware-based execution. 

• Synergies / Overlaps: This pattern must be taken into account for all primary 
enactment patterns (EP-1, EP-2, EP-3, EP-4, EP-5, and EP-6). 

Approach: 

• Key idea: Enactment signals and data stream processing may occur in parallel, i.e., 
immediate changes caused by the enactment may disturb data processing as, e.g., the 
actual algorithm or parameters are changed during processing. Synchronization 
problems may also occur if enactment must happen at two different points of data 
processing, e.g., for a Bolt switching between data streams and further Bolts realizing 
the data processing, i.e., two Storm signals must be synchronized. This can be 
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handled by deferred execution of the enactment in safe states of data processing as a 
kind of (implicit) reconfiguration protocol [20]. 

• Advantages / Disadvantages: Keeping enactment and processing in a synchronized 
state helps ensuring the validity of the data processing results. Maintaining 
synchronization may imply more complicated data processing code due to explicit 
synchronization or exclude certain realization alternatives, e.g., to avoid multiple 
signals needed for enactment and defer the actual enactment until a current data 
processing task is finished. 

Currently, the platform instantiation process (cf. D5.2) realizes the following enactment patterns for 
a generated Storm topology: Bypass processing element (ES-3) in case of switching to / from a 
sub-topology and re-route streams (ES-8) for, both sub-topologies and switching to / from 
hardware-based processing. Further, the QualiMaster infrastructure realizes the reprogramming of 
reconfigurable hardware (ES-2), in particular during startup of the instantiated QualiMaster 
platform. Further secondary enactment patterns will be considered after a thorough analysis as 
indicated in Section 8.2. 

8.2.4 Application of Enactment Patterns 

In this section, we describe an example illustrating how enactment patterns can be combined to 
realize adaptation. In general, one adaptation strategy may trigger (explicitly or implicitly) several 
enactment patterns. Regarding the implementation, we rely in our argumentation on the topology 
generated by the QualiMaster platform instantiation process (cf. D5.2). 

Let us consider the case that a software algorithm shall be switched at runtime. Basically, this can 
be done by changing the actual instance of the family interface in a Bolt, i.e., by overriding the 
running algorithm with the one specified in the received adaptation signal. However, the signal may 
be received in parallel to the actual processing, i.e., directly changing the algorithm may impact the 
result stream or data items may be lost. A programmatic approach could be to avoid mutual 
reentrant execution of methods of a Bolt, i.e., to enforce that either data processing or signal 
handling is performed. In total, this may affect the latency of the produced data stream. An 
alternative is to schedule the new algorithm for replacement (instead of doing the replacement 
directly, an implicit form of ES-12), and to perform the replacement after the actual algorithm 
processed its (current) item. If the Bolt supports dynamic wiring / unwiring (ES-7), the replacement 
algorithm must first be loaded, then scheduled for replacement and after replacement the old 
algorithm may be unloaded. Here, loading of the algorithm and scheduling the replacement as well 
as unloading the algorithm shall be executed in parallel tasks (ES-5) in order to avoid impacts on 
the real-time streams. If the actual exchange of the algorithms cannot be done synchronously with 
data stream processing, buffering of input items (ES-1) is required in order to avoid data loss. In 
case that the replacement algorithm is state-based and building up the state affects the quality of 
the processing, state transfer (ES-11), a less precise algorithm for improving the settling behavior 
(ES-10) or parallelizing the replacement algorithm (ES-5) with deferred scheduling of the 
replacement can be applied until the results become stable. 

8.3 Flexible Adaptation Behavior Specification 
In this section, we detail our concepts for specifying the adaptive behavior in the QualiMaster 
infrastructure and how we approach the unification of configuration and adaptation (Challenge C1). 
An initial overview on our approach is also given in [47]. This section details the term “adaptation 
rule”, which we used generically in D1.2. In particular, we aim at a flexible approach (Challenge 
C5) that allows us to 

• Structure and define the adaptation behavior in terms of quality parameters, tradeoffs, 
triggers / events and enactments (Challenge C6). 

• Adjust the adaptation behavior during the project in order to reflect the most recent 
knowledge on the adaptation of real-time data processing pipelines and the actual needs of 
the financial use cases. This allows us to support further quality properties if actually 
needed. 
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• Change the adaptation behavior in order to meet the needs of different applications (in 
finance) or other domains.  

• Specify reactive and proactive adaptation and even to support a change of the adaptation 
behavior as a result of reflective adaptation, i.e., the work on specifying reactive and 
proactive adaptation provides a framework for realizing reflective adaptation. 

In Section 8.3.1, we outline the basic concepts of our approach and its inspiration sources in 
literature. In Section 8.3.2, we discuss our language-based specification of the adaptive behavior 
in detail. Please note that the grammar of the proposed language is displayed in Appendix B. 

8.3.1 Concept Overview 

As discussed in Section 4.3, several approaches described in literature support the specification of 
adaptive behavior, ranging from rule-based over utility-based to formal approaches. After a 
thorough study of the literature (as indicated in Section 4.3), we decided to base the QualiMaster 
adaptation approach on the Stitch language [28] and its recent extension S/T/A [73]. We selected 
Stitch due to its practical approach, in particular it is designed to enable administrators to define 
and maintain the adaptive behavior of complex software systems. Stitch was experimentally 
evaluated in administrative contexts and applied to support administrators in maintaining 
infrastructures. This practical approach is an advantage over formal approaches, which typically 
need solid background knowledge in formal methods [77]. Another reason for selecting Stitch is 
due to its structured approach, i.e., in contrast to (flat) rule-based approaches, it leads to a 
hierarchical structure supporting design as well as maintenance of an adaptation specification. 
Stitch consists of 

• Strategies, which represent high-level adaptation objectives capturing the logical aspect of 
planning an adaptation. A strategy distinguishes (potentially alternative) ideas on how to 
accomplish an adaptation in a certain setting from the low-level implementation details such 
as the actual enactment. For a system, multiple strategies can be specified, but only 
applicable strategies are considered (based on the system state and the adaptation impact 
history) and the most appropriate strategy for the current setting is executed. Example 
strategies in QualiMaster include single-pipeline optimizations, cross-pipeline optimizations, 
specific handling of user triggers (in contrast to autonomous pipeline adaptations) or how to 
handle administrative changes to the resource pool. 

• Tactics, describing the technical realization of the potential adaptations that are enabled by 
a strategy. When specifying the adaptation behavior, the Adaptation Manager describes 
how the system shall act in terms of tactics, i.e., which tactics can be employed to fulfill the 
strategies objective in the context of the current system state. Tactics may be guarded by 
conditions or tradeoffs, but also selected dynamically according to their expected impact or 
impact history [73]. Example tactics in QualiMaster include adapting multiple algorithms in a 
whole pipeline or to focus in certain situations on the change of the most critical data 
processing algorithm or algorithm parameter. 

• Actions, the atomic steps that make up a tactic. Actions cause the enactments and, thus, 
the dynamic changes to adapt a system. 

Based on these concepts, Stitch and S/T/A provide a solid basis for the QualiMaster adaptation 
approach. However, Stitch and S/T/A focus on architecture-based adaptation, i.e., they rely on an 
explicit architecture model of the system being adapted, do not take configuration information 
(Challenge C1) into account and do not provide specific means for adaptation in the context of a 
real-time data stream processing systems (Challenge C7). At a glance, architecture-based 
adaptation may not appear to be an ideal basis for QualiMaster, as we do not maintain an explicit 
architecture model. Thus, it is important to recall that we capture essential architectural information 
in the QualiMaster Configuration Meta Model, in particular in terms of the processing pipeline 
configuration as discussed in Section 7.2.7. Although this may be sufficient for adapting the 
QualiMaster platform, we do not focus only on the special case of topological configurations that 
capture parts of the (instantiated) architecture. We provide also concepts to enable (classical) 
architecture-based adaptation as well as a combination of architecture- and configuration-based 
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adaptation. In QualiMaster, this enables us, e.g., to create commands for the Coordination Layer, 
i.e., instances of architecture components. Further, architecture-based capabilities enable 
adaptation for those parts of the QualiMaster platform that are currently not in the (data stream 
processing) focus of the QualiMaster Configuration Meta Model, such as batch processing. 

Through strategies, tactics and actions, the Adaptation Manager can specify how the infrastructure 
shall be adapted for different quality parameter (REQ-A-2 - REQ-A-8). Access to the actual values 
of these parameters is provided through monitoring / analysis in terms of runtime decision 
variables (also on pipeline level REQ-A-12) and through the Data Management Layer in terms of 
quality profiles or impact histories. Please note that the QualiMaster consortium will provide 
adaptation specifications that can be adapted for domain-specific purposes during adoption of the 
QualiMaster approach. 

In summary, the QualiMaster approach to the specification of adaptation behavior provides the 
following capabilities over Stitch and S/T/A: 

• Unification of adaptation and configuration: Following challenge C1, we aim at unifying 
configuration and adaptation, i.e., at utilizing configuration information and constraints 
captured in the configuration for adaptation. Moreover, we aim at integrating configuration 
and architecture-based adaptation as described above. From the SPLE point of view, 
adaptation can be understood as a dynamic form of instantiation at runtime based on a 
consistent runtime configuration, i.e., a Dynamic Software Product Line (DSPL) [67, 71]. 
Subscribing to that view, we rely on and refine existing concepts from (traditional) product 
line instantiation for runtime instantiation and, in particular, adaptation. Thus, we use the 
Variability Instantiation Language VIL [36, 42, 140] as basis for the QualiMaster adaptation 
specification language. VIL already provides a rich and extensible set of types and related 
operations (corresponding to the actions in Stitch). In addition, VIL allows grouping 
operations to reusable functions as well as to import, reuse and extend existing functions 
(not supported by Stitch or S/T/A). Consequently, we call the QualiMaster adaptation 
specification language Runtime Variability Instantiation Language (rt-VIL). As rt-VIL is 
based on VIL, it enables traditional instantiation activities at runtime, e.g., turning source 
code variables into constants (enactment pattern ES-4) or compiling the modified code. 

• Runtime reasoning: Also constraints defined in the Configuration Meta Model, in particular 
those involving runtime decision variables, must be considered during adaptation to ensure 
that the enactment happens on a valid runtime configuration (as already mentioned in 
Section 3). On the one side, runtime reasoning is used to identify violated SLA constraints 
and may trigger adaptation. On the other side, runtime reasoning is used to validate the 
runtime configuration during adaptation (focusing on the changed decision variables). 
Therefore, we rely on the EASy-Producer reasoning support, which is also applied in the 
QualiMaster Configuration Tool. Actually, automated correction of an invalid configuration is 
a recent research topic in SPLE [9, 149]. As a reasoning-related research challenge, we 
envision to work in later stages of the project on the correction of invalid runtime 
configuration models in order to improve the adaptation behavior. However, to ensure 
consistency in architecture-based adaptation, specific validation mechanisms or even a 
reconfiguration protocol [20] must be employed. 

• Specification of the enactment mapping: In Stitch, actions directly manipulate the 
software system under adaptation. In contrast, rt-VIL manipulates the runtime configuration 
and validates the configuration by runtime reasoning. Finally, the changed runtime decision 
variables lead to the enactment of the adaptation decisions. This needs some kind of 
mapping between the Configuration Meta Model and the QualiMaster platform, more 
precisely the Coordination Layer. Therefore, rt-VIL provides an extension point that can be 
used to turn changed runtime decision variables into commands for the Coordination Layer. 
Thereby, different enactment patterns discussed in Section 8.2 can be realized. Please 
note that the enactment mapping is system dependent, i.e., it relies on components defined 
by the underlying system, here the QualiMaster infrastructure, i.e., this extension point 
allows us to define and use rt-VIL even independent of the QualiMaster infrastructure. For 
convenience, these components are mapped into the rt-VIL type system so that they can 
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be used for defining the adaptation and enactment behavior. In particular, this explicit 
mapping defines the intended sequence of the individual enactment actions. In other 
settings, this enactment mapping can be used to realize a reconfiguration protocol [20]. 

• Support for nested structures and topologies: Our initial paper prototyping of adaptation 
behavior specifications for QualiMaster using the Stitch [28, 73] concepts showed that 
describing the adaptation for nested structures, topologies such as pipelines and type 
hierarchies is difficult. Therefore, in contrast to Stitch, but aligned with VIL, we support sub-
strategies as well as parameterizable strategies and tactics. Furthermore, to handle the 
various (refined) types defined in the QualiMaster Configuration Model (akin to typical 
architectures), we enable parameterizable strategies and tactics to be selected dynamically 
using dynamic dispatch akin to VIL rules. Dynamic dispatch is an extended form of late 
binding for all parameters in contrast to late binding for the first implicit parameter in many 
object-oriented languages such as Java or C++. We also support a programmatic 
enumeration of sub-strategies or tactics to cope with the openness of the Configuration 
Meta Model, i.e., configurations may be defined or changed after specifying the adaptation. 

• Support for event-triggered adaptation: As outlined in the introduction of Section 8, 
adaptation in QualiMaster is triggered by events, such as regular schedules or SLA 
constraint violations. Akin to enactment commands, these event types are architecture 
components of the QualiMaster infrastructure, which are mapped into the rt-VIL type 
system and allow the selection of strategies and tactics depending on the actually causing 
event. As in Stitch [28] or S/T/A [73], an adaptation in rt-VIL is triggered by a single event 
and we assume (time-discrete) sequential processing of these events in order to avoid 
parallel activation of multiple strategies. 

• Adaptation of data stream processing systems: In usual systems, adaptation can be 
enacted in terms of a simple sequence of actions, possibly following a reconfiguration 
protocol [20], e.g., to ensure that components are properly passivated before any change 
happens to them. In data stream processing, the system state depends on the processing 
of the individual data stream items. As a consequence, adapting multiple processing 
elements may cause an inconsistent system state. Let us consider that the adaptation 
specification determines that the first and the last processing element in a processing 
pipeline must be adapted. Enacting both modifications at the same point in time leads to a) 
a correct adaptation of the first processing element and b) to a potentially premature 
adaptation of the last processing element as the causing data item may still be in 
processing at the first processing element. Thus, we need to provide a mechanism to 
propagate the adaptation along the data processing pipeline (as an explicit form of 
enactment pattern ES-12). We call this form of adaptation a wavefront adaptation18. As 
the ability for wavefront adaptation depends on the underlying system, our approach 
supports wavefront adaptation through specific events sent to the Coordination Layer, 
which schedules an adaptation on / after arrival of the respective. Further, rt-VIL supports 
the realization of enactment patterns (cf. Section 8.2) for the adaptation of real-time data 
stream processing through the Coordination Layer. Please note that processing the 
adaptation specification must happen in a fast and efficient manner, but not necessarily in 
real-time. In contrast, the enactment strategies shall maintain the real-time properties of the 
adapted data stream. Both, wavefront adaptation and the realization of enactment patterns 
realize Challenge C7. 

• Transparent integration of hardware-based processing: Switching among software-
based and hardware-based processing as well as changing algorithm parameters happens 
transparently through the enactment comments of the Coordination Layer, which 
transforms generic enactment comments in execution system specific comments. This 
contributes to Challenge C2 and realizes REQ-A-11. 

Please note that rt-VIL is intended to describe the overall adaptation behavior as VIL aims at the 
overall instantiation process of a product line. Therefore, we focus on the adaptive decision making 

                                                      
18
 According to our knowledge, this term is currently only used in physics, more precisely in optics. 
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and enable to execute complex functionality such as the calculation of a Pareto front [4, 68, 73, 86, 
94, 104] through the language infrastructure, e.g., provided by the QualiMaster infrastructure 
through specific language extensions of rt-VIL. In Section 8.3.2, we discuss the core concepts of 
VIL, i.e., the basis of rt-VIL. In Section 8.3.3, we detail the language concepts of rt-VIL based on an 
extension of Stitch, S/T/A and VIL.  

8.3.2 VIL Core Concepts 

VIL serves as the base language for rt-VIL due to our aim of unifying of configuration and 
adaptation (Challenge C1). Thus, rt-VIL relies on the basic concepts and the language 
infrastructure of VIL. Please note that we actually use the reference implementation of VIL for the 
realization of the QualiMaster platform instantiation process as described in D5.2, i.e., the VIL 
concepts and infrastructure are implemented and available. The core concepts of VIL are: 

• Extensible artifact meta model: VIL supports artifacts as a first class concept, i.e., 
everything that can be instantiated (modified, transformed, generated, or deleted) is 
regarded as an artifact. Artifacts include traditional file system elements such as files and 
folders as well as runtime components that enable architecture-based adaptation. The 
artifact meta model (or artifact model if we refer to the actual instances available during the 
execution of a VIL or a rt-VIL specification) describes the operations that can be performed 
on certain types of artifacts. Depending on the installed extensions, artifacts may provide 
access to their internal structure as well as specialized operations, as e.g., for XML files or 
Java source files. 

• Extensible type system: VIL is a typed language based on an extensible and dynamic 
type system. The artifact meta model is an important part of the VIL type system illustrated 
in Figure 16. In addition, the type system also contains primitive types (String, Real, 

Integer or Boolean), container types (Map, Set or Sequence) as well as configuration-

related types to access (in rt-VIL also to modify) the underlying IVML configuration or the 
Configuration Meta Model. The actual version of the VIL type system consists of of more 
than 30 types defining more than 180 operations. The VIL type system is extensible, in 
particular in terms of additional artifact types. Also types defined in an IVML model can be 
mapped into VIL in order to simply the specification of instantiation processes. rt-VIL 

 

Figure 16:VIL / rt-VIL type system overview. 
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extends the basic VIL type system in terms of runtime components such as adaptation 
events, enactment commands and quality descriptors. 

• Instantiation process: The goal of VIL is to describe the instantiation process, i.e., to 
define the relation between configuration and artifacts as well as the point in time when 
artifacts are modified, created or deleted. Therefore, VIL receives a source artifact model to 
containing the source artifacts, a target artifact model indicating the location where 
instantiated artifacts shall be stored as well as the actual configuration. Both artifact models 
may be the same, but in hierarchical or multi product line settings they typically differ. The 
instantiation process is described in terms of VIL rules and the types and operators 
provided by the VIL type system. VIL rules can be seen as (named and parameterizable) 
functions that can optionally have pre and post conditions (inspired by rules of the make 
build system [132]). As rules can be triggered through pre conditions, but also called 
explicitly, VIL allows specifying the instantiation process in a hybrid way using a rule-based, 
imperative or mixed style. rt-VIL reuses these concepts, but defines a different execution 
model and focuses on the modification of the (runtime) configuration in terms of strategies 
and tactics. Strategies and tactics utilize operations of the type system directly or through 
VIL rules. Further, if required, rt-VIL may execute the platform instantiation process or 
selected parts such as the instantiation of a pipeline. 

• Artifact instantiation: Actually, VIL consists of two languages due to pragmatic 
considerations. While VIL focuses on the instantiation process for an entire product line, the 
Variability Template Language VTL aims at the instantiation of individual artifacts. VTL is 
inspired by the xtend language [54], but integrated with VIL, i.e., VTL template scripts are 
based on the same type system and artifact models as VIL. Typically, rt-VIL will utilize 
artifact instantiation via VTL only for runtime code instantiation (enactment pattern ES-4) or 
through the execution of (parts of) the platform instantiation process. 

8.3.3 rt-VIL Language Elements 

In this section, we discuss the language concepts of rt-VIL in terms of their syntax and (informal) 
semantics. Thereby we focus on rt-VIL and detail only those language elements of VIL that are 
actually needed to describe rt-VIL. For more details on VIL, please refer to the actual VIL language 
specification [140]19. 

In the following sub-sections, we discuss individual language elements of rt-VIL, namely, variables 
in Section 8.3.3.1, expressions in Section 8.3.3.2, the rt-VIL module called script in Section 8.3.3.3, 
strategies in Section 8.3.3.4, tactics in Section 8.3.3.5 and enactment in Section 8.3.3.6. 

We use the following styles throughout this section to illustrate the rt-VIL language elements: 

• The syntax as well as the examples is illustrated in Consolas or, within text, in Courier 

New. 

• Keywords are highlighted using bold font. 

• Elements and expressions that shall be substituted by concrete values, identifiers, etc. are 
highlighted in italics. 

• Identifiers are used to define names for modeling elements that allow the clear identification 
of these elements. We define identifiers following the conventions typically used in 
programming languages. Identifiers may consist of any combination of letters and numbers, 
while the first character must not be a number. 

• Statements are separated using a semicolon “;” (most other language concepts may 
optionally be ended by a semicolon). 

                                                      
19
 The VIL language specification is a living document that we update in order to reflect improvements and 

extensions. As soon as the initial version of rt-VIL is implemented, the relevant parts of Section 8.3 of this 
deliverable will be included into the VIL language specification. 
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• Different types of brackets are used to indicate lists “()”, sets “{}”, blocks “{}”, etc. This is 
similar to the Java programming language. 

• We indicate comments using “//” and “/* ... */” (cf. Java). 

We use the following structure to describe the language elements: 

• Syntax: This part illustrates the syntax of a language element. We use the syntax to 
illustrate the valid definition of elements as well as their combination. Please note that we 
give a formal definition of the grammar in Appendix B. 

• Description of syntax: Here, we provide the description of the syntax and the associated 
semantics. We describe each element, the semantics and the interaction with other 
elements. As we focus on rt-VIL rather than VIL, we refer for details to the VIL language 
specification [140]. 

• Example: The use of the abstract concepts is illustrated in a (simple) example. 

8.3.3.1 Variables 

Akin to programming languages, the actual state of the execution of a rt-VIL/VIL specification is 
given in terms of global and local variables, which may be explicit or implicit. Global variables are 
defined in the global scope, the top-level specification module in rt-VIL/VIL, and visible within all 
strategies, tactics and VIL rules. In contrast, local variables are defined within a strategy, tactic or 
VIL rule and, thus, belong to the respective local scope. Explicit variables are defined by the 
Adaptation Manager in the specification, while implicit variables are defined automatically by rt-
VIL/VIL, such as a (read-only) collection of all sub-strategies and tactics used within a strategy. As 
rt-VIL/VIL is a typed language, also variable declarations are typed. The syntax for declaring a 
variable is similar to well-known programming languages such as Java or C. Variables can be 
declared and initialized later using the syntax Type name; Optionally, variables can be initialized 
as part of the declaration Type name = expression; using an expression that either matches the 
type of the variable or can automatically be converted to the type of the variable. 

In addition, global rt-VIL variable declarations can be marked by a modifier as persistent, i.e., 

the actual value will be persisted at the end of the script execution and restored in the next 
execution regardless of given initialization expressions. This provides an additional kind of 
common adaptation knowledge in addition to the decision variables of the runtime configuration, 
the runtime components and the QoS impact database. 

8.3.3.2 Expressions 

rt-VIL allows specifying complex expressions in order to define conditions, to calculate values or to 
call VIL rules. Basically, expressions follow the same syntax as in VIL [140], which is inspired by 
OCL [108] and aligned with IVML.  

Typically, expressions can be evaluated and the evaluation leads to a certain value. However, not 
all decision variables from IVML must be defined for instantiation, as, e.g., undefined compound 
variables may indicate the absence of an artifact or a functionality. Thus, VIL variables may be 
undefined and, consequently, VIL expressions evaluate to undefined in case that one of the 
involved variables is undefined or one of the used expressions evaluates to undefined. As in OCL 
[108], undefined expressions are handled gracefully in VIL, i.e., the statement using the expression 
is not further evaluated. This may (intentionally) lead to disabled strategies or tactics or, if 
instantiation is applied, partially instantiated artifacts. 

8.3.3.3 Script 

In rt-VIL, a script (rtVilScript) is the top-level containing element. This element is mandatory 

as it identifies the scope for the strategies, tactics and VIL rules to be defined. The definition of a 
script requires a name in order enable script imports or extensions. rt-VIL scripts can be imported 
through their name using an import statement. Import statements are given before the script 
scope. Scripts can be extended akin to classes in object orientation allowing strategies, tactics or 
rules to be overridden. Further, the definition of a script requires a parameter list specifying the 
expected information from the execution environment. At least, the source artifact model (carrying 
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the actual state of the runtime components), the actual (runtime) configuration with bound runtime 
decision variables (from monitoring / analysis), and the target artifact model (containing the 
instantiated artifacts or components, such as enactment commands) must be provided as 
parameters. 

In a script, all decision variables of the (runtime) configuration are available through their (qualified) 
name. As IVML configurations may be partial or even composed dynamically, the actual decision 
variables, their types and type definitions are not necessarily known at the point in time when the 
script is specified. Thus, the validity of IVML names can only be determined at execution time of 
the script when also the actual (runtime) configuration is known. This may complicate the 
development of VIL scripts as actually unknown identifiers will at least lead to a warning. To 
support the Adaptation Manager in specifying valid and readable scripts, rt-VIL provides the 
advice annotation specifying the actual IVML model. This annotation allows using IVML 

identifiers instead of variable names and, moreover, maps all IVML types into the rt-VIL type 
system and enables dynamic dispatch also over IVML types. 

Syntax: 

  //imports 

  @advice(ivmlName) 

  rtVilScript name (parameterList) extends name1 { 

    //optional version specification 
    //global variable declarations / definitions 
    //strategy declarations 
    //tactics declarations 
    //rule declarations 
  } 

 

Description of syntax20: 

• First, all referenced scripts are imported. The basic syntax for an import statement is 
import name; For more details on the import syntax and the import conventions, please 

refer to [140]. 

• An optional advice annotation may declare the underlying Configuration Meta Model to map 
IVML identifiers and types into rt-VIL. The basic syntax is shown above. More details are 
given in [140]. 

• The keyword rtVilScript defines that the identifier name is defined as a new adaptation 

behavior script with contained strategies, tactics and VIL rules. 

• The parameterList denotes the arguments to be passed to a rt-VIL script for execution. 

In rt-VIL, the source and target artifact model (given in terms of the type Project), the 

(runtime) configuration as well as the triggering event are passed in.  

• A rt-VIL script may optionally extend an existing (imported) VIL script. This is expressed by 
extends name1, whereby name1 denotes the name of the extending script. The 
strategies, tactics and rules of the extended script are available, in particular for overriding. 

• Further, optional global variables may be declared or defined, respectively. A variable 
declaration consists of a type and a unique variable name, optionally followed by an 
initialization expression based on already defined variables or parameters as shown in 
Section 8.3.3.1. All types defined by the rt-VIL type system can be used. 

• A rt-VIL script may contain strategies, tactics and VIL rules. While there is no predefined 
sequence of defining strategies and tactics, the actual definition sequence is taken into 

                                                      
20
 Akin to VIL, rt-VIL scripts can explicitly be versioned in order to support evolution. We do not detail 

versioning in this deliverable, as versioning will initially not be used in QualiMaster and may be beneficial in 
later stages of the project. 
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account if, however, the respective preconditions does not lead to a unique selection of 
strategies or tactics at execution time. VIL rules can be used to define functions or 
instantiation tasks. The sequence of VIL rules is not relevant for execution. Extending 
scripts may override strategies, tactics and rules by specifying the same signature as the 
original declaration in an extended script. Further, extending scripts may participate in 
dynamically dispatched execution by defining new typed alternatives. We discuss 
strategies in more detail in Section 8.3.3.4, tactics in Section 8.3.3.5 and VIL rules as part 
of Section 8.3.3.6. 

Example: 

@advice(QM) 

rtVilScript QualiMasterFinancial (Project source, Configuration config, Project target,  

    AdaptationEvent trigger) { 

    // variables, strategies, tactics, etc. 
} 

The example above shows a very basic, empty rt-VIL script. The script is linked against the 
QualiMaster Configuration Meta Model (currently just called QM) and called 
QualiMasterFinancial. The script receives the source artifact model, the (runtime) 

configuration, the target artifact model (that shall be modified) and the actual adaptation event. 

8.3.3.4 Strategy 

A strategy represents a high-level adaptation objective capturing the logical aspect of planning an 
adaptation. It encapsulates the relevant sub-strategies and tactics for the realization of the stated 
adaptation objective. The impact of executing strategies can be recorded in the QoS database and 
used to realize proactive adaptation. 

Below, we discuss the execution semantics of a rt-VIL script in order to highlight the interplay of 
strategies, tactics and VIL rules. 

• First, the applicable top-level strategies are determined. Multiple strategies may define the 
same objective [28, 73] so that additional preconditions (including the triggering event type) 
can be used to differentiate among the applicable strategies. If still multiple strategies are 
applicable, they are processed in order of their specification. Strategies can handle distinct 
events, e.g., a startup event to initialize the runtime variables considering the overall 
resource utilization or to process a user trigger (REQ-A-1). Initialization of runtime variables 
such as the active algorithm or functional parameters may also be given in terms of default 
values in the configuration. Please note that imports support the modularization of rt-VIL 
scripts, i.e., a top-level script may import separate scripts handling for example different 
lifecycle phases such as startup, runtime and shutdown of a pipeline. 

• A strategy can specify multiple sub-strategies and tactics to realize the adaptation towards 
the actual (failing) objective. The selection of the sub-strategies and tactics during script 
execution can be static or dynamic. In the static case, the first applicable sub-strategy or 
tactic in the given sequence is executed depending on their preconditions. In the dynamic 
case, a weighting function (inspired by [73]) determines the ranking of the sub-strategies 
and tactics, which, in turn, determines the sub-strategy or tactic to be executed. As in S/T/A 
[73], the weighting function may consider historical information such as the previous 
impact. In contrast to Stitch [28] and S/T/A [73], we allow sub-strategies to enable a 
hierarchical breakdown of the adaptation specification along nested structures of the 
underlying application (such as the infrastructure-pipeline-elements structure in 
QualiMaster) and, thus, dynamic execution also on the nested levels. 

• Ultimately, a tactic is executed to determine the new settings of the runtime configuration. 
However, a tactic may fail, e.g., as its changes lead to an invalid runtime configuration 
detected by runtime reasoning. A tactic may revert to the last valid configuration, signal its 
failure or even cause the end of the script execution. In case of a failing tactic, the strategy 
continues with the next applicable sub-strategy or tactic in the sequence of ranking, 
respectively. 
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• A strategy succeeds if at least one of its sub-strategies or tactics succeeds. Finally, this 
determines whether the top-level strategy succeeds or fails. 

• If the executed top-level strategy succeeded, the enactment of the runtime configuration 
starts, i.e., a predefined VIL-rule (overridable as a kind of strategy method [57]) is executed 
that specifies the mapping from changed decision variables into enactment commands, in 
QualiMaster for the Coordination Layer. 

Syntax: 

As discussed above, a strategy can have an objective, preconditions, or a weighting function and 
denote sub-strategies and tactics that are supposed to handle the situation indicated by the 
objective. The syntax of the strategy header follows the syntax of VIL rules, which, in turn, is 
inspired by a combination of OCL [108] and make [132]. 

The body of a strategy is separated into three parts, namely 1) the objective (along with supporting 
local variables), 2) the breakdown of the strategy into sub-strategies and 3) tasks (along with the 
optional weighing function) and post processing. Actually, the objective is optional, in particular to 
support startup and shutdown strategies, which may need to be executed regardless of objectives. 
Also the weighting function is optional in order to enable static (reactive) rule-based adaptation. 
Please note that both, objective and weighting function may rely on VIL rules or basic operations 
that can be provided by programmed extensions. This enables the use of complex functions, e.g., 
to realize a self-adjusting adaptation through the common knowledge such as done in [14, 62, 
141]. Sub-strategies and tactics can be stated using different syntactical forms as indicated in the 
syntax below, e.g., including a logical guard expression [28], a descriptive record (supporting the 
weighting function) or a maximum execution time [28]. Finally, post processing can execute further 
VIL rules, e.g., to revert to a previous runtime configuration. 

strategy name (ParameterList) = post : pre { 

  // local variable declarations 
  objective expression; 

  breakdown { 

    weighting (name : expression); 

    // optional sub-strategies 
    strategy name(ParameterList); 

    strategy guardExpression name(ParameterList); 

    strategy guardExpression name(ParameterList) with (name = value); 

    strategy guardExpression name(ParameterList) @numExpression; 

  

    // tactics 
    tactic guardExpression name(ParameterList); 

  } 

  // post processing 
} 

 

Description of syntax: 

• The keyword strategy indicates on this level the declaration of a strategy. 

• A strategy is identified by its name, e.g., for referencing the strategy in other strategies.  

• A strategy can declare parameters, which can be used within the strategy or for defining 
the pre- or post-condition. Parameters are given in terms of types and parameter names 
separated by commas if more than two parameters are listed. Top-level strategies refer to 
the parameters of the containing script, either specifying all parameters declared by the 
script (in case of a strategy that performs instantiation) or by just declaring the actual 
runtime configuration and the triggering event. Sub-strategies may declare specific decision 
variable types instead of the entire runtime configuration. Further, a strategy may declare 
the specific event type it reacts on as parameter (and as an implicit precondition). 
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• Akin to VIL rules, a strategy may have logical pre- and post-conditions. As multiple 
strategies may define the same objective, the precondition can be used to select among 
the applicable strategies [28, 73]. If given, the post-condition is checked after the execution 
of a strategy to determine (in addition to the objective) whether the application of the 
strategy was successful. Post-conditions in strategies are inspired by the effect 
specification of tactics in [28]. If neither pre- nor post-condition are given, also the 
separating colon can be omitted. 

• Within the rule body marked by curly brackets, first local variables can be declared and 
initialized. In particular, information that is relevant to the calculation of the objective or the 
weighting function can be collected here, i.e., these variables are intentionally visible to the 
entire strategy block.  

• The objective states a logical condition utilizing observed quality properties (via the runtime 
variables of the configuration) in expressions such as their target range or utility / cost 
functions akin to [73]. Please note that the objective is a part of the precondition, which is 
syntactically highlighted due to its importance for adaptation. 

• Breakdown of the strategy into sub-strategies and tactics. The breakdown block is 
executed once to collect the sub-strategies and tactics. This is required to enable the 
collection of an unknown number of alternatives at design time due to the openness of the 
configuration in QualiMaster as discussed above. In a second step, the identified sub-
strategies and tactics are ranked and executed. 

o The weighting function enables the dynamic selection of the contained sub-
strategies and tactics for both, reactive adaptation (without updated common 
knowledge) and for proactive adaptation (with prediction or updated common 
knowledge such as QoS impacts). Akin to [73], the weighting function determines 
dynamically the ranking of the sub-strategies and tactics. Basically it is a function 
that maps the alternatives (sub-strategies or tactics) under consideration of the 
actual system state (taken from the runtime configuration or the runtime 
components) to a real value, e.g., using a utility-cost calculation. Thereby, it acts 
like an iterator over the alternatives and selects the best option with access to 
additional information given in the listing of the sub-strategies and tactics. In 
particular, rt-VIL operations provide access to the historical impact of a given 
alternative [73], the prediction of a certain quality property (REQ-C-12), or the 
aggregated quality of a (desired) pipeline. Further, the weighting function can take 
the adaptation configuration (see Section 0) into account to consider the importance 
of the different quality parameters. If specified, the weighting function must be given 
directly at the beginning of the breakdown block. 

o The remainder of the block declares the alternative sub-strategies and tactics. As 
described above, sub-strategies and tactics can be guarded by an expression [28], 
which influences the ranking. Sub-strategies and tactics are referenced by their 
signature and, in case that a sub-strategy or tactic is used multiple times, a 
descriptive record can be given to support the calculation of the weighting function. 
Finally, inspired by [28], a maximum execution time (expression) can be stated, i.e., 
a relative time bound within the sub-strategy or tactic is either completed or it fails. 

• The post processing part allows to execute further VIL rules and operations, e.g., to revert 
to a previous successful runtime configuration. 

Finally, a strategy calls the predefined rt-VIL rule Boolean validateTactic(Configuration 

config) the end of a (so far) successful tactic in order to validate the results of the executed 
operations. By default, this predefined rt-VIL rule performs runtime reasoning (on the changed 
variables) utilizing the EASy-producer runtime infrastructure. This method can be overridden to 
realize other forms of validation, e.g., for traditional architecture-based adaptation. Please note that 
successful top-level strategies call further predefined methods for updating the common 
knowledge and enactment as we describe in Section 8.3.3.6. 
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Example: 

The first example below illustrates a simple reactive strategy, which considers exactly one quality 
parameter, namely the pipeline throughput. As input, the strategy receives the actual QualiMaster 
runtime configuration (expressed through the type QM made available through a respective advice) 
and an unspecified adaptation event. In case that a pipeline does not fulfill an overall pipeline 
throughput value (here, a fictive configuration value specified as a fixed condition in a VIL rule21), it 
aims at changing the pipeline with highest throughput deviation (candidate), with a priority on 
changing a single algorithm parameter. In the extreme case of no successfully executed tactic, the 
strategy just performs load shedding on the input of candidate. Please note that a top-level 
strategy is implicitly ended by a validation of the changed variables of the runtime configuration 
and, in case of success, an enactment of the changed variables. We provide details on the 
enactment in Section 8.3.3.6. 

strategy infrastructure (QM config, AdaptationEvent trigger) = { 

  setOf(Pipeline) issues = throughputFailingPipelines(config); 

  Pipeline candidate = issues.sortAscending().first(); 

   

  objective null != candidate; 

  

  breakdown { 

    strategy changeSingleParameter(candidate, trigger); 

    strategy changeSingleAlgorithm(candidate, trigger); 

    // extreme fallback 
    tactic shedLoad(candidate, trigger); 

   } 

} 

  

setOf(Pipeline) througputFailingPipelines(QM config) = { 

  config.pipelines()-> select(p| 

    p.throughput() < config.minPipelineThroughput()); 

} 

The second example illustrates a strategy with dynamic selection of a comprehensive loop-
enumeration of the tactics (based on all alternatives defined in the Configuration). As stated by the 
signature, the strategy handles a regular adaptation on a FamilyElement of a pipeline. The 
objective of the strategy is that no quality parameter of the family element fails (the related 
definition is not shown in the example). The weighting function targets the optimization of a utility-
cost tradeoff given in terms of two VIL functions (not detailed below). Thereby, additional 
information defined by the listed tactics is used. For illustration, this example simply enumerates all 
possible tactics for all available algorithm parameters and family members using map expressions, 
the VIL version of a loop. Please note that a sub-strategy is implicitly ended by a validation of the 
changed variables in the runtime configuration. We provide details on the enactment in Section 
8.3.3.6. 

strategy changeAlgorithm (FamilyElement elt, RegularAdaptationEvent trigger) = { 

  setOf(Quality) failed = failedQualities(elt); 

  objective failed.isEmpty(); 

  breakdown { 

    weighting (e: utility(e.elt, e.quality) – cost(e.elt, e.quality)); 

    map(Quality q: failed) { 

      map(Parameter p: elt.family().parameter()) { 

        tactic changeParameter(elt, trigger, p) with (elt = p, quality = q); 

      } 

      map(Algorithm a: elt.family().members()) { 

                                                      
21
 VIL rules return the latest calculated value, i.e., there is no explicit return statement. 
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        tactic changeAlgorithm(elt, trigger, a) with (elt = a, quality = q); 

      } 

    } 

  } 

} 

8.3.3.5 Tactics 

A tactic defines the steps of adaptation to be carried out in order to achieve the objective defined 
by a calling strategy. As in Stitch [28], a tactic cannot call other tactics or strategies, just rt-VIL 
operations or rt-VIL rules. Akin to strategies, the syntax of the tactic header follows the syntax of 
VIL rules, which is inspired by a combination of OCL [108] and make [132].  

A tactic can have a precondition [28] and an effect specification [28] (we represent this as the post-
condition of a tactic in rt-VIL). A tactic is enabled if its precondition holds. A tactic is successful, if 
its operations are executed successfully and its (optional) post-condition holds. So far, tactics are 
rather similar to VIL rules. In contrast, tactics serve as a basis for recording the QoS impact 
through strategies. Further, the predefined rt-VIL rule Boolean 

validateTactic(Configuration config) is called at the end of a (so far) successful tactic 

in order to validate the results of the executed operations. By default, this predefined rt-VIL rule 
performs runtime reasoning (on the changed variables) utilizing the runtime version of EASy-
producer. This method can be overridden for other forms of validation, e.g., for traditional 
architecture-based adaptation. 

Syntax: 

tactic name (ParameterList) post : pre { 

  // local variable declarations 
  // runtime configuration changes, rule calls 
  // alternative or iterative execution 
} 

Description of syntax: 

• The keyword tactic indicates on this level the declaration of a tactic. 

• The name allows identifying the rule for explicit rule calls or for script extension. 

• The parameterList specifies explicit parameters which may be used as arguments for 

precondition rule calls as well as within the rule body. Parameters are given in terms of 
types and parameter names separated by commas if more than two parameters are listed. 
Parameter must either be bound by the calling strategy. 

• The optional post-condition post specifies the expected outcome of the tactic execution in 

terms of a logic expression akin to the effects specification in [28]. 

• The optional precondition pre specifies whether the tactic is considered for execution at all 

(in addition to the precondition in the strategy). If neither pre- nor post-condition are given, 
also the separating colon can be omitted. 

• The body of the strategy is specified within the following curly brackets. Local variable 
declarations, rule calls, alternative and looped execution and, in particular, changes to the 
runtime variables of the configuration can be specified here. 

Example: 

This example continues the second example from Section 8.3.3.4 on changing algorithms and 
parameters of a QualiMaster pipeline. The tactic shown below performs all operations needed to 
change a tactic, i.e., it transfers the parameter values of the actual family to the new algorithm and 
finally changes the current algorithm of the actual family. Please note that a tactic is implicitly 
ended by a validation of the changed variables in the runtime configuration. We provide details on 
the enactment in Section 8.3.3.6. 
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tactic changeAlgorithm (FamilyElement elt, AdaptationEvent trigger, 

  Algorithm newAlgorithm) : { 

  Algorithm current = elt.family().current(); 

  // transfer parameter 
  map(Parameter p: elt.family()) { 

    newAlgorithm.algorithm.parameter() 

      ->select(q|q.name == p.name).first().setValue(p.value()); 

  } 

  // set algorithm 
  elt.family().setCurrent(newAlgorithm); 

} 

8.3.3.6 Enactment 

In Stitch [28] and S/T/A [73], enactment happens through the execution of actions, i.e., actions 
bind the system under adaptation to the execution of the adaptation behavior specification. In 
contrast, we perform a configuration-based adaptation, i.e., we must validate the constraints of the 
Configuration (Meta) Model upon changes of runtime decision variables as explained in Sections 3 
and 8. Further, our approach aims to be independent from the underlying system and, thus, needs 
to specify the mapping from the runtime configuration to the system under adaptation. In 
QualiMaster, this leads to a translation of the actual values in the runtime configuration into 
commands of the Coordination Layer (cf. D5.1).  

In rt-VIL, enactment happens if a top-level strategies succeeds. Then, rt-VIL executes predefined 
rt-VIL rules (similar to the strategy method pattern [57]), which can be overridden if required. For 
updating the common adaptation knowledge, e.g., with respect to the impact, rt-VIL calls 

 

update(Strategy strategy) 

update(Tactic tactic) 

  

for each succeeded strategy and tactic. Finally, rt-VIL executes 

  

enact(Project source, Configuration changed, Project target) 

  

to map and execute the adaptation decisions. The passed in configuration contains the actually 
changed runtime decision variables that shall be enacted.  

An illustrating example combining the enactment of algorithm changes with triggering a 
subsequent wavefront is shown below as a continuation of the example in Section 8.3.3.5. 
Basically, the enact method considers each changed pipeline and the contained pipeline 

elements through dynamic dispatch (not all VIL rules for the pipeline types are shown). The 
enactment of the FamilyElement creates the respective commands for the Coordination Layer in 

terms of a command sequence. It is important to note that the Coordination Layer receives 
(symbolic) names for pipeline elements, which must be translated to actual commands for the 
Execution Systems. Finally, the enactment rule schedules the subsequent pipeline elements for 
wavefront adaptation. Enacting the changes to the algorithms without scheduling the wavefront 
can be expressed by the first part of enact(Family) directly in the predefined enact function. 

enact (Project source, QM changed, Project target) { 

  map(Pipeline p: changed.pipelines()) { 

    map(Source s: pipeline.sources()) { 

      enact(p, s); 

    } 

  } 

} 
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enact(Pipeline pipeline, PipelineElement elt) { 

  // dynamic dispatch default – do nothing 
} 

  

enact(Pipeline pipeline, FamilyElement elt) { 

  Family family = elt.family(); 

  CommandSequence cmd = new CommandSequence(); 

  if (null != family.current()) { // was changed? 

    cmd.add(new AlgorithmChangeCommand(pipeline.name(), 

      family.name(), family.current().name()); 

  } 

  map (Parameter p: family.parameters()) { 

    cmd.add(new ParameterChangeCommand(pipeline.name(), 

      family.name(), p.name, p.value())); 

  } 

  map(Flow f: src) { 

    PipelineElement e = f.destination(); 

    enact(e); 

    cmd.add(new ScheduleWavefrontAdaptationCommand( 

      pipeline.name(), e.name())); 

  } 

  cmd.execute(); 

} 

8.4 Tool Support 

In this section, we discuss the current state of the tool support for adaptation in QualiMaster based 
on the topics discussed in this section. Akin to the introduction of Section 8, we will follow in this 
section the MAPE-K cycle with an additional initial step on modeling the adaptation behavior 
specification. 

• Modeling: Basically, modeling the adaptive behavior with rt-VIL relies on the Configuration 
(Meta) Model and the Configuration Core, i.e., EASy-Producer. As concluded in Section 
7.3, the configuration support provides a solid basis for our work. Thus, we will use the VIL 
implementation as a basis and extend the grammar, the semantic analysis, the language 
infrastructure (for the type system) as well as the language execution (model) in order to 
realize rt-VIL on top of VIL. Initial steps in this direction have already been carried out, i.e., 
the extension of the grammar, the language infrastructure and semantic analysis and the 
language execution have been prepared, the rt-VIL grammar has been specified (see also 
Appendix B), and the related parser and Eclipse editor (including initial syntax-highlighting 
and content-assist) have been generated using xText22. As rt-VIL will extend EASy-
Producer with domain-independent capabilities for runtime adaptation, also VIL will be 
extended by common functionality and elements of both languages, such as type checking 
operations for VIL expressions (actually present in IVML) or functions (as a special case of 
VIL rules). 

rt-VIL will also extend the QualiMaster configuration tool, in terms of a high-level 
specification support using a specialized editor as well as a detailed adaptation support as 
requested by REQ-C-13 and REQ-C-14. 

• Monitoring / Analysis: As discussed in D5.1, the monitoring according to MAPE-K is 
realized by the QualiMaster Monitoring Layer, which relies on the information provided by 
the Execution Systems as well as the component-based resource consumption information 
provided by SPASS-meter [46]. As described in Section 8.1, the Monitoring Layer performs 
also the analysis of the SLA constraints defined in the Configuration and sends respective 

                                                      
22
 http://www.eclipse.org/Xtext/ 
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triggering events to the Adaptation Layer. An initial version of the Monitoring Layer has 
been developed as described in D5.2. 

• Planning: The adaptation plans (called “adaptation rules” in D1.2) are described in terms 
of rt-VIL strategies and tactics. As the generic implementation of rt-VIL is realized by EASy-
Producer, the runtime version of EASy-Producer will serve as a basis for the 
implementation of the Adaptation Layer. A build-level tool for packaging an Eclipse-
independent version of EASy-Producer in a flexible way (for the QualiMaster Adaptation 
Layer it will contain the QualiMaster-specific extension of rt-VIL, which is not required by 
other applications) has been developed and integrated into the EASy-Producer build 
process. The Adaptation Layer provides QualiMaster specific interfaces and functionality on 
top of rt-VIL as described in D5.2, hiding the generic capabilities of EASy-Producer. An 
initial version of the Adaptation Layer has been created as described in D5.2. 

• Enactment: As described in this section, the enactment of the adaptation decisions 
happens in QualiMaster through the Coordination Layer, i.e., rt-VIL transforms the changes 
to the runtime configuration into commands of the Coordination Layer as shown in Section 
8.3.3.6. An initial version of the Coordination Layer has been developed (see D5.2). 

• Knowledge: Common adaptation knowledge will be handled by the Data Management 
Layer, i.e., the QoS impact history, (actualized) quality profiles, adaptation logs as well as 
the state of persistent variables will be stored there. For more details regarding the state of 
the Data Management Layer please refer to D5.2. 

Monitoring of the pipeline operations (REQ-A-9) as well as the execution of the adaptation (REQ-
A-10) are foreseen as a runtime extension of the QualiMaster configuration tool, which provides an 
integrated view on the infrastructure configuration. Here, problems identified by the monitoring or 
the actual state of the execution can be visualized, e.g., within the graphical pipeline editor. 

In summary, the partners started the development of the tool support for the adaptation as well as 
its integration into the QualiMaster infrastructure. The realization of rt-VIL will profit from the broad 
and stable basis of VIL and, in turn, VIL and EASy-Producer will benefit from common 
developments for rt-VIL.  
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9 Conclusion and Future Work 
Software Product Line Techniques, such as configuring and instantiating, aim at achieving more 
flexibility, shorter time to market, less production costs and better overall quality, in particular 
through consistently tailoring the software systems to the need of the customer. Adaptation of a 
software system at runtime aims at providing dynamic capabilities to cope with unforeseen 
changes in the environment, such as high load situations. Combining both approaches, namely 
configuration and tailoring before runtime with adaptation and re-configuration at runtime, allows a 
consistent characterization of the adaptation space before runtime (e.g., in terms of Service Level 
Agreements), to optimize a system for adaptation before runtime through instantiation and to adapt 
the system within these boundaries. This is in particular true, if also the instantiation of the system 
before and at runtime can be specified in a flexible way. In contrast to single-system development, 
such an encompassing configuration and adaptation approach supports the adoption for different 
application settings and domains. 

In QualiMaster, we aim at such an encompassing configuration and adaptation approach for real-
time data stream processing, which opportunistically utilizes software-based and hardware-based 
execution. In this deliverable, we discussed basic terminology in Section 2 as well as overall 
challenges for WP4 (Section 3) on quality-aware configuration and adaptation and identified the 
main topics for our work, namely: 

• Defining and analyzing a specific set of quality parameters,  

• Enabling a flexible quality-aware configuration and instantiation of the QualiMaster 
infrastructure, and  

• Adapting the real-time data processing at runtime based on the configuration of the 
instantiated QualiMaster infrastructure and the actual quality parameters observed at 
runtime. 

We discussed related work for these three topics in Section 4 as well as requirements for the work 
in this work package and the concepts in this deliverable drawn from previous deliverables and the 
DoW in Section 5. Based on these requirements, we discussed the concepts and the current state 
of the realization for the three main topics of this deliverable. 

• We performed a quality survey, derived the relevant quality properties, discussed an 
extensible quality taxonomy based on recent standards and outlined our plans for pipeline 
level quality analysis in Section 6. 

• Driven by the configuration requirements, we created a Configuration Meta Model, 
structured it along the architecture of the QualiMaster infrastructure and discussed the 
Configuration Model in detail according to this structure in Section 7. We modeled the 
Configuration Meta Model in terms of IVML, the INDENICA variability modeling language, 
which is, in particular, able to cope with runtime decision variables (for integrating 
adaptation and configuration) and topological configuration (for modeling and structurally 
analyzing data processing pipelines). As described in D5.2, the instantiation process of the 
QualiMaster infrastructure is able to generate the integrating implementation of the 
topological pipeline configuration for Apache Storm. Finally, we presented the current state 
of the realization, in particular regarding the QualiMaster infrastructure configuration tool, a 
domain-specific user-supporting frontend, and the Configuration Core (EASy-Producer). 

• Based on the foundation provided by the Configuration Core, we derived the adaptation 
approach for the QualiMaster infrastructure. In particular, we discussed a set of enactment 
patterns to realize runtime adaptation in QualiMaster and our approach to the flexible 
specification of the adaptation behavior. Thereby, we aim at an extension of successful 
work in the field of adaptive software systems, which combines adaptation and 
configuration (as an extension of our instantiation approach) and targets adaptation of real-
time data stream processing. We presented this approach in terms of a description of the 
syntax and semantics of rt-VIL, the run-time Variability Instantiation Language. Finally, we 
discussed the state of the realization based on the capabilities of the Configuration Core. 
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The approaches and concepts presented in this deliverable realize or at least target all 
requirements stated in Section 5. As also indicated in the respective sections, all configuration 
requirements are reflected in the Configuration Meta Model, i.e., the configuration options for the 
resource pool (software- and hardware-based execution), the data management, the pipeline 
design and the multi-pipeline execution (REQ-C-2 - REQ-C-10, and REQ-C-15). These 
requirements are already realized in the QualiMaster infrastructure configuration tool. This is also 
true for shielding the Application User from the configuration (REQ-C-1) through the credential-
protected views of the infrastructure configuration tool. The configuration of quality parameters and 
adaptation (REQ-C-11 - REQ-C-14) is provided by the Configuration Meta Model and will be 
realized in the QualiMaster infrastructure configuration tool in the future. Regarding adaptation 
requirements, all requirements are covered by concepts, in particular user triggers (REQ-A-1) 
through specific events, quality dimensions (REQ-A-2 - REQ-A-8, REQ-A-12) through runtime 
variables as well as strategies and tactics. The integration of reconfigurable hardware in the 
adaptation (REQ-A-11) happens transparently through Coordination Layer commands. Operation 
level monitoring (REQ-A-9, REQ-A-10) is scheduled for future realization by tool support based on 
the QualiMaster platform. 

The development and realization of the approaches and concepts cover the challenges presented 
in Section 3 for the work in this work package. In more detail, we target the 

• Unification of adaptation and configuration (Challenge C1) by combining the advanced 
variability modeling concepts provided by INDENICA Variability Modeling Language (IVML) 
and instantiation concepts of the Variability Instantiation Language (VIL) with the concepts 
of rt-VIL presented in this deliverable. 

• Unification of software- and hardware-based processing (Challenge C2) through the 
configuration of the resource pool, the transparent integration of hardware-based 
algorithms into algorithm families, the creation of hardware connectors while platform 
instantiation and the transparent handling of enactment comments created by a rt-VIL 
specification and executed by the Coordination Layer. 

• Topological configuration (Challenge C3) by specific concepts of IVML, namely typed 
references, an explicit type system supporting sub-typing and topology-related constraint 
capabilities. While basic concepts for topological variability were already present, the work 
in QualiMaster contributed additional capabilities and allowed us to validate the approach in 
terms of a complex topological setting. The setting is constituted by the QualiMaster data 
processing pipelines, a data flow graph connected to configuration parts, such as the 
resource pool, the data management or the algorithm families. 

• Flexible automated instantiation (Challenge C4) through the concepts and capabilities of 
VIL, a language for specifying the instantiation process and the artifact instantiation of 
Software Product Lines. The QualiMaster platform instantiation process validates these 
concepts and capabilities in terms of the instantiation of Storm data processing topologies 
from (more abstract) QualiMaster data processing pipelines. Although VIL existed before 
QualiMaster, the work on the platform instantiation helped extending and validating VIL for 
the (practical) instantiation of topologies. 

• Flexible adaptation specification (Challenge C5) by the concepts of rt-VIL. rt-VIL will be 
realized on top of VIL, which provides a solid basis, and enables also traditional product 
line instantiation at runtime. 

• Combination of data and technical quality (Challenge C6) by the quality taxonomy 
constructed based on the results of a quality survey. All quality parameters have been 
included into the Configuration Meta Model in order to serve as a basis for SLAs, pipeline 
constraints and adaptation. 

• Adaptation for real-time data processing (Challenge C7) by specific enaction patterns 
discussed in Section 8.2. These patterns will be realized through generic and domain-
specific adaptation rt-VIL strategies, tactics as well as through the concept of a wavefront 
adaptation. 
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In summary, the requirements and challenges for quality-aware configuration and adaptation in 
QualiMaster are covered by the approaches and concepts in this deliverable. In the future, we will 
work on the realization of the concepts, in particular on rt-VIL, the enactment patterns, the 
adaptation specification and the configuration of quality parameters and adaptation through the 
QualiMaster infrastructure configuration tool. We also aim at validating and evaluating the 
components that will be developed, starting with the analysis of the enactment patterns, ranging 
over test cases for the new components up to scenario evaluations on generated and real data for 
the quality-aware adaptation of real-time data stream processing. 
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Appendix A: QualiMaster Configuration Meta Model in IVML 
In this section, we present the QualiMaster Configuration Meta Model in IVML, the INDENICA 
variability modeling language briefly introduced in Section 7.1. For details regarding the IVML 
syntax and semantics, please refer to the most recent IVML specification23. This section is 
structured according to presentation of the Configuration Meta Model in Section 7.2 including a 
section on a configuration example.  

Due to technical reasons, all constraints in the QualiMaster Configuration Meta Model are defined 
in terms of constraint variables although constraint variables. To support readability, we omitted 
the constraint variables for the model constraints in this appendix. 

A.1 Basic definitions 
This section depicts the basic type definitions for the QualiMaster Meta Model. 

project Basics { 
 
  //basic types 
  typedef NaturalNumber Integer with (NaturalNumber >= 0); 
  typedef PositiveInteger Integer with (PositiveInteger > 0); 
  typedef NonEmptyString String with (NonEmptyString.size() > 0); 
  typedef PortInteger Integer with (PortInteger > 0 and PortInteger < 65536); 
  typedef NonNegativeReal Real with (NonNegativeReal >= 0); 
  typedef MemorySize PositiveInteger; 
  typedef Frequency PositiveInteger; 
 
  //attribute types 
  enum BindingTime {compile, startup, runtime}; 
  attribute BindingTime bindingTime = BindingTime.compile to Basics; 
 
  //item field and parameter types 
  enum FieldType {INTEGER, STRING, BOOLEAN, REAL, STATUS, RSSFEED}; 
 
  typedef Items sequenceOf(Item); 
  typedef Parameters setOf(Parameter)  
    with (Parameters->collect(p|p.name).size() == Parameters.size()); 
  typedef Fields sequenceOf(Field)  
    with (Fields->collect(f|f.name).hasDuplicates() == false); 
  typedef FieldTypes sequenceOf(FieldType); 
 
  compound Item { 
    Fields fields;  
    fields.size() > 0;  
  }  
 
  compound Field { 
    NonEmptyString name; 
    FieldType type; 
  } 
 
  // parameters are different than fields as they may have startup values 
 
  compound Parameter { 
    NonEmptyString name; 
  } 
 
  compound IntegerParameter refines Parameter { 
    assign(bindingTime = BindingTime.runtime) to { 
      Integer value; 

                                                      
23
 http://projects.sse.uni-hildesheim.de/easy/docs/ivml_spec.pdf  
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    } 
  } 
 
  compound StringParameter refines Parameter { 
    assign(bindingTime = BindingTime.runtime) to { 
      String value; 
    } 
  } 
 
  compound RealParameter refines Parameter { 
    assign(bindingTime = BindingTime.runtime) to { 
      Real value; // this may get a "default/startup" value from the configuration 
    } 
  } 
 
  compound BooleanParameter refines Parameter { 
    assign(bindingTime = BindingTime.runtime) to { 
      Boolean value; // this may get a "default/startup" value from the configuration 
    } 
  } 
 
} 

A.3 Observables 

This section depicts the definitions of the configurable elements and related constraints for the 
observables explained in Section 7.2.2. 

project Observables { 
 
  import Basics; 
 
  attribute BindingTime bindingTime = BindingTime.compile to Observables; 
 
  // time-behavior 
  typedef Latency NaturalNumber; 
  typedef Throughput_Item Frequency; 
  typedef Throughput_Volume NaturalNumber; 
  typedef EnactmentDelay NaturalNumber; 
   
  // resource utilization 
  typedef UsedMemory MemorySize; 
  typedef UsedMachines NaturalNumber; 
  typedef AvailableMachines NaturalNumber; 
  typedef Bandwidth NonNegativeReal; 
   
  typedef Accuracy_Confidence Real; 
  typedef Accuracy_ErrorRate Real; 
  typedef Believability Real; 
  typedef Relevancy Real; 
  typedef Completeness Real; 
  // MPVolatility? 
   
  typedef Volume NonNegativeReal; 
  typedef Velocity Frequency; 
  typedef Volatility Real; 
  typedef Variety NaturalNumber; 
 
  abstract compound Observable { 
    NonEmptyString type; // not nice 
  } 
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  compound QualityParameter refines Observable { 
  } 
 
  compound ConfiguredQualityParameter refines QualityParameter{ 
    NonEmptyString monitorCls = null; 
  } 
 
  setOf(ConfiguredQualityParameter) qualityParameters = { 
    {type="Latency"}, 
    {type="Throughput_Item"}, 
    {type="Throughput_Volume"}, 
    {type="EnactmentDelay"}, 
    {type="UsedMemory"}, 
    {type="UsedMachines"}, 
    {type="AvailableMachines"}, 
    {type="Bandwidth"}, 
    {type="Accuracy_Confidence"}, 
    {type="Accuracy_ErrorRate"}, 
    {type="Believability"}, 
    {type="Relevancy"}, 
    {type="Completeness"}, 
    {type="Volume"}, 
    {type="Velocity"}, 
    {type="Volatility"}, 
    {type="Variety"} 
  }; 
  qualityParameters->collect(p|p.type).size() == qualityParameters.size(); 
 
  setOf(ConfiguredQualityParameter) configuredParameters = {}; 
  configuredParameters->collect(p|p.type).size() == configuredParameters.size(); 
 
  freeze { 
    qualityParameters; 
  } 
} 

A.3 Resource Pool (Execution Layer) 
This section depicts the definitions of the configurable elements and related constraints for the 
resource pool characterizing the Execution Layer explained in Section 7.2.3 including the 
configuration for both, software and hardware based execution. 

project Hardware { 
 
  import Basics; 
  import Observables; 
 
  attribute BindingTime bindingTime = BindingTime.compile to Hardware; 
 
  enum MachineRole {Manager, Worker}; 
 
  compound Machine { 
    NonEmptyString name; 
    MemorySize memory; 
    PositiveInteger processors; 
    Frequency frequency; 
    setOf(PortInteger) ports; 
    MachineRole role; 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Bandwidth bandwidth; 
    } 
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    // managers do not have configured ports 
    role == MachineRole.Manager implies ports.isEmpty(); 
 
    // workers without configured ports receive the default Storm ports 
    role == MachineRole.Worker and ports.isEmpty() implies  
      ports == {6700, 6701, 6702, 6703}; 
  } 
 
  setOf(Machine) machines; 
 
  // At least one manager must be assigned 
  machines->exists(Machine machine | machine.role == MachineRole.Manager); 
 
  // At least one worker must be assigned 
  machines->exists(Machine machine | machine.role == MachineRole.Worker);  
  
..// Machine names must be unique 
  machines->collect(m|m.name).size() == machines.size(); 
 
  //global runtime variables 
  assign(bindingTime = BindingTime.runtime) to { 
    UsedMachines usedMachines; 
    AvailableMachines availableMachines; 
  } 
  
} 

 

project ReconfigurableHardware { 
 
  import Basics; 
  import Observables; 
   
  attribute BindingTime bindingTime = BindingTime.compile to ReconfigurableHardware; 
 
  compound HwNode { 
    NonEmptyString name;    
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Bandwidth bandwidth; 
    } 
  } 
 
  compound MPCCNode refines HwNode{ 
    NonEmptyString host; 
    PositiveInteger numCPUs; 
    PositiveInteger numDFEs; 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      UsedMachines usedCPUs; 
      UsedMachines usedDFEs; 
      AvailableMachines availableCPUs; 
      AvailableMachines availableDFEs; 
    } 
  }  
 
  sequenceOf(HwNode) clusters; 
..// Cluster names must be unique 
  clusters->collect(h|h.name).size() == clusters.size(); 
 
} 
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A.4 Data Management 
This section depicts the definitions of the configurable elements and related constraints for the 
data management layer explained in Section 7.2.4. 

 

project DataManagement { 
 
  import Basics; 
  import Observables; 
 
  attribute BindingTime bindingTime = BindingTime.compile to DataManagement; 
 
  compound DataElement { 
    NonEmptyString name; 
    String storageLocation; 
    DataManagementStrategy strategy; 
    NaturalNumber timeLine; 
    NaturalNumber cutoffCapacity; 
 
    strategy <> null;  
    // relate strategy, timeline and cutoffCapacity 
    strategy == DataManagementStrategy.LeastFrequentlyUsed or strategy == 
      DataManagementStrategy.LeastFrequentlyRecentlyUsed implies cutoffCapacity > 0; 
    strategy == DataManagementStrategy.LeastRecentlyUsed or strategy == 
      DataManagementStrategy.LeastFrequentlyRecentlyUsed implies timeLine > 0; 
    strategy == DataManagementStrategy.None or strategy ==  
      DataManagementStrategy.FirstInFirstOut implies  
        timeLine == 0 and cutoffCapacity == 0; 
  } 
 
  compound DataSource refines DataElement { 
    NonEmptyString host; 
    Items input; 
    Parameters parameters; 
    NonEmptyString sourceCls; 
    setOf(Constraint) constraints; 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Velocity velocity; 
      Volume volume; 
      Volatility volatility; 
      Accuracy_Confidence confidence; 
      Completeness completeness; 
    }  
  } 
 
  sequenceOf(refTo(DataSource)) dataSources; 
  //unique source names required 
  not(dataSources->collect(s|s.name).hasDuplicates()); 
 
  compound DataSink refines DataElement { 
    Items output; 
    setOf(Constraint) constraints; 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Velocity velocity; 
      Volume volume; 
      Accuracy_Confidence confidence; 
    }  
  } 
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  sequenceOf(refTo(DataSink)) dataSinks; 
  //unique sink names required 
  not(dataSinks->collect(s|s.name).hasDuplicates()); 
 
  compound PersistentDataElement refines DataElement{    
  } 
  
} 

A.5 Data Processing Algorithms 

This section depicts the definitions of the configurable elements and related constraints for the 
data processing algorithms explained in Section 7.2.5. 

project Algorithms { 
 
  import Basics; 
  import Observables; 
  import ReconfigurableHardware; 
 
  attribute BindingTime bindingTime = BindingTime.compile to Algorithms; 
   
  compound Algorithm { 
    NonEmptyString name;  
    NonEmptyString artifact; 
    Items input;     
    Items output; 
    Parameters parameters; 
    refTo(HwNode) hwNode; 
    String algTopologyClass = null; 
    refTo(Algorithm) successor = null; 
 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Latency latency; 
      Throughput_Item throughputItem; 
      Throughput_Volume throughputVolume; 
      UsedMemory usedMemory; 
      Accuracy_Confidence accuracyConfidence; 
      Accuracy_ErrorRate accuracyErrorRate; 
      Believability believability; 
      Relevancy relevancy; 
      Completeness completeness; 
      Volume volume; 
      Velocity velocity; 
      Variety variety; 
    }  
  }  
 
  setOf(refTo(Algorithm)) algorithms; 
  //unique algorithm names 
  algorithms->collect(a|a.name).size() == algorithms.size(); 
} 
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A.6 Algorithm Families 
This section depicts the definitions of the configurable elements and related constraints for the 
algorithm families explained in Section 7.2.6. 

project Families { 
  
  import Basics; 
  import Algorithms; 
 
  attribute BindingTime bindingTime = BindingTime.compile to Families; 
 
  compound Family { 
    NonEmptyString name; 
    Items input; 
    Items output; 
    Parameters parameters; 
    setOf(refTo(Algorithm)) members;  
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      refTo(Algorithm) actual; 
      Latency latency; 
      Throughput_Item throughputItem; 
      Throughput_Volume throughputVolume; 
      UsedMemory usedMemory; 
      Accuracy_Confidence accuracyConfidence; 
      Accuracy_ErrorRate accuracyErrorRate; 
      Believability believability; 
      Relevancy relevancy; 
      Completeness completeness; 
      Volume volume; 
      Velocity velocity; 
      Variety variety; 
 
      //bind family runtime variables to actual algorithm 
      latency = actual.latency; 
      throughputItem = actual.throughputItem; 
      throughputVolume = actual.throughputVolume; 
      usedMemory = actual.usedMemory; 
      accuracyConfidence = actual.accuracyConfidence; 
      accuracyErrorRate = actual.accuracyErrorRate; 
      believability = actual.believability; 
      relevancy = actual.relevancy; 
      completeness = actual.completeness; 
      volume = actual.volume; 
      velocity = actual.velocity; 
      variety = actual.variety; 
    } 
 
    //require correct input/output item types for all members 
    members->forAll(refTo(Algorithm) algorithm | input == algorithm.input); 
    members->forAll(refTo(Algorithm) algorithm | output == algorithm.output); 
    //require superset of parameters 
    members->forAll(refTo(Algorithm) algorithm | contains(parameters, 
     algorithm.parameters)); 
    //at least one member per family required 
    members.size() > 0; 
  } 
 
  setOf(refTo(Family)) families; 
  families->collect(f|f.name).size() == families.size(); 
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  def Boolean contains(Parameters parameters1, Parameters parameters2) =  
    parameters2->forAll(p2 |  
      parameters1->exists(p1 | p1.name == p2.name and p1.typeOf() == p2.typeOf())); 
 
  def sequenceOf(FieldType) collectFieldTypes(Item item) = 
    item.fields->collect(Field f | f.type); 
   
}  

A.7 Data Processing Pipelines 

This section depicts the definitions of the configurable elements and related constraints for the 
data processing pipelines explained in Section 7.2.7. 

project Pipelines { 
    
  import Basics; 
  import Families; 
  import DataManagement; 
  import Hardware; 
    
  attribute BindingTime bindingTime = BindingTime.compile to Pipelines; 
  attribute Boolean userVisible = true to Pipelines; 
 
  // all elements in a pipeline 
  abstract compound PipelineElement { 
    NonEmptyString name; 
    setOf(Constraint) constraints = {}; // user constraints 
  }  
    
  // a flow among pipeline nodes 
  compound Flow refines PipelineElement { 
    refTo(PipelineNode) destination; 
    destination.typeOf() <> Source; 
  } 
 
  // all nodes in a pipeline 
  abstract compound PipelineNode refines PipelineElement{ 
    assign (userVisible = false) to { 
      Items inputTypes; 
      Items outputTypes; 
    } 
  } 
 
  compound Source refines PipelineNode { 
    setOf(refTo(Flow)) output; 
    refTo(DataSource) source; 
    inputTypes = source.input; 
    outputTypes = inputTypes; 
 
    typeCheck(self, output); 
  }  
    
  compound Sink refines PipelineNode { 
    refTo(DataSink) sink; 
    outputTypes = sink.output; 
    inputTypes = outputTypes; 
  }  
 
  // inner node that processes something 
  compound ProcessingElement refines PipelineNode { 
    setOf(refTo(Flow)) output; 
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    typeCheck(self, output); 
  } 
    
  compound FamilyElement refines ProcessingElement { 
    refTo(Family) family; 
    inputTypes = family.input; 
    outputTypes = family.output; 
  }  
 
  compound DataManagementElement refines ProcessingElement { 
    refTo(PersistentDataElement) dataManagement;  
    inputTypes = outputTypes; 
  } 
 
  abstract compound StreamOperationElement refines ProcessingElement { 
    // needs to define inputTypes <-> outputTypes in refined types 
  } 
 
  compound Pipeline { 
    NonEmptyString name; 
    setOf(refTo(Source)) sources; 
    PositiveInteger numworkers; 
    PositiveInteger timeout = 100; 
    //runtime variables 
    assign(bindingTime = BindingTime.runtime) to { 
      Latency latency; 
      Throughput_Item throughputItem; 
      Throughput_Volume throughputVolume; 
      Accuracy_Confidence accuracyConfidence; 
      Accuracy_ErrorRate accuracyErrorRate; 
    } 
    setOf(Constraint) constraints = {}; // user constraints 
    //at least one source required 
    Constraint sourcesCount = sources.size() > 0; 
  } 
 
  sequenceOf(refTo(Pipeline)) pipelines; 
  //unique pipeline names 
  not(pipelines->collect(p|p.name).hasDuplicates()); 
 
  def Boolean typeCheck(PipelineNode src, setOf(refTo(Flow)) output) = 
    output->forAll(f|typeCheck(f.destination, src)); 
   
  //explicit propagation 
  def Boolean typeCheck(PipelineNode src, PipelineNode dst) =  
    if isDefined(dst.inputTypes) and isDefined(src.outputTypes)  
      then src.outputTypes.overlaps(dst.inputTypes)  
      else dst.inputTypes == src.outputTypes endif; 
} 

A.8 Adaptivity 
This section depicts the definitions of the configurable elements and related constraints for the 
high-level adaptation settings explained in Section 0. 

project Adaptivity { 
 
  import Basics; 
  import Observables; 
  
  attribute BindingTime bindingTime = BindingTime.compile to Adaptivity; 
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  compound QualityParameterWeighting { 
    refTo(QualityParameter) parameter; 
    Real weight; 
  } 
 
  assign(bindingTime = BindingTime.runtime) to { 
    Integer updateFrequency = 1000; // in milliseconds 
    updateFrequency == 0 or updateFrequency > 500; 
 
    // convention: default all weights with 1 
    setOf(QualityParameterWeighting) pipelineImportance = null;  
    setOf(QualityParameterWeighting) crossPipelineTradeoffs = null; 
  } 
} 

A.9 Infrastructure 
This section depicts the definitions of the configurable elements and related constraints for an 
entire QualiMaster infrastructure as explained in Section 7.2.9. 

project Infrastructure { 
  
  import Basics; 
  import Hardware; 
  import ReconfigurableHardware; 
  import Families; 
  import Observables; 
  import Adaptivity; 
  import Pipelines;  
 
  attribute BindingTime bindingTime = BindingTime.compile to Infrastructure; 
 
  setOf(refTo(Pipeline)) activePipelines; 
 
    // function calculating the workers of the active pipelines  
  def Integer activePipelinesNumWorkers() =  
    activePipelines->apply(refTo(Pipeline) pipeline; Integer totalNumWorkers = 0 | 
      totalNumWorkers = totalNumWorkers + pipeline.numworkers); 
     
    // function calculating the (different) configured worker ports 
    def Integer workerMachinesPortsCount() = 
      machines->select(m|m.role=MachineRole.Worker)->apply(Machine machine; 
      setOf(Integer) usedPorts = {} | usedPorts.union(machine.ports)).size(); 
 
  // number of workers for the active pipelines is less then reserved ports 
  activePipelinesNumWorkers() <= workerMachinesPortsCount();  
} 

A.10 Configuration 
This section shows some fragments of a QualiMaster infrastructure configuration for illustration. A 
configuration is structured akin to the Configuration Meta Model, i.e., in several individual projects, 
which are located in different physical folders in order to support role-based access control. Please 
note that we do not show the entire configuration for the actual QualiMaster infrastructure as it 
consists of more than 900 lines of IVML specification. 

// resource pool part for software-based execution 
project HardwareCfg { 
  import Hardware; // import respective Meta Model part 
 
  machines = { 
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    Machine { 
      name="snf-618463",  
      memory=1000000,  
      processors=2,  
      frequency=10, 
      role = MachineRole.Worker 
    } 
    // further machines omitted 
    Machine{  
      name="snf-618466",  
      memory=1000000,  
      processors=2,  
      frequency=10, 
      role = MachineRole.Manager 
    } 
  }; 
 
  freeze { // freeze configuration for instantiation 
    machines; 
  } 
} 
 
// resource pool part for hardware-based execution 
project ReconfigurableHardwareCfg { 
  import ReconfigurableHardware; // import respective Meta Model part 
 
  clusters = {  
    MPCCNode{ 
      name = "MPCCCluster", 
      host = "127.0.0.99:6666", 
      numCPUs = 12, 
      numDFEs = 4 
    } 
  }; 
 
  freeze { // freeze configuration for instantiation 
    clusters; 
  } 
} 

 

// configuration of algorithms  
project AlgorithmsCfg { 
  import ReconfigurableHardwareCfg; // referenced configuration elements 
  import Algorithms; // import respective Meta Model part 
 
  Algorithm aNormalize = {   
    name = "normalize", 
    artifact = "integration.algs.Normalize", 
    output={{fields={ 
      Field{name="streamID", type=FieldType.STRING}, 
      Field{name="timestamp", type=FieldType.STRING}, 
      Field{name="quote", type=FieldType.REAL}, 
      Field{name="volume", type=FieldType.INTEGER} 
    }}},  
    input={{fields={Field{name="springData", type=FieldType.STRING}}}}  
  }; 
 
  // further algorithms omitted 
 
  algorithms = {refBy(aNormalize)}; // further algorithms omitted 
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  freeze { // freeze whole project for instantiation 
    AlgorithmsCfg; 
  } 
}  

 

// configuration of families 
project FamiliesCfg { 
  import ReconfigurableHardware; // referenced configuration elements 
  import AlgorithmsCfg; // referenced configuration elements 
  import Families; // import respective Meta Model part 
 
  Family fNormalize = {   
    name = "normalize", 
    members = {refBy(aNormalize),refBy(hNormalize), refBy(topoNormalize)}, 
    actual = refBy(aNormalize), // default for startup  
    output={{fields={ 
      Field{name="streamID", type=FieldType.STRING}, 
      Field{name="timestamp", type=FieldType.STRING}, 
      Field{name="quote", type=FieldType.REAL}, 
      Field{name="volume", type=FieldType.INTEGER} 
    }}},  
      input={{fields={Field{name="springData", type=FieldType.STRING}}}}, 
    parameters={BooleanParameter{name="debug"}} 
  }; 
 
// further families omitted 
 
  families = {refBy(fNormalize)}; // further families omitted 
 
  freeze { // freeze configuration for instantiation 
    FamiliesCfg; 
  } 
} 
 

// configuration of the TSI hello world pipeline (in own project) 
project PipelinesCfgTSI { 
  import FamiliesCfg; 
  import DataManagementCfg; // referenced configuration elements 
  import Pipelines; // import respective Meta Model part 
 
  // forward declarations for references 
  Source src_TSI; 
  Sink snk_TSI; 
  FamilyElement peNormalize; 
  // further variables omitted 
 
  // define flows 
  Flow f1_TSI = { 
    name = "src-normalize", 
    destination = refBy(peNormalize), 
  };  
 
// further flows omitted 
 
  Flow f5_TSI = { 
    name = "show-snk", 
    destination = refBy(snk_TSI), 
  }; 
 
  // configure pipeline nodes 
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  src_TSI.name = "src"; 
  src_TSI.output = {refBy(f1_TSI)}; 
  src_TSI.source = dataSources[0]; 
 
  peNormalize.name="peNormalize"; 
  peNormalize.family = refBy(fNormalize);   
  peNormalize.output = {refBy(f2_TSI)}; // flow not shown here 
 
  // further pipeline nodes omitted 
 
  snk_TSI.name = "snk"; 
  snk_TSI.sink = dataSinks[0]; 
 
  // configure pipeline 
  Pipeline pipTSI = Pipeline { 
    name = "pipTSI", 
    sources = {refBy(src_TSI)}, 
    numworkers = 1 
  }; 
 
  freeze { // freeze configuration for instantiation 
    PipelinesCfgTSI; 
  } 
 
} 

 

// configuration of the available pipelines (imports pipeline projects) 
project PipelinesCfg { 
  import PipelinesCfgTSI; // import individual pipelines 
  // further pipelines omitted 
 
  pipelines = {refBy(pipTSI)}; // further pipelines omitted 
 
  freeze {  
    pipelines; // freeze for instantiation 
  } 
}  
 

// configuration of the overall infrastructure 
project InfrastructureCfg { 
  import Infrastructure; // import respective Meta Model part 
  import PipelinesCfg; // referenced configuration elements 
  
  activePipelines = {pipelines[0]};  
 
  freeze { 
    activePipelines; // freeze for instantiation 
  } 
} 

// observables and adaptivity configuration omitted here 

// top-level project according to EASy conventions (as used in rt-VIL examples) 
project QM { 
   // import all configurations 
  import InfrastructureCfg; 
  import ReconfigurableHardwareCfg; 
  import PipelinesCfg; 
  import ObservablesCfg; 
  import AdaptivityCfg; 
  import HardwareCfg; 
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  import AlgorithmsCfg; 
  import FamiliesCfg; 
} 

Appendix B: rt-VIL Grammar 
In this section, we illustrate the actual grammar of rt-VIL. The grammar is given in terms of a 
simplified xText24 grammar (close to ANTLR25 or EBNF). Simplified means, that we omitted 
technical details used in xText to properly generate the underlying EMF model as well as trailing “;” 
(replaced by empty lines in order to support readability). Please note that some statement-
terminating semicolons are optional in order to support various user groups each having individual 
background in programming languages. Further, please note that we focus here on the elements 
of rt-VIL and do not repeat the entire VIL grammar (9 pages), which can be found in [140]. 

  

ImplementationUnit: 

    LanguageUnit* 

  

LanguageUnit: 

 (Advice)* 

 'rtVilScript' Identifier 

 '(' ParameterList? ')' 

    (ScriptParentDecl)? 

 '{' 

       VersionStmt? 

       rtContents 

 '}' ';'? 

  

rtContents: 

 ( 

        GlobalVariableDeclaration 

     | RuleDeclaration 

     | StrategyDeclaration 

     | TacticDeclaration 

 )* 

  

GlobalVariableDeclaration: 

 'persistent'? 

    VariableDeclaration 

  

StrategyDeclaration: 

 'strategy' Identifier 

 '(' (ParameterList)? ')' 

 '=' RuleConditions? 

 '{' 

 VariableDeclaration* 

 ('objective' Expression) 

 ('breakdown' '{' BreakdownElement* '}') 

 RuleElement* 

 '}' 

 ';'? 

  

                                                      
24
 http://www.eclipse.org/Xtext/  

25
 http://www.antlr.org  
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BreakdownElement: 

    VariableDeclaration 

 | ExpressionStatement 

 | BreakdownStatement 

  

BreakdownStatement: 

 ('strategy' | 'tactic') 

    LogicalExpression? 

    QualifiedPrefix 

 '(' ArgumentList? ')' 

 ( 

   'with' '(' 

      BreakdownWithPart (',' BreakdownWithPart) 

   ')'  

 )? 

 ('@' Expression)? 

  

BreakdownWithPart: 

 Identifier '=' Expression 

  

TacticDeclaration: 

 'tactic' Identifier 

 '(' (ParameterList)? ')' 

 '='RuleConditions? 

 RuleElementBlock 

 ';'? 


