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Disclaimer 

This document contains material, which is under copyright of individual or several QualiMaster 

consortium parties, and no copying or distributing, in any form or by any means, is allowed without 

the prior written agreement of the owner of the property rights.  

The commercial use of any information contained in this document may require a license from the 

proprietor of that information.  

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster 

consortium warrant that the information contained in this document is suitable for use, nor that the 

use of the information is free from risk, and accepts no liability for loss or damage suffered by any 

person using this information. This document reflects only the authors‟ view.  

The European Community is not liable for any use that may be made of the information contained 

herein.  

 2014 Participants in the QualiMaster Project 
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Executive summary 
 

Field Programmable Gate Array (FPGA) computers (also known as reconfigurable computers) are 

a special category of computer hardware, in which algorithms are directly translated into hardware 

designs, rather than being implemented as software which runs on general purpose computers. 

Despite FPGA technology being almost 30 years old, the process of algorithm mapping to FPGA 

supercomputers is no trivial task because it entails one-of-a-kind hardware designs. In the 

QualiMaster project, we aim at using such FPGA-based computers as hardware accelerators offer 

various elements in the adaptive pipeline. This entails identification of algorithms which are 

suitable for hardware implementation, interfaces with existing software platforms and tools for 

seamless operation, hardware implementation of the chosen algorithms, and performance 

evaluation to quantify the performance benefits and the cost-performance tradeoffs from this 

approach. This deliverable reports on the methodology  and the design phase of the specialized 

hardware of the QualiMaster adaptive pipeline for several Data Processing Algorithms and it 

follows Task 3.1 which comprises of three important subtasks, per the Description of Work. In the 

Introduction Section, below, the progress in these three subtasks is summarized, with the body of 

this deliverable elaborating on progress in each one of these subtasks.  
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1 Introduction 
The QualiMaster project includes the use of reconfigurable hardware to boost its performance and 

to operate in real-time problems which conventional computers cannot address adequately. 

Reconfigurable computing (also known as FPGA-based computing) is the field in which algorithms 

are mapped directly to hardware resources for execution. As a rule-of-thumb, reconfigurable 

computers run at clock speeds which are ten times slower vs. conventional computers, but if the 

available parallelism is high and the granularity of computation vs. Input/Output requirements is 

high, this form of computing may offer substantial speedups vs. conventional computers. The use 

of this form of computing in the processing of Big Data seems promising. In the QualiMaster 

project the goal is to exploit reconfigurable computing in the QualiMaster pipeline, in order to have 

real-time processing of streaming data. 

This Work Package and this deliverable D3.1 are directly connected to WP2. WP2 identifies the 

important classes of problems and algorithms for the QualiMaster project. In the present 

Deliverable D3.1 several of these algorithms, from all classes of problems, were selected for 

translation into hardware. Specifically, five different algorithms were selected and an in-depth study 

was made for each of them. This study shows that four of them are suitable for mapping at 

reconfigurable computers and can offer significant speedup. According to this study, the hardware 

designs of these algorithms were made, considering the restrictions of WP4 in which the pipeline 

configuration is designed. 

The progress in WP3 which is reported in D3.1 can be summarized below: 

1.1  Algorithmic classes for acceleration via Hardware   

Following extensive collaboration with all partners and especially those involved in WP2, several 

classes of algorithms were identified and studied. These algorithms are Support Vector Machines 

(SVM), Latent Dirichlet Analysis (LDA), Count Min, Exponential Histogram, and Hayashi-Yoshida 

Correlation Estimator. All these classes of algorithms were methodically evaluated. All of these 

algorithms were chosen by the software partners and studied by the hardware partners of the 

QualiMaster project, so that the results would be relevant to the project goals.An important 

contribution of the QualiMaster project is that through interaction of the software and hardware 

design teams of the project, the algorithms that are chosen by the software team form a real-life 

area in which the hardware team needs to apply its expertise, and likewise, the capabilities of the 

specialized reconfigurable hardware allow for the software team to have an alternative computing 

paradigm, which would not be possible to consider otherwise. 

1.2  Guidelines translating algorithms to FPGAs 
All of the above algorithms were profiled with respect to computational characteristics, available 

parallelism, Input/Output (I/O) requirements, and suitability for hardware implementation. This is 

the standard practice within the hardware community, as it may lead to the optimization of the 

computationally intensive part, or computationally equivalent mathematical transformations to lead 

into more hardware parallelizable versions of the algorithm. One algorithm proved to be less 

suitable for translation to hardware (LDA) whereas all others proved to be highly suitable (e.g. 

Count Min, Exponential Histogram) or moderately suitable (e.g. SVM). Subsequently, the process 

of developing hardware modules to interact with the software within the QualiMaster pipeline 

progressed.  
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1.3  Interaction with WP2 and WP4  
 

Whereas this subtask is complementary to subtasks 1 and 2 (see above), it also entails the 

significant issue of how to connect the specialized Field Programmable Gate Array- based 

supercomputing nodes (made by Maxeler in this case) to the environment used by the software 

community in order to form a seamless QualiMaster pipeline. Following the examination of several 

alternatives, and in cooperation of WP2 and WP4 partners, we jointly developed the 

communication interfaces and libraries to make the Maxeler system become a node of the STORM 

distributed environment. This is a significant step which has been fully completed and is currently 

operational, as it allows for the QualiMaster pipeline to run seamlessly either on software platforms 

alone (made of distributed computational nodes) or combined software/hardware platforms, 

comprising of the aforementioned environment plus the Maxeler specialized hardware node. This 

QualiMaster platform allowed for the detailed study of communication overhead, data rates, and 

software/hardware interaction which was crucial in the final determination of the algorithms which 

are suitable for further hardware development. 

This Deliverable introduces the fundamentals of reconfigurable computing, the QualiMaster 

pipeline, and the algorithms selection in Section 2. Section 3 presents the reconfigurable 

infrastructure and its integration to the rest QualiMaster infrastructure. Section 4 makes a brief 

presentation of the selected algorithms as they are extensively presented in D2.1.  Section 5 

reports the study methodology, and the studies for each of the five algorithms in order to map it to 

reconfigurable computing. Finally Section 6 shows how algorithms are translated to hardware 

designs, both in terms of the methodology and how this methodology is applied specifically on 

each of the selected algorithms. 
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2 Identification of classes of algorithms or tasks from WP2 

2.1 Reconfigurable Hardware Technology 
Reconfigurable Computing was introduced at the late 1980s, when the first Field Programmable 

Gate Arrays (FPGA) chips were designed. These chips, where the technology evolvement of the 

CPLDs and other older programmable devices, using different implementation technology. The 

main computational paradigm in this form of computing is that the hardware resources (logic gates, 

memories, digital signal processing – DSP blocks, etc.) are connected after power up in an 

application-specific way, with a design which was created earlier for that purpose. The designer 

maps algorithms directly to hardware, exploiting parallelism and datapaths which are not available 

in conventional general-purpose computing. Using even early FPGAs several computationally 

intensive problems have been mapped and proved that FPGA computing, or reconfigurable 

computing, can be a solution for performance boosting of several algorithms. Eventually, FPGAs 

proved not only to be a cost effective rapid system prototyping platform vs. ASIC, but a versatile 

technology of choice for Image Processing, Data encryption (eg. The RSA and DES algorithms), 

Video Processing, String Pattern Matching, FFT Implementations, Data Compression – to name a 

few. 

Later generation devices offered significant resources in addition to the reconfigurable fabric. 

Special I/O transceivers, dedicated logic blocks for memory, powerful general purpose processors 

on chip, special modules for digital signal processing, and fast floating point operations were 

added on the device. Even the reconfigurable fabric had changed, offering more logic, better 

routing resources and run time reconfiguration characteristics. In addition, a large collection of 

functional Intellectual Property cores (IPs) is freely available to the designer through IP generator 

tools such as the Xilinx Core Generator, or, distributed by designers through web sites such as 

OpenCores. All these available resources help designers to take up with new applications, with 

considerable results on network systems such as network switches, network intrusion detection 

systems, financial data analysis. Data streaming applications become much more significant due 

to these technological advances of FPGAs, mostly in the forms of I/O transceivers on a chip and 

large amount of available memory.    

Nowadays multi FPGA platforms have been developed offering opportunities at system level 

design, using powerful General Purpose Processors with fast interconnection with FPGAs. FPGAs 

also have ultra fast access to external memory and direct fast connection to the internet. These 

systems have a "look and feel" of a conventional General Purpose Server with a Linux -based 

operating system, using special compilers. Designers usually keep the official software at its 

original form and change only the computational intensive procedures, with hardware procedures 

calls which are functional equivalent. These servers can become nodes of greater systems, as 

QualiMaster projects intents, and reconfigurable computing can be easily integrated with 

conventional computing. The reconfigurable node performs the compute intensive parts of the 

algorithm and the conventional nodes perform all the other procedures which are difficult to be 

translated in hardware and have not significant computational load. This is considered to be a new 

era for reconfigurable computing which can easily incorporate heterogeneous computing systems 

providing them with powerful coprocessors. 

2.2 QualiMaster Pipeline 
A core concept of QualiMaster is the notion of the adaptive data processing pipeline. Basically, a 

data processing pipeline defines the data flow from data sources through data processing 
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algorithms to data sinks. It is noteworthy that a processing pipeline defines the data flow among 

the elements of a pipeline rather than the control flow of the analysis algorithms. 

Data sources produce data in a certain form, such as structured financial stock market data or 

unstructured Twitter data. While a data source can be characterized by technical information, such 

as the provided data fields or access credentials, an Infrastructure User (as introduced in D1.2) 

can also specify SLAs (Service Level Agreements) negotiated with the Data Provider to also 

consider deviations or violations of these agreements during adaptation. One extreme example on 

handling data source violations (if negotiated with the user) could be to notify the user that the 

SLAs on user side cannot be met as the input side does not fulfill its SLAs. 

Starting at the data sources, a data processing pipeline links then data sources with data 

processing elements and, finally, data sinks. In QualiMaster, data processing elements exist in 

three types, namely elements representing processing families, generic stream processing 

operators and data management operations. 

Processing families represent a set of algorithms performing the same task at different quality 

tradeoffs as described in D1.2 and detailed in D2.1 and D4.1. Changing the actual algorithm of a 

certain family or its functional parameter settings at runtime is the core idea of realizing adaptive 

data processing pipelines. Further, processing families enable the seamless integration of 

software-based and hardware-based execution on reconfigurable hardware. However, data 

processing algorithms can be more than just simple software components, e.g., representing a 

single processing algorithm possibly depending on a set of supporting libraries. In particular, 

processing algorithms can be realized in terms of reconfigurable hardware as described in this 

deliverable. Furthermore, a data processing algorithm can be implemented as a complex, already 

distributed stream processing algorithm such as the distributed correlation computation described 

in D2.1. Switching among these different kinds of algorithms requires specific strategies in order to 

consider the different functional and structural aspects as well as to use the overall resource pool 

in an optimal way. 

Running a single algorithm on reconfigurable hardware may not be optimal for different reasons, 

including use of reconfigurable hardware resources, performance gain, or communication 

overhead. One specific optimization form is to lay out sub-pipelines of a data processing pipeline (if 

the translation to hardware is feasible) on the same hardware resource or within a cluster of 

reconfigurable hardware resources as provided by the Maxeler infrastructure (MaxelerOS). In turn, 

this may lead to dependencies during the design of a data processing pipeline (as the sequence 

must be met) as well as during its dynamic execution. 

In contrast to user-defined data processing elements as handled by the processing families, 

generic stream processing operators, such as filter, project, fork or join are frequently considered 

in literature (e.g., [1, 2, 3, 4]). Generic stream processing operators can ease the adaptation (as 

the can be included in a domain-independent version of the QualiMaster infrastructure), simplify 

the definition of a data processing pipeline and facilitate reuse of generic functionality. In order to 

be applied, functional parameters need to be defined during the pipeline design, e.g., on what to 

project. These functional parameters can be specified during configuration of the pipelines. 

Although the QualiMaster consortium is aware of the need for such operators (e.g., D4.1 already 

provides an extension point for such operators), we currently focus on the more challenging user-

defined processing families, handle forks and joins implicitly and will consider generic stream 

processing operators as part of future work. 

Data Management operators as introduced in D5.1 support storing intermediary processing results 

for later (batch) analysis by the Data Management Layer at any point of a data processing pipeline. 
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As the Data Management operator is generic, it can be configured through functional parameters 

in order to perform the correct functionality in the actual pipeline. It is important that the data at the 

source and the sink may be stored transparently through the Data Management Layer in order to 

avoid storing the same data item multiple times by multiple pipelines. 

A data processing pipeline can be considered as linear or sequential, i.e., the data flow links have 

data processing elements including stream forks and joins. However, if supported by the 

underlying Execution System, a data processing pipeline may also contain cycles in terms of 

feedback loops, i.e., processed data is fed back into a previous processing step, e.g., to improve 

the processing model. In this case, a data processing pipeline can be considered as a data 

processing network or graph. 

The design of a data processing pipeline may specify quality constraints on the individual data 

processing elements, e.g., to guard extremely important processing steps as well as on data flows 

to provide guidelines for switching among explicit alternatives. In QualiMaster, These constraints 

fulfill two purposes, the first supporting the user, the second the QualiMaster consortium. On the 

user side, such constraints allow narrowing down the adaptation space and, if needed to specify 

explicit alternatives to be taken dynamically based on the constraint. However, we are aware of the 

fact that specifying constraints increases the specification effort and requires more knowledge 

about data processing. Thus, we focus currently more on the processing families rather than on 

the pipeline constraints. On the other side such constraints allow to change the scope of 

experiments, i.e., using a pipeline specification for multiple purposes by just modifying some 

experiment-specific settings. 

Ultimately, the data produced by the entire data processing pipeline is directed to data sinks, i.e., 

the endpoints of a data processing pipeline. Multiple data sinks may provide different forms or 

qualities of output, e.g., data sinks may offer different levels of quality and, depending on the 

business model of the infrastructure/data analysis provider, possibly also at different levels of 

pricing. Akin to data sources, data sinks can be detailed by SLAs in order to reflect the negotiated 

client side quality. Further, data sources may be supplemented with technical access information, 

e.g., in order to protect the output data as well as different levels of result quality. Finally, a kind of 

web service realizes the data sink from a technical perspective in order to make the data available 

to the QualiMaster applications. Thereby, the (realization of the) data sink will not act as a one-way 

service, as it needs to provide an interface to communicate with the QualiMaster infrastructure, in 

particular to react on user triggers to be considered by the adaptation (see D1.2). 

2.3 Classes of Problems and Algorithms Selection 
Data processing with the QualiMaster pipelines includes several different steps, as shown in 

Figure 1 describes a possible execution scheme of the QualiMaster pipeline, as it was presented in 

D 1.1. Most of the computational elements shown in this Figure can be efficiently mapped to 

hardware. Data Reformatting, Data Filtering, Data Classification, Streaming Computation, 

Correlation, Transfer Entropy, Granger Causality, Data Clustering, Graph Analysis, Data Synopsis 

and Sentimental Analysis are classes of problems that have been mapped efficiently to 

reconfigurable hardware and have been reported in the relevant literature on several occasions. 

However, this does not make the integration of the reconfigurable hardware with the software an 

easy task. The implementation of single computational elements with reconfigurable computing 

resources, as reported in the literature, not only is based on specific assumptions regarding 

Input/Output, dataset size, and algorithm accuracy, to name a few, but even if such were not 

significant issues (and they are), the QualiMaster project needs to address effective use of the 

specialized reconfigurable hardware resources in order to optimize the entire pipeline. To illustrate, 
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two possible scenarios in which the end result would lead to a slowdown at the system level are 

presented. 

Scenario A: if algorithm A runs exceptionally well on reconfigurable hardware (e.g. 100 times faster 

than software execution of the same algorithm) but it expects results from algorithm B which runs 

on software, and algorithm B does not produce data at a sufficiently high rate, then not only the 

potential of the reconfigurable hardware is not realized, but the Input/Output time overhead to 

move data in and out of the reconfigurable hardware may dominate over the computational time 

benefits, leading to an actual slowdown. Referring to Figure 1, if the Fast Codepedency Filter (see 

step 8) is run in software and Correlation (see step 9) is run in reconfigurable hardware, the overall 

performance of the QualiMaster pipeline will not only depend on the performance of the individual 

elements of the pipeline, but also their integration. 

Scenario B: If separate elements of the pipeline run well on the hardware, it is possible that it is 

beneficial to run non-optimal elements as well, in order to avoid Input/Output overhead. Continuing 

from scenario A, if in order to address the problems which were describe above we run forth the 

Fast Codependency Filter and the Correlation in hardware, it is possible that we will also need to 

run in hardware the Transfer Entropy and the Element Causality as well (both are in Step 8 of the 

pipeline), in order to avoid excessive Input/Output of the (partial in this case) results of the Fast 

Codependency Filter and Correlation pipeline from having to be forwarded to software, potentially 

causing an Input/Output bottleneck. However, even in this case, it is not clear that the hardware 

has enough resources to run all of the above. 

As a result from the considerations, above, different elements of the QualiMaster pipeline need to 

be implemented in hardware, benchmarked, and evaluated vis a vis the same elements running on 

software, so that there will be a system-level  optimization. The only way to achieve this goal is to 

have many different potential implementations of the QualiMaster pipeline and many different 

forms of data (e.g. twitter, financial data), as the optimal solution in one case might be undesirable 

in another. Hence the QualiMaster pipeline will be truly adaptive to the workload, desired 

processing algorithms, and available hardware resources (in principle there can be more than one 

reconfigurable hardware nodes in the system).  

In this context, WP3 interacted with WP2, in order to find out the classes of problems and the 

algorithms which are relevant for QualiMaster, in particular in the context of the priority pipeline 

reconfigurable platform elements. The algorithm families of interest are identified as: 

● Data Classification 

● Sentiment Analysis 

● Data Synopsis 

● Correlation Estimation 

The above classes of problems seem to be closely connected to the goals of the QualiMaster 

project. The above problems are very computationally intensive, thus the acceleration of these 

workloads would be a benefit to the final QualiMaster infrastructure. There is substantial related 

work on similar classes of problems, where hardware-based accelerators have been proposed. 

Several algorithms were proposed in collaboration with WP2 for each class of desirable algorithms. 

Data Classification aims at categorizing data objects into distinct classes with the use of labels. In 

particular, statistical classification receives new data inputs and identifies their respective classes. 

An example would be assigning a post derived from the social media into “relevant or “irrelevant” 
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classes based on its correlation with a general subject, i.e. finance, news, or social. Given that the 

scope of the project is to receive Twitter data with a view of performing efficient risk and Sentiment 

Analysis, categorizing streamed text information for its effective use is crucial for QualiMaster. In 

addition, Sentiment Analysis refers to the use of natural language processing and text analysis to 

identify and extract subjective information from source materials. In the QualiMaster project 

extracting sensible and related to financial knowledge is significant for precise and accurate risk 

analysis.  Furthermore, Data Synopsis focuses on configuring data structures and algorithms for 

efficiently processing and storing massive datasets or swiftly arriving data. The use of synopses 

allows fast response times to queries on big datasets, a function necessary to QualiMaster as 

efficient handling of streaming financial data (commodities) is essential. Finally, Correlation 

Estimation is a method that reports the dependence between two random variables. Thus, in 

QualiMaster correlation is used to determine the dependence between commodities.  

Implementing our own text classifiers by hand would be time-consuming and could be quite 

difficult. In general, text comprises several aspects that need to be taken into consideration, such 

as the high dimensional input space, linearly separability and few irrelevant features. Thus, in 

accordance with WP2 and by studying the related literature we concluded that the Support Vector 

Machines (SVM) method is appropriate for text classification. 

Various machine learning algorithms, which are used for data regression and classification, have 

been introduced at D 2.1 and proposed for hardware acceleration. We studied thoroughly the 

algorithms about Linear Regression, Bayesian Linear Regression, Support Vector Machines and 

Linear Generative Classification. The Support Vector Machines (SVM) algorithm was selected as 

the most common one and with parallel processing characteristics to be implemented for the data 

classification problem. 
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Figure 1: QualiMaster pipeline example execution steps 

For the sentiment analysis the LDA algorithm was chosen to be implemented in hardware, and 

more specifically its training phase as it is the most time consuming part of the algorithm. LDA is 

an algorithm used in order to classify a set of documents into topics. The topics can contain 

opinion targets as well as the polarity of the opinion. This allows sentiment analysis to exact 

information about the main theme of the document, as well as polarity, by examining the topics it is 

associated with (taking into account the probabilities for each topic). Topic modeling is a basic step 

for the sentiment analysis of documents. Moreover, topic modeling is a common method, which is 

used in machine learning and natural language processing. Atopic model is a type of statistical 

model for discovering the abstract "topics" that occur in a collection of documents. The most widely 

used algorithm is LDA, which is also the one used by WP2. In LDA algorithm, each document may 

be viewed as a mixture of various topics. This is similar to probabilistic latent semantic analysis 

(pLSA). In addition, the topic distribution in LDA algorithm is assumed to have a Dirichlet prior 

probability distribution. In practice, this results to more reasonable mixtures of topics in a 

document.  
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The large volume of data streams poses unique space and time constraints on the computation 

process. There are problems that may be acceptable to generate approximate solutions for 

problems with streaming huge volumes of data. A number of synopsis structures have been 

developed, which can be used in conjunction with a variety of mining and query processing 

techniques in data stream processing. Sketches are one of the simplest data structures that are 

used for data synopses. Count-Min sketch is a probabilistic  data structure that serves as a 

frequency table of events in a stream of data. Another basic data structure, which is used for data 

synopsis, is the histogram. There is a great variety of algorithms that create histogram data 

synopsis from streaming data. Exponential Histograms is an efficient data structure that enables 

answering frequency queries over streaming data. In addition, the ECM sketch is a data structure 

that combines the CM sketch with the Exponential Histogram data structure to an application for 

efficient querying over sliding window data streams. The ECM is considered to be a more 

sophisticated way of data synopsis. As the ECM method is a combination of the Count-Min 

algorithm and the Exponential Histogram data structure both of them were proposed to be 

developed. Lastly, these implementations will be combined in order to implement the efficient 

mapping of the ECM sketch on reconfigurable hardware. The ECM method takes as input a stream 

of elements and updates the corresponding CM sketch data structure. The CM sketch is updated 

by keeping an order-preserving aggregation of all streams. The update of the data structure takes 

place in different buckets of the data structure thus it needs a lot of CPU clock cycles in order to be 

updated. According to the theory the update of the ECM has O(1) amortized time complexity. A 

pipelined reconfigurable system that maps the update function will offer O(1) time complexity in 

any case.  In addition, the small memory footprint of the CM data structure leads to a system that 

maps such data structure internally in an FPGA device offering high throughput in case of CM 

updating or CM querying.  

One of the main goals of the QualiMaster project is the use of methods that will monitor data 

streams for event detection. A statistical technique that can show whether and how strongly pairs 

of variables are related is the correlation measure. In the world of finance, financial correlations 

measure the relationship between the changes of two or more financial variables, e.g. stock prices, 

in time. Financial correlation measurements are considered very important and they are used in 

advance portfolio management. The Hayashi-Yoshida cross-correlation estimator is an important 

estimator of the linear correlation coefficient between two asynchronous diffusive processes, e.g. 

stock market transactions. This method is really important as it can correlate high-frequency 

financial assets. Also, the Hayashi-Yoshida estimator correlates the variables, e.g. the stock 

prices, in real time, which is really important for forecasting the mid quote variation of the 

corresponding values. Lastly, the Hayashi-Yoshida estimator is considered as one of the most 

important and most basic estimators over streaming data, thus was proposed for implementation at 

the QualiMaster Use Cases as they have indicated at D1.1. 

The correlation matrix algorithm can calculate the correlation between multiple commodities in 

parallel. Also, the calculation of a single correlation estimator can be processed in parallel using 

the corresponding data. Reconfigurable hardware can offer high parallelization levels by using 

different resources in parallel or/and in a pipelined architecture.  

http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Streaming_algorithm
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3 Interface of Reconfigurable Hardware with QualiMaster 
Platform 

In this section there is a short description of the target platform (a Maxeler C-Series FPGA-based 

supercomputing node) for the algorithms mapped to hardware and the interface with the project 

platform (Storm) which is the framework for the project. 

3.1 Maxeler Technology 
Maximum Performance Computing (MPC) changes the classical computer science optimization 

from ease-of-programming to maximizing performance and minimizing total cost of computing. 

Performance is optimized by constructing compute engines to generate one result per clock cycle, 

wherever possible. Ease-of-programming is still important but takes second place to performance, 

computational density and power consumption. As such, MPC focuses on mission critical, long 

running computations with large datasets and complex numerical and intense statistical content.  

Maxeler drives MPC via „Multiscale Dataflow Computing‟. This section summarises the 

components of MPC, illustrates how MPC dataflow computers are programmed and how the 

resulting tools are presented to the users.  An overview of MPC, along with detailed examples of 

applications, is available in [27, 28]. 

One Maxeler Dataflow Engine (DFE) combines 10^4 arithmetic units with 10^7 bytes of local fast 

SRAM and 10^11 bytes of 6-channel large DRAM. MaxelerOS allows the DFEs and CPU to run in 

parallel, so while the DFEs are processing the data, the CPU typically performs the non-time-

critical parts of an application. 

Maxeler's MPC programming environment comprises of several components: 

● MaxCompiler, a meta-programming library used to produce DFE configurations by way of 

the MaxJ programming language, which is an extended form of Java with operator 

overloading. The compute kernels handling the data-intensive part of the application and 

the associated manager, which orchestrates data movement within the DFE, are written 

using this language. MaxJ is a Hardware Description language which produces the 

computational intensive part of the design configuration. 

● the SLiC (Simple Live CPU) interface, which is Maxeler's application programming interface 

for CPU-DFE integration; 

● MaxelerOS, a software layer between the SLiC interface, operating system and hardware, 

which manages DFE hardware and CPU-DFE communication in a way transparent to the 

user; 

● MaxIDE, a specialised integrated development environment for MaxJ and DFE design, a 

fast DFE software simulator and a comprehensive debug environment used during 

development. 

These components and their use are described in details in [29, 30]. 

In such an MPC system, the CPUs are in control and drive the computations on the DFEs. The 

data-intensive parts of the computations are typically confined to the DFE configuration and are 

made available through the SLiC interface.  At its simplest level, DFE computation can be added to 

an application with a single function call, while for more fine-grained control SLiC provides an 

“action”-based interface. SLiC interface calls are automatically generated from the corresponding 

DFE program pieces and allow DFE programs to be used by a range of programming languages 

including C/C++ or R, Python, and MATLAB by way of a adaptation layer (or skin). Thanks to 
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MaxelerOS's seamless management of DFE resources, these programming languages may make 

use the DFE program as they would make use of any other external library or service. 

3.2 Maxeler - Storm Interface 
The integration of reconfigurable hardware (e.g. Maxeler machines) along with the QualiMaster 

infrastructure plays an essential role. A communication framework needed to be created so that 

the reconfigurable hardware could receive data, make any calculations needed, and then transmit 

the results back to rest of the infrastructure. At D5.2 the QualiMaster infrastructure and priority 

pipeline are describe. Figure 2 depicts the QualiMaster priority pipeline, where the Adaptation 

Layer may decide to execute 3a or 3b depending on the configuration and monitoring of the 

pipeline execution. Hence, 3a needs to implement the communication framework between the 

QualiMaster pipeline and the reconfigurable hardware. Basically it involves the implementation of a 

flexible interface between Storm and Maxeler, which could be also used with different tools or 

reconfigurable hardware platforms. 

 

Figure 2: QualiMaster Infrastructure-Reconfigurable Hardware Integration (from D5.2) 

In order to initiate Storm [31] the Adaptation Layer creates topologies. A Storm topology is a graph 

of computation. Each node in a topology contains processing logic, and links between nodes 

indicate how data should be passed around between nodes. The core abstraction in Storm is the 

“stream”. A stream is an unbounded sequence of tuples. Storm provides the primitives for 

transforming a stream into a new stream in a distributed and reliable way.  

The basic primitives Storm provides for doing stream transformations are “spouts” and “bolts”. 

Spouts and bolts have interfaces that are implemented to run application-specific logic. A spout is 

a source of streams. For example, a spout may connect to the Twitter API and emit a stream of 

tweets. A bolt consumes any number of input streams, does some processing, and possibly emits 

new streams. Complex stream transformations, like computing a stream of trending topics from a 

stream of tweets, require multiple steps and thus multiple bolts. Bolts can do anything from run 

functions, filter tuples, do streaming aggregations, do streaming joins, talk to databases, and more. 

Networks of spouts and bolts are packaged into a “topology” which is the top-level abstraction that 

is submitted to Storm clusters for execution. A topology is a graph of stream transformations where 

each node is a spout or bolt. Edges in the graph indicate which bolts are subscribing to which 

streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every bolt that 

subscribed to that stream. 
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Figure 3: Storm Topology 

Each node in a Storm topology, Figure 3, executes in parallel. In the topology, the amount of 

parallelisms specified, and then Storm will spawn that number of threads across the cluster to do 

the execution. A topology runs forever, or until the user kills it. Storm will automatically reassign 

any failed tasks. Additionally, Storm guarantees that there will be no data loss, even if machines go 

down and messages are dropped. 

The Storm framework was installed on the Maxeler workstation and was tested as a simple Storm 

node. After that the connection with the Maxeler hardware had to be established. The Maxeler 

hardware is called by a C/C++ host code. The main problem that had to be addressed is basically 

the interface between Java (Storm) and C. Three methods that allow C/C++ and Java connection 

were considered, SWIG that allows the call of C function through Java, the exec function which 

calls the C executable and network sockets. 

In order to use SWIG to connect the Storm Java code with C the Maxeler project was compiled as 

a shared library. SWIG (Simplified Wrapper and Interface Generator) [32]is a software 

development tool that connects programs written in C and C++ with a variety of high-level 

programming languages. SWIG is used with different types of target languages including common 

scripting languages such as Javascript, Perl, PHP, Python, Tcl and Ruby. The list of supported 

languages also includes non-scripting languages such as C#, Common Lisp (CLISP, Allegro CL, 

CFFI, UFFI), D, Go language, Java including Android, Lua, Modula-3, OCAML, Octave and R. 

SWIG is most commonly used to create high-level interpreted or compiled programming 

environments, user interfaces, and as a tool for testing and prototyping C/C++ software. SWIG is 

typically used to parse C/C++ interfaces and generate the 'glue code' required for the above target 

languages to call into the C/C++ code. After wrapping the C code with SWIG the C function can be 

called as a native code call from the Java. The problem was that in order to use SWIG, its‟ data 

types had to be used in order to be able to exchange arguments from C to Java. 

The exec in Java is able to directly call the Maxeler executable. The exec function takes as 

arguments the executable file along with the arguments needed. Also a custom scheduler would 

have to be implemented in order to send the specific Java code (with the exec call) to the Maxeler 

workstation. 

 The first method proposed was the use of network sockets [33] in order to establish 

communication between the Java code and the C host code running on the Maxeler workstation. 

The Maxeler server creates sockets on start up that are in listening state. These sockets are 
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waiting for initiatives from client programs (e.g. Storm nodes). A TCP server may serve several 

clients concurrently, by creating a child process for each client and establishing a TCP connection 

between the child process and the client. Unique dedicated sockets are created for each 

connection. These are in established state, when a socket-to-socket virtual connection or virtual 

circuit (VC), also known as a TCP session, is established with the remote socket, providing a 

duplex byte stream. We can have up to 4 children on a Maxeler workstation as they can have 4 

different hardware designs running simultaneously on the 4 FPGAs. 

Two socket clients are used in order to make a call on the hardware server, a transmitter and a 

receiver. They are written in Java and run on a Storm subtopology (3a), which implements the 

appropriate algorithmic family interface. The transmitter creates a new socket in order to connect 

to the server and sends the configuration as well as the input data from previous components. The 

transmitter can also request for the results to be sent to the receiver. The receiver is connected via 

a different socket. It receives the results and forwards them to the rest of the pipeline. The socket 

server is written in C and serves as the Maxeler host code. It stays on listening state until a 

connection is established by both a transmitter client and a receiver client. The transmitter streams 

configuration  and input data to the server. The server stores the data coming from the transmitter 

and performs the Maxeler hardware call to process them. After the hardware call has returned, it 

sends the results to the receiver client whenever a result request is received. The receiver and 

transmitter libraries can also be used outside Storm, which provides even more flexibility. 

The three methods were compared in terms of flexibility and functionality. The use of SWIG 

basically reduces the flexibility of the interface, as the Java code would have to be rewritten using 

SWIG‟s data types. The exec function allows more flexibility as only a function call would have to 

be included in the Java code, but even though it worked perfectly when called by Java on the 

workstation, it didn‟t work if the code came through Storm. The network sockets approach was 

chosen, because they are flexible as they can be used by any tool that can implement sockets. 

Also sockets are faster as there is no need of interface functions (SWIG) or system calls 

(exec).The only drawback is that socket connections have to be opened on the client side (e.g. 

Java sockets), while exec or a native function call would be simpler. 
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4 Study of the algorithms 
In this section the algorithms that have been selected are presented. The descriptions of the 

algorithms is more detailed in WP2 and we recapitulate important aspects for our work in this 

deliverable. This section has been added for reason of completeness of the deliverable.  

4.1 Count-Min (CM) 
The QualiMaster project focuses on the development of novel approaches that deals with large-

scale data streaming. The Count-Min sketch is a popular and simple algorithm for summarizing 

data streams by providing decent summary statistics. The Count-Min data structure can be used in 

terms of the QualiMaster project for handling multiple and high-frequency large datasets in the 

proposed data processing settings with surprisingly strong accuracy. Count-Min [41] sketches are 

a widely applied sketching technique for data streams. A Count-Min sketch is composed of a set of 

d hash functions, h1(.), h2(.), ...., hd(.), and a 2-dimensional array of counters of width w and depth 

d. Hash function hj corresponds to row j of the array, mapping stream items to the range of [1... w]. 

Let CM[i,j] denote the counter at position (i,j) in the array. To add an item x of value vx in the 

Count-Min sketch, we increase the counters located at CM[hj(x), j] by vx, for j ∈  [1 ... d].  A point 

query for an item q is answered by hashing the item in each of the d rows and getting the minimum 

value of the corresponding cells. Note that hash collisions may cause estimation inaccuracies only 

overestimations.  By setting d=⌈ln(1/δ)⌉and w =⌈e/ε⌉, where e is the base of the natural logarithm, 

the structure enables point queries to be answered with an error of less than e||a||1, with a 

probability of at least 1-δ, where ||a||1 denotes the number of items seen in the stream. Similar 

results hold for range and inner product queries. 

The goal of parallelizing the Count-Min algorithm and mapping it on a reconfigurable platform is the 

improvement of both the result quality and the processing times. In any skech-based sequential 

algorithm, the most expensive operations are the update and querying of the sketch data structure 

as it is updated for every item in the stream. To achieve scalability, our FPGA-based solution tries 

to accelerate these operations. 

4.2 Exponential Histogram (EH) 
The QualiMaster project focuses on processing of streams that come from different and distributed 

data sources. In addition, the goal of the QualiMaster is the efficient processing of huge amounts 

of data over time-based sliding windows. Exponential histograms (EHs) [17] guarantee complex 

query answering over distributed data streams in the sliding-window model. The use of EHs in the 

QualiMaster project would offer fast answering queries over distributed streams and efficient 

storage of the statistics over sliding windows. Exponential histograms [17] are a deterministic 

structure, proposed to address the basic counting problem, i.e., for counting the number of true bits 

in the last N stream arrivals. They belong to the family of methods that break the sliding window 

range into smaller windows, called buckets or basic windows, to enable efficient maintenance of 

the statistics. Each bucket contains the aggregate statistics, i.e., number of arrivals and bucket 

bounds, for the corresponding sub-range. Buckets that no longer overlap with the sliding window 

are expired and discarded from the structure. To compute an aggregate over the whole (or a part 

of) sliding window, the statistics from all buckets overlapping with the query range are aggregated. 

For example, for basic counting, aggregation is a summation of the number of true bits in the 

buckets. A possible estimation error can be introduced due to the oldest bucket inside the query 

range, which usually has only a partial overlap with the query.  Therefore, the maximum possible 

estimation error is bounded by the size of the last bucket. 
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To reduce the space requirements, exponential histograms maintain buckets of exponentially 

increasing sizes. Bucket boundaries are chosen such that the ratio of the size of each bucket b 

with the sum of the sizes of all buckets more recent than b is upper bounded. In particular, the 

following invariant (1) is maintained for all buckets j: 

𝑪𝒋/(𝟐(𝟏 +  𝑪𝒊)) ≤ 𝒆 (𝟏)
𝒋−𝟏

𝜾=𝟏
 

where e denotes the maximum acceptable relative error and Cj denotes the size of bucket j 

(number of true bits arrived in the bucket range), with bucket 1 being the most recent bucket. 

Queries are answered by summing the sizes of all buckets that fully overlap the query range, and 

half of the size of the oldest bucket, if it partially overlaps the query. The estimation error is solely 

contained in the oldest bucket, and is therefore bounded by this invariant, resulting to a maximum 

relative error of  e. 

The EHs access each data element at its arriving time and needs to be processed in real time. 

This constraint can be really challenging to be satisfied especially when there are irregularities and 

bursts data arrival rates. This problem is mainly due to insufficient time for the underlying CPU to 

process all stream elements or due to the memory bottleneck to process the queries. The 

Qualimaster project focused on the mapping of the EH data structure on reconfigurable hardware 

in order to develop new hardware-accelerated solutions that can offer improved processing power 

and memory bandwidth to keep up with the update rate. 

4.3 Hayashi-Yoshida Correlation Estimator 
One of the objectives for the QualiMaster project is the implementation of a platform that 

processes in real time financial data. The financial data can arrive in a non-synchronous way, thus 

the processing of such data streams is a really critical issue. The covariance among the prices of 

the market stocks plays a crucial role in modern finance. For instance, the covariance matrix and 

its inverse are the key statistics in portfolio optimization and risk management. There are two 

crucial points pertaining to practical implementation of computing correlation over streaming data. 

First, the actual transaction data is recorded at non-synchronous times. The covariance estimator 

calculation is, usually, based on regularly spaced synchronous data but this can lead to unreliable 

estimation due to the problematic choice of regular interval and the data interpolation scheme. 

Second, a significant portion of the original data sets could be missing at pre-specified grid points 

due to such randomness of spacing. Thus, the correlation would lead to unreliable results. One of 

the most efficient correlation estimators is the Hayashi-Yoshida Correlation Estimator. The 

proposed method does not require any prior synchronization of the transaction-based data. The 

Hayashi-Yoshida covariance estimator is defined as follows:  

 

Eq. 1 uses the product of any pair of increments that will contribute to the sum only when the 

respective observation intervals are overlapping with each other. The Hayashi-Yoshida covariance 

estimator is consistent and unbiased as the observation time intensity increases to infinity. Using 
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the Hayashi-Yoshida covariance estimation Eq. 1, the proposed non-synchronous correlation 

estimator is computed by the Eq. 2.  

 

The quantities at the denominator represent the realized volatilities calculated using raw data. As 

shown in Eq. 2, the calculation of the Hayashi-Yoshida Correlation Estimator can be easily 

parallelized. Also, the reconfigurable hardware offers high parallelization level in order to calculate 

in parallel the correlation estimator among different stock markets. 

4.4 SVM 
The QualiMaster project exploits data derived from Twitter, in order to achieve risk analysis of 

financial data. Therefore sentiment analysis is a significant procedure of the project which is 

achieved with the SVM classification method as the specific method has yielded remarkable 

results in this area. In particular, Support vector machines (SVMs) were introduced by Vapnik et al. 

[6, 7] and they are considered to be highly accurate methods for a various set of classification 

tasks [5, 8, 9, 10]. Manning et al. [11] presented a work that uses SVM method for text 

classification. The algorithm takes as input a set of n training documents with the corresponding 

class labels and trains the SVM model. The linear SVM method aims at finding a hyperplane that 

separates the set of positive training documents from the set of negative documents with a 

maximum margin. The separating hyperplane, i.e. decision hyperplane[11] or decision surface [12], 

takes the “decision” for separating the input documents. However, Bernhard E. Boseretal. 

suggested a way to create nonlinear classifiers by applying the kernel trick (originally proposed by 

Aizermanetal. [13]) to maximum-margin hyperplanes [14]. The final algorithm is similar to the initial; 

apart from that every dot product is replaced by a nonlinear kernel function. This allows the 

algorithm to fit the maximum-margin hyperplane in a transformed feature space, and thereby 

achieving linear separation. The transformation may be nonlinear and the transformed space high 

dimensional. Thus, despite the fact the classifier can be a hyperplane in the high-dimensional 

feature space; it may be nonlinear in the original input space. 

Furthermore, given training vectors xi∈  Rn,  i= 1, …, l, in two classes, and an indicator vector yi ∈  

Rl, such that yi ∈  {1,-1} that represents the respective labels, SVM solves the following dual 

optimization problem: 

 

In this problem, Q = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗 ), where 𝐾(𝑥𝑖 , 𝑥𝑗 ) is the kernel and  e = [1, . . . , 1]T is a the vector 

of all ones. 
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Traditionally, SVMs have been used for binary classification scenarios, but they can be used for 

multiclass cases, as well. In our work, we built binary classifiers using the SVM methods from the 

LIBSVM package [15][47]. We integrated several LIBSVM functions to our hardware 

implementation and used the LIBSVM tool as a point of reference for SVM translation to hardware. 

However, there are many other open source SVM implementations, such as the SMO variant and 

the L2-loss linear methods implemented in the Weka library [16]. 

Note that quadratic programming optimization problems are computationally expensive. In cases 

where the datasets are high-dimensional and voluminous, such as in text classification, the kernel 

and inner product computations require a massive number of matrix-vector operations. On 

hardware however, these operations can be performed in parallel and produce the same outcomes 

much faster. 

4.5 LDA 

QualiMaster uses social networks, news articles and other sources in order to gather data that can 

assist in financial risk analysis. A basic information retrieval method for documents is Latent 

Dirichlet Analysis (LDA). LDA is used in order to associate each document with a number of topics, 

generated at the training phase, with a certain probability for each topic. Techniques like Latent 

Dirichlet Analysis (LDA)[19] can be employed for uncovering the latent semantics of corpora, 

basically extracting the meaning of words in the corpora. Latent Dirichlet allocation identifies a 

given number of |Z| topics within a corpus.  Being the most important parameter for LDA, this 

number determines the granularity of the resulting topics. In order to find the latent topics, LDA 

relies on probabilistic modeling. This process can be described as determining a mixture of topics 

z for each document d in the corpus, i.e., P(z|d), where each topic is described by terms w 

following another probability distribution, i.e., P(w|z). 

By applying LDA latent topics as a list of terms with a probability for each term indicating the 

membership degree for the topic can be represented. Furthermore, for each document in the 

corpus LDA can determine through topic probabilities P(zj|di) regarding which topics the document 

belongs to and to which degree. The model needs to be trained on an example dataset and can be 

applied to any document later assigning the probabilities of topics to occur in that document. The 

training phase of LDA was considered to be implemented in hardware as it involves multiple 

iterations through the corpus in order to extract the topics of a dataset. The training phase's 

computations scale with the size of the dataset. FPGAs can be used in order to process the data in 

parallel, and thus reduce the execution time. 
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5 Algorithm Analysis for Hardware Implementation 
The first step to map an algorithm to hardware is to analyze it accordingly. This section describes 

the analysis methodology and how it was applied to the selected algorithms. Using this analysis 

designer will create the first hardware model with the I/O study and proper data structures. This 

model is the intermediate level between algorithm and actual hardware design. 

5.1 Analysis Methodology 
An algorithm, that the designer want to translate in hardware, has to be analyzed for several 

characteristics from the designer point of view. Inputs and outputs of the algorithm, performance 

issues and the basic data structures and operations are the most important. In addition, the 

communication overhead for the synchronization of the portions of the algorithm which run in 

specialized hardware with the aspects that run in software has to be considered, as excessive 

fragmentation may lead to poor performance (e.g. too many forks/joints for little work done in 

hardware).Performance issues are very important in the scope of QualiMaster, as performance 

quality tradeoff is of main importance as it has been analyzed in D 2.1. 

5.1.1 Study of Inputs and Outputs 

Every algorithm has a set of inputs that are needed to be calculated to produce a set of outputs. 

Inputs and Outputs define the interface between the computational system and the user. 

Inputs study consists of the data volume, their width, their nature, their source, and if there are 

used more than one time in the calculations. Volume could be the most important parameter for 

the study of the algorithm as it can lead to very important decisions, such as use of memory, 

number of processing units etc. If input data is very little then the system does not need any 

special handling for them as internal resources can handle them. If input data becomes bigger, and 

internal memory is not enough for handling their volume, then internal structures should be 

designed in order to compress or encode data, and, finally if volume of data is big, that 

reconfigurable device cannot store them, then an system e.g. external memory based system for 

buffering or swapping, should be designed to manipulate them. Data size is little or big depending 

on the target reconfigurable technology and device which is used from the designer.   

The size and the characteristics of the input are important as for example if it is  very large, and 

comes through conventional protocols (Ethernet, PCI etc) then special data structures should be 

designed to reassemble data. Such structures can be shift registers, very long word registers etc., 

which handle input data and reform them to the appropriate format for reconfigurable hardware 

processing. 

The input data rate is also an important aspect to a system design. If the algorithm handles input 

data in burst mode data structures as FIFOs should be designed. If there is input data that an 

algorithm uses more than one time then the corresponding data structures, as cashing schemes, 

cyclic buffers, local memories, should also be used. 

It is also important, for the designer, to study the if there is a need to design the controller for the 

protocol that the inputs may follow. If this system, for example, is directly connected to network 

with TCP/IP for streaming inputs, or an external DDR memory for large databases etc. The proper 

controller in hardware should be designed and integrated to the system. 

The designer handles outputs similarly to the inputs. For QualiMaster scope Input and Output 

study is critical as it handles streaming data. Inputs and outputs have been often proved to be a 



Deliverable 3.1 QualiMaster 

© QualiMaster Page 25(of 66)  

 

critical issue to designers for reconfigurable hardware, constraining the system performance as I/O 

was the bottleneck.  

5.1.2 Data Sets  

Application or algorithm mapping to hardware demands the appropriate data set on the design and 

testing procedure. Dataset should be representative accordingly to the algorithm and the way the 

final user will use this algorithm, in order to help designer to make the right decisions. An 

inappropriate data set can mislead the designer to decisions that will make the final system without 

the desired functionality or with low performance. Data sets are used at three design phases: at 

profiling, simulation and verification phase. These Data Sets are the same for the hardware and 

software designs but analyzed in different manner. 

At profiling phase the designer must analyze the algorithm or the application in order to find the 

most computationally demanding part. If the data set is not proper, then the designer can focus 

accidentally on a different part of the code than he or she should, and as a result he/she will map 

to hardware an inappropriate part. The resulting system will not achieve high performance as the 

hardware part will not be accelerating the most demanding aspect of the algorithm. 

At simulation phase, the data set has to be representative and to cover every state of the 

algorithm. If all states are not covered, then the system cannot be tested correctly and it will 

probably fail at run time.  

At verification phase, proper data sets lead to proper functional verification. If the data set does not 

cover all cases then the system will not have been properly verified and at run time it may produce 

wrong results. Many times these results are very difficult to be found. The well-known 1994Intel 

Pentium FDIV division bug is the most the famous such case. 

One solution could be to have a data set that will exhaustively test the algorithm. Such a solution is 

completely inapplicable in practically all cases, as due to state explosion the profiling, simulation 

and verification phases will take too long for testing. Such Datasets are the same used in software 

to show proper functionality.  

5.1.3 Algorithm Profiling  

Designers are trying to boost software performance by mapping applications to hardware. Inmost 

applications, usually 10% of the code consumes the 90% of the execution time, known as the 

90/10 law in this context [38]. Following this rule of thumb, designers try to focus on the most 

demanding computational parts of an application. This approach helps the designer to save design 

area as he avoids to  map large and complex parts of hardware that are lightly used. This area is 

used to map the computational demanding parts of the algorithm more than once to have a parallel 

execution, and a faster run time for the application. It should be noted, however, that optimizing 

90% of the execution time may still be too little, as from Amdahl‟s law [39], even if an infinite 

speedup applies to the optimizable part and there is no communication overhead, a speedup of 

factor 10 will be achieved at most. This is a ceiling, and even the 10X speedup can be easily 

evaporated when communication overhead or limited performance improvement come to place. 

There exist applications which have substantial speedup on some critical section but in the total 

execution time (including I/O and communications overhead) there was a slowdown.  

Several tools are used for the algorithm performance profiling. Tools as Intel VTune or GProf can 

profile an algorithm a procedure or instruction level. The designer runs the algorithm with a specific 

data set and the tool produces a report that shows the allocation of run time to every part of the 
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code. It also shows the number of times that a function has been called which may also very 

important depending on the designers target platform. 

It is important for the designer to use representative data sets. If, for example, the dataset is really 

small as compared to the data sets that will be used on the final system then the system 

initialization for example, can demand a significant percentage of run time. If the system 

initialization is independent from input data size, then for a much larger data set the same 

initialization function will demand a much smaller percentage of the execution time. Also the data 

nature can affect the run time distribution to functions. Usually large data sets give the proper 

distribution for most application. A study of the algorithm options have to be done in order to use 

the data with the determined nature at profiling state.      

5.1.4 Important Data Structures and Operations 

The next step after profiling for the designer is to locate the important data structures and 

operations at the computationally intensive part of the algorithm. Data structures are important as 

using the proper ones the computations can be in parallel. As most appropriate Data Structures for 

mapping at reconfigurable hardware are considered static structures, with 1 and 2 dimensions 

tables as the most suitable. Dynamic structures using pointers, as trees, are considered as 

inappropriate structures for mapping in reconfigurable hardware If for example there is a 

comparison of an input against many comparators working in parallel will boost design 

performance, but even a DFS in a binary tree is challenging to map it in hardware efficiently. 

Operations are also important in order to identify how system arithmetic will be implemented. If the 

application uses integers, and in which range, vs. single- or double-precision floating point 

numbers the required hardware resources may change substantially. Identifying the arithmetic, the 

designer will assign the available resources in order to achieve the maximum performance.  

5.2 Count Min (CM) Modeling 
The Count-Min algorithm is based on probabilistic techniques to serve various types of queries on 

streaming data. The Count-Min algorithm is able to handle massive data using data structures that 

occupy sub-linear space vs. the size of the input dataset. The CM sketch data structure can 

accurately summarize arbitrary data distributions with a compact, fixed memory footprint that is 

often small enough to fit within cache, ensuring fast processing of updates. 

There have been several efforts to implement sketch data structures in hardware to accelerate 

their performance. The simplicity and the parallelism of the sketching algorithms makes such 

implementations convenient. Lai et al. [51] presented an implementation of sketching techniques 

using an FPGA-based platform, for the purpose of anomaly detection. Their implementation scales 

easily to network data stream rates of 4Gbps. Lai and Byrd [52] implemented a Count-Min sketch 

on a low-power stream processor, which processes a throughput rate up to 13 Gbps according to 

their results. In [53], Thomas et al. describe their implementation on a IBM cell processor with 8 

processing units. Their results show an almost 8-fold speedup vs. the single-thread sequential 

code. Wellem et al. in [54, 55] proposed to use Graphics Processing Units (GPUs) for offloading 

heavy sketch computations for network traffic change detection. Their experiment results showed 

that GPU can conduct fast change detection with query operation up to 9 million distinct keys per 

second and one order of magnitude faster than sequential software version. 

This section presents the analysis of the input and the output of the proposed sketch data 

structure. Also, we describe the datasets that were used for the analysis, the validation and the 
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testing of the implemented hardware-based system. Next, the algorithmic analysis of the CM 

method is presented. Last, we present the basic data structures and their operations that the 

proposed algorithm implements.   

5.2.1 Study of Inputs and Outputs 

The Count-Min sketch provides a different kind of solution to count tracking. It uses a fixed amount 

of memory to store count information, which does not vary over time. Nevertheless, it is able to 

provide useful estimated counts, as the accuracy scales with the total sum of all the counts stored. 

Streaming data from different applications, like IP networking, machine learning, distributed 

computing and signal processing, can be used as input to the proposed algorithm. 

 The Count Min sketch is a data structure that summarizes efficiently a stream of input data and 

answers queries with high accuracy over the input stream. Thus, the CM algorithm takes two 

different types of inputs: a stream of input data that is summed up on the CM sketch data structure 

or a query over the input dataset. 

Input 

The CM sketch takes as input raw streaming data that is used for building the sketch data 

structure. The input stream of data can be typically modeled as vector a[1 .. n]. The input vector 

consists of tuples with two values each: (the element id, the element‟s value),  i.e. a = 

[(element_idx, value_x), (element_idy, value_y), (element_idx, value_z), etc]. The id is used for 

indexing the sketch data structure. The elements‟ values are used for changing accordingly the 

values of the sketch data structure. 

In addition, the CM sketch is used for real time querying and answering over the input stream. In 

this case, the algorithm takes as input the just the querying element id. 

Output 

The algorithm does not output anything in case of updating the sketch data structure. On the other 

hand, in case of the query mode the algorithm outputs the information that is stored in the sketch 

data structure, which refers to the element id that is queried about.   

5.2.2 Data Sets 

The implementation of the Count-Min algorithm focused on the efficient mapping of the method on 

a hardware-based platform. We used a frequently used real-life data set, i.e. the worldcup‟98 [37] 

(wc‟98), for the algorithmic analysis, the performance evaluation and the validation of the output 

results. The wc‟98 data set consists of all HTTP requests that were directed within a period of 92 

days to the web-servers hosting the official world-cup 1998 website. It contains a total of 1.089 

billion valid requests. Each request was indexed using the web-page URLas a key. We created 

point queries over the Count-Min sketch data structure estimating the popularity of each web-page 

by counting the frequency of its appearances.  

5.2.3 Algorithm Profiling  

This section describes the algorithmic analysis of the Count-Min algorithm. The Count-Min 

Algorithm consists of three main functions: the sketch initialization, the update and the estimation. 

The Count-Min sketch data structure consists of a fixed 2-D array of counters, of width w and 

depth d, as shown in Figure 4. Each row of counters is associated with a different hash function. 

The hash function maps items uniformly onto the range {1, 2, . . . w}. For items represented as 
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integers i, the hash functions can be of the form (a*i+b mod p mod w), where p is a prime number 

larger than the maximum i value (say, p = 231 − 1 or p = 261 − 1), and a, b are values chosen 

randomly in the range 1 to p − 1. It is important that each hash function is different; otherwise there 

is no benefit from the repetition.  

 
Figure 4: Count-Min sketch data structure 

During the initialization stage the counters are initialized to zero, as shown in Figure 5. In addition, 

the parameters for hashing scheme are selected. 

The update function takes as input a new tuple of data, i.e. (i, c), at each clock tick and updates the 

data structure in a straightforward way. The hash functions of all the rows are applied to the id of 

the incoming tuple. The result from the hash function is used to determine a corresponding 

counter. Next, the update function adds the c value to all the corresponding counters. Figure 4 

shows an example of an update operation on a sketch with w = 10 and d = 5. The update of item i 

is mapped by the hash functions to a single entry in each row. It is important to mention that the 

incoming item is mapped to different locations in each of the rows. The pseudo code for the update 

function is presented in Figure 5. 

 
Figure 5: Basic functions for the Count-Min algorithm 

The Count Min estimation function is used for queries over the streaming input data. The process 

is quite similar to the update function. It applies all the hash functions of the sketch data structure 

on the queried input element id. This process returns the values of the counters from the tables 

positions, where the querying id corresponds. Then the smallest value of the counter is returned as 
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the estimation result of the query, as shown in Figure 5. Figure 6 presents the flowchart of the 

Count-Min algorithm. 

 
Figure 6: Count-Min Algorithm Flowchart 

 

Next, we analyzed the algorithm as far as its possible parallelization level, which we can take 

advantage for a hardware-based implementation. The sketch update process has two different 

parallelization levels. First, each row of the sketch is updated independently of others, so the 

sketch can be partitioned row-wise for parallel processing. Second, another more coarse grained 

parallel formulation is the building of sketches on different subsets of data. The produced sketches 

can be combined in a straightforward way in order to give the sketch of the union of the data. This 

approach can be dramatically more efficient in terms of network communication. 

5.2.4 Important Data Structures and Operations 

This section describes all the important data structures and operations, which are implemented by 

the Count-Min algorithm, as described above, and they will be presented in our hardware-based 

proposed architecture. 

As described in Section 4.1, the Count–Min algorithm implements a data structure that 

summarizes the information from streaming data and it can serve various types of queries on 

streaming data. This core data structure is a 2-dimensional array, i.e. count[w, d], which stores the 

synopses of the input streaming data. The size of the 2-dimensional array is defined by the w and 

d parameters, which are defined by two factors: ε and δ, where the error in answering the query is 

within a factor of ε with probability δ.  

Thus, the factors ε and δ, which as described in Section 4.1 are selected with the formulas 

d=⌈ln(1/δ)⌉and w =⌈e/ε⌉, can tune the size of the implemented 2-dimensional array based on the 

space that is available and the accuracy of the results that the data structure can offer. 

The Count-Min algorithm uses hashing techniques to process the updates and report queries using 

sub linear space. Thus, the hash functions are pair wise independent to ensure lower number of 

collisions in the hash implementation. These hash functions can be precomputed and placed in 

local lookup tables, i.e. internal BRAMs of the FPGA device. 

Another important issue of the Count-Min algorithm is the data input during the update process. 

The data streams are modeled as vectors, where each element consists of two values, i.e. the id 

and the incrementing value. When an new update transaction, i.e. (id, value), arrives, the algorithm 

hashes through each of the hash functions h1...hd and increment the corresponding w entries. 

At any time, the approximate value of an element can get be computed from the minimum value in 

each of the d cells of count table, where the element hashes to. This is typically called the Point 
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Query that returns an approximation of an input element. Similarly a Count-Min sketch can get the 

approximation query for ranges, which is typically a summation over multiple point queries.  

5.3 Exponential Histogram (EH) Modeling 
Another important data structure, which is an effective method for estimating statistics on sliding 

windows, is the exponential histograms (EHs). The EH is used for the counting problem, i.e. the 

problem of determining, with a bound on the relative error, the number of 1s in the last N units of 

time. The exponential histogram data structure is a histogram, where the buckets that record older 

data are exponentially wider than the buckets that record more recent data. When, a query takes 

place, i.e. to find the number of 1s that are seen in the last n units of time, we simply iterate over 

the buckets starting with the bucket containing the most recently recorded 1 till we find the bucket 

that covers the time we are interested in. Then we return the probabilistic distance of that bucket 

from the current timestamp. 

Streaming processing and sliding-window domain is an important application domain and there are 

various hardware-based works that accelerate such workloads. Fowers et al. [56] analyzed the 

sliding-window applications domain when executing on FPGAs, GPUs, and multicores. For each 

device, they presented optimization strategies and analyzed the cases, where each device was 

most effective. The results showed that FPGAs can achieve speedup of up to 11x and 57x 

compared to GPUs and multicores, respectively, while also using orders of magnitude less energy. 

Qian et al. in [57] presented an novel algorithm named M3Join, which was implemented on an 

FPGA platform.  The system needs only one scan over the data streams since different join 

queries share the intermediate results. The experimental results show that the hardware can 

accelerate join processing vastly. 

This section presents the analysis of the input and the output of the proposed EH data structure. 

Also, we describe the data sets that were used the validation of our implemented system. Next, the 

algorithmic analysis of the EH method is presented. Lastly, we present the EH data structures and 

their basic operations.   

5.3.1 Study of Inputs and Outputs 

The EH model offers a probabilistic solution to the counting problem. The EH algorithm either 

updates the Exponential Histogram data structure with new streaming data or it estimates the 

number of 1s that have arrived from a specific timestamp up to the current timestamp. 

Input 

The EH algorithm takes as input a stream of data that can be typically modeled as vector a[1 .. n]. 

Each element of the input vector is a tuple of two values: the value and the corresponding 

timestamp, i.e. input stream = [(value_1, timestamp_0), (value_0, timestamp_1), 

(value_1,time_stamp_2), etc]. The first element of each tuple is either the value 1 or 0, while the 

second one is the clock timestamp which increments by one at each arrival. Only the timestamps 

of the elements, which have value 1, are stored in the Exponential Histogram. Also, the EH data 

structure takes as input the size of the window that we are going to process the input data. 

Moreover, the EH data structure is used for real time querying and answering over the input 

stream. In that case, the algorithm takes as input a timestamp and estimates the number of the 

elements with value 1, which arrived from that timestamp up to the current timestamp. 

Output 
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The algorithm does not output anything in case of updating the EH data structure. On the other 

hand, in case of processing a query, the algorithm outputs the estimation of the number of 1s that 

have arrived from a specific timestamp till to the current time.  

5.3.2 Data Sets 

As described above, the Exponential Histogram is a method that can efficiently offer a probabilistic 

solution to the counting problem. For the testing and the evaluation of our implemented system we 

used, again, the real-life data set from the Worldcup ‟98 [37] (wc‟98). We streamed the data into 

the EH data structure. During the streaming process, we created and made queries over the EH 

data structure about the number of appearances of specific valid requests. The results that we took 

as answers were cross validated vs. the answers from Java implementation that we used as basis 

for our EH implementation. 

5.3.3 Algorithm Profiling  

This section makes the algorithmic analysis of the Exponential Histogram algorithm. The EH data 

structure is used for solving the Basic Counting problem. As described above, the Exponential 

histogram is a data structure that maintains the count of the elements with value 1 in the last N 

elements seen from the stream. The Exponential Histogram algorithm is based on two processes: 

1) insert a new element and 2) estimate the number of elements with 1 value. Both of these 

algorithms were implemented on the hardware platform. 

 
Figure 7: The main structure of the EH data structure 

First, we analyzed the main function of the algorithm, which is the insert process. This function 

implements two basic steps of the algorithms: i) store the new element if its value is 1 in the first 

bucket and ii) update of the Exponential Histogram. The EH consists of a number of buckets that 

are placed in a row, as shown in Figure 7. The buckets keep the timestamps of the most recent 

elements and the total number of elements with 1-value, called bucket size. When the timestamp 

of the most recent element of a bucket expires (reaches window_size + 1), we are no longer 

interested in such data elements, thus we drop that bucket. If a bucket is still active, we are 

guaranteed that it contains at least a single 1 that has not expired. The first bucket maximum 

consists of C number of elements whereas the rests buckets consist of C/2 elements. When a new 

element with 1 value arrives, it is placed in the first bucket. The next step of the algorithm 

undertakes the update of the EH data structure. The process moves to the inner buckets and 

checks, if the buckets reach to its size. If this is true, then the algorithm merges the two last 

timestamps of the full bucket and passes the new element to the next bucket. The process 

continues till the last active bucket of the EH. The steps for the insert function are presented in 

Figure 8.  
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Figure 8: Pseudo code for the Insert function 

The second main function of the EH data structure is the estimation of the active elements with 1 

value. The EH algorithm offers two choices: the estimation of the total number of 1‟s that exist in 

the EH data structure or the estimation of the 1‟s that exist up to a specific timestamp. For the first 

type of estimation, the EH data structure maintains two counters: one for the size of the last bucket 

(Last) and one for the sum of the sizes of all buckets (Total). The estimate itself is Total minus half 

of Last. For the second type of estimation, we first find the bucket that the timestamp belongs to. 

Second, for all but the last bucket, we add the number of the elements that are in them. For the 

last bucket, let C be the count of the number of 1‟s in that bucket. The actual number of active 

elements with value 1 in this bucket could be anywhere between 1 and C, and so we estimate it to 

be C/2. The pseudo code for the estimation function is presented in Figure 9. The flowchart of the 

complete EH algorithm is presented in Figure 10.  

 
Figure 9: Pseudo code for the Estimate function 

It is important to mention that the arrival of each new element can be processed in O(1) amortized 

time and O(logN) worst-case time, due to the possible need for cascading merges. On the other 

hand, the estimation of the total number of elements with 1 value can be provided in O(1) time, as 

the EH maintains two counters: the Last and the Total counter, which can be updated in O(1) time 

for every data element. Lastly, the estimation number of elements for a specified timestamp can be 

processed in O(n) worst case time and in O(logN) best-case time due to the search bucket 

process. 

It is clear from the algorithmic analysis that the problem of EH algorithm is not a parallelizable 

problem due to its sequential nature. On the other hand, the hardware can take advantage of the 

fine grained parallelization due to the cascading processes of the algorithm (either during the 

update process or the estimation process). 
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Figure 10: Exponential Histogram algorithm flowchart 

5.3.4 Important Data Structures and Operations 

This section describes all the important data structures and operations of the Exponential 

Histogram algorithm, which are implemented by our hardware-based architecture. As described 

above, the EH algorithm maintains the number of the elements with 1 values over a stream. The 

EH data structure is a list of buckets in a row, which are connected with each other. The number of 

buckets depends on the processing window size while the number of the size of each bucket is 

defined by the acceptable error rate ε, as described in 2.4. 

During the insert function there are three different processes that need to take place. First, the EH 

data structure is examined, if it contains expired data, i.e. data that do not belong anymore to the 

processing window. Second, the new timestamp of the element with 1 value inserts to the first 

bucket. Third, all the buckets of the data structure are examined in order to merge buckets that 

reach to their maximum size. 

Moreover, the EH data structure can estimate the number of the 1‟s that have appeared either in a 

complete window of time or from a specific timestamp up to the most recent current timestamp. 

The estimation of the 1s values over a window size is an easy procedure as the EH keeps at each 

time the total number of the 1s that have appeared and the number of the 1s at the last bucket 

level. Thus, the calculation of the total number of the 1‟s values takes places using these two 

counters. On the other hand, the calculation of the 1‟s values from a specific timestamp till recent 

timestamp needs the traversing of the EH data structure till to the specific timestamp by adding the 

estimation values from the previous buckets. 

5.4 Correlation Modeling 
The QualiMaster project‟s main goals are the use of methods that will improve the risk analysis on 

financial data and the implementation of systems that will monitor fine granular data streams for 

event detection. An important method that focuses on the correlation among the stocks‟ values is 

the correlation estimator.  

There are many works that implement various correlation estimators on reconfigurable hardware. 

Ureña et al. in [58] described the design and development of a correlation detector a low-cost 

reconfigurable device. Fort et al. presented [59] an FPGA implementation of a synchronization 

system using both autocorrelation and cross-correlation. Their results showed that FPGA devices 

can efficiently map cross-correlation synchronizers. Lindoso et al. in [60] presented an FPGA-
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based implementation of an image correlation algorithm, i.e. Zero-Mean Normalized Cross-

Correlation. The experimental results demonstrated that FPGAs improved performance by at least 

two orders of magnitude with respect to software implementations on a high-end computer. Liu et 

al. in [61] presented a multi-channel real-time correlation system on a FPGA-based platform. Their 

system offered sliding correlation processing. Their proposed system achieved higher flexibility 

and accurate data-flow control when compared to previous traditional parallel processing 

architectures. 

This section describes an initial hardware-based modelingof the well-known Hayashi-Yoshida 

Correlation Estimator [36]. This estimator can be applied directly on series of stock prices without 

any preprocessing. 

In this section we analyze the input and the output of the described algorithm, followed by the 

algorithmic analysis of the Hayashi-Yoshida method. Lastly, we analyze and present the basic data 

structures and the operations that were used for mapping the Hayashi-Yoshida Correlation 

Estimator on a reconfigurable platform. 

5.4.1 Study of Inputs and Outputs 

As described above, the Hayashi-Yoshida (HY) Correlation Estimator measures the pair wise 

correlation of the input market stocks. The HY Correlation Estimator uses the transaction prices of 

two stocks in order to calculate their correlation. The correlation is calculated over time intervals 

that the stocks transactions take place. On the other hand, the QualiMaster project focuses on the 

correlation among a group of market stocks. The HY estimator calculates the correlation of all the 

different pairs of the processing market stocks. Figure 11 presents the equation for calculating the 

HY estimator for two different market stocks. 

 
Figure 11: Hayashi-Yoshida Correlation estimator 

Input:  

The proposed system takes as input the names and the number, N, of the stocks that are going to 

be processed. Next, it takes as input a stream of the transaction prices of the N stocks. The actual 

transaction data are recorded at random times, i.e. different timestamps, which means that we 

have to calculate the correlation estimator of all the pairs of the stocks during the different time 

intervals. The input stream can be modeled as vector a[1 .. n], where each element consists of 

tuples that describe the id of the stock, the new value of the stock and the transaction time, e.g. a = 

[(stock_1, value_0, timestamp_0), (stock_10, value_0, timestamp_0), (stock_3, value_1, 

timestamp_1)]. 

Output:  

The output of the algorithm is an upper triagonal matrix with each cell showing the computed 

correlation between two market stocks. 
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5.4.2 Data Sets 

The QualiMaster project will use high volume financial data streams. We tested and evaluated the 

correlation software-based system by using real data from the stock market. The stock prices are 

provided by an API from the SPRING that provides access to real time quotes and market depth 

data to the consortium.  

5.4.3 Algorithm Profiling 

This section presents an algorithmic analysis of the HY correlation estimator. The HY estimator 

calculates the correlation between two stock markets using their transaction prices. As the stock 

transactions are non-synchronous, the HY correlation estimator is calculated over all the 

overlapping transaction time intervals. Figure 12 shows an example for the calculation of the HY 

estimator over the transactions of two market stocks The HY estimator calculation is based on the 

computation of the covariance for all the pairs of the market stocks and the calculation of the 

transactions of each market stock separately. The direct use of equation of Figure 11 has O(mn) 

complexity(where m and n are the number of transactions for the first and the second stock 

respectively). 

 
Figure 12: Example of calculation HY correlation estimator 

The high complexity of the algorithm and its streaming nature led us to propose a new method for 

calculating the HY estimator. Our proposed method omits the non-overlapping time intervals from 

the calculation of the HY estimator by finding the overlapping time intervals during the streaming 

data arrival. The overlapping time intervals of all the pairs of the market stocks are found on the 

“fly”. Thus, each time a new transaction arrives, we keep only its value and its timestamp. Then, 

the coefficients from the past overlapping intervals are added to the coefficients of the HY 

estimator, which are kept in a table. This procedure is repeated at each timestamp, thus we know 

exactly the overlapping intervals of the market stock values and their values at the start and the 

end of the overlapping time interval. The correlation estimator can be calculated for each pair of 

the stocks at any timestamp using the coefficients that were computed above. If a stock did not 

change value during the previous time interval, the HY estimator does not change due to the term 

of ΔP(I) = Pi-Pi-1. Our proposed method, which can be applied to software, too, has O(m+n) time 

complexity. Figure 13 shows the calculation of the HY correlation using our new proposed 

algorithm for the same example as the one presented in Figure 12. The flowchart of the HY 

estimator method is presented in Figure 14. 
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Figure 13: Example of Calculation HY with our proposed method 

 
Figure 14: HY estimator algorithm flowchart 

It is clear from the algorithmic analysis that the computation of the HY correlation estimator can be 

easily parallelized. In our future plans, we aim to calculate the HY coefficients of different pairs of 

the stock markets in parallel. 

5.4.4 Important Data Structures and Operations 

This section describes the basic data structures that were used for the computation of the HY 

estimator. As described above, we implemented a variation of the official algorithm that calculates 

the Hayashi-Yoshida estimator. Our proposed solution offers lower time complexity and takes 

advantage of the algorithm‟s streaming nature. 

First, we implemented a data structure that keeps the stocks‟ transaction values at the beginning 

and at the end of the overlapping time intervals for each pair of the input stocks. This data 

structure is a 2-dimensionalarray that stores at each timestamp the new transactions of the stocks 

(if they exist). Next, these values are used for the computation of the HY covariance, as presented 

from equation of Figure 11. 

Next, we used another 2-dimensional array that keeps just the transactions of the stocks. This 

table is, also, updated by the transaction values that arrive at each timestamp. The values of this 

array are used for the calculation of the denominator values of the HY estimator.  

5.5 SVM Modeling  
Related work has shown that SVM is a problem suitable for hardware. In particular, in [48] 

Cadambi, Srihari, et al. achieve 20x speedup with the use of a Virtex 5 FPGA, compared to a 2.2 

GHz CPU processor. Furthermore, Papadonikolakis and Bouganis in [49] utilize an Altera Stratix III 

FPGA to reach 7x speedup compared to other hardware-based implementations. Additionally, in 
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[49] Pina-Ramfrez et al. use a Virtex II to implement the SVM method, but do not achieve speed up 

compared to a 550 MHz CPU processor. The aforementioned results indicate that SVM can be 

accelerated with the use of hardware for the purposes of the QualiMaster project. In order to 

perform SVM Modeling we used Version 3.20 of the C/C++ open source LIBSVM project. Modeling 

a system entails a functional (commonly referred to as behavioral) prototype with such 

considerations as data operation precision, functional units, sequence of operations, etc. In this 

context the model is a reference design done in software (typically with MATLAB or C/C++, but it 

can also be in Java or Python) which gives the designer a feeling for the cost vs. performance 

tradeoffs. To illustrate, Papadonikolakis and Bouganis‟ work on SVM [49] uses fixed point precision 

rather than floating point precision because fixed point takes fewer resources vs. floating point. 

The evaluation, however, of the quality of the results was performed prior to the development of an 

architecture and a detailed hardware design – if the quality was poor there would be no need to 

proceed with the time-consuming design. Similarly, if one needs a hardware system with the same 

accuracy as the software (and we assume that this is a realistic scenario) the system operation 

has to be modeled from the beginning, in the case of our example (and the QualiMaster work on 

the same algorithm) with floating point operations. Based on the bibliography, the majority of works 

on SVM compare their performance to the results of LIBSVM, both in terms of accuracy and 

speed([42], [43], [44], [45]). During the modeling process first we analyzed the data inputs and 

outputs of this implementation. Then we used specific data sets to perform profiling of the software 

code, and finally we identified important data structures and operations. A very useful additional 

result of modeling is not only that it allows for comparisons against pure software implementations 

of an algorithm, but it also provides detailed datasets and expected results for the actual hardware 

design.  

5.5.1 Study of Inputs and Outputs 

The SVM Training algorithm receives as input a two dimensional structure and outputs the SVM 

model. 

Inputs 

The input of the LIBSVM library is a file containing training data, with a specific format. Although 

the SVM Classification method will be performed on social streaming data, the Training phase 

which produces the appropriate classifier will be applied on historical data. Each row represents a 

data instance and each column denotes a feature. The only exception is the first column of each 

data instance that depicts the class of the data instance defined as the label of the data instance. 

In binary classification, this label can value 1 or -1, whereas in multi-class classification the number 

of possible labels depends on the number of classes. More specifically, the two following 

sequences represent two rows (data instances) of the file. 

Data instance #1: -1.0   6:1   11:-0.73   12:0.17   13:0.0   14:0.25   15:0.01    

Data instance #2:  1.0   6:1   5:-0.36   12:0.25   14:0.25    15:0.17   16:0.26    

Values -1.0 and 1.0 indicate the labels of the data instances. Moreover, in all a:b expressions, a 

denotes the number of the feature and b represents the value of the respective feature. Note that it 

is not necessary that all data instances in a file share the same features. For example the first data 

instance has a value for feature 11, whereas the second provides no information about this 

feature. In this case we consider that feature 11 of data instance 2 has value 0. In order to utilize 

the information of the input file, the software code copies this information into a data structure. 
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Output 

The output of the SVM Training phase is a file that contains the SVM model. The SVM model 

comprises certain variables computed by the SVM Training algorithm. In addition it contains the 

same data instances that were included in the input data file, only now they are grouped based on 

their category. In particular, for binary classification all data instances with label 1 are together and 

the same applies for all instances with label -1.  

5.5.2 Data Sets 

So far we have used artificial data sets similar with the real that will be used in the QualiMaster 

project. Therefore we utilized the ijcnn1 data set which was created for the needs of the IJCNN 

2001 neural network competition. The respective training data set contains 30000 data instances 

and the maximum number of features a data instance can have is 22. 

We decided to use the ijcnn1 data set for two reasons. First because it required little execution 

time to produce an output, thereby allowing performing several tests in short time. Other data sets 

with bigger dimensions required several hours to produce a result and this is impractical during the 

implementation phase of an algorithm. The second reason is that our first implementation could not 

support data sets with a lot of features. We designed our first implementation based on a simple 

idea that would lead to the creation of a first hardware implementation of the SVM Training 

algorithm, without optimizations. 

However, we are currently implementing a design that can support a data set of arbitrary 

dimensions. Once it is finished, we will be able to data sets of different sizes in order to observe 

the execution time required by the hardware implementation as the size of the dataset increases or 

decreases. One of these data sets will be provided by WP2, since we need to configure our 

hardware implementation based on the data sets they need to classify. 

5.5.3 Algorithm Profiling 

In this section we present critical points of the LIBSVM software code that indicate hardware 

opportunities. In order to do so, we performed profiling of the code using the Linux GNU GCC 

profiling tool (gprof) so as to detect potential parallelism. 

SVM Function Time percentage Description 

dot_product() 70.23% Computes xi*xj 

kernel_computation() 8.27% Computes the kernel function K(xi,xj) 

select_working_set() 8.27% 
Finds sub problem to be minimized in each 

iteration 

get_Q() 6.18% Computes yi*yj* K(xi,xj) 

solve() 3.49% Solves the optimization problem 

Table 1: SVM profiling analysis 

Quadratic programming optimization problems, such as the SVM classification algorithm are 

expensive. In cases where the data sets are high-dimensional and large, the kernel and inner 

product computations require a massive number of matrix-vector operations. This can be observed 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
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in the above table since all functions that appear perform matrix-vector operations. A brief 

description of each function is given in the Table 1. However, a more detailed description is also 

presented below. 

1) dot_product() : This function receives as input two equal-length vectors x and y and outputs 

a single number which denotes the dot product of the two vectors. A dot product is defined as the 

sum of the products of the corresponding entries of the two sequences of numbers. Moreover, in 

the SVM algorithm these vectors x and y represent data instances or in other words rows of the 

input file. In software, computing the dot product of two vectors of size 22 implies a 22x22 double 

loop i.e. 484 iterations. However computing the product of two entries is independent of computing 

the product of two other entries. Therefore the multiplication task could be performed in parallel 

and as a result we would have 22 dot products produced simultaneously. Once we have produced 

the products we can add them in pairs. In particular, dot products 1 and 2 could be added together, 

dot products 3 and 4 could be added together and so on. Note that in our 22 length vectors for 

example 11 addition pairs are formed, so that 11 additions are produced. Again, computing one 

addition is independent of computing another addition and this allows parallelization. Therefore, 

the 11 first additions can be performed in parallel. Then, the outcomes that are produced can also 

be added in pairs and simultaneously and this procedure continues until we are left with a single 

number, which is the dot product result.  

For example, given  A = [ A1, A2, … , An] and B = [B1, B2, … ,Bn] the dot product is defined as: 

𝑨 · 𝑩 =   𝑨𝒊𝑩𝒊 = 𝒏
𝒊=𝟏 𝑨𝟏𝑩𝟏 + 𝑨𝟐𝑩𝟐 + 𝑨𝟑𝑩𝟑 +  𝑨𝟒𝑩𝟒 + ⋯+  𝑨𝒏𝑩𝒏 

 

 

 

More specifically, a parallel version of the dot product computes in parallel all products from 1 to n. 

Once these are produced, calculating the sum takes place. In particular, the sum of 1 and 2 (5) is 

calculated in parallel with the sum of 3 and 4 (6) and so on.  

Furthermore, we know that in the LIBSVM implementation every loop of the optimization solver 

requires the computation of the dot product between a selected data instance with the rest of the 

data instances of the input file. It is worth mentioning that producing in parallel the maximum 

number of possible dot products is much more efficient than only computing a single dot product. 

However, we need to take into account the maximum possible number of vectors that can be 

drawn from memory in parallel. Also, we should guarantee that there is a sufficient amount of 

resources to perform all these computations in parallel. 

2) kernel_computation(): The dual formulation of the SVM optimization problem introduces the 

notion of the kernel. In the case of linearly separable data, the kernel of two vectors is equivalent to 

the dot product of these two vectors. However, if we are dealing with non-separable data the 

kernel can be defined by a variety of functions. For instance, there is the polynomial kernel, the 

Gaussian kernel, the Laplacian kernel and others. The efficiency of a kernel function is determined 

by the nature of the training and tested input data, as well as other factors such as speed and 

accuracy. Hence, we selected a kernel function that was suitable for our training data set. In 

particular, we chose the exponential kernel function which according to the equivalent software 

implementation of this function is computed based on the following formula: 

n … 4 3 1 2 

… 6 5 k 
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In the above formula gamma denotes a constant selected by the user and dot produces the dot 

product of the given vectors. We have already described how the dot product can be performed 

with parallel computations. What is indicated by this formula is that all dot products can be 

computed in parallel too. For instance, if the dot product function receives 22-length vectors and all 

products are performed in parallel, then in total 22*3 products are produced in an instance. 

However, the result of dot(xi,xi) is a constant number as for every loop of the optimization solver i 

remains the same, and thereby we do not need to compute this dot product every time. It is the 

indicator j that changes during a loop - this indicator which receives all values from 0 up to the 

number of data instances of the input file. At this point we illustrate the specific loop, in order to 

provide better understanding.  

for(j=0;j<number_of_instances;j++) 

{ 

       result[j]=exp(-gamma*(x_i+dot(x[j],x[j])-2*dot(x[i],x[j],)); 

} 

, where x_i equals dot(xi,xi) and remains constant during the whole loop. 

Nevertheless, although the expression within the brackets can be implemented effectively in 

hardware, the same does not apply for the exponent. In particular, the computation of the exponent 

is expensive for hardware due to the fact that it occupies a significant number of resources and 

requires a noticeable amount of time to be executed.  Thus, the entire formula will be calculated on 

the software side and only the expression within brackets will be implemented on hardware. 

3) select_working_set(): The Q matrix of the dual optimization problem is usually dense and 

too big to be stored. Therefore, decomposition methods have been proposed to effectively process 

this matrix. In general, optimization methods update the whole vector a in each iteration. However, 

with the use of decomposition methods only a subset is processed and modified. This subset is 

called a working set and allows handling sub-problems in each iteration instead of the whole vector 

[46]. 

4) get_Q(): This function produces a vector with length size equal to the number of data 

instances. Note that within a loop of the optimization solver we compute the formula presented in 

the description of the kernel computation. During this loop index iremains constant and j receives 

all values from 0 up to the number of data instances. Thus, the kernel computation is performed as 

many times as the number of rows (data instances) of the input file. However, in the get_Q function 

we also add the labels of the respective vectors so as to compute the following formula: 

 

In the above formula K(xi,xj) is equal to the expression in the description of the kernel computation  

and yi, yj are the labels of the respective vectors. Note that y may either equal to 1 or -1, when we 

are performing binomial classification, or it may receive other values, when we are performing 

multi-class classification. We studied binomial classification, in accordance with WP2. 

Furthermore, due to the existence of the exponent in K(xi,xj) the expression presented in get Q 

cannot be entirely implemented on hardware. 
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5) solve(): This function is called once during the execution of the program. As indicated by its 

name, it outputs the complete solution of the SVM optimization problem. Thus, it contains the 

entire process of the algorithm within which is the arbitrary sized loop of the dual formulation 

optimization problem. Due to the fact that in each loop, certain variables of the algorithm are 

updated and these updated values affect further computations, avoid dependencies in the 

optimization loop, and thus leave its execution to software.  

5.5.4 Important Data Structures and Operations 

Data Structures 

As mentioned in the beginning of the SVM Modeling section, the LIBSVM software receives as 

input a file that follows a specific format. The information contained in this file is copied to a data 

structure so as to be able to utilize the given information. Prior to describing this important 

structure we need to provide further information about the input file. More specifically, although the 

number of features a data instance can have equals the maximum number of features of the 

dataset, this does not imply that all data instances will feature equal to the maximum number of 

features. For example, in a dataset where the maximum number of instances is equal to 6, data 

instance 1 could have features 1, 2 and 3 and data instance 2 could have features 4 and 5. Not 

having a specific feature implies that the value of this feature is 0. Thus data instance 1 has value 

0 in columns 4 and 5, since these columns correspond to features 4 and 5. Similarly data instance 

2 has value 0 in columns 1, 2 and 3. 

The data structure that contains the above information is essential to the algorithm, as all the 

important functions of the implementation need it to produce outcomes. In order to understand its 

elements we describe the following two structures. 

structsvm_node 

{ 

 int index; 

 double value; 

}; 

structsvm_problem 

{ 

 int l; 

 double *y; 

 structsvm_node **x; 

}; 

Data structure svm_node represents the expression a:b that was described in 3.2.1. In particular, it 

contains an integer number that denotes a feature and a double number that corresponds to the 

respective value of the same feature. Note that in order to preserve information about the input file 

we need to store file_rows*(file_columns-1) svm_node components. 

The above information is included in the svm_problem structure. More specifically, structsvm_node 

**x represents precisely a two dimensional structure that contains elements of type svm_node. 

Thus, the rows and columns of the file correspond to the respective dimensions of the structure. 

We know that a row ends and a next row follows when the index variable has value -1. In addition, 

variable l denotes the number of rows in the file and list y contains the labels of the data instances 

in structsvm_node **x. Therefore, the length of the list of labels will equal l. For example, if l equals 

5, the length of the list of label also equals file, and the first dimension of the two dimensional data 
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structure is also 5. However, the second dimension of the structure varies based on the number of 

features a data instance has. 

According to the above, we can conclude that structure svm_problem is the most important 

structure in the SVM Training implementation since it contains all essential information and is used 

by the most important operations. 

Operations 

The most important operations were revealed during the profiling phase of the software source 

code. These are hidden in the expression 

and are the following: 

 

A detailed description about all the aforementioned functions, as well as their importance for 

hardware is provided in Section 5.5.3. 

5.6 LDA Modeling 
Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The LDA algorithm 

uses inference to generate this probabilistic model. There are multiple algorithms that can 

implement Inference such as Variational Inference. Gibbs Sampling etc. M. Shah et al. [20] 

implemented a speech emotion recognition framework based on Variational Inference using 

FPGAs, which presented good results both in terms of accuracy (80%) and performance. 

In the sections below three different implementations of Inference are presented. The last method 

named sparseLDA will be analyzed further as it is very efficient in terms of performance. 

5.6.1 Study of Inputs and Outputs 

LDA takes as input a set of documents and posits that each document is a mixture of a small 

number of topics and that each word's creation is attributable to one of the document's topics. 

The applications that implement LDA take as input a filtered set of documents, from stop words, 

common used words etc., or filters a set of documents. They then create an index table with the 

vocabulary and use the indexes in processing. The training step of the algorithm produces a 

number of topics (input by user). The basic idea is that documents are represented as random 

mixtures over latent topics, where each topic is characterized by a distribution over words. The 

model produced by the training is then used to characterize new documents. Each new document 

is characterized by a different set of topics. 
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5.6.2 Data Sets 

For testing the LDA implementation we collected and prepared data sets consisting of text files 

where each line is a bag of terms from a document within the particular dataset. Following data 

sets are available:  

● Flickr emotions dataset (47MB): This dataset consist of a Flickr image metadata crawl 

where emotional tags like “angry”, “happy” were used as queries. Each document in this 

dataset is a concatenation of a particular image title, tags and description. 

● Global warming dataset (64MB): This dataset is a cropped dataset to a Wikipedia article 

about global warming. Cropping is a technique where given a set of documents (the 

Wikipedia article in our case) as a seed, a set of similar documents can be selected. 

Thereby key phrases are extracted from the initial set and used as text queries (to 

Wikipedia again in our case) to obtain more similar documents and expand the initial set. 

Thus the dataset consist of Wikipedia articles related to the topic “global warming”. Each 

document in this dataset is a paragraph from one of the articles. 

● Jesus dataset (75MB): This dataset was constructed in exact the same way as the 

predecessor but with the Wikipedia article about “Jesus” as a seed.   -   

● Newsgroups dataset (9.3MB): Newsgroups: The 20-Newsgroups dataset was originally 

collected by K. Lang . It consists of 19,997 newsgroup postings and is usually divided into 7 

categories for supervised learning covering different areas: “alt” - atheism, “comp”- 

computer hardware and software, “misc”- things for sale, “rec” - baseball, hockey, cars, and 

bikes, “sci” - cryptography, medicine, space, and electronics, “soc” - Christianity, and “talk” - 

religion, politics, guns, and the middle east. The number of postings for these categories 

varies from 997 to 5,000. 

● CS Proceedings dataset (30MB): We collected scientific publications within the Computer 

Science domain. We gathered 2,957 scientific documents from proceedings of the 

conferences in the following areas: “Databases” (VLDB, EDBT), Data mining (KDD,ICDM), 

“E-Learning” (ECTEL, ICWL), “IR” (SIGIR,ECIR), “Multimedia” (ACM MM, ICMR), “CH 

Interfaces” (CHI, IUI), and “Web Science” (WWW, HYPERTEXT). The number of 

publications for these categories varies from 179 to 905. We limited our selection to 

conferences that took place in the years 2011 and 2012 and publications with more than 

four pages and we removed references and acknowledgment sections.  

● WWW proceeding dataset (26MB): We collected conference proceedings from the ACM 

WWW conferences in the time period between 2001 and 2012, capturing the evolution of 

expert knowledge in the context of the World Wide Web. We grouped the resulting 1,687 

documents by pairs of consecutive years and obtained the following six categories: “2001-

2002”, “2003-2004”,: : :, and “2011-2012”. The number of publications for these temporal 

categories vary from 139 to 637. 

● Movie dataset (7.2 MB): From the Wikipedia movies-by-genre lists we extracted all 

available movies belonging to one or more of 10 main genres such as “Action”, “Comedy” 

and “Drama”, amounting to 11,070 movie descriptions. The number of movies in the 

different categories ranges from 656 to 2,364. From each of the movie pages we only 

considered the content of the sections “Plot” or “Description” and omitted the surrounding 

meta data information. 
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5.6.3 Algorithm Profiling 

Variational inference 

The first implementation of LDA considered was the Princeton implementation by David M. Blei 

et.al. [18][19]. This application was chosen as it was written in C and would be compatible with the 

hardware tools (the Maxeler host code has to be written in C/C++). The profiling showed that the 

most time consuming function was the digamma function (78% of the processing time). This 

function is called multiple times by the Variational inference algorithm. This implementation wasn‟t 

studied further as it is not the one used by the community. This study has been done as Variational 

Inference is the basic algorithm and the first LDA implementation. 

Gibbs sampling 

The next implementation considered was based on Gibbs Sampling. It is the algorithm 

implemented in R project [21] and Mallet [22] tools. Mallet is the most commonly used tool for topic 

modeling and has many different Inference algorithm implementations for the LDA. The basic LDA 

implementation is based on Gibbs Sampling. 

The profiling of the Java implementation showed that more than 80% of the execution time is used 

by the Gibbs Sampling stage. The algorithm iterates through the documents (the number of 

iterations is given by the user) and for each word, iterates through all the topics (the number of 

topics is given by the user) and updates the appropriate values. This algorithm looked promising 

as there are various parallel implementations of Gibbs sampling on GPUs and multicore platforms 

[23, 24 , 25]. The most time consuming function is the sample TopicsForOneDoc(); that 

Implements the Gibbs sampling. It is called for each document for the number of iterations. The 

function iterates through the word of each document and updates the topic distributions.Sparse 

LDA. 

Both the previous implementations are deprecated as the SparseLDA presented in [26] is mostly 

used by the community, as it is at least 20x faster than the standard Gibbs Sampling 

implementation. In their work they evaluate the performance of several methods for topic inference 

in previously unseen documents, including methods based on Gibbs sampling, variational 

inference, and a new method inspired by text classification. The classification based inference 

method produces results similar to iterative inference methods, but requires only a single matrix 

multiplication. Results indicated that SparseLDA can be approximately 20 times faster than 

traditional LDA and provide twice the speedup of previously published fast sampling methods, 

while also using substantially less memory. 

As with the previous implementations, the most time consuming function is the 

sampleTopicsForOneDoc() function. This function is called for each document on the training 

dataset, number of iterations (given by user) times. This algorithm is faster than the previous Gibbs 

sampling methods as it doesn‟t need to iterate on all topics for each word. Also it is important to 

mention that with the increase of the number of topics SparseLDA can be more than 20 times 

faster than the simple Gibbs sampling implementation. 

5.6.4 Important Data Structures and Operations 

Variational Inference and standard Gibbs sampling are mentioned as these are the basic 

algorithms for LDA. Sparse LDA achieves performance improvement up to 20x over these 

algorithms, using a new algorithmic approach. For that reason it is not worthy to analyze further the  

Variational Inference and standard Gibbs sampling, and so we focus only on SparseLDA. 
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SparseLDA 

SparseLDA is a lot faster than other implementations due to the data structures used in order for 

the algorithm to not iterate over the number of topics. In [26] by rearranging terms they changed 

 

into 

 

and by splitting those three parts they get 

 

 Also the expression for q can be broken into two components 

 

The first coefficient can therefore be cached for every topic, so calculating q for a given w consists 

of one multiply operation for every topic such that nw|t ≠ 0.Then they present the data structures 

that allow the rapid identification topics such that nw|t ≠ 0 and also that are able to iterate over non-

zero topics in descending order. For this reason they encoded the tuple (t, nw|t) in a single 32 bit 

integer by dividing the bits into a count segment and a topic segment. The number of bits in the 

topic segment is the smallest m such that  2m ≥ T. They encode the values by shifting nw|t left by m 

bits and adding t. They recover nw|t by shifting the encoded integer right m bits and t by a bitwise 

and with a “topic mask” consisting of m 1s. This encoding has two primary advantages over a 

simple implementation that stores nw|t in an array indexed by t for all topics. First, in natural 

languages most word types occur rarely. As the encoding no longer relies on the array index, if a 

word type w only occurs three times in the corpus, an array of at most three integers is needed for 

it rather than T. Second, since the count is in the high bits, the array can be sorted using standard 

sorting implementations, which do not need to know anything about the encoding. 

By storing encoded values of (t, nw|t) in reverse-sorted arrays, it can rapidly calculate q, sample U, 

and then (if U > (s+r)) usually within one calculation find the sampled t. Maintaining the data 

structure involves reencoding values for updated topics and ensuring that the encoded values 

remain sorted. As nw|t changes by at most one after every Gibbs update, a simple bubble sort is 

sufficient.    
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6 Mapping algorithms in Hardware  
This chapter presents the algorithms mapping to hardware procedure. Firstly, an overview of the 

design procedure is given. Next, the following sections analyze the designs that have eventually 

been mapped to hardware and their corresponding initial performance results vs. the official 

software solutions. 

6.1 Design Methodology 
This section describes the methodology that it is followed to map efficiently an algorithm to specific 

hardware technology, as shown in Figure 15. This method is generic in the sense that the steps 

are technology independent as method, and mapping technology affects aspects of the modeling 

and not the method itself. The sequence of steps to get from a specification to a working hardware 

prototype is called a design flow, and each step of the design flow is associated with specific 

Computer Aided Design (CAD) tools, such as simulators, synthesis tools and place and route 

tools. 

Algorithm

Analysis

HW/SW 

Partitioning

Define 

HW Interface

Define 

SW Interface

Model using Hardware 

Description Language

Simulate Simulate

DebugDebug

Integrate

Co-Simulation

Verification

SW Design Flow

Model using Software 

Programming 

Language

HW Design Flow

 
Figure 15: Design flow for mapping an algorithm on hardware 

6.1.1 Top Down analysis 

Depending on the algorithm analysis the first step is to map the algorithm in abstract block 

diagrams identifying the interface between them. For each block there is a description of the 

functionality and its interface with other blocks and external systems. Functionality can be 

described in an abstract manner but it has to be checked that each task is assigned to be executed 

to a unique block. The total functionality of the block tasks is the task of the complete system. 

Τhis procedure is at system level, and it combines software and hardware. The first major system 

division is on software and hardware components(parts). Depending on the platform that the 

designer wants to map his system interfaces between software and hardware are usually 

predefined. Usually at the mapping of the algorithm in hardware what remains in software does not 

change from its official version and design continues for the hardware part. 
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At the hardware component level, the functionality of each block can be described in a formal 

manner using a programming language as C/C++, Matlab, or even using formal verification 

methods depending on the system complexity and size. It can also be described in a less formal 

manner but it has to be very precise. 

As a rule of thumb the number of subsystems is up to four but it depends on system complexity 

and size which is crucial for such a decision. This procedure is repeated for every subsystem, and 

following the same rule of thumb up to three times for a moderate system. 

Subsystems functionality and interfaces which include physical connections and the protocol of 

communication, is crucial to be well defined at this procedure. 

At the end of that phase a quite detailed block diagram of the system and its subsystems is 

available on the designer. 

Depending on the platform and technology several design decisions have to be taken at this phase 

for each block. For example the memory system is usually very important for a computing system. 

Using FPGAs, designer has to think of the internal very high bandwidth memory (BRAM) and the 

way of communicating with the external memory. With such an approach block functionality is 

closer to what can be actually be implemented in a system.  

6.1.2 Bottom Up Modeling 

Using the block diagrams of the Top Down analysis, for the hardware part, the designer starts to 

model each block. Modeling is done with a Hardware Description Language which can be low level 

as VHDL or Verilog or a modern high level language as Maxeler Java Extension[Maxeler], Vivado 

C/C++ [Vivado], SystemC [SystemC] etc. The designer can also use modules from module 

libraries, such as protocol implementations, DDR controllers, video controllers, several filters or 

even a general purpose processor. The designer can also use other design tools as Xilinx 

Coregen[Coregen],MatLab Simulink [Simulink], which produce modules for specific technology. 

With such tools the designers usually produce memory controllers, floating point arithmetic units or 

even modules implementing more complex arithmetic operations. 

In this procedure an equivalent functional module is built for each block. The module is tested for 

the equivalent functionality vs. the initial model. The results of the tested modules are validated vs. 

the results that are produced from the corresponding software solution. After the testing phase the 

integration procedure commences. Usually two tested modules are connected as a subsystem and 

the functionality of the subsystem is proved to be equivalent to the reference system. Then, a new 

tested module is added and with this procedure is repeated adding a new block. In that manner 

designer follows the reverse procedure of the Top Down analysis, building the complete system 

using subsystems as in the block diagram. 

Modular modeling and integration are really useful to the design procedure as several designers 

can work in parallel, following the block diagram and the interface descriptions. In that manner the 

design procedure is significantly faster vs. a serial implementation of the hardware components. 

The independent working designers procedure proves how crucial is to have a proper and well 

defined Top Down analysis, as any functional overlap between the blocks, or any ambiguous 

description of interfaces can lead to block diagram revision and consequently to new block 

modeling for several blocks.  
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6.1.3 Debugging Approaches 

Debugging stages follows the Bottom Up Modeling stages, and the integration phase. At every 

single module that have been build a test bench applies in order to certified that the its functionality 

is equivalent to the desired as it was described at Top Down analysis and the bottom up modeling. 

Several debugging tools are used, the most common of which are simulators as ISE simulator or 

ModelSim. More sophisticated tools are used for complex platforms as Vivado Simulator, Maxeler 

Simulator, Convey Software-Hardware Simulator. These tools usually provide to the designer a 

visualized representation of the system functionality.   

Modules debugging is a demanding procedure. It is very important to have the proper testing 

vectors for each module. Debugging and test vectors creation is better to be created from 

designers that have not be involved in modeling phase. This independent procedure helps to 

detect more problems as wrong or missing functionality. In order to have the proper test vectors, 

and for complex subsystems, the designer makes small applications to produce them. 

Simulations should be exhaustive for small modules and extensive for the most complex ones. 

Exhaustive simulation examines and proves the complete functionality of the system but it is very 

time demanding procedure. For this reason, for more complex systems an extensive simulation is 

usually performed. The system is examined at several different states for several thousand or 

millions clock cycles. A careful selection of states and test vectors should be done in order to test 

the complete module functionality. This procedure is repeated for every module that has been 

build. At integration phase it is repeated for every module added to the subsystem. 

The simulation phase starts with the functional model which specifies only the functionality of the 

model without any timing data, such as set up / hold time  for example (these are timing constraints 

for proper clocking of sequential circuits). When the proper functionality has been checked for each 

module, a new simulation has to be done where a timing model for the target technology is 

included to test the module or the subsystem with timing parameters. The test vectors are the 

same, without any changes from stage to stage. 

After this procedure the designers have a confidence on their model that it will work in real world. 

This functional model, also, defines a very abstract resource utilization and the clock speed 

achieved by the full system design. There are two factors for a system to work in simulation and 

not in real world. The first case (most typical) is not the extensive testing of a module, which can 

lead to functional failures. The second factor is that functional models simulate the real world but 

they are missing some important parameters, e.g. delays at inputs or external noise, which can 

lead to timing problems and thus to the complete wrong functionality. 

6.1.4 Verification Issues 

When the complete model has been build, the simulation procedure has to be used for verification. 

As an algorithm or a software have been modeled the hardware designer has to prove that it 

produces the same results, or for approximate methods results with a standard error. 

The designed system runs using as inputs several typical data sets and the outputs are compared 

against an official distribution of software or a reference software-based implementation running 

the same inputs. In order to compare outputs(as output can be a very large file), the designers can 

implement software to compare automatically the hardware data results vs. the reference system 

or the desired behavior as it is determined by simulators. 
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6.2 Count Min (CM) Design 
This section presents our initial proposed hardware-based architecture for the Count-Min 

algorithm. Our proposed solution was mapped on a high-end Maxeler MPC-series platform using a 

single FPGA device.  

6.2.1 Top Down analysis 

First, we had to define the parameters as far as the size of the sketch data structure. The typical 

values for both ε and δ are in the space [0.05, 0.2]. In our first implementation, we used the typical 

values ε = 0.085 and δ = 0.05, which lead to a sketch that has d = 3 different hash functions and w 

= 32 elements in each row. Our proposed system is fully parameterizable, which means that we 

can change dynamically the dimensions of the sketch data structures according to the needs of our 

application. 

Figure 16 presents our proposed top level architecture. In our initial approach, we mapped the 

update function on the reconfigurable hardware, while the query process is resolved in software. 

The system starts with initializing the Count-Min tables on hardware platform. Next the system 

accepts a stream of (id, value) tuples. These tuples are batched and then we pass them into the 

reconfigurable part where the sketch update takes place. When a query arrives, the system uses 

the sketch that is built in reconfigurable platform and answers the query.  

 
Figure 16: Count-Min Top level Architecture 

6.2.2 Bottom Up Modeling 

This section describes the individual components that are presented in Figure 16.  

The CPU device executes the initialization steps of the Count-Min data structure. Also, it is 

responsible for sending the streaming data to the reconfigurable part of the system. Last, the CPU 

can read the Count-Min data structure from the shared memory and it resolves any query over it.  

Figure 16 shows the mapping of the update function on reconfigurable hardware. The implemented 

module takes as input the streaming ids and their corresponding values. The hash functions are 

implemented as lookup tables in reconfigurable hardware, where the precomputed values have 

been loaded before the start of the processing. The lookup tables take as input the streaming IDs 

and output the corresponding values from the hash functions. These values are used as index to 

the memories, as presented in Figure 17. Each memory module corresponds to a single row of the 

sketch data structure. The values are updated and stored again in Block Rams (BRAMs). When 

the processing finishes, the values of the memories return to the shared memory, which can be 

accessed by the CPU, too. The query processing takes place from the CPU. When a new query 
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arrives, the CPU reads the CM sketch data structure from the shared memory and returns the 

query estimation. 

 
Figure 17: Update function Architecture 

6.2.3 Debugging Issues 

The software code, which initializes the Count-Min data structure and resolves the queries, was 

ported in the MaxIDE platform. The reconfigurable part was implemented using the the Max Java 

language. The system was simulated, using the Maxeler simulator, keeping both the software and 

the simulated hardware running.  

6.2.4 Verification Issues 

The MassDAL Public Code Bank[40] offers a C version code that implements both the update and 

the query processing of a Count-Min data structure. The results were verified vs. the results from 

the officially distributed code of the Count-Min algorithm from the MassDAL Public Code Bank. 

6.2.5 Performance Evaluation 

Our proposed system was mapped on a single DFE without taking into account the parallelization 

that the multi-DFEs can offer us. The testing dataset was random items that reached up to 1010. 

This initial performance comparison showed that our system outperforms the single threaded 

official software solution for about 7 times. This our first implementation mapped only the update 

function of the Count-Min data structure while the estimation function takes place in software. In 

our future plans, we aim to propose an architecture that will implement both the update and the 

estimation function in reconfigurable platform. Also, we will take advantage of the coarse grained 

parallelism that the algorithm can offer, where we will map Count-Min data structures in 

independent FPGA devices, which will be combined in order to conclude to the final Count-Min 

data structure. 

6.3 Exponential Histogram (EH) Design 
This section presents our proposed hardware-based architecture of the Exponential Histogram 

algorithm. Our proposed solution was mapped on a Maxeler server using a single FPGA device.  
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6.3.1 Top Down analysis 

First, the top level analysis of the system that implements the Exponential Histogram algorithm on 

hardware is presented. As referred in Section 5.3, we both implemented the functions of updating 

the EH data structure and estimating the number of the elements with value 1 on the 

reconfigurable hardware.  The system starts with initializing the EH data structure and its 

corresponding counters. Next, the streaming values with their corresponding timestamps are 

passed to the reconfigurable device for updating the EH structure. The estimation of a specific 

timestamp or batches of timestamps are passed from another streaming port to the reconfigurable 

module and the corresponding results return back to the CPU. It is important to mention that for 

this first approach only one of the two streaming processes (streaming a new value or estimating a 

new timestamp) at each clock cycle can take place. Figure 18 presents the top level system 

architecture.  

 
Figure 18: Exponential Histogram top level architecture 

As defined in Section 5.3, the EH data structure consists of non-overlapping buckets. The buckets 

have increasing sizes. The first bucket has size k+1 while the rest buckets have size k/2 + 1. The 

variable k is bounded by the 1/ε value, where the typical values for the error value ε are between 

[0.05, 0.2]. We used ε= 0.1 in our implementation, thus the bucket of the first level consists of 11 

elements and the remaining ones consist of 6 elements. The window size defines the number of 

buckets of the EH data structure. Our proposed architecture is fully parameterizable, which means 

that we can change dynamically the dimensions of the EH according to the needs of the 

application. 

6.3.2 Bottom Up Modeling 

First, the CPU resolves the building of the interconnection between the CPU and the 

reconfigurable part. Second, the CPU sends a signal that initializes the EH structure and the 

corresponding counters. Next, the reconfigurable module takes either a stream of elements with 

values 1s or 0s with their corresponding timestamps or a stream of timestamps for estimation. The 

update process is separated into two stages: the first stage omits the expired data from the 

processing bucket while during the second one a new value from the input or the previous bucket 

is put in the bucket. In case of a new input, the timestamp of the new value is passed into the first 

level bucket. As shown in Figure 19, the buckets are 1-D arrays in range of [6, 20], as analyzed in 

Section 5.3.3, which work like a complex shift-register. In other words, when a new timestamp-

value arrives at the input of a bucket all the previous values are shifted to the right for one position. 

After the insertion completes, there is specific logic which checks for merging condition for the last 

two elements of the bucket. If a new merged value needs to be passed to the next level, it is stored 

in the pipeline registers and the process continues the second level during the second clock cycle. 

The important issue here is that our implementation is fully pipelined which means that each level 

can serve the insertion/merge of a different timestamp. In other words, our proposed system 

exploits the fine grained parallelization that the hardware can offer by processing in parallel N 

different input values (like the number of total levels). 
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Moreover, our proposed system implements the estimation processing either for the total window 

or for a specific timestamp. As shown in Figure 19, the EH module takes as input the timestamp 

that we want to estimate the number of elements with value 1. In case, that we want to calculate 

the 1‟s estimation value of the complete processing window, we pass the timestamp value -1. 

During the estimation processing, the value passes to the first level, where the estimation module 

calculates the estimation of this level. At the next clock cycle, the estimated value of the present 

level with the estimation timestamp passes to the next level bucket. The processing finishes when 

the score reaches to the last level and it returns back to the CPU. It is clear that our proposed 

architecture is fully pipelined taking advantage of the hardware fine grained parallelization.  

6.3.3 Debugging Issues 

The initial software code that initializes the EH sketch data structure was ported in the MaxIDE 

platform. The reconfigurable part was implemented using RTL coding, i.e. VHDL. The hardware-

based code was mapped on a single DFE device of the Maxeler platform.  

6.3.4 Verification Issues 

We tested our system with various input datasets and different configurations, i.e. number and size 

of buckets. We queried our system for the estimation of different estimation timestamps and in 

different times and the results were verified vs.  the results of the official Java code of the EH data 

structure[35].   

 
Figure 19: Architecture of Exponential Histogram module  

6.3.5 Performance Evaluation 

We compared the performance of the hardware-based solution for the EH algorithm vs. the official 

software solution. The initial results showed that our proposed system can offer 4 times faster 

processing of the EH data structure vs. the official code of the EH data structure[35].  It is 

important to mention that the presented architecture is not fully optimized as we do not take 

advantage of the parallel nature of the algorithm. Lastly, we aim that our next system architecture 

will take advantage of the coarse grained parallelization implementing EH data structures on 

independent streams taking advantage of the low resource utilization (only 4% of the resources of 

the FPGA device are used) that our proposed architecture offers. 

6.4 Correlation Design 
This section presents a first hardware-based architecture for the HY estimation algorithm. Our 

proposed solution was mapped on a Maxeler server using a single FPGA device. 
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6.4.1 Top Down analysis 

Our proposed architecture is a software-hardware co-design system. The software part builds the 

data in proper data structures while the hardware part implements all the computations. The 

system starts with the initialization of the internal data structures and the correlation matrix that is 

stored in the shared memory of the Maxeler platform. Next, the streaming of input data begins. The 

software reads all the transactions for a single timestamp and updates the arrays that were 

described in Section 5.4.4. In more details, the software updates the transaction values of the 

overlapping time intervals for all the pairs of the input stocks(only if there was transaction for one of 

the two stocks of the pair). Also, it updates the table with the transactions of the single stocks. 

Then, these tables are streamed to the reconfigurable part of the system, which computes the new 

coefficients for the HY correlation estimator. Last, the software is responsible for calculating the 

correlation matrix using the intermediate results, i.e. coefficients that have been computed by the 

hardware and stored in the shared memory. Figure 20 presents the top level system architecture.  

 
Figure 20: Top level system architecture 

6.4.2 Bottom Up Modeling 

As referred above, the proposed architecture is a software-hardware co-design system. The 

presented architecture is an initial attempt to map the HY correlation algorithm on Maxeler 

platform. The CPU initializes the internal data structures and the correlation matrix. Also, it reads 

all the transactions for a single timestamp and updates the corresponding data structures that are 

transmitted to the reconfigurable part for further processing. The reconfigurable part of the system, 

i.e. HY module, calculates the HY coefficients for the calculation of the HY correlation estimator. 

The HY Module is mapped on a single FPGA device and it calculates the HY estimation value for 

each one of the market stocks pairs. As shown in Figure 21, it takes as input the transaction values 

of a pair of stocks and computes the HY covariance value at each clock cycle. Also, it takes as 

input the transaction prices for each one of the input stocks and calculates the denominator of the 

HY estimator. The final values are stored in shared memory. Lastly, the CPU reads these values 

from the shared memory and computes the final correlation matrix. 
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Figure 21: Architecture of Hayashi-Yoshida Estimator module 

6.4.3 Debugging Issues 

First, the software code, which initializes the internal data structures, calculates the correlation 

matrix and receives the stock market transactions, was ported in the MaxIDE platform. The 

reconfigurable part was implemented using the Max Java language. The hardware-based module 

was mapped on a single DFE device of the Maxeler platform.  

6.4.4 Verification Issues 

We tested our system with various input datasets, i.e. number of market stocks. The results of the 

hardware-based system were verified vs. a reference software-based implementation. 

6.4.5 Performance Evaluation 

We evaluated our system with a test dataset, which consisted of the transactions from 40 different 

market stocks. Our results showed that we can calculate the correlation matrix of the input market 

stocks in maximum 8ms, which means that it is almost in real time taking into account that the 

transactions arrive at our systems every second. Our system will offer really good performance for 

higher numbers of stock markets, taking into account that our system does not utilize the full 

communication bandwidth between the CPU and the DFE and it does not take advantage of the 

full parallelization level for these initial performance results. Also in our future plans, we aim to 

transform the current system in order to calculate the correlation estimator for a big number of 

stock markets over a sliding time window. 

6.5 SVM Design 
This section describes the design of the SVM Training method for hardware, given that we are 

using Maxeler technologies. Thus, we provide a top down analysis that contains a general block 

diagram of our architecture, we describe in detail the implemented blocks in the bottom up 
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modeling section, and finally we present debugging and verification issues that were met during 

this process. 

6.5.1 Top Down analysis 

In general, a top down analysis provides all necessary information to describe the different 

components of our implementation, as well as how they are interconnected. In particular for the 

SVM Training method we created the following design. 

 
Figure 22: Abstract SVM training method block diagram for Maxeler platform 

A detailed description of the implementation of our architecture follows in the Bottom Up modeling 

section. In this section we present the general contribution of each block to the overall system. 

CPU Code 

The CPU Code block contains software code that is written in C and C++. It contains two modules 

the SVM Train module and the SVM Module. The first receives as input the data file, processes its 

elements and creates the svm_problem structure described in 3.2.4. Then, the SVM module 

utilizes this structure in order to solve the dual optimization problem. Each iteration of the 

optimization problem recalculates and updates certain variables. Among these computations the 

most time consuming one involves the computation of the expression 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗 ) presented in 

Section 5.5.4. Thus, we let the hardware side produce the expression‟s outcome so as to exploit all 

potential parallelism. 

Note that the software side should provide the hardware side with all the necessary material. Thus, 

the output of the CPU code module consists of the training data, as well as of the size of the data 

in bytes. 

Manager 

In general, the Manager provides a predictable input and output streams interface to the Kernel. In 

particular, it comprises a Java API that allows configuring connectivity between Kernels and 

external I/O. That said it is evident why we have placed the specific module between the CPU 

code and the Kernel. The CPU code and Kernel should interact in order to exchange information. 

The first should provide all necessary data in order for the latter to carry out the appropriate 

computations, and the latter should return the final outcome. 

Kernel 

As mentioned above, the Kernel module uses the data instances of the software to produce the 

outcome of 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗 ) presented in 3.2.4. However, due to the fact that it is not suitable to 
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calculate the exponent on the hardware side, we assign to the hardware side only the computation 

of the expression in the exponent: 

𝑔𝑎𝑚𝑚𝑎 ∗ 𝑑𝑜𝑡 𝑥𝑖 , 𝑥𝑖 + 𝑑𝑜𝑡 𝑥𝑗 , 𝑥𝑗  − 2 ∗ 𝑑𝑜𝑡 𝑥𝑖 , 𝑥𝑗  . 

We stress that function dot(xi,xj) computes the dot product of vectors xi and xj , and that gamma is a 

constant number. Briefly the main difference between implementing the aforementioned formula on 

hardware and implementing it on software is that in the first case the results of the three dot 

products can be produced simultaneously. Furthermore, the execution of the dot product function 

implies performing n multiplications and n totals, where n is the size of the vectors. However, 

multiplications can be produced in parallel and the same applies for calculating pairwise totals. 

Once the kernel has produced the final outcome of a pair of vectors it outputs the result back to the 

CPU code module via the Manager module. 

So far, we have described the architecture of the SVM Training method, by presenting the general 

components, their respective subcomponents, as well as I/Os of the system. In the next section we 

will deepen in each component separately and we will completely illustrate the execution of the 

SVM Training method. 

6.5.2 Bottom Up Modeling 

In this section we begin by describing in detail each individual component of Figure 22 and then we 

mention how they are interconnected. 

CPU Code 

Both components included in the CPU Code module have been provided by LibSVM. 

Nevertheless, we have applied several modifications to the source code in order to allow the 

integration of software and hardware. 

SVM Train 

The SVM Train component is written in C. We have not applied any modifications to the 

corresponding LIBSVM code as its contribution to the SVM Training method is trivial. More 

specifically, SVM Train receives as input a file with data instances and sequentially parses this file 

in order to copy and organize all data into a data structure. The description of the file‟s format has 

been presented in Section 5.5.1. Furthermore, the created data structure is the svm_prob 

structure described in Section 5.5.4. Recall that this structure contains a two dimensional list with 

all elements of the input file, a list with their respective labels and an integer that denotes the 

number of the elements (rows in the file). In addition, SVM Train receives as input possible user 

inputs. These may define the type of kernel computation (rbf, linear, polynomial, sigmoid), certain 

constant values (gamma, degree, coefficient), or the type of classification that we want to execute. 

However, if the user does not provide any input, the program sets default values for these 

variables, if they are needed. 

Once, svm_prob is created, SVM Train calls the svm_train() function, which is located in the SVM 

component. This function receives as input the svm_prob structure, as well as a structure that 

contains parameters provided by the user, or their respective default values. Moreover, svm_train() 

returns the SVM Training model which is the solution of the optimization problem, i.e., the result of 

the SVM Training method. 
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SVM 

The SVM component is also part of the LIBSVM package and comprises the most essential steps 

of the SVM Training method. In particular, it uses the svm_prob structure to find the support 

vectors that will be used during the SVM Classification phase. We do not present a detailed 

description of the execution flow of the algorithm, as the respective theory is described in Section 

4.4. However, note that during the training phase of the algorithm, LIBSVM solves the following 

primal optimization problem. 

Solving an optimization problem implies an arbitrary number of iterations which depends on the 

size of the input data set. At the end of each iteration the variables of the primal optimization 

problem are updated based on the new calculations. Specifically, for the LIBSVM implementation 

the α values and the Q coefficients are reconstructed. This process is repeated until a stopping 

condition is met, or the algorithm converges. The processing for the optimization problem takes 

place in function Solve() of the SVM file. At this point we will continue with the description of our 

contribution to LibSVM. In order to do so, we need to mention that the functions described in 

Section 5.5.3 are used for the computation of coefficient Q and this is why they occupy a 

significant percentage of the execution time. Reconstructing the a values is not time consuming 

due to the fact that it only requires comparisons operations between relatively small vectors. 

 

The computation of Q is executed in the get_Q() function which receives as input variables i and 

length. Both variables are integer numbers and the first denotes the index of a data instance 

selected during the specific optimization loop, whereas the latter variable shows the total number 

of the data instances. Note that only during the initialization phase of the optimization problem 

index i takes all values between 0 and length i.e. all data instances are considered by get_Q().  

Furthermore, get_Q() outputs a vector of float numbers with size at most equal to length. We 

stress out that the output of get_Q() equals Q and more specifically: 

𝑄𝑖 ,𝑗 =  𝑦𝑖𝑦𝑗 ∗ 𝐾(𝑥𝑖 , 𝑥𝑗 ) 

As mentioned in Section 6.4.1 due to the existence of the exponential in the selected kernel 

function (rbf) it is not efficient to implement the entire expression in hardware. Therefore, the final 

outcome of the above expression is computed in get_Q(). Moreover, get_Q() calls the functions 

that are implemented on hardware. However, hardware functions cannot receive as inputs multi-

dimensional data structures, or structures of arbitrary size. Therefore, we reconstructed the two 

dimensional arbitrary sized data structure svm_node **x, described in Section 5.4.4, into a fixed 

size one dimensional vector. Let us call this vector x_array. In particular, its size equals the 

number of data instances*maximum feature number, which is the biggest possible size svm_node 

**x can have. In addition, when we call a hardware function we need to declare the fixed size of the 

input structures in bytes. Therefore, in get_Q()we compute this number, with respect to memory 

alignment constraints. Finally, once the hardware execution has produced the appropriate value, 

the remaining computations are performed in get_Q() and the results of the above expression are 
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stored in a vector of float numbers. This vector contains all the reconstructed Q values and is 

returned back to Solve() function. 

Kernel 

The Kernel component is written in Maxeler Java-like code and contains hardware 

implementations that perform numerical operations on data. We stress out that data is transferred 

from software to hardware one-by-one. More specifically, during one unit of time called a tick, the 

Kernel executes one step of computation, consumes one input value and produces one output 

value. Thus, neither can hardware receive all data at once, nor can it produce all outputs together. 

We could not overcome this limitation, which affects significantly our current architecture. 

Final Output 

To begin with, the Final Output hardware component receives as input a single data element of 

thex_array vector described in the SVM component, every tick. Similarly, it outputs a result every 

tick. A simple architecture of the Final Output is presented in Figure 23. Block Data represents the 

input stream and scalars, Inner Dot Product denotes the Inner Product component, and the 

computations of the figure indicate the calculation of the expression that we will describe 

immediately after. 

 
Figure 23: Block Diagram on Inner Dot Product Calculation 

In order to clarify the role of hardware in the SVM method, we present the loop that is being 

unrolled on hardware. 

𝑓𝑜𝑟 𝑗 = 0; 𝑗 < 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑥 𝑎𝑟𝑟𝑎𝑦; 𝑗 + +  

{ 

            𝑟𝑒𝑠𝑢𝑙𝑡 𝑗 =  −𝑔𝑎𝑚𝑚𝑎 ∗  𝑥_𝑖 + 𝑑𝑜𝑡 𝑥𝑎𝑟𝑟𝑎𝑦  𝑗  , 𝑥𝑎𝑟𝑟𝑎𝑦  𝑗   − 2 ∗ 𝑑𝑜𝑡 𝑥𝑎𝑟𝑟𝑎𝑦  𝑖 , 𝑥𝑎𝑟𝑟𝑎𝑦  𝑗    ; 

} 

As we have previously mentioned, gamma is a constant coefficient that depends on the user. 

Moreover, the loop runs for number of times equal to the size of x_array described in the SVM 

module. An intuitive explanation of this loop is that x_array contains all elements of the input data 
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set. More specifically, cells 1 to the maximum number of the dataset features (max) correspond to 

the first data instance. The same applies for the rest of the data instances, i.e. the second data 

instance will be located from max + 1 to 2*max, the third data instance from 2*max+ 1 to 3*max 

and so on. Note that the loop is independent of index i , which means that all variables associated 

with this index remain fixed throughout a loop. For instance, x_i is the dot product of element 

x_array[i] with itself. Due to the fact that x_i remains the same during the whole loop, we can avoid 

computing it on hardware. Another element that remains constant throughout the loop is the data 

instance i, that corresponds to x_array[i]. In case max is relatively small, then we can assign each 

feature of data instance i to a variable and input these variables to hardware, instead of sending 

data instance i as a stream. Thus, we avoid the initialization overhead of an extra stream.  

Moreover, due to the fact that hardware can receive and output only a single element at a time, we 

produce an actual result[j] output every max ticks. A more detailed explanation follows in the 

InnerProduct component. We are currently designing an architecture that will take into account this 

case and that will allow a bigger number of features, which will calculate more than a single result 

in parallel. 

Inner Product 

The Inner Product component only comprises numeric operations, since it calculates the dot 

product of two equal size vectors.  

Given A = [ A1, A2, … , An] and B = [B1, B2, … ,Bn] the dot product is defined as: 

𝑨 · 𝑩 =   𝑨𝒊𝑩𝒊 = 𝒏
𝒊=𝟏 𝑨𝟏𝑩𝟏 + 𝑨𝟐𝑩𝟐 +  𝑨𝟑𝑩𝟑 +  𝑨𝟒𝑩𝟒 + ⋯+  𝑨𝒏𝑩𝒏 

 

 

 

In Section 5.4.3 we described how the computation of a dot product can be parallelized. Here, we 

present an illustrated version of the same description. More specifically, a parallel version of the 

dot product computes in parallel all products from 1 to n. Once these are produced, calculating the 

sum takes place. In particular, the sum of 1 and 2 (5) is calculated in parallel with the sum of 3 and 

4 (6) and so on.  

Although we would expect to produce all products in a single tick, this assumption does not apply 

due to the fact that we can only receive a single data input of the stream every tick. More 

specifically, in the first tick we will get element A1, in the second tick we will get element A2 and in 

the n tick we will have gotten all elements. Thus, the final outcome is produced after n ticks have 

passed, instead of in a single tick and this introduces delay to the hardware implementation.  

Nevertheless, once the dot product of the two vectors is computed the result returns to Final 

Outcome and the outcome produced by hardware is returned to software.  

6.5.3 Debugging Issues 

As a first step the software needs to be ported and executed through the MaxCompiler platform. 

Then the Kernel that calculates the dot products was implemented, along with the appropriate 

Manager. The project was simulated, using the Maxeler simulator, keeping both the software and 

the simulated hardware running. The design was tested using small and constructed datasets, as 

… n 4 3 2 1 

… k 6 5 
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the simulation needs a significant amount of time to complete (100 times more than software. 

These slow run times are times for the simulated run of the design using CAD tools and not run 

times on actual hardware – only complete and debugged designs are run on actual hardware, 

because instrumentation of the design is easier in the CAD tool platforms (e.g. monitoring internal 

signals to see if data is progressing, if synchronization of resources is correct, and if operations are 

done properly) and in order to protect the valuable hardware resource from a design which could 

erroneously short-circuit a signal and damage the system. The simPrintf() debug function was 

used in order to print the intermediate results and prove correctness of the functions implemented. 

This function can be included in the hardware design coding, but is executed only on simulation 

mode. 

6.5.4 Verification Issues 

The verification of our design was done by executing the software for a certain dataset while 

gathering the results produced by the dot product function. The hardware implementation was 

tested with the same dataset and the results were compared one by one with the software‟s. The 

dataset had to be small enough in order for the simulation to complete in short amount of time. 

Larger datasets were also tested, but for a small amount of their products. We also used 

constructed (small) datasets in order to test boundary conditions. 

6.5.5 Performance Evaluation 

We evaluated the performance of the current hardware-based design with various numbers of 

input items but with a small number of features for each one of them. Our performance results 

showed degradation up to one order of magnitude vs. the performance achieved by the single 

thread software code. This is due to the low parallelization level achieved with the small number of 

features. 

6.6 LDA Design 
The SparseLDA algorithm (described in Section 5.6.4) is very efficient both on performance and on 

memory utilization. Basically, because the execution of the most time consuming function 

(sampleTopicsForOneDoc ()) is very efficient on software. Implementing an architecture for FPGAs 

would be meaningful only if we could execute the same operations faster. 

The FPGAs gain performance over software implementations by utilizing parallelization as much 

as possible (resources are the limiting factor) and by allowing the implementation of really deep 

pipelines. 

After careful inspection of the operations of the SparseLDA, and more specifically of the 

sampleTopicsForOneDoc() function we concluded that the operations executed are sequential and 

can‟t be parallelized. Mainly the bubble sort parts, which run in small parts of the topic array, 

cannot be pipelined. Basically the algorithm bubbles one value up the array and does not sort the 

whole array (which could be effective on FPGAs). The code that bubbles the new value up is 

shown below: 

𝑤𝑕𝑖𝑙𝑒(𝑖 > 0 && 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠[𝑖 − 1] 

{ 

        𝑖𝑛𝑡 𝑡𝑒𝑚𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 ; 

        𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 − 1 ; 

        𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 − 1 = 𝑡𝑒𝑚𝑝; 

        𝑖 − −; 

} 
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There is some parallelization that can be utilized, mostly on arithmetic operations for the 

probabilities calculations (pipelined floating point cores), but it cannot hide the sequential 

operations‟ execution time. 

The SparseLDA has a parallel version where each thread samples different documents. This 

parallelization can be utilized by streaming multiple docs in the FPGA (up to 8 streams on Maxeler 

machines). This parallelization factor isn‟t enough for the FPGA to be faster than the software, as 

the clock frequency for the Maxeler system is 150 MHz which is at least 20 times lower than the 

clock frequency of a modern high end CPU. Lastly, the sequential nature of the SparseLDA 

algorithm led us to the conclusion that even an efficient hardware-based system will have lower 

execution times than the corresponding software solution. 

6.7 Hardware based system evaluation 

The previous Sections presented four initial different hardware-based systems, i.e. the SVM 

algorithm, the Count-Min data structure, the Exponential Histogram sketch data structure and the 

Hayashi-Yoshida correlation estimator. We tested our systems with various input datasets. As our 

initial non-optimized performance results indicate, Table 2, our systems offer good performance 

achievements vs. the corresponding software solutions. In our future plans, we aim to take 

advantage of the full parallelization level that the DFEs can offer and the full communication 

bandwidth for the data I/O in order to take much better performance results.   

Lastly, the LDA algorithm was analyzed and an initial hardware-based solution was evaluated. We 

reached to the conclusion that an hardware implementation of such complex and low-parallelized 

algorithm would not give better performance results. 

Algorithm HW-based systems performance 

SVM  algorithm One order of magnitude worse performance vs. SW 

Count-Min algorithm About 7x better performance vs. SW 

Exponential Histogram About 4x better performance vs. SW 

Hayashi-Yoshida 

Correlation Estimator 
About 8ms for computing Correlation Matrix for 40 Stock Markets 

Table 2: HW-based Systems Performance 

It may appear that the results in the table, above, are rather poor, however, there are several 

reasons why they are actually very good: the initial version of each design aims at correct 

execution of the corresponding algorithm, so that it will serve as a reference design. Subsequent 

versions exploit parallelism with techniques including pipelining, multiple functional units, data 

forwarding (i.e. setting up buffers to deliver data where it needs to be for processing, rather than do 

so through the memory), etc. The key factors that determine whether an initial design seems 

promising are three: (a) that the design does not fully utilize the resources of the hardware, i.e. 

there exist substantial resources that can be exploited in subsequent versions of the design, (b) 

that the system is not Input/Output limited, i.e. a speedup of the initial design will not lead to no 

performance benefit due to the impossibility of getting data in and out of the new design, and (c) 

the intrinsic parallelism of the algorithm, i.e. that there are aspects of the algorithm which can be 

executed in parallel, given the resources and an appropriate design. In the case of the four 

designs, above, and especially in the case of the last three algorithms we are highly optimistic that 

reconfigurable computing will offer very substantial speedups.  
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7 Conclusions 
The QualiMaster project fuses several state-of-the-art technologies in order to process Big Data in 

streaming form, and extract in real-time useful information. The various processing requirements 

as well as the characteristics of the data require the processing to be done in an adaptive pipeline, 

the QualiMaster pipeline, an integral part of which is the reconfigurable hardware (FPGA 

computing) processing element. In reconfigurable computing algorithms are mapped directly to 

hardware, which is a different computational paradigm vs. that of algorithm execution on general-

purpose computers (including single computers and multiprocessors, clusters, cloud computing, 

etc.)The reconfigurable processing element of the QualiMaster pipeline needs to operate 

seamlessly with the software, run the same algorithms, and be employed on-demand. The above 

considerations are the scope of the WP3 of QualiMaster. This present deliverable D3.1 details the 

year‟s progress in WP3, as well as the Work Package‟s interaction with all other Work Packages of 

the QualiMaster project.  

A summary of the progress is that the algorithms chosen by the software partners, namely, 

Support Vector Machines (SVM), Latent Dirichlet Analysis (LDA), Count Min, Exponential 

Histogram, and Hayashi-Yoshida Correlation Estimator were all studied with respect to their 

potential for hardware implementation. Four of these algorithms (all, except for LDA) were found to 

be suitable to a greater or lesser extent (i.e. they seem promising for exceptional or good 

speedups vs. software execution, respectively). In addition, a MaxelerC-Series FPGA-based 

computer of the QualiMaster partner TSI was integrated seamlessly with the Storm environment 

which will be employed in the QualiMaster adaptive pipeline. No such result has been reported in 

the literature to date, and the ability to easily and seamlessly direct data into the Maxeler 

reconfigurable processor as needed will no doubt give the QualiMaster project very interesting 

capabilities for realistic experiments.  

To conclude, WP3 is progressing according to plan and in a timely fashion, with a number of 

technical issues, such as the integration of the reconfigurable computing node with the Storm 

platform, already having been solved. The promising results in terms of potential for hardware 

(FPGA) implementation in four of the five algorithms chosen by the software partners allow for 

great optimism that the QualiMaster adaptive pipeline will demonstrate performance capabilities 

which cannot be achieved with conventional distributed computing methods, and work is underway 

to implement and test these algorithms on reconfigurable computing platforms. Last but not least, 

the very close cooperation of the software and the hardware partners of the project is very 

beneficial to all, as the software partners are exposed to computational capabilities which would 

otherwise be out-of-reach and hence they have more tools with which to implement their 

algorithms of choice, whereas the hardware partners have meaningful driving problems, complete 

with realistic Input/Output requirements, real-time operation requirements, and reference software 

designs for the assessment of their work. 
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