

www.qualiMaster.eu

QualiMaster

A configurable real-time Data Processing Infrastructure
mastering

autonomous Quality Adaptation

Grant Agreement No. 619525

Deliverable D3.1

Work-package WP3: Optimized Translation to Hardware

Deliverable D3.1: Translation of Data Processing Algorithms to Hardware

Deliverable Leader Telecommunication System Institute

Quality Assessor H. Eichelberger

Estimation of PM spent 6

Dissemination level Public (PU)

Delivery date in Annex I 31/12/2014

Actual delivery date 31/12/2014

Revisions 4

Status Final

Keywords: QualiMaster, Adaptive Pipeline, Reconfigurable Computing, FPGA
Computing, Hardware, Support Vector Machines (SVM), Latent
Dirichlet Analysis (LDA), Count Min, Exponential Histogram, Hayashi-
Yoshida Correlation Estimator

QualiMaster Deliverable 3.1

Page 2(of 66) www.qualimaster.eu

Disclaimer

This document contains material, which is under copyright of individual or several QualiMaster

consortium parties, and no copying or distributing, in any form or by any means, is allowed without

the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster

consortium warrant that the information contained in this document is suitable for use, nor that the

use of the information is free from risk, and accepts no liability for loss or damage suffered by any

person using this information. This document reflects only the authors‟ view.

The European Community is not liable for any use that may be made of the information contained

herein.

 2014 Participants in the QualiMaster Project

Deliverable 3.1 QualiMaster

© QualiMaster Page 3(of 66)

 List of Authors

Partner Acronym

TSI

MAX

LUH

SUH

Authors

E. Sotiriades, G. Chrysos, P. Malakonakis, N. Pavlakis, S. M.
Nikolakaki, I. Papaefstathiou, A. Dollas.

J.B. Robertson, O. Pell

S. Zerr

C. Qin

QualiMaster Deliverable 3.1

Page 4(of 66) www.qualimaster.eu

Table of Contents

Disclaimer .. 2
List of Authors ... 3
Table of Contents ... 4
Executive summary .. 6
1 Introduction ... 7

1.1 Algorithmic classes for acceleration via Hardware ... 7
1.2 Guidelines translating algorithms to FPGAs .. 7
1.3 Interaction with WP2 and WP4 .. 8

2 Identification of classes of algorithms or tasks from WP2 ... 9
2.1 Reconfigurable Hardware Technology.. 9
2.2 QualiMaster Pipeline .. 9
2.3 Classes of Problems and Algorithms Selection ... 11

3 Interface of Reconfigurable Hardware with QualiMaster Platform ... 16
3.1 Maxeler Technology ... 16
3.2 Maxeler - Storm Interface ... 17

4 Study of the algorithms ... 20
4.1 Count-Min (CM) .. 20
4.2 Exponential Histogram (EH) ... 20
4.3 Hayashi-Yoshida Correlation Estimator .. 21
4.4 SVM .. 22
4.5 LDA ... 23

5 Algorithm Analysis for Hardware Implementation .. 24
5.1 Analysis Methodology .. 24

5.1.1 Study of Inputs and Outputs .. 24
5.1.2 Data Sets .. 25
5.1.3 Algorithm Profiling ... 25
5.1.4 Important Data Structures and Operations ... 26

5.2 Count Min (CM) Modeling ... 26
5.2.1 Study of Inputs and Outputs .. 27
5.2.2 Data Sets .. 27
5.2.3 Algorithm Profiling ... 27
5.2.4 Important Data Structures and Operations ... 29

5.3 Exponential Histogram (EH) Modeling .. 30
5.3.1 Study of Inputs and Outputs .. 30
5.3.2 Data Sets .. 31
5.3.3 Algorithm Profiling ... 31
5.3.4 Important Data Structures and Operations ... 33

5.4 Correlation Modeling .. 33
5.4.1 Study of Inputs and Outputs .. 34
5.4.2 Data Sets .. 35
5.4.3 Algorithm Profiling ... 35
5.4.4 Important Data Structures and Operations ... 36

5.5 SVM Modeling... 36
5.5.1 Study of Inputs and Outputs .. 37
5.5.2 Data Sets .. 38
5.5.3 Algorithm Profiling ... 38
5.5.4 Important Data Structures and Operations ... 41

5.6 LDA Modeling ... 42
5.6.1 Study of Inputs and Outputs .. 42
5.6.2 Data Sets .. 43
5.6.3 Algorithm Profiling ... 44
5.6.4 Important Data Structures and Operations ... 44

6 Mapping algorithms in Hardware .. 46

Deliverable 3.1 QualiMaster

© QualiMaster Page 5(of 66)

6.1 Design Methodology .. 46
6.1.1 Top Down analysis.. 46
6.1.2 Bottom Up Modeling ... 47
6.1.3 Debugging Approaches.. 48
6.1.4 Verification Issues ... 48

6.2 Count Min (CM) Design ... 49
6.2.1 Top Down analysis.. 49
6.2.2 Bottom Up Modeling ... 49
6.2.3 Debugging Issues ... 50
6.2.4 Verification Issues ... 50
6.2.5 Performance Evaluation ... 50

6.3 Exponential Histogram (EH) Design.. 50
6.3.1 Top Down analysis.. 51
6.3.2 Bottom Up Modeling ... 51
6.3.3 Debugging Issues ... 52
6.3.4 Verification Issues ... 52
6.3.5 Performance Evaluation ... 52

6.4 Correlation Design ... 52
6.4.1 Top Down analysis.. 53
6.4.2 Bottom Up Modeling ... 53
6.4.3 Debugging Issues ... 54
6.4.4 Verification Issues ... 54
6.4.5 Performance Evaluation ... 54

6.5 SVM Design .. 54
6.5.1 Top Down analysis.. 55
6.5.2 Bottom Up Modeling ... 56
6.5.3 Debugging Issues ... 59
6.5.4 Verification Issues ... 60
6.5.5 Performance Evaluation ... 60

6.6 LDA Design ... 60
6.7 Hardware based system evaluation .. 61

7 Conclusions .. 62
References... 63

QualiMaster Deliverable 3.1

Page 6(of 66) www.qualimaster.eu

Executive summary

Field Programmable Gate Array (FPGA) computers (also known as reconfigurable computers) are

a special category of computer hardware, in which algorithms are directly translated into hardware

designs, rather than being implemented as software which runs on general purpose computers.

Despite FPGA technology being almost 30 years old, the process of algorithm mapping to FPGA

supercomputers is no trivial task because it entails one-of-a-kind hardware designs. In the

QualiMaster project, we aim at using such FPGA-based computers as hardware accelerators offer

various elements in the adaptive pipeline. This entails identification of algorithms which are

suitable for hardware implementation, interfaces with existing software platforms and tools for

seamless operation, hardware implementation of the chosen algorithms, and performance

evaluation to quantify the performance benefits and the cost-performance tradeoffs from this

approach. This deliverable reports on the methodology and the design phase of the specialized

hardware of the QualiMaster adaptive pipeline for several Data Processing Algorithms and it

follows Task 3.1 which comprises of three important subtasks, per the Description of Work. In the

Introduction Section, below, the progress in these three subtasks is summarized, with the body of

this deliverable elaborating on progress in each one of these subtasks.

Deliverable 3.1 QualiMaster

© QualiMaster Page 7(of 66)

1 Introduction
The QualiMaster project includes the use of reconfigurable hardware to boost its performance and

to operate in real-time problems which conventional computers cannot address adequately.

Reconfigurable computing (also known as FPGA-based computing) is the field in which algorithms

are mapped directly to hardware resources for execution. As a rule-of-thumb, reconfigurable

computers run at clock speeds which are ten times slower vs. conventional computers, but if the

available parallelism is high and the granularity of computation vs. Input/Output requirements is

high, this form of computing may offer substantial speedups vs. conventional computers. The use

of this form of computing in the processing of Big Data seems promising. In the QualiMaster

project the goal is to exploit reconfigurable computing in the QualiMaster pipeline, in order to have

real-time processing of streaming data.

This Work Package and this deliverable D3.1 are directly connected to WP2. WP2 identifies the

important classes of problems and algorithms for the QualiMaster project. In the present

Deliverable D3.1 several of these algorithms, from all classes of problems, were selected for

translation into hardware. Specifically, five different algorithms were selected and an in-depth study

was made for each of them. This study shows that four of them are suitable for mapping at

reconfigurable computers and can offer significant speedup. According to this study, the hardware

designs of these algorithms were made, considering the restrictions of WP4 in which the pipeline

configuration is designed.

The progress in WP3 which is reported in D3.1 can be summarized below:

1.1 Algorithmic classes for acceleration via Hardware

Following extensive collaboration with all partners and especially those involved in WP2, several

classes of algorithms were identified and studied. These algorithms are Support Vector Machines

(SVM), Latent Dirichlet Analysis (LDA), Count Min, Exponential Histogram, and Hayashi-Yoshida

Correlation Estimator. All these classes of algorithms were methodically evaluated. All of these

algorithms were chosen by the software partners and studied by the hardware partners of the

QualiMaster project, so that the results would be relevant to the project goals.An important

contribution of the QualiMaster project is that through interaction of the software and hardware

design teams of the project, the algorithms that are chosen by the software team form a real-life

area in which the hardware team needs to apply its expertise, and likewise, the capabilities of the

specialized reconfigurable hardware allow for the software team to have an alternative computing

paradigm, which would not be possible to consider otherwise.

1.2 Guidelines translating algorithms to FPGAs
All of the above algorithms were profiled with respect to computational characteristics, available

parallelism, Input/Output (I/O) requirements, and suitability for hardware implementation. This is

the standard practice within the hardware community, as it may lead to the optimization of the

computationally intensive part, or computationally equivalent mathematical transformations to lead

into more hardware parallelizable versions of the algorithm. One algorithm proved to be less

suitable for translation to hardware (LDA) whereas all others proved to be highly suitable (e.g.

Count Min, Exponential Histogram) or moderately suitable (e.g. SVM). Subsequently, the process

of developing hardware modules to interact with the software within the QualiMaster pipeline

progressed.

QualiMaster Deliverable 3.1

Page 8(of 66) www.qualimaster.eu

1.3 Interaction with WP2 and WP4

Whereas this subtask is complementary to subtasks 1 and 2 (see above), it also entails the

significant issue of how to connect the specialized Field Programmable Gate Array- based

supercomputing nodes (made by Maxeler in this case) to the environment used by the software

community in order to form a seamless QualiMaster pipeline. Following the examination of several

alternatives, and in cooperation of WP2 and WP4 partners, we jointly developed the

communication interfaces and libraries to make the Maxeler system become a node of the STORM

distributed environment. This is a significant step which has been fully completed and is currently

operational, as it allows for the QualiMaster pipeline to run seamlessly either on software platforms

alone (made of distributed computational nodes) or combined software/hardware platforms,

comprising of the aforementioned environment plus the Maxeler specialized hardware node. This

QualiMaster platform allowed for the detailed study of communication overhead, data rates, and

software/hardware interaction which was crucial in the final determination of the algorithms which

are suitable for further hardware development.

This Deliverable introduces the fundamentals of reconfigurable computing, the QualiMaster

pipeline, and the algorithms selection in Section 2. Section 3 presents the reconfigurable

infrastructure and its integration to the rest QualiMaster infrastructure. Section 4 makes a brief

presentation of the selected algorithms as they are extensively presented in D2.1. Section 5

reports the study methodology, and the studies for each of the five algorithms in order to map it to

reconfigurable computing. Finally Section 6 shows how algorithms are translated to hardware

designs, both in terms of the methodology and how this methodology is applied specifically on

each of the selected algorithms.

Deliverable 3.1 QualiMaster

© QualiMaster Page 9(of 66)

2 Identification of classes of algorithms or tasks from WP2

2.1 Reconfigurable Hardware Technology
Reconfigurable Computing was introduced at the late 1980s, when the first Field Programmable

Gate Arrays (FPGA) chips were designed. These chips, where the technology evolvement of the

CPLDs and other older programmable devices, using different implementation technology. The

main computational paradigm in this form of computing is that the hardware resources (logic gates,

memories, digital signal processing – DSP blocks, etc.) are connected after power up in an

application-specific way, with a design which was created earlier for that purpose. The designer

maps algorithms directly to hardware, exploiting parallelism and datapaths which are not available

in conventional general-purpose computing. Using even early FPGAs several computationally

intensive problems have been mapped and proved that FPGA computing, or reconfigurable

computing, can be a solution for performance boosting of several algorithms. Eventually, FPGAs

proved not only to be a cost effective rapid system prototyping platform vs. ASIC, but a versatile

technology of choice for Image Processing, Data encryption (eg. The RSA and DES algorithms),

Video Processing, String Pattern Matching, FFT Implementations, Data Compression – to name a

few.

Later generation devices offered significant resources in addition to the reconfigurable fabric.

Special I/O transceivers, dedicated logic blocks for memory, powerful general purpose processors

on chip, special modules for digital signal processing, and fast floating point operations were

added on the device. Even the reconfigurable fabric had changed, offering more logic, better

routing resources and run time reconfiguration characteristics. In addition, a large collection of

functional Intellectual Property cores (IPs) is freely available to the designer through IP generator

tools such as the Xilinx Core Generator, or, distributed by designers through web sites such as

OpenCores. All these available resources help designers to take up with new applications, with

considerable results on network systems such as network switches, network intrusion detection

systems, financial data analysis. Data streaming applications become much more significant due

to these technological advances of FPGAs, mostly in the forms of I/O transceivers on a chip and

large amount of available memory.

Nowadays multi FPGA platforms have been developed offering opportunities at system level

design, using powerful General Purpose Processors with fast interconnection with FPGAs. FPGAs

also have ultra fast access to external memory and direct fast connection to the internet. These

systems have a "look and feel" of a conventional General Purpose Server with a Linux -based

operating system, using special compilers. Designers usually keep the official software at its

original form and change only the computational intensive procedures, with hardware procedures

calls which are functional equivalent. These servers can become nodes of greater systems, as

QualiMaster projects intents, and reconfigurable computing can be easily integrated with

conventional computing. The reconfigurable node performs the compute intensive parts of the

algorithm and the conventional nodes perform all the other procedures which are difficult to be

translated in hardware and have not significant computational load. This is considered to be a new

era for reconfigurable computing which can easily incorporate heterogeneous computing systems

providing them with powerful coprocessors.

2.2 QualiMaster Pipeline
A core concept of QualiMaster is the notion of the adaptive data processing pipeline. Basically, a

data processing pipeline defines the data flow from data sources through data processing

QualiMaster Deliverable 3.1

Page 10(of 66) www.qualimaster.eu

algorithms to data sinks. It is noteworthy that a processing pipeline defines the data flow among

the elements of a pipeline rather than the control flow of the analysis algorithms.

Data sources produce data in a certain form, such as structured financial stock market data or

unstructured Twitter data. While a data source can be characterized by technical information, such

as the provided data fields or access credentials, an Infrastructure User (as introduced in D1.2)

can also specify SLAs (Service Level Agreements) negotiated with the Data Provider to also

consider deviations or violations of these agreements during adaptation. One extreme example on

handling data source violations (if negotiated with the user) could be to notify the user that the

SLAs on user side cannot be met as the input side does not fulfill its SLAs.

Starting at the data sources, a data processing pipeline links then data sources with data

processing elements and, finally, data sinks. In QualiMaster, data processing elements exist in

three types, namely elements representing processing families, generic stream processing

operators and data management operations.

Processing families represent a set of algorithms performing the same task at different quality

tradeoffs as described in D1.2 and detailed in D2.1 and D4.1. Changing the actual algorithm of a

certain family or its functional parameter settings at runtime is the core idea of realizing adaptive

data processing pipelines. Further, processing families enable the seamless integration of

software-based and hardware-based execution on reconfigurable hardware. However, data

processing algorithms can be more than just simple software components, e.g., representing a

single processing algorithm possibly depending on a set of supporting libraries. In particular,

processing algorithms can be realized in terms of reconfigurable hardware as described in this

deliverable. Furthermore, a data processing algorithm can be implemented as a complex, already

distributed stream processing algorithm such as the distributed correlation computation described

in D2.1. Switching among these different kinds of algorithms requires specific strategies in order to

consider the different functional and structural aspects as well as to use the overall resource pool

in an optimal way.

Running a single algorithm on reconfigurable hardware may not be optimal for different reasons,

including use of reconfigurable hardware resources, performance gain, or communication

overhead. One specific optimization form is to lay out sub-pipelines of a data processing pipeline (if

the translation to hardware is feasible) on the same hardware resource or within a cluster of

reconfigurable hardware resources as provided by the Maxeler infrastructure (MaxelerOS). In turn,

this may lead to dependencies during the design of a data processing pipeline (as the sequence

must be met) as well as during its dynamic execution.

In contrast to user-defined data processing elements as handled by the processing families,

generic stream processing operators, such as filter, project, fork or join are frequently considered

in literature (e.g., [1, 2, 3, 4]). Generic stream processing operators can ease the adaptation (as

the can be included in a domain-independent version of the QualiMaster infrastructure), simplify

the definition of a data processing pipeline and facilitate reuse of generic functionality. In order to

be applied, functional parameters need to be defined during the pipeline design, e.g., on what to

project. These functional parameters can be specified during configuration of the pipelines.

Although the QualiMaster consortium is aware of the need for such operators (e.g., D4.1 already

provides an extension point for such operators), we currently focus on the more challenging user-

defined processing families, handle forks and joins implicitly and will consider generic stream

processing operators as part of future work.

Data Management operators as introduced in D5.1 support storing intermediary processing results

for later (batch) analysis by the Data Management Layer at any point of a data processing pipeline.

Deliverable 3.1 QualiMaster

© QualiMaster Page 11(of 66)

As the Data Management operator is generic, it can be configured through functional parameters

in order to perform the correct functionality in the actual pipeline. It is important that the data at the

source and the sink may be stored transparently through the Data Management Layer in order to

avoid storing the same data item multiple times by multiple pipelines.

A data processing pipeline can be considered as linear or sequential, i.e., the data flow links have

data processing elements including stream forks and joins. However, if supported by the

underlying Execution System, a data processing pipeline may also contain cycles in terms of

feedback loops, i.e., processed data is fed back into a previous processing step, e.g., to improve

the processing model. In this case, a data processing pipeline can be considered as a data

processing network or graph.

The design of a data processing pipeline may specify quality constraints on the individual data

processing elements, e.g., to guard extremely important processing steps as well as on data flows

to provide guidelines for switching among explicit alternatives. In QualiMaster, These constraints

fulfill two purposes, the first supporting the user, the second the QualiMaster consortium. On the

user side, such constraints allow narrowing down the adaptation space and, if needed to specify

explicit alternatives to be taken dynamically based on the constraint. However, we are aware of the

fact that specifying constraints increases the specification effort and requires more knowledge

about data processing. Thus, we focus currently more on the processing families rather than on

the pipeline constraints. On the other side such constraints allow to change the scope of

experiments, i.e., using a pipeline specification for multiple purposes by just modifying some

experiment-specific settings.

Ultimately, the data produced by the entire data processing pipeline is directed to data sinks, i.e.,

the endpoints of a data processing pipeline. Multiple data sinks may provide different forms or

qualities of output, e.g., data sinks may offer different levels of quality and, depending on the

business model of the infrastructure/data analysis provider, possibly also at different levels of

pricing. Akin to data sources, data sinks can be detailed by SLAs in order to reflect the negotiated

client side quality. Further, data sources may be supplemented with technical access information,

e.g., in order to protect the output data as well as different levels of result quality. Finally, a kind of

web service realizes the data sink from a technical perspective in order to make the data available

to the QualiMaster applications. Thereby, the (realization of the) data sink will not act as a one-way

service, as it needs to provide an interface to communicate with the QualiMaster infrastructure, in

particular to react on user triggers to be considered by the adaptation (see D1.2).

2.3 Classes of Problems and Algorithms Selection
Data processing with the QualiMaster pipelines includes several different steps, as shown in

Figure 1 describes a possible execution scheme of the QualiMaster pipeline, as it was presented in

D 1.1. Most of the computational elements shown in this Figure can be efficiently mapped to

hardware. Data Reformatting, Data Filtering, Data Classification, Streaming Computation,

Correlation, Transfer Entropy, Granger Causality, Data Clustering, Graph Analysis, Data Synopsis

and Sentimental Analysis are classes of problems that have been mapped efficiently to

reconfigurable hardware and have been reported in the relevant literature on several occasions.

However, this does not make the integration of the reconfigurable hardware with the software an

easy task. The implementation of single computational elements with reconfigurable computing

resources, as reported in the literature, not only is based on specific assumptions regarding

Input/Output, dataset size, and algorithm accuracy, to name a few, but even if such were not

significant issues (and they are), the QualiMaster project needs to address effective use of the

specialized reconfigurable hardware resources in order to optimize the entire pipeline. To illustrate,

QualiMaster Deliverable 3.1

Page 12(of 66) www.qualimaster.eu

two possible scenarios in which the end result would lead to a slowdown at the system level are

presented.

Scenario A: if algorithm A runs exceptionally well on reconfigurable hardware (e.g. 100 times faster

than software execution of the same algorithm) but it expects results from algorithm B which runs

on software, and algorithm B does not produce data at a sufficiently high rate, then not only the

potential of the reconfigurable hardware is not realized, but the Input/Output time overhead to

move data in and out of the reconfigurable hardware may dominate over the computational time

benefits, leading to an actual slowdown. Referring to Figure 1, if the Fast Codepedency Filter (see

step 8) is run in software and Correlation (see step 9) is run in reconfigurable hardware, the overall

performance of the QualiMaster pipeline will not only depend on the performance of the individual

elements of the pipeline, but also their integration.

Scenario B: If separate elements of the pipeline run well on the hardware, it is possible that it is

beneficial to run non-optimal elements as well, in order to avoid Input/Output overhead. Continuing

from scenario A, if in order to address the problems which were describe above we run forth the

Fast Codependency Filter and the Correlation in hardware, it is possible that we will also need to

run in hardware the Transfer Entropy and the Element Causality as well (both are in Step 8 of the

pipeline), in order to avoid excessive Input/Output of the (partial in this case) results of the Fast

Codependency Filter and Correlation pipeline from having to be forwarded to software, potentially

causing an Input/Output bottleneck. However, even in this case, it is not clear that the hardware

has enough resources to run all of the above.

As a result from the considerations, above, different elements of the QualiMaster pipeline need to

be implemented in hardware, benchmarked, and evaluated vis a vis the same elements running on

software, so that there will be a system-level optimization. The only way to achieve this goal is to

have many different potential implementations of the QualiMaster pipeline and many different

forms of data (e.g. twitter, financial data), as the optimal solution in one case might be undesirable

in another. Hence the QualiMaster pipeline will be truly adaptive to the workload, desired

processing algorithms, and available hardware resources (in principle there can be more than one

reconfigurable hardware nodes in the system).

In this context, WP3 interacted with WP2, in order to find out the classes of problems and the

algorithms which are relevant for QualiMaster, in particular in the context of the priority pipeline

reconfigurable platform elements. The algorithm families of interest are identified as:

● Data Classification

● Sentiment Analysis

● Data Synopsis

● Correlation Estimation

The above classes of problems seem to be closely connected to the goals of the QualiMaster

project. The above problems are very computationally intensive, thus the acceleration of these

workloads would be a benefit to the final QualiMaster infrastructure. There is substantial related

work on similar classes of problems, where hardware-based accelerators have been proposed.

Several algorithms were proposed in collaboration with WP2 for each class of desirable algorithms.

Data Classification aims at categorizing data objects into distinct classes with the use of labels. In

particular, statistical classification receives new data inputs and identifies their respective classes.

An example would be assigning a post derived from the social media into “relevant or “irrelevant”

Deliverable 3.1 QualiMaster

© QualiMaster Page 13(of 66)

classes based on its correlation with a general subject, i.e. finance, news, or social. Given that the

scope of the project is to receive Twitter data with a view of performing efficient risk and Sentiment

Analysis, categorizing streamed text information for its effective use is crucial for QualiMaster. In

addition, Sentiment Analysis refers to the use of natural language processing and text analysis to

identify and extract subjective information from source materials. In the QualiMaster project

extracting sensible and related to financial knowledge is significant for precise and accurate risk

analysis. Furthermore, Data Synopsis focuses on configuring data structures and algorithms for

efficiently processing and storing massive datasets or swiftly arriving data. The use of synopses

allows fast response times to queries on big datasets, a function necessary to QualiMaster as

efficient handling of streaming financial data (commodities) is essential. Finally, Correlation

Estimation is a method that reports the dependence between two random variables. Thus, in

QualiMaster correlation is used to determine the dependence between commodities.

Implementing our own text classifiers by hand would be time-consuming and could be quite

difficult. In general, text comprises several aspects that need to be taken into consideration, such

as the high dimensional input space, linearly separability and few irrelevant features. Thus, in

accordance with WP2 and by studying the related literature we concluded that the Support Vector

Machines (SVM) method is appropriate for text classification.

Various machine learning algorithms, which are used for data regression and classification, have

been introduced at D 2.1 and proposed for hardware acceleration. We studied thoroughly the

algorithms about Linear Regression, Bayesian Linear Regression, Support Vector Machines and

Linear Generative Classification. The Support Vector Machines (SVM) algorithm was selected as

the most common one and with parallel processing characteristics to be implemented for the data

classification problem.

QualiMaster Deliverable 3.1

Page 14(of 66) www.qualimaster.eu

Figure 1: QualiMaster pipeline example execution steps

For the sentiment analysis the LDA algorithm was chosen to be implemented in hardware, and

more specifically its training phase as it is the most time consuming part of the algorithm. LDA is

an algorithm used in order to classify a set of documents into topics. The topics can contain

opinion targets as well as the polarity of the opinion. This allows sentiment analysis to exact

information about the main theme of the document, as well as polarity, by examining the topics it is

associated with (taking into account the probabilities for each topic). Topic modeling is a basic step

for the sentiment analysis of documents. Moreover, topic modeling is a common method, which is

used in machine learning and natural language processing. Atopic model is a type of statistical

model for discovering the abstract "topics" that occur in a collection of documents. The most widely

used algorithm is LDA, which is also the one used by WP2. In LDA algorithm, each document may

be viewed as a mixture of various topics. This is similar to probabilistic latent semantic analysis

(pLSA). In addition, the topic distribution in LDA algorithm is assumed to have a Dirichlet prior

probability distribution. In practice, this results to more reasonable mixtures of topics in a

document.

Deliverable 3.1 QualiMaster

© QualiMaster Page 15(of 66)

The large volume of data streams poses unique space and time constraints on the computation

process. There are problems that may be acceptable to generate approximate solutions for

problems with streaming huge volumes of data. A number of synopsis structures have been

developed, which can be used in conjunction with a variety of mining and query processing

techniques in data stream processing. Sketches are one of the simplest data structures that are

used for data synopses. Count-Min sketch is a probabilistic data structure that serves as a

frequency table of events in a stream of data. Another basic data structure, which is used for data

synopsis, is the histogram. There is a great variety of algorithms that create histogram data

synopsis from streaming data. Exponential Histograms is an efficient data structure that enables

answering frequency queries over streaming data. In addition, the ECM sketch is a data structure

that combines the CM sketch with the Exponential Histogram data structure to an application for

efficient querying over sliding window data streams. The ECM is considered to be a more

sophisticated way of data synopsis. As the ECM method is a combination of the Count-Min

algorithm and the Exponential Histogram data structure both of them were proposed to be

developed. Lastly, these implementations will be combined in order to implement the efficient

mapping of the ECM sketch on reconfigurable hardware. The ECM method takes as input a stream

of elements and updates the corresponding CM sketch data structure. The CM sketch is updated

by keeping an order-preserving aggregation of all streams. The update of the data structure takes

place in different buckets of the data structure thus it needs a lot of CPU clock cycles in order to be

updated. According to the theory the update of the ECM has O(1) amortized time complexity. A

pipelined reconfigurable system that maps the update function will offer O(1) time complexity in

any case. In addition, the small memory footprint of the CM data structure leads to a system that

maps such data structure internally in an FPGA device offering high throughput in case of CM

updating or CM querying.

One of the main goals of the QualiMaster project is the use of methods that will monitor data

streams for event detection. A statistical technique that can show whether and how strongly pairs

of variables are related is the correlation measure. In the world of finance, financial correlations

measure the relationship between the changes of two or more financial variables, e.g. stock prices,

in time. Financial correlation measurements are considered very important and they are used in

advance portfolio management. The Hayashi-Yoshida cross-correlation estimator is an important

estimator of the linear correlation coefficient between two asynchronous diffusive processes, e.g.

stock market transactions. This method is really important as it can correlate high-frequency

financial assets. Also, the Hayashi-Yoshida estimator correlates the variables, e.g. the stock

prices, in real time, which is really important for forecasting the mid quote variation of the

corresponding values. Lastly, the Hayashi-Yoshida estimator is considered as one of the most

important and most basic estimators over streaming data, thus was proposed for implementation at

the QualiMaster Use Cases as they have indicated at D1.1.

The correlation matrix algorithm can calculate the correlation between multiple commodities in

parallel. Also, the calculation of a single correlation estimator can be processed in parallel using

the corresponding data. Reconfigurable hardware can offer high parallelization levels by using

different resources in parallel or/and in a pipelined architecture.

http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Streaming_algorithm

QualiMaster Deliverable 3.1

Page 16(of 66) www.qualimaster.eu

3 Interface of Reconfigurable Hardware with QualiMaster
Platform

In this section there is a short description of the target platform (a Maxeler C-Series FPGA-based

supercomputing node) for the algorithms mapped to hardware and the interface with the project

platform (Storm) which is the framework for the project.

3.1 Maxeler Technology
Maximum Performance Computing (MPC) changes the classical computer science optimization

from ease-of-programming to maximizing performance and minimizing total cost of computing.

Performance is optimized by constructing compute engines to generate one result per clock cycle,

wherever possible. Ease-of-programming is still important but takes second place to performance,

computational density and power consumption. As such, MPC focuses on mission critical, long

running computations with large datasets and complex numerical and intense statistical content.

Maxeler drives MPC via „Multiscale Dataflow Computing‟. This section summarises the

components of MPC, illustrates how MPC dataflow computers are programmed and how the

resulting tools are presented to the users. An overview of MPC, along with detailed examples of

applications, is available in [27, 28].

One Maxeler Dataflow Engine (DFE) combines 10^4 arithmetic units with 10^7 bytes of local fast

SRAM and 10^11 bytes of 6-channel large DRAM. MaxelerOS allows the DFEs and CPU to run in

parallel, so while the DFEs are processing the data, the CPU typically performs the non-time-

critical parts of an application.

Maxeler's MPC programming environment comprises of several components:

● MaxCompiler, a meta-programming library used to produce DFE configurations by way of

the MaxJ programming language, which is an extended form of Java with operator

overloading. The compute kernels handling the data-intensive part of the application and

the associated manager, which orchestrates data movement within the DFE, are written

using this language. MaxJ is a Hardware Description language which produces the

computational intensive part of the design configuration.

● the SLiC (Simple Live CPU) interface, which is Maxeler's application programming interface

for CPU-DFE integration;

● MaxelerOS, a software layer between the SLiC interface, operating system and hardware,

which manages DFE hardware and CPU-DFE communication in a way transparent to the

user;

● MaxIDE, a specialised integrated development environment for MaxJ and DFE design, a

fast DFE software simulator and a comprehensive debug environment used during

development.

These components and their use are described in details in [29, 30].

In such an MPC system, the CPUs are in control and drive the computations on the DFEs. The

data-intensive parts of the computations are typically confined to the DFE configuration and are

made available through the SLiC interface. At its simplest level, DFE computation can be added to

an application with a single function call, while for more fine-grained control SLiC provides an

“action”-based interface. SLiC interface calls are automatically generated from the corresponding

DFE program pieces and allow DFE programs to be used by a range of programming languages

including C/C++ or R, Python, and MATLAB by way of a adaptation layer (or skin). Thanks to

Deliverable 3.1 QualiMaster

© QualiMaster Page 17(of 66)

MaxelerOS's seamless management of DFE resources, these programming languages may make

use the DFE program as they would make use of any other external library or service.

3.2 Maxeler - Storm Interface
The integration of reconfigurable hardware (e.g. Maxeler machines) along with the QualiMaster

infrastructure plays an essential role. A communication framework needed to be created so that

the reconfigurable hardware could receive data, make any calculations needed, and then transmit

the results back to rest of the infrastructure. At D5.2 the QualiMaster infrastructure and priority

pipeline are describe. Figure 2 depicts the QualiMaster priority pipeline, where the Adaptation

Layer may decide to execute 3a or 3b depending on the configuration and monitoring of the

pipeline execution. Hence, 3a needs to implement the communication framework between the

QualiMaster pipeline and the reconfigurable hardware. Basically it involves the implementation of a

flexible interface between Storm and Maxeler, which could be also used with different tools or

reconfigurable hardware platforms.

Figure 2: QualiMaster Infrastructure-Reconfigurable Hardware Integration (from D5.2)

In order to initiate Storm [31] the Adaptation Layer creates topologies. A Storm topology is a graph

of computation. Each node in a topology contains processing logic, and links between nodes

indicate how data should be passed around between nodes. The core abstraction in Storm is the

“stream”. A stream is an unbounded sequence of tuples. Storm provides the primitives for

transforming a stream into a new stream in a distributed and reliable way.

The basic primitives Storm provides for doing stream transformations are “spouts” and “bolts”.

Spouts and bolts have interfaces that are implemented to run application-specific logic. A spout is

a source of streams. For example, a spout may connect to the Twitter API and emit a stream of

tweets. A bolt consumes any number of input streams, does some processing, and possibly emits

new streams. Complex stream transformations, like computing a stream of trending topics from a

stream of tweets, require multiple steps and thus multiple bolts. Bolts can do anything from run

functions, filter tuples, do streaming aggregations, do streaming joins, talk to databases, and more.

Networks of spouts and bolts are packaged into a “topology” which is the top-level abstraction that

is submitted to Storm clusters for execution. A topology is a graph of stream transformations where

each node is a spout or bolt. Edges in the graph indicate which bolts are subscribing to which

streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every bolt that

subscribed to that stream.

QualiMaster Deliverable 3.1

Page 18(of 66) www.qualimaster.eu

Figure 3: Storm Topology

Each node in a Storm topology, Figure 3, executes in parallel. In the topology, the amount of

parallelisms specified, and then Storm will spawn that number of threads across the cluster to do

the execution. A topology runs forever, or until the user kills it. Storm will automatically reassign

any failed tasks. Additionally, Storm guarantees that there will be no data loss, even if machines go

down and messages are dropped.

The Storm framework was installed on the Maxeler workstation and was tested as a simple Storm

node. After that the connection with the Maxeler hardware had to be established. The Maxeler

hardware is called by a C/C++ host code. The main problem that had to be addressed is basically

the interface between Java (Storm) and C. Three methods that allow C/C++ and Java connection

were considered, SWIG that allows the call of C function through Java, the exec function which

calls the C executable and network sockets.

In order to use SWIG to connect the Storm Java code with C the Maxeler project was compiled as

a shared library. SWIG (Simplified Wrapper and Interface Generator) [32]is a software

development tool that connects programs written in C and C++ with a variety of high-level

programming languages. SWIG is used with different types of target languages including common

scripting languages such as Javascript, Perl, PHP, Python, Tcl and Ruby. The list of supported

languages also includes non-scripting languages such as C#, Common Lisp (CLISP, Allegro CL,

CFFI, UFFI), D, Go language, Java including Android, Lua, Modula-3, OCAML, Octave and R.

SWIG is most commonly used to create high-level interpreted or compiled programming

environments, user interfaces, and as a tool for testing and prototyping C/C++ software. SWIG is

typically used to parse C/C++ interfaces and generate the 'glue code' required for the above target

languages to call into the C/C++ code. After wrapping the C code with SWIG the C function can be

called as a native code call from the Java. The problem was that in order to use SWIG, its‟ data

types had to be used in order to be able to exchange arguments from C to Java.

The exec in Java is able to directly call the Maxeler executable. The exec function takes as

arguments the executable file along with the arguments needed. Also a custom scheduler would

have to be implemented in order to send the specific Java code (with the exec call) to the Maxeler

workstation.

 The first method proposed was the use of network sockets [33] in order to establish

communication between the Java code and the C host code running on the Maxeler workstation.

The Maxeler server creates sockets on start up that are in listening state. These sockets are

Deliverable 3.1 QualiMaster

© QualiMaster Page 19(of 66)

waiting for initiatives from client programs (e.g. Storm nodes). A TCP server may serve several

clients concurrently, by creating a child process for each client and establishing a TCP connection

between the child process and the client. Unique dedicated sockets are created for each

connection. These are in established state, when a socket-to-socket virtual connection or virtual

circuit (VC), also known as a TCP session, is established with the remote socket, providing a

duplex byte stream. We can have up to 4 children on a Maxeler workstation as they can have 4

different hardware designs running simultaneously on the 4 FPGAs.

Two socket clients are used in order to make a call on the hardware server, a transmitter and a

receiver. They are written in Java and run on a Storm subtopology (3a), which implements the

appropriate algorithmic family interface. The transmitter creates a new socket in order to connect

to the server and sends the configuration as well as the input data from previous components. The

transmitter can also request for the results to be sent to the receiver. The receiver is connected via

a different socket. It receives the results and forwards them to the rest of the pipeline. The socket

server is written in C and serves as the Maxeler host code. It stays on listening state until a

connection is established by both a transmitter client and a receiver client. The transmitter streams

configuration and input data to the server. The server stores the data coming from the transmitter

and performs the Maxeler hardware call to process them. After the hardware call has returned, it

sends the results to the receiver client whenever a result request is received. The receiver and

transmitter libraries can also be used outside Storm, which provides even more flexibility.

The three methods were compared in terms of flexibility and functionality. The use of SWIG

basically reduces the flexibility of the interface, as the Java code would have to be rewritten using

SWIG‟s data types. The exec function allows more flexibility as only a function call would have to

be included in the Java code, but even though it worked perfectly when called by Java on the

workstation, it didn‟t work if the code came through Storm. The network sockets approach was

chosen, because they are flexible as they can be used by any tool that can implement sockets.

Also sockets are faster as there is no need of interface functions (SWIG) or system calls

(exec).The only drawback is that socket connections have to be opened on the client side (e.g.

Java sockets), while exec or a native function call would be simpler.

QualiMaster Deliverable 3.1

Page 20(of 66) www.qualimaster.eu

4 Study of the algorithms
In this section the algorithms that have been selected are presented. The descriptions of the

algorithms is more detailed in WP2 and we recapitulate important aspects for our work in this

deliverable. This section has been added for reason of completeness of the deliverable.

4.1 Count-Min (CM)
The QualiMaster project focuses on the development of novel approaches that deals with large-

scale data streaming. The Count-Min sketch is a popular and simple algorithm for summarizing

data streams by providing decent summary statistics. The Count-Min data structure can be used in

terms of the QualiMaster project for handling multiple and high-frequency large datasets in the

proposed data processing settings with surprisingly strong accuracy. Count-Min [41] sketches are

a widely applied sketching technique for data streams. A Count-Min sketch is composed of a set of

d hash functions, h1(.), h2(.),, hd(.), and a 2-dimensional array of counters of width w and depth

d. Hash function hj corresponds to row j of the array, mapping stream items to the range of [1... w].

Let CM[i,j] denote the counter at position (i,j) in the array. To add an item x of value vx in the

Count-Min sketch, we increase the counters located at CM[hj(x), j] by vx, for j ∈ [1 ... d]. A point

query for an item q is answered by hashing the item in each of the d rows and getting the minimum

value of the corresponding cells. Note that hash collisions may cause estimation inaccuracies only

overestimations. By setting d=⌈ln(1/δ)⌉and w =⌈e/ε⌉, where e is the base of the natural logarithm,

the structure enables point queries to be answered with an error of less than e||a||1, with a

probability of at least 1-δ, where ||a||1 denotes the number of items seen in the stream. Similar

results hold for range and inner product queries.

The goal of parallelizing the Count-Min algorithm and mapping it on a reconfigurable platform is the

improvement of both the result quality and the processing times. In any skech-based sequential

algorithm, the most expensive operations are the update and querying of the sketch data structure

as it is updated for every item in the stream. To achieve scalability, our FPGA-based solution tries

to accelerate these operations.

4.2 Exponential Histogram (EH)
The QualiMaster project focuses on processing of streams that come from different and distributed

data sources. In addition, the goal of the QualiMaster is the efficient processing of huge amounts

of data over time-based sliding windows. Exponential histograms (EHs) [17] guarantee complex

query answering over distributed data streams in the sliding-window model. The use of EHs in the

QualiMaster project would offer fast answering queries over distributed streams and efficient

storage of the statistics over sliding windows. Exponential histograms [17] are a deterministic

structure, proposed to address the basic counting problem, i.e., for counting the number of true bits

in the last N stream arrivals. They belong to the family of methods that break the sliding window

range into smaller windows, called buckets or basic windows, to enable efficient maintenance of

the statistics. Each bucket contains the aggregate statistics, i.e., number of arrivals and bucket

bounds, for the corresponding sub-range. Buckets that no longer overlap with the sliding window

are expired and discarded from the structure. To compute an aggregate over the whole (or a part

of) sliding window, the statistics from all buckets overlapping with the query range are aggregated.

For example, for basic counting, aggregation is a summation of the number of true bits in the

buckets. A possible estimation error can be introduced due to the oldest bucket inside the query

range, which usually has only a partial overlap with the query. Therefore, the maximum possible

estimation error is bounded by the size of the last bucket.

Deliverable 3.1 QualiMaster

© QualiMaster Page 21(of 66)

To reduce the space requirements, exponential histograms maintain buckets of exponentially

increasing sizes. Bucket boundaries are chosen such that the ratio of the size of each bucket b

with the sum of the sizes of all buckets more recent than b is upper bounded. In particular, the

following invariant (1) is maintained for all buckets j:

𝑪𝒋/(𝟐(𝟏 + 𝑪𝒊)) ≤ 𝒆 (𝟏)
𝒋−𝟏

𝜾=𝟏

where e denotes the maximum acceptable relative error and Cj denotes the size of bucket j

(number of true bits arrived in the bucket range), with bucket 1 being the most recent bucket.

Queries are answered by summing the sizes of all buckets that fully overlap the query range, and

half of the size of the oldest bucket, if it partially overlaps the query. The estimation error is solely

contained in the oldest bucket, and is therefore bounded by this invariant, resulting to a maximum

relative error of e.

The EHs access each data element at its arriving time and needs to be processed in real time.

This constraint can be really challenging to be satisfied especially when there are irregularities and

bursts data arrival rates. This problem is mainly due to insufficient time for the underlying CPU to

process all stream elements or due to the memory bottleneck to process the queries. The

Qualimaster project focused on the mapping of the EH data structure on reconfigurable hardware

in order to develop new hardware-accelerated solutions that can offer improved processing power

and memory bandwidth to keep up with the update rate.

4.3 Hayashi-Yoshida Correlation Estimator
One of the objectives for the QualiMaster project is the implementation of a platform that

processes in real time financial data. The financial data can arrive in a non-synchronous way, thus

the processing of such data streams is a really critical issue. The covariance among the prices of

the market stocks plays a crucial role in modern finance. For instance, the covariance matrix and

its inverse are the key statistics in portfolio optimization and risk management. There are two

crucial points pertaining to practical implementation of computing correlation over streaming data.

First, the actual transaction data is recorded at non-synchronous times. The covariance estimator

calculation is, usually, based on regularly spaced synchronous data but this can lead to unreliable

estimation due to the problematic choice of regular interval and the data interpolation scheme.

Second, a significant portion of the original data sets could be missing at pre-specified grid points

due to such randomness of spacing. Thus, the correlation would lead to unreliable results. One of

the most efficient correlation estimators is the Hayashi-Yoshida Correlation Estimator. The

proposed method does not require any prior synchronization of the transaction-based data. The

Hayashi-Yoshida covariance estimator is defined as follows:

Eq. 1 uses the product of any pair of increments that will contribute to the sum only when the

respective observation intervals are overlapping with each other. The Hayashi-Yoshida covariance

estimator is consistent and unbiased as the observation time intensity increases to infinity. Using

QualiMaster Deliverable 3.1

Page 22(of 66) www.qualimaster.eu

the Hayashi-Yoshida covariance estimation Eq. 1, the proposed non-synchronous correlation

estimator is computed by the Eq. 2.

The quantities at the denominator represent the realized volatilities calculated using raw data. As

shown in Eq. 2, the calculation of the Hayashi-Yoshida Correlation Estimator can be easily

parallelized. Also, the reconfigurable hardware offers high parallelization level in order to calculate

in parallel the correlation estimator among different stock markets.

4.4 SVM
The QualiMaster project exploits data derived from Twitter, in order to achieve risk analysis of

financial data. Therefore sentiment analysis is a significant procedure of the project which is

achieved with the SVM classification method as the specific method has yielded remarkable

results in this area. In particular, Support vector machines (SVMs) were introduced by Vapnik et al.

[6, 7] and they are considered to be highly accurate methods for a various set of classification

tasks [5, 8, 9, 10]. Manning et al. [11] presented a work that uses SVM method for text

classification. The algorithm takes as input a set of n training documents with the corresponding

class labels and trains the SVM model. The linear SVM method aims at finding a hyperplane that

separates the set of positive training documents from the set of negative documents with a

maximum margin. The separating hyperplane, i.e. decision hyperplane[11] or decision surface [12],

takes the “decision” for separating the input documents. However, Bernhard E. Boseretal.

suggested a way to create nonlinear classifiers by applying the kernel trick (originally proposed by

Aizermanetal. [13]) to maximum-margin hyperplanes [14]. The final algorithm is similar to the initial;

apart from that every dot product is replaced by a nonlinear kernel function. This allows the

algorithm to fit the maximum-margin hyperplane in a transformed feature space, and thereby

achieving linear separation. The transformation may be nonlinear and the transformed space high

dimensional. Thus, despite the fact the classifier can be a hyperplane in the high-dimensional

feature space; it may be nonlinear in the original input space.

Furthermore, given training vectors xi∈ Rn, i= 1, …, l, in two classes, and an indicator vector yi ∈

Rl, such that yi ∈ {1,-1} that represents the respective labels, SVM solves the following dual

optimization problem:

In this problem, Q = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗), where 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel and e = [1, . . . , 1]T is a the vector

of all ones.

Deliverable 3.1 QualiMaster

© QualiMaster Page 23(of 66)

Traditionally, SVMs have been used for binary classification scenarios, but they can be used for

multiclass cases, as well. In our work, we built binary classifiers using the SVM methods from the

LIBSVM package [15][47]. We integrated several LIBSVM functions to our hardware

implementation and used the LIBSVM tool as a point of reference for SVM translation to hardware.

However, there are many other open source SVM implementations, such as the SMO variant and

the L2-loss linear methods implemented in the Weka library [16].

Note that quadratic programming optimization problems are computationally expensive. In cases

where the datasets are high-dimensional and voluminous, such as in text classification, the kernel

and inner product computations require a massive number of matrix-vector operations. On

hardware however, these operations can be performed in parallel and produce the same outcomes

much faster.

4.5 LDA

QualiMaster uses social networks, news articles and other sources in order to gather data that can

assist in financial risk analysis. A basic information retrieval method for documents is Latent

Dirichlet Analysis (LDA). LDA is used in order to associate each document with a number of topics,

generated at the training phase, with a certain probability for each topic. Techniques like Latent

Dirichlet Analysis (LDA)[19] can be employed for uncovering the latent semantics of corpora,

basically extracting the meaning of words in the corpora. Latent Dirichlet allocation identifies a

given number of |Z| topics within a corpus. Being the most important parameter for LDA, this

number determines the granularity of the resulting topics. In order to find the latent topics, LDA

relies on probabilistic modeling. This process can be described as determining a mixture of topics

z for each document d in the corpus, i.e., P(z|d), where each topic is described by terms w

following another probability distribution, i.e., P(w|z).

By applying LDA latent topics as a list of terms with a probability for each term indicating the

membership degree for the topic can be represented. Furthermore, for each document in the

corpus LDA can determine through topic probabilities P(zj|di) regarding which topics the document

belongs to and to which degree. The model needs to be trained on an example dataset and can be

applied to any document later assigning the probabilities of topics to occur in that document. The

training phase of LDA was considered to be implemented in hardware as it involves multiple

iterations through the corpus in order to extract the topics of a dataset. The training phase's

computations scale with the size of the dataset. FPGAs can be used in order to process the data in

parallel, and thus reduce the execution time.

QualiMaster Deliverable 3.1

Page 24(of 66) www.qualimaster.eu

5 Algorithm Analysis for Hardware Implementation
The first step to map an algorithm to hardware is to analyze it accordingly. This section describes

the analysis methodology and how it was applied to the selected algorithms. Using this analysis

designer will create the first hardware model with the I/O study and proper data structures. This

model is the intermediate level between algorithm and actual hardware design.

5.1 Analysis Methodology
An algorithm, that the designer want to translate in hardware, has to be analyzed for several

characteristics from the designer point of view. Inputs and outputs of the algorithm, performance

issues and the basic data structures and operations are the most important. In addition, the

communication overhead for the synchronization of the portions of the algorithm which run in

specialized hardware with the aspects that run in software has to be considered, as excessive

fragmentation may lead to poor performance (e.g. too many forks/joints for little work done in

hardware).Performance issues are very important in the scope of QualiMaster, as performance

quality tradeoff is of main importance as it has been analyzed in D 2.1.

5.1.1 Study of Inputs and Outputs

Every algorithm has a set of inputs that are needed to be calculated to produce a set of outputs.

Inputs and Outputs define the interface between the computational system and the user.

Inputs study consists of the data volume, their width, their nature, their source, and if there are

used more than one time in the calculations. Volume could be the most important parameter for

the study of the algorithm as it can lead to very important decisions, such as use of memory,

number of processing units etc. If input data is very little then the system does not need any

special handling for them as internal resources can handle them. If input data becomes bigger, and

internal memory is not enough for handling their volume, then internal structures should be

designed in order to compress or encode data, and, finally if volume of data is big, that

reconfigurable device cannot store them, then an system e.g. external memory based system for

buffering or swapping, should be designed to manipulate them. Data size is little or big depending

on the target reconfigurable technology and device which is used from the designer.

The size and the characteristics of the input are important as for example if it is very large, and

comes through conventional protocols (Ethernet, PCI etc) then special data structures should be

designed to reassemble data. Such structures can be shift registers, very long word registers etc.,

which handle input data and reform them to the appropriate format for reconfigurable hardware

processing.

The input data rate is also an important aspect to a system design. If the algorithm handles input

data in burst mode data structures as FIFOs should be designed. If there is input data that an

algorithm uses more than one time then the corresponding data structures, as cashing schemes,

cyclic buffers, local memories, should also be used.

It is also important, for the designer, to study the if there is a need to design the controller for the

protocol that the inputs may follow. If this system, for example, is directly connected to network

with TCP/IP for streaming inputs, or an external DDR memory for large databases etc. The proper

controller in hardware should be designed and integrated to the system.

The designer handles outputs similarly to the inputs. For QualiMaster scope Input and Output

study is critical as it handles streaming data. Inputs and outputs have been often proved to be a

Deliverable 3.1 QualiMaster

© QualiMaster Page 25(of 66)

critical issue to designers for reconfigurable hardware, constraining the system performance as I/O

was the bottleneck.

5.1.2 Data Sets

Application or algorithm mapping to hardware demands the appropriate data set on the design and

testing procedure. Dataset should be representative accordingly to the algorithm and the way the

final user will use this algorithm, in order to help designer to make the right decisions. An

inappropriate data set can mislead the designer to decisions that will make the final system without

the desired functionality or with low performance. Data sets are used at three design phases: at

profiling, simulation and verification phase. These Data Sets are the same for the hardware and

software designs but analyzed in different manner.

At profiling phase the designer must analyze the algorithm or the application in order to find the

most computationally demanding part. If the data set is not proper, then the designer can focus

accidentally on a different part of the code than he or she should, and as a result he/she will map

to hardware an inappropriate part. The resulting system will not achieve high performance as the

hardware part will not be accelerating the most demanding aspect of the algorithm.

At simulation phase, the data set has to be representative and to cover every state of the

algorithm. If all states are not covered, then the system cannot be tested correctly and it will

probably fail at run time.

At verification phase, proper data sets lead to proper functional verification. If the data set does not

cover all cases then the system will not have been properly verified and at run time it may produce

wrong results. Many times these results are very difficult to be found. The well-known 1994Intel

Pentium FDIV division bug is the most the famous such case.

One solution could be to have a data set that will exhaustively test the algorithm. Such a solution is

completely inapplicable in practically all cases, as due to state explosion the profiling, simulation

and verification phases will take too long for testing. Such Datasets are the same used in software

to show proper functionality.

5.1.3 Algorithm Profiling

Designers are trying to boost software performance by mapping applications to hardware. Inmost

applications, usually 10% of the code consumes the 90% of the execution time, known as the

90/10 law in this context [38]. Following this rule of thumb, designers try to focus on the most

demanding computational parts of an application. This approach helps the designer to save design

area as he avoids to map large and complex parts of hardware that are lightly used. This area is

used to map the computational demanding parts of the algorithm more than once to have a parallel

execution, and a faster run time for the application. It should be noted, however, that optimizing

90% of the execution time may still be too little, as from Amdahl‟s law [39], even if an infinite

speedup applies to the optimizable part and there is no communication overhead, a speedup of

factor 10 will be achieved at most. This is a ceiling, and even the 10X speedup can be easily

evaporated when communication overhead or limited performance improvement come to place.

There exist applications which have substantial speedup on some critical section but in the total

execution time (including I/O and communications overhead) there was a slowdown.

Several tools are used for the algorithm performance profiling. Tools as Intel VTune or GProf can

profile an algorithm a procedure or instruction level. The designer runs the algorithm with a specific

data set and the tool produces a report that shows the allocation of run time to every part of the

QualiMaster Deliverable 3.1

Page 26(of 66) www.qualimaster.eu

code. It also shows the number of times that a function has been called which may also very

important depending on the designers target platform.

It is important for the designer to use representative data sets. If, for example, the dataset is really

small as compared to the data sets that will be used on the final system then the system

initialization for example, can demand a significant percentage of run time. If the system

initialization is independent from input data size, then for a much larger data set the same

initialization function will demand a much smaller percentage of the execution time. Also the data

nature can affect the run time distribution to functions. Usually large data sets give the proper

distribution for most application. A study of the algorithm options have to be done in order to use

the data with the determined nature at profiling state.

5.1.4 Important Data Structures and Operations

The next step after profiling for the designer is to locate the important data structures and

operations at the computationally intensive part of the algorithm. Data structures are important as

using the proper ones the computations can be in parallel. As most appropriate Data Structures for

mapping at reconfigurable hardware are considered static structures, with 1 and 2 dimensions

tables as the most suitable. Dynamic structures using pointers, as trees, are considered as

inappropriate structures for mapping in reconfigurable hardware If for example there is a

comparison of an input against many comparators working in parallel will boost design

performance, but even a DFS in a binary tree is challenging to map it in hardware efficiently.

Operations are also important in order to identify how system arithmetic will be implemented. If the

application uses integers, and in which range, vs. single- or double-precision floating point

numbers the required hardware resources may change substantially. Identifying the arithmetic, the

designer will assign the available resources in order to achieve the maximum performance.

5.2 Count Min (CM) Modeling
The Count-Min algorithm is based on probabilistic techniques to serve various types of queries on

streaming data. The Count-Min algorithm is able to handle massive data using data structures that

occupy sub-linear space vs. the size of the input dataset. The CM sketch data structure can

accurately summarize arbitrary data distributions with a compact, fixed memory footprint that is

often small enough to fit within cache, ensuring fast processing of updates.

There have been several efforts to implement sketch data structures in hardware to accelerate

their performance. The simplicity and the parallelism of the sketching algorithms makes such

implementations convenient. Lai et al. [51] presented an implementation of sketching techniques

using an FPGA-based platform, for the purpose of anomaly detection. Their implementation scales

easily to network data stream rates of 4Gbps. Lai and Byrd [52] implemented a Count-Min sketch

on a low-power stream processor, which processes a throughput rate up to 13 Gbps according to

their results. In [53], Thomas et al. describe their implementation on a IBM cell processor with 8

processing units. Their results show an almost 8-fold speedup vs. the single-thread sequential

code. Wellem et al. in [54, 55] proposed to use Graphics Processing Units (GPUs) for offloading

heavy sketch computations for network traffic change detection. Their experiment results showed

that GPU can conduct fast change detection with query operation up to 9 million distinct keys per

second and one order of magnitude faster than sequential software version.

This section presents the analysis of the input and the output of the proposed sketch data

structure. Also, we describe the datasets that were used for the analysis, the validation and the

Deliverable 3.1 QualiMaster

© QualiMaster Page 27(of 66)

testing of the implemented hardware-based system. Next, the algorithmic analysis of the CM

method is presented. Last, we present the basic data structures and their operations that the

proposed algorithm implements.

5.2.1 Study of Inputs and Outputs

The Count-Min sketch provides a different kind of solution to count tracking. It uses a fixed amount

of memory to store count information, which does not vary over time. Nevertheless, it is able to

provide useful estimated counts, as the accuracy scales with the total sum of all the counts stored.

Streaming data from different applications, like IP networking, machine learning, distributed

computing and signal processing, can be used as input to the proposed algorithm.

 The Count Min sketch is a data structure that summarizes efficiently a stream of input data and

answers queries with high accuracy over the input stream. Thus, the CM algorithm takes two

different types of inputs: a stream of input data that is summed up on the CM sketch data structure

or a query over the input dataset.

Input

The CM sketch takes as input raw streaming data that is used for building the sketch data

structure. The input stream of data can be typically modeled as vector a[1 .. n]. The input vector

consists of tuples with two values each: (the element id, the element‟s value), i.e. a =

[(element_idx, value_x), (element_idy, value_y), (element_idx, value_z), etc]. The id is used for

indexing the sketch data structure. The elements‟ values are used for changing accordingly the

values of the sketch data structure.

In addition, the CM sketch is used for real time querying and answering over the input stream. In

this case, the algorithm takes as input the just the querying element id.

Output

The algorithm does not output anything in case of updating the sketch data structure. On the other

hand, in case of the query mode the algorithm outputs the information that is stored in the sketch

data structure, which refers to the element id that is queried about.

5.2.2 Data Sets

The implementation of the Count-Min algorithm focused on the efficient mapping of the method on

a hardware-based platform. We used a frequently used real-life data set, i.e. the worldcup‟98 [37]

(wc‟98), for the algorithmic analysis, the performance evaluation and the validation of the output

results. The wc‟98 data set consists of all HTTP requests that were directed within a period of 92

days to the web-servers hosting the official world-cup 1998 website. It contains a total of 1.089

billion valid requests. Each request was indexed using the web-page URLas a key. We created

point queries over the Count-Min sketch data structure estimating the popularity of each web-page

by counting the frequency of its appearances.

5.2.3 Algorithm Profiling

This section describes the algorithmic analysis of the Count-Min algorithm. The Count-Min

Algorithm consists of three main functions: the sketch initialization, the update and the estimation.

The Count-Min sketch data structure consists of a fixed 2-D array of counters, of width w and

depth d, as shown in Figure 4. Each row of counters is associated with a different hash function.

The hash function maps items uniformly onto the range {1, 2, . . . w}. For items represented as

QualiMaster Deliverable 3.1

Page 28(of 66) www.qualimaster.eu

integers i, the hash functions can be of the form (a*i+b mod p mod w), where p is a prime number

larger than the maximum i value (say, p = 231 − 1 or p = 261 − 1), and a, b are values chosen

randomly in the range 1 to p − 1. It is important that each hash function is different; otherwise there

is no benefit from the repetition.

Figure 4: Count-Min sketch data structure

During the initialization stage the counters are initialized to zero, as shown in Figure 5. In addition,

the parameters for hashing scheme are selected.

The update function takes as input a new tuple of data, i.e. (i, c), at each clock tick and updates the

data structure in a straightforward way. The hash functions of all the rows are applied to the id of

the incoming tuple. The result from the hash function is used to determine a corresponding

counter. Next, the update function adds the c value to all the corresponding counters. Figure 4

shows an example of an update operation on a sketch with w = 10 and d = 5. The update of item i

is mapped by the hash functions to a single entry in each row. It is important to mention that the

incoming item is mapped to different locations in each of the rows. The pseudo code for the update

function is presented in Figure 5.

Figure 5: Basic functions for the Count-Min algorithm

The Count Min estimation function is used for queries over the streaming input data. The process

is quite similar to the update function. It applies all the hash functions of the sketch data structure

on the queried input element id. This process returns the values of the counters from the tables

positions, where the querying id corresponds. Then the smallest value of the counter is returned as

Deliverable 3.1 QualiMaster

© QualiMaster Page 29(of 66)

the estimation result of the query, as shown in Figure 5. Figure 6 presents the flowchart of the

Count-Min algorithm.

Figure 6: Count-Min Algorithm Flowchart

Next, we analyzed the algorithm as far as its possible parallelization level, which we can take

advantage for a hardware-based implementation. The sketch update process has two different

parallelization levels. First, each row of the sketch is updated independently of others, so the

sketch can be partitioned row-wise for parallel processing. Second, another more coarse grained

parallel formulation is the building of sketches on different subsets of data. The produced sketches

can be combined in a straightforward way in order to give the sketch of the union of the data. This

approach can be dramatically more efficient in terms of network communication.

5.2.4 Important Data Structures and Operations

This section describes all the important data structures and operations, which are implemented by

the Count-Min algorithm, as described above, and they will be presented in our hardware-based

proposed architecture.

As described in Section 4.1, the Count–Min algorithm implements a data structure that

summarizes the information from streaming data and it can serve various types of queries on

streaming data. This core data structure is a 2-dimensional array, i.e. count[w, d], which stores the

synopses of the input streaming data. The size of the 2-dimensional array is defined by the w and

d parameters, which are defined by two factors: ε and δ, where the error in answering the query is

within a factor of ε with probability δ.

Thus, the factors ε and δ, which as described in Section 4.1 are selected with the formulas

d=⌈ln(1/δ)⌉and w =⌈e/ε⌉, can tune the size of the implemented 2-dimensional array based on the

space that is available and the accuracy of the results that the data structure can offer.

The Count-Min algorithm uses hashing techniques to process the updates and report queries using

sub linear space. Thus, the hash functions are pair wise independent to ensure lower number of

collisions in the hash implementation. These hash functions can be precomputed and placed in

local lookup tables, i.e. internal BRAMs of the FPGA device.

Another important issue of the Count-Min algorithm is the data input during the update process.

The data streams are modeled as vectors, where each element consists of two values, i.e. the id

and the incrementing value. When an new update transaction, i.e. (id, value), arrives, the algorithm

hashes through each of the hash functions h1...hd and increment the corresponding w entries.

At any time, the approximate value of an element can get be computed from the minimum value in

each of the d cells of count table, where the element hashes to. This is typically called the Point

QualiMaster Deliverable 3.1

Page 30(of 66) www.qualimaster.eu

Query that returns an approximation of an input element. Similarly a Count-Min sketch can get the

approximation query for ranges, which is typically a summation over multiple point queries.

5.3 Exponential Histogram (EH) Modeling
Another important data structure, which is an effective method for estimating statistics on sliding

windows, is the exponential histograms (EHs). The EH is used for the counting problem, i.e. the

problem of determining, with a bound on the relative error, the number of 1s in the last N units of

time. The exponential histogram data structure is a histogram, where the buckets that record older

data are exponentially wider than the buckets that record more recent data. When, a query takes

place, i.e. to find the number of 1s that are seen in the last n units of time, we simply iterate over

the buckets starting with the bucket containing the most recently recorded 1 till we find the bucket

that covers the time we are interested in. Then we return the probabilistic distance of that bucket

from the current timestamp.

Streaming processing and sliding-window domain is an important application domain and there are

various hardware-based works that accelerate such workloads. Fowers et al. [56] analyzed the

sliding-window applications domain when executing on FPGAs, GPUs, and multicores. For each

device, they presented optimization strategies and analyzed the cases, where each device was

most effective. The results showed that FPGAs can achieve speedup of up to 11x and 57x

compared to GPUs and multicores, respectively, while also using orders of magnitude less energy.

Qian et al. in [57] presented an novel algorithm named M3Join, which was implemented on an

FPGA platform. The system needs only one scan over the data streams since different join

queries share the intermediate results. The experimental results show that the hardware can

accelerate join processing vastly.

This section presents the analysis of the input and the output of the proposed EH data structure.

Also, we describe the data sets that were used the validation of our implemented system. Next, the

algorithmic analysis of the EH method is presented. Lastly, we present the EH data structures and

their basic operations.

5.3.1 Study of Inputs and Outputs

The EH model offers a probabilistic solution to the counting problem. The EH algorithm either

updates the Exponential Histogram data structure with new streaming data or it estimates the

number of 1s that have arrived from a specific timestamp up to the current timestamp.

Input

The EH algorithm takes as input a stream of data that can be typically modeled as vector a[1 .. n].

Each element of the input vector is a tuple of two values: the value and the corresponding

timestamp, i.e. input stream = [(value_1, timestamp_0), (value_0, timestamp_1),

(value_1,time_stamp_2), etc]. The first element of each tuple is either the value 1 or 0, while the

second one is the clock timestamp which increments by one at each arrival. Only the timestamps

of the elements, which have value 1, are stored in the Exponential Histogram. Also, the EH data

structure takes as input the size of the window that we are going to process the input data.

Moreover, the EH data structure is used for real time querying and answering over the input

stream. In that case, the algorithm takes as input a timestamp and estimates the number of the

elements with value 1, which arrived from that timestamp up to the current timestamp.

Output

Deliverable 3.1 QualiMaster

© QualiMaster Page 31(of 66)

The algorithm does not output anything in case of updating the EH data structure. On the other

hand, in case of processing a query, the algorithm outputs the estimation of the number of 1s that

have arrived from a specific timestamp till to the current time.

5.3.2 Data Sets

As described above, the Exponential Histogram is a method that can efficiently offer a probabilistic

solution to the counting problem. For the testing and the evaluation of our implemented system we

used, again, the real-life data set from the Worldcup ‟98 [37] (wc‟98). We streamed the data into

the EH data structure. During the streaming process, we created and made queries over the EH

data structure about the number of appearances of specific valid requests. The results that we took

as answers were cross validated vs. the answers from Java implementation that we used as basis

for our EH implementation.

5.3.3 Algorithm Profiling

This section makes the algorithmic analysis of the Exponential Histogram algorithm. The EH data

structure is used for solving the Basic Counting problem. As described above, the Exponential

histogram is a data structure that maintains the count of the elements with value 1 in the last N

elements seen from the stream. The Exponential Histogram algorithm is based on two processes:

1) insert a new element and 2) estimate the number of elements with 1 value. Both of these

algorithms were implemented on the hardware platform.

Figure 7: The main structure of the EH data structure

First, we analyzed the main function of the algorithm, which is the insert process. This function

implements two basic steps of the algorithms: i) store the new element if its value is 1 in the first

bucket and ii) update of the Exponential Histogram. The EH consists of a number of buckets that

are placed in a row, as shown in Figure 7. The buckets keep the timestamps of the most recent

elements and the total number of elements with 1-value, called bucket size. When the timestamp

of the most recent element of a bucket expires (reaches window_size + 1), we are no longer

interested in such data elements, thus we drop that bucket. If a bucket is still active, we are

guaranteed that it contains at least a single 1 that has not expired. The first bucket maximum

consists of C number of elements whereas the rests buckets consist of C/2 elements. When a new

element with 1 value arrives, it is placed in the first bucket. The next step of the algorithm

undertakes the update of the EH data structure. The process moves to the inner buckets and

checks, if the buckets reach to its size. If this is true, then the algorithm merges the two last

timestamps of the full bucket and passes the new element to the next bucket. The process

continues till the last active bucket of the EH. The steps for the insert function are presented in

Figure 8.

QualiMaster Deliverable 3.1

Page 32(of 66) www.qualimaster.eu

Figure 8: Pseudo code for the Insert function

The second main function of the EH data structure is the estimation of the active elements with 1

value. The EH algorithm offers two choices: the estimation of the total number of 1‟s that exist in

the EH data structure or the estimation of the 1‟s that exist up to a specific timestamp. For the first

type of estimation, the EH data structure maintains two counters: one for the size of the last bucket

(Last) and one for the sum of the sizes of all buckets (Total). The estimate itself is Total minus half

of Last. For the second type of estimation, we first find the bucket that the timestamp belongs to.

Second, for all but the last bucket, we add the number of the elements that are in them. For the

last bucket, let C be the count of the number of 1‟s in that bucket. The actual number of active

elements with value 1 in this bucket could be anywhere between 1 and C, and so we estimate it to

be C/2. The pseudo code for the estimation function is presented in Figure 9. The flowchart of the

complete EH algorithm is presented in Figure 10.

Figure 9: Pseudo code for the Estimate function

It is important to mention that the arrival of each new element can be processed in O(1) amortized

time and O(logN) worst-case time, due to the possible need for cascading merges. On the other

hand, the estimation of the total number of elements with 1 value can be provided in O(1) time, as

the EH maintains two counters: the Last and the Total counter, which can be updated in O(1) time

for every data element. Lastly, the estimation number of elements for a specified timestamp can be

processed in O(n) worst case time and in O(logN) best-case time due to the search bucket

process.

It is clear from the algorithmic analysis that the problem of EH algorithm is not a parallelizable

problem due to its sequential nature. On the other hand, the hardware can take advantage of the

fine grained parallelization due to the cascading processes of the algorithm (either during the

update process or the estimation process).

Deliverable 3.1 QualiMaster

© QualiMaster Page 33(of 66)

Figure 10: Exponential Histogram algorithm flowchart

5.3.4 Important Data Structures and Operations

This section describes all the important data structures and operations of the Exponential

Histogram algorithm, which are implemented by our hardware-based architecture. As described

above, the EH algorithm maintains the number of the elements with 1 values over a stream. The

EH data structure is a list of buckets in a row, which are connected with each other. The number of

buckets depends on the processing window size while the number of the size of each bucket is

defined by the acceptable error rate ε, as described in 2.4.

During the insert function there are three different processes that need to take place. First, the EH

data structure is examined, if it contains expired data, i.e. data that do not belong anymore to the

processing window. Second, the new timestamp of the element with 1 value inserts to the first

bucket. Third, all the buckets of the data structure are examined in order to merge buckets that

reach to their maximum size.

Moreover, the EH data structure can estimate the number of the 1‟s that have appeared either in a

complete window of time or from a specific timestamp up to the most recent current timestamp.

The estimation of the 1s values over a window size is an easy procedure as the EH keeps at each

time the total number of the 1s that have appeared and the number of the 1s at the last bucket

level. Thus, the calculation of the total number of the 1‟s values takes places using these two

counters. On the other hand, the calculation of the 1‟s values from a specific timestamp till recent

timestamp needs the traversing of the EH data structure till to the specific timestamp by adding the

estimation values from the previous buckets.

5.4 Correlation Modeling
The QualiMaster project‟s main goals are the use of methods that will improve the risk analysis on

financial data and the implementation of systems that will monitor fine granular data streams for

event detection. An important method that focuses on the correlation among the stocks‟ values is

the correlation estimator.

There are many works that implement various correlation estimators on reconfigurable hardware.

Ureña et al. in [58] described the design and development of a correlation detector a low-cost

reconfigurable device. Fort et al. presented [59] an FPGA implementation of a synchronization

system using both autocorrelation and cross-correlation. Their results showed that FPGA devices

can efficiently map cross-correlation synchronizers. Lindoso et al. in [60] presented an FPGA-

QualiMaster Deliverable 3.1

Page 34(of 66) www.qualimaster.eu

based implementation of an image correlation algorithm, i.e. Zero-Mean Normalized Cross-

Correlation. The experimental results demonstrated that FPGAs improved performance by at least

two orders of magnitude with respect to software implementations on a high-end computer. Liu et

al. in [61] presented a multi-channel real-time correlation system on a FPGA-based platform. Their

system offered sliding correlation processing. Their proposed system achieved higher flexibility

and accurate data-flow control when compared to previous traditional parallel processing

architectures.

This section describes an initial hardware-based modelingof the well-known Hayashi-Yoshida

Correlation Estimator [36]. This estimator can be applied directly on series of stock prices without

any preprocessing.

In this section we analyze the input and the output of the described algorithm, followed by the

algorithmic analysis of the Hayashi-Yoshida method. Lastly, we analyze and present the basic data

structures and the operations that were used for mapping the Hayashi-Yoshida Correlation

Estimator on a reconfigurable platform.

5.4.1 Study of Inputs and Outputs

As described above, the Hayashi-Yoshida (HY) Correlation Estimator measures the pair wise

correlation of the input market stocks. The HY Correlation Estimator uses the transaction prices of

two stocks in order to calculate their correlation. The correlation is calculated over time intervals

that the stocks transactions take place. On the other hand, the QualiMaster project focuses on the

correlation among a group of market stocks. The HY estimator calculates the correlation of all the

different pairs of the processing market stocks. Figure 11 presents the equation for calculating the

HY estimator for two different market stocks.

Figure 11: Hayashi-Yoshida Correlation estimator

Input:

The proposed system takes as input the names and the number, N, of the stocks that are going to

be processed. Next, it takes as input a stream of the transaction prices of the N stocks. The actual

transaction data are recorded at random times, i.e. different timestamps, which means that we

have to calculate the correlation estimator of all the pairs of the stocks during the different time

intervals. The input stream can be modeled as vector a[1 .. n], where each element consists of

tuples that describe the id of the stock, the new value of the stock and the transaction time, e.g. a =

[(stock_1, value_0, timestamp_0), (stock_10, value_0, timestamp_0), (stock_3, value_1,

timestamp_1)].

Output:

The output of the algorithm is an upper triagonal matrix with each cell showing the computed

correlation between two market stocks.

Deliverable 3.1 QualiMaster

© QualiMaster Page 35(of 66)

5.4.2 Data Sets

The QualiMaster project will use high volume financial data streams. We tested and evaluated the

correlation software-based system by using real data from the stock market. The stock prices are

provided by an API from the SPRING that provides access to real time quotes and market depth

data to the consortium.

5.4.3 Algorithm Profiling

This section presents an algorithmic analysis of the HY correlation estimator. The HY estimator

calculates the correlation between two stock markets using their transaction prices. As the stock

transactions are non-synchronous, the HY correlation estimator is calculated over all the

overlapping transaction time intervals. Figure 12 shows an example for the calculation of the HY

estimator over the transactions of two market stocks The HY estimator calculation is based on the

computation of the covariance for all the pairs of the market stocks and the calculation of the

transactions of each market stock separately. The direct use of equation of Figure 11 has O(mn)

complexity(where m and n are the number of transactions for the first and the second stock

respectively).

Figure 12: Example of calculation HY correlation estimator

The high complexity of the algorithm and its streaming nature led us to propose a new method for

calculating the HY estimator. Our proposed method omits the non-overlapping time intervals from

the calculation of the HY estimator by finding the overlapping time intervals during the streaming

data arrival. The overlapping time intervals of all the pairs of the market stocks are found on the

“fly”. Thus, each time a new transaction arrives, we keep only its value and its timestamp. Then,

the coefficients from the past overlapping intervals are added to the coefficients of the HY

estimator, which are kept in a table. This procedure is repeated at each timestamp, thus we know

exactly the overlapping intervals of the market stock values and their values at the start and the

end of the overlapping time interval. The correlation estimator can be calculated for each pair of

the stocks at any timestamp using the coefficients that were computed above. If a stock did not

change value during the previous time interval, the HY estimator does not change due to the term

of ΔP(I) = Pi-Pi-1. Our proposed method, which can be applied to software, too, has O(m+n) time

complexity. Figure 13 shows the calculation of the HY correlation using our new proposed

algorithm for the same example as the one presented in Figure 12. The flowchart of the HY

estimator method is presented in Figure 14.

QualiMaster Deliverable 3.1

Page 36(of 66) www.qualimaster.eu

Figure 13: Example of Calculation HY with our proposed method

Figure 14: HY estimator algorithm flowchart

It is clear from the algorithmic analysis that the computation of the HY correlation estimator can be

easily parallelized. In our future plans, we aim to calculate the HY coefficients of different pairs of

the stock markets in parallel.

5.4.4 Important Data Structures and Operations

This section describes the basic data structures that were used for the computation of the HY

estimator. As described above, we implemented a variation of the official algorithm that calculates

the Hayashi-Yoshida estimator. Our proposed solution offers lower time complexity and takes

advantage of the algorithm‟s streaming nature.

First, we implemented a data structure that keeps the stocks‟ transaction values at the beginning

and at the end of the overlapping time intervals for each pair of the input stocks. This data

structure is a 2-dimensionalarray that stores at each timestamp the new transactions of the stocks

(if they exist). Next, these values are used for the computation of the HY covariance, as presented

from equation of Figure 11.

Next, we used another 2-dimensional array that keeps just the transactions of the stocks. This

table is, also, updated by the transaction values that arrive at each timestamp. The values of this

array are used for the calculation of the denominator values of the HY estimator.

5.5 SVM Modeling
Related work has shown that SVM is a problem suitable for hardware. In particular, in [48]

Cadambi, Srihari, et al. achieve 20x speedup with the use of a Virtex 5 FPGA, compared to a 2.2

GHz CPU processor. Furthermore, Papadonikolakis and Bouganis in [49] utilize an Altera Stratix III

FPGA to reach 7x speedup compared to other hardware-based implementations. Additionally, in

Deliverable 3.1 QualiMaster

© QualiMaster Page 37(of 66)

[49] Pina-Ramfrez et al. use a Virtex II to implement the SVM method, but do not achieve speed up

compared to a 550 MHz CPU processor. The aforementioned results indicate that SVM can be

accelerated with the use of hardware for the purposes of the QualiMaster project. In order to

perform SVM Modeling we used Version 3.20 of the C/C++ open source LIBSVM project. Modeling

a system entails a functional (commonly referred to as behavioral) prototype with such

considerations as data operation precision, functional units, sequence of operations, etc. In this

context the model is a reference design done in software (typically with MATLAB or C/C++, but it

can also be in Java or Python) which gives the designer a feeling for the cost vs. performance

tradeoffs. To illustrate, Papadonikolakis and Bouganis‟ work on SVM [49] uses fixed point precision

rather than floating point precision because fixed point takes fewer resources vs. floating point.

The evaluation, however, of the quality of the results was performed prior to the development of an

architecture and a detailed hardware design – if the quality was poor there would be no need to

proceed with the time-consuming design. Similarly, if one needs a hardware system with the same

accuracy as the software (and we assume that this is a realistic scenario) the system operation

has to be modeled from the beginning, in the case of our example (and the QualiMaster work on

the same algorithm) with floating point operations. Based on the bibliography, the majority of works

on SVM compare their performance to the results of LIBSVM, both in terms of accuracy and

speed([42], [43], [44], [45]). During the modeling process first we analyzed the data inputs and

outputs of this implementation. Then we used specific data sets to perform profiling of the software

code, and finally we identified important data structures and operations. A very useful additional

result of modeling is not only that it allows for comparisons against pure software implementations

of an algorithm, but it also provides detailed datasets and expected results for the actual hardware

design.

5.5.1 Study of Inputs and Outputs

The SVM Training algorithm receives as input a two dimensional structure and outputs the SVM

model.

Inputs

The input of the LIBSVM library is a file containing training data, with a specific format. Although

the SVM Classification method will be performed on social streaming data, the Training phase

which produces the appropriate classifier will be applied on historical data. Each row represents a

data instance and each column denotes a feature. The only exception is the first column of each

data instance that depicts the class of the data instance defined as the label of the data instance.

In binary classification, this label can value 1 or -1, whereas in multi-class classification the number

of possible labels depends on the number of classes. More specifically, the two following

sequences represent two rows (data instances) of the file.

Data instance #1: -1.0 6:1 11:-0.73 12:0.17 13:0.0 14:0.25 15:0.01

Data instance #2: 1.0 6:1 5:-0.36 12:0.25 14:0.25 15:0.17 16:0.26

Values -1.0 and 1.0 indicate the labels of the data instances. Moreover, in all a:b expressions, a

denotes the number of the feature and b represents the value of the respective feature. Note that it

is not necessary that all data instances in a file share the same features. For example the first data

instance has a value for feature 11, whereas the second provides no information about this

feature. In this case we consider that feature 11 of data instance 2 has value 0. In order to utilize

the information of the input file, the software code copies this information into a data structure.

QualiMaster Deliverable 3.1

Page 38(of 66) www.qualimaster.eu

Output

The output of the SVM Training phase is a file that contains the SVM model. The SVM model

comprises certain variables computed by the SVM Training algorithm. In addition it contains the

same data instances that were included in the input data file, only now they are grouped based on

their category. In particular, for binary classification all data instances with label 1 are together and

the same applies for all instances with label -1.

5.5.2 Data Sets

So far we have used artificial data sets similar with the real that will be used in the QualiMaster

project. Therefore we utilized the ijcnn1 data set which was created for the needs of the IJCNN

2001 neural network competition. The respective training data set contains 30000 data instances

and the maximum number of features a data instance can have is 22.

We decided to use the ijcnn1 data set for two reasons. First because it required little execution

time to produce an output, thereby allowing performing several tests in short time. Other data sets

with bigger dimensions required several hours to produce a result and this is impractical during the

implementation phase of an algorithm. The second reason is that our first implementation could not

support data sets with a lot of features. We designed our first implementation based on a simple

idea that would lead to the creation of a first hardware implementation of the SVM Training

algorithm, without optimizations.

However, we are currently implementing a design that can support a data set of arbitrary

dimensions. Once it is finished, we will be able to data sets of different sizes in order to observe

the execution time required by the hardware implementation as the size of the dataset increases or

decreases. One of these data sets will be provided by WP2, since we need to configure our

hardware implementation based on the data sets they need to classify.

5.5.3 Algorithm Profiling

In this section we present critical points of the LIBSVM software code that indicate hardware

opportunities. In order to do so, we performed profiling of the code using the Linux GNU GCC

profiling tool (gprof) so as to detect potential parallelism.

SVM Function Time percentage Description

dot_product() 70.23% Computes xi*xj

kernel_computation() 8.27% Computes the kernel function K(xi,xj)

select_working_set() 8.27%
Finds sub problem to be minimized in each

iteration

get_Q() 6.18% Computes yi*yj* K(xi,xj)

solve() 3.49% Solves the optimization problem

Table 1: SVM profiling analysis

Quadratic programming optimization problems, such as the SVM classification algorithm are

expensive. In cases where the data sets are high-dimensional and large, the kernel and inner

product computations require a massive number of matrix-vector operations. This can be observed

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1

Deliverable 3.1 QualiMaster

© QualiMaster Page 39(of 66)

in the above table since all functions that appear perform matrix-vector operations. A brief

description of each function is given in the Table 1. However, a more detailed description is also

presented below.

1) dot_product() : This function receives as input two equal-length vectors x and y and outputs

a single number which denotes the dot product of the two vectors. A dot product is defined as the

sum of the products of the corresponding entries of the two sequences of numbers. Moreover, in

the SVM algorithm these vectors x and y represent data instances or in other words rows of the

input file. In software, computing the dot product of two vectors of size 22 implies a 22x22 double

loop i.e. 484 iterations. However computing the product of two entries is independent of computing

the product of two other entries. Therefore the multiplication task could be performed in parallel

and as a result we would have 22 dot products produced simultaneously. Once we have produced

the products we can add them in pairs. In particular, dot products 1 and 2 could be added together,

dot products 3 and 4 could be added together and so on. Note that in our 22 length vectors for

example 11 addition pairs are formed, so that 11 additions are produced. Again, computing one

addition is independent of computing another addition and this allows parallelization. Therefore,

the 11 first additions can be performed in parallel. Then, the outcomes that are produced can also

be added in pairs and simultaneously and this procedure continues until we are left with a single

number, which is the dot product result.

For example, given A = [A1, A2, … , An] and B = [B1, B2, … ,Bn] the dot product is defined as:

𝑨 · 𝑩 = 𝑨𝒊𝑩𝒊 = 𝒏
𝒊=𝟏 𝑨𝟏𝑩𝟏 + 𝑨𝟐𝑩𝟐 + 𝑨𝟑𝑩𝟑 + 𝑨𝟒𝑩𝟒 + ⋯+ 𝑨𝒏𝑩𝒏

More specifically, a parallel version of the dot product computes in parallel all products from 1 to n.

Once these are produced, calculating the sum takes place. In particular, the sum of 1 and 2 (5) is

calculated in parallel with the sum of 3 and 4 (6) and so on.

Furthermore, we know that in the LIBSVM implementation every loop of the optimization solver

requires the computation of the dot product between a selected data instance with the rest of the

data instances of the input file. It is worth mentioning that producing in parallel the maximum

number of possible dot products is much more efficient than only computing a single dot product.

However, we need to take into account the maximum possible number of vectors that can be

drawn from memory in parallel. Also, we should guarantee that there is a sufficient amount of

resources to perform all these computations in parallel.

2) kernel_computation(): The dual formulation of the SVM optimization problem introduces the

notion of the kernel. In the case of linearly separable data, the kernel of two vectors is equivalent to

the dot product of these two vectors. However, if we are dealing with non-separable data the

kernel can be defined by a variety of functions. For instance, there is the polynomial kernel, the

Gaussian kernel, the Laplacian kernel and others. The efficiency of a kernel function is determined

by the nature of the training and tested input data, as well as other factors such as speed and

accuracy. Hence, we selected a kernel function that was suitable for our training data set. In

particular, we chose the exponential kernel function which according to the equivalent software

implementation of this function is computed based on the following formula:

n … 4 3 1 2

… 6 5 k

QualiMaster Deliverable 3.1

Page 40(of 66) www.qualimaster.eu

In the above formula gamma denotes a constant selected by the user and dot produces the dot

product of the given vectors. We have already described how the dot product can be performed

with parallel computations. What is indicated by this formula is that all dot products can be

computed in parallel too. For instance, if the dot product function receives 22-length vectors and all

products are performed in parallel, then in total 22*3 products are produced in an instance.

However, the result of dot(xi,xi) is a constant number as for every loop of the optimization solver i

remains the same, and thereby we do not need to compute this dot product every time. It is the

indicator j that changes during a loop - this indicator which receives all values from 0 up to the

number of data instances of the input file. At this point we illustrate the specific loop, in order to

provide better understanding.

for(j=0;j<number_of_instances;j++)

{

 result[j]=exp(-gamma*(x_i+dot(x[j],x[j])-2*dot(x[i],x[j],));

}

, where x_i equals dot(xi,xi) and remains constant during the whole loop.

Nevertheless, although the expression within the brackets can be implemented effectively in

hardware, the same does not apply for the exponent. In particular, the computation of the exponent

is expensive for hardware due to the fact that it occupies a significant number of resources and

requires a noticeable amount of time to be executed. Thus, the entire formula will be calculated on

the software side and only the expression within brackets will be implemented on hardware.

3) select_working_set(): The Q matrix of the dual optimization problem is usually dense and

too big to be stored. Therefore, decomposition methods have been proposed to effectively process

this matrix. In general, optimization methods update the whole vector a in each iteration. However,

with the use of decomposition methods only a subset is processed and modified. This subset is

called a working set and allows handling sub-problems in each iteration instead of the whole vector

[46].

4) get_Q(): This function produces a vector with length size equal to the number of data

instances. Note that within a loop of the optimization solver we compute the formula presented in

the description of the kernel computation. During this loop index iremains constant and j receives

all values from 0 up to the number of data instances. Thus, the kernel computation is performed as

many times as the number of rows (data instances) of the input file. However, in the get_Q function

we also add the labels of the respective vectors so as to compute the following formula:

In the above formula K(xi,xj) is equal to the expression in the description of the kernel computation

and yi, yj are the labels of the respective vectors. Note that y may either equal to 1 or -1, when we

are performing binomial classification, or it may receive other values, when we are performing

multi-class classification. We studied binomial classification, in accordance with WP2.

Furthermore, due to the existence of the exponent in K(xi,xj) the expression presented in get Q

cannot be entirely implemented on hardware.

Deliverable 3.1 QualiMaster

© QualiMaster Page 41(of 66)

5) solve(): This function is called once during the execution of the program. As indicated by its

name, it outputs the complete solution of the SVM optimization problem. Thus, it contains the

entire process of the algorithm within which is the arbitrary sized loop of the dual formulation

optimization problem. Due to the fact that in each loop, certain variables of the algorithm are

updated and these updated values affect further computations, avoid dependencies in the

optimization loop, and thus leave its execution to software.

5.5.4 Important Data Structures and Operations

Data Structures

As mentioned in the beginning of the SVM Modeling section, the LIBSVM software receives as

input a file that follows a specific format. The information contained in this file is copied to a data

structure so as to be able to utilize the given information. Prior to describing this important

structure we need to provide further information about the input file. More specifically, although the

number of features a data instance can have equals the maximum number of features of the

dataset, this does not imply that all data instances will feature equal to the maximum number of

features. For example, in a dataset where the maximum number of instances is equal to 6, data

instance 1 could have features 1, 2 and 3 and data instance 2 could have features 4 and 5. Not

having a specific feature implies that the value of this feature is 0. Thus data instance 1 has value

0 in columns 4 and 5, since these columns correspond to features 4 and 5. Similarly data instance

2 has value 0 in columns 1, 2 and 3.

The data structure that contains the above information is essential to the algorithm, as all the

important functions of the implementation need it to produce outcomes. In order to understand its

elements we describe the following two structures.

structsvm_node

{

 int index;

 double value;

};

structsvm_problem

{

 int l;

 double *y;

 structsvm_node **x;

};

Data structure svm_node represents the expression a:b that was described in 3.2.1. In particular, it

contains an integer number that denotes a feature and a double number that corresponds to the

respective value of the same feature. Note that in order to preserve information about the input file

we need to store file_rows*(file_columns-1) svm_node components.

The above information is included in the svm_problem structure. More specifically, structsvm_node

**x represents precisely a two dimensional structure that contains elements of type svm_node.

Thus, the rows and columns of the file correspond to the respective dimensions of the structure.

We know that a row ends and a next row follows when the index variable has value -1. In addition,

variable l denotes the number of rows in the file and list y contains the labels of the data instances

in structsvm_node **x. Therefore, the length of the list of labels will equal l. For example, if l equals

5, the length of the list of label also equals file, and the first dimension of the two dimensional data

QualiMaster Deliverable 3.1

Page 42(of 66) www.qualimaster.eu

structure is also 5. However, the second dimension of the structure varies based on the number of

features a data instance has.

According to the above, we can conclude that structure svm_problem is the most important

structure in the SVM Training implementation since it contains all essential information and is used

by the most important operations.

Operations

The most important operations were revealed during the profiling phase of the software source

code. These are hidden in the expression

and are the following:

A detailed description about all the aforementioned functions, as well as their importance for

hardware is provided in Section 5.5.3.

5.6 LDA Modeling
Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The LDA algorithm

uses inference to generate this probabilistic model. There are multiple algorithms that can

implement Inference such as Variational Inference. Gibbs Sampling etc. M. Shah et al. [20]

implemented a speech emotion recognition framework based on Variational Inference using

FPGAs, which presented good results both in terms of accuracy (80%) and performance.

In the sections below three different implementations of Inference are presented. The last method

named sparseLDA will be analyzed further as it is very efficient in terms of performance.

5.6.1 Study of Inputs and Outputs

LDA takes as input a set of documents and posits that each document is a mixture of a small

number of topics and that each word's creation is attributable to one of the document's topics.

The applications that implement LDA take as input a filtered set of documents, from stop words,

common used words etc., or filters a set of documents. They then create an index table with the

vocabulary and use the indexes in processing. The training step of the algorithm produces a

number of topics (input by user). The basic idea is that documents are represented as random

mixtures over latent topics, where each topic is characterized by a distribution over words. The

model produced by the training is then used to characterize new documents. Each new document

is characterized by a different set of topics.

Deliverable 3.1 QualiMaster

© QualiMaster Page 43(of 66)

5.6.2 Data Sets

For testing the LDA implementation we collected and prepared data sets consisting of text files

where each line is a bag of terms from a document within the particular dataset. Following data

sets are available:

● Flickr emotions dataset (47MB): This dataset consist of a Flickr image metadata crawl

where emotional tags like “angry”, “happy” were used as queries. Each document in this

dataset is a concatenation of a particular image title, tags and description.

● Global warming dataset (64MB): This dataset is a cropped dataset to a Wikipedia article

about global warming. Cropping is a technique where given a set of documents (the

Wikipedia article in our case) as a seed, a set of similar documents can be selected.

Thereby key phrases are extracted from the initial set and used as text queries (to

Wikipedia again in our case) to obtain more similar documents and expand the initial set.

Thus the dataset consist of Wikipedia articles related to the topic “global warming”. Each

document in this dataset is a paragraph from one of the articles.

● Jesus dataset (75MB): This dataset was constructed in exact the same way as the

predecessor but with the Wikipedia article about “Jesus” as a seed. -

● Newsgroups dataset (9.3MB): Newsgroups: The 20-Newsgroups dataset was originally

collected by K. Lang . It consists of 19,997 newsgroup postings and is usually divided into 7

categories for supervised learning covering different areas: “alt” - atheism, “comp”-

computer hardware and software, “misc”- things for sale, “rec” - baseball, hockey, cars, and

bikes, “sci” - cryptography, medicine, space, and electronics, “soc” - Christianity, and “talk” -

religion, politics, guns, and the middle east. The number of postings for these categories

varies from 997 to 5,000.

● CS Proceedings dataset (30MB): We collected scientific publications within the Computer

Science domain. We gathered 2,957 scientific documents from proceedings of the

conferences in the following areas: “Databases” (VLDB, EDBT), Data mining (KDD,ICDM),

“E-Learning” (ECTEL, ICWL), “IR” (SIGIR,ECIR), “Multimedia” (ACM MM, ICMR), “CH

Interfaces” (CHI, IUI), and “Web Science” (WWW, HYPERTEXT). The number of

publications for these categories varies from 179 to 905. We limited our selection to

conferences that took place in the years 2011 and 2012 and publications with more than

four pages and we removed references and acknowledgment sections.

● WWW proceeding dataset (26MB): We collected conference proceedings from the ACM

WWW conferences in the time period between 2001 and 2012, capturing the evolution of

expert knowledge in the context of the World Wide Web. We grouped the resulting 1,687

documents by pairs of consecutive years and obtained the following six categories: “2001-

2002”, “2003-2004”,: : :, and “2011-2012”. The number of publications for these temporal

categories vary from 139 to 637.

● Movie dataset (7.2 MB): From the Wikipedia movies-by-genre lists we extracted all

available movies belonging to one or more of 10 main genres such as “Action”, “Comedy”

and “Drama”, amounting to 11,070 movie descriptions. The number of movies in the

different categories ranges from 656 to 2,364. From each of the movie pages we only

considered the content of the sections “Plot” or “Description” and omitted the surrounding

meta data information.

QualiMaster Deliverable 3.1

Page 44(of 66) www.qualimaster.eu

5.6.3 Algorithm Profiling

Variational inference

The first implementation of LDA considered was the Princeton implementation by David M. Blei

et.al. [18][19]. This application was chosen as it was written in C and would be compatible with the

hardware tools (the Maxeler host code has to be written in C/C++). The profiling showed that the

most time consuming function was the digamma function (78% of the processing time). This

function is called multiple times by the Variational inference algorithm. This implementation wasn‟t

studied further as it is not the one used by the community. This study has been done as Variational

Inference is the basic algorithm and the first LDA implementation.

Gibbs sampling

The next implementation considered was based on Gibbs Sampling. It is the algorithm

implemented in R project [21] and Mallet [22] tools. Mallet is the most commonly used tool for topic

modeling and has many different Inference algorithm implementations for the LDA. The basic LDA

implementation is based on Gibbs Sampling.

The profiling of the Java implementation showed that more than 80% of the execution time is used

by the Gibbs Sampling stage. The algorithm iterates through the documents (the number of

iterations is given by the user) and for each word, iterates through all the topics (the number of

topics is given by the user) and updates the appropriate values. This algorithm looked promising

as there are various parallel implementations of Gibbs sampling on GPUs and multicore platforms

[23, 24 , 25]. The most time consuming function is the sample TopicsForOneDoc(); that

Implements the Gibbs sampling. It is called for each document for the number of iterations. The

function iterates through the word of each document and updates the topic distributions.Sparse

LDA.

Both the previous implementations are deprecated as the SparseLDA presented in [26] is mostly

used by the community, as it is at least 20x faster than the standard Gibbs Sampling

implementation. In their work they evaluate the performance of several methods for topic inference

in previously unseen documents, including methods based on Gibbs sampling, variational

inference, and a new method inspired by text classification. The classification based inference

method produces results similar to iterative inference methods, but requires only a single matrix

multiplication. Results indicated that SparseLDA can be approximately 20 times faster than

traditional LDA and provide twice the speedup of previously published fast sampling methods,

while also using substantially less memory.

As with the previous implementations, the most time consuming function is the

sampleTopicsForOneDoc() function. This function is called for each document on the training

dataset, number of iterations (given by user) times. This algorithm is faster than the previous Gibbs

sampling methods as it doesn‟t need to iterate on all topics for each word. Also it is important to

mention that with the increase of the number of topics SparseLDA can be more than 20 times

faster than the simple Gibbs sampling implementation.

5.6.4 Important Data Structures and Operations

Variational Inference and standard Gibbs sampling are mentioned as these are the basic

algorithms for LDA. Sparse LDA achieves performance improvement up to 20x over these

algorithms, using a new algorithmic approach. For that reason it is not worthy to analyze further the

Variational Inference and standard Gibbs sampling, and so we focus only on SparseLDA.

Deliverable 3.1 QualiMaster

© QualiMaster Page 45(of 66)

SparseLDA

SparseLDA is a lot faster than other implementations due to the data structures used in order for

the algorithm to not iterate over the number of topics. In [26] by rearranging terms they changed

into

and by splitting those three parts they get

 Also the expression for q can be broken into two components

The first coefficient can therefore be cached for every topic, so calculating q for a given w consists

of one multiply operation for every topic such that nw|t ≠ 0.Then they present the data structures

that allow the rapid identification topics such that nw|t ≠ 0 and also that are able to iterate over non-

zero topics in descending order. For this reason they encoded the tuple (t, nw|t) in a single 32 bit

integer by dividing the bits into a count segment and a topic segment. The number of bits in the

topic segment is the smallest m such that 2m ≥ T. They encode the values by shifting nw|t left by m

bits and adding t. They recover nw|t by shifting the encoded integer right m bits and t by a bitwise

and with a “topic mask” consisting of m 1s. This encoding has two primary advantages over a

simple implementation that stores nw|t in an array indexed by t for all topics. First, in natural

languages most word types occur rarely. As the encoding no longer relies on the array index, if a

word type w only occurs three times in the corpus, an array of at most three integers is needed for

it rather than T. Second, since the count is in the high bits, the array can be sorted using standard

sorting implementations, which do not need to know anything about the encoding.

By storing encoded values of (t, nw|t) in reverse-sorted arrays, it can rapidly calculate q, sample U,

and then (if U > (s+r)) usually within one calculation find the sampled t. Maintaining the data

structure involves reencoding values for updated topics and ensuring that the encoded values

remain sorted. As nw|t changes by at most one after every Gibbs update, a simple bubble sort is

sufficient.

QualiMaster Deliverable 3.1

Page 46(of 66) www.qualimaster.eu

6 Mapping algorithms in Hardware
This chapter presents the algorithms mapping to hardware procedure. Firstly, an overview of the

design procedure is given. Next, the following sections analyze the designs that have eventually

been mapped to hardware and their corresponding initial performance results vs. the official

software solutions.

6.1 Design Methodology
This section describes the methodology that it is followed to map efficiently an algorithm to specific

hardware technology, as shown in Figure 15. This method is generic in the sense that the steps

are technology independent as method, and mapping technology affects aspects of the modeling

and not the method itself. The sequence of steps to get from a specification to a working hardware

prototype is called a design flow, and each step of the design flow is associated with specific

Computer Aided Design (CAD) tools, such as simulators, synthesis tools and place and route

tools.

Algorithm

Analysis

HW/SW

Partitioning

Define

HW Interface

Define

SW Interface

Model using Hardware

Description Language

Simulate Simulate

DebugDebug

Integrate

Co-Simulation

Verification

SW Design Flow

Model using Software

Programming

Language

HW Design Flow

Figure 15: Design flow for mapping an algorithm on hardware

6.1.1 Top Down analysis

Depending on the algorithm analysis the first step is to map the algorithm in abstract block

diagrams identifying the interface between them. For each block there is a description of the

functionality and its interface with other blocks and external systems. Functionality can be

described in an abstract manner but it has to be checked that each task is assigned to be executed

to a unique block. The total functionality of the block tasks is the task of the complete system.

Τhis procedure is at system level, and it combines software and hardware. The first major system

division is on software and hardware components(parts). Depending on the platform that the

designer wants to map his system interfaces between software and hardware are usually

predefined. Usually at the mapping of the algorithm in hardware what remains in software does not

change from its official version and design continues for the hardware part.

Deliverable 3.1 QualiMaster

© QualiMaster Page 47(of 66)

At the hardware component level, the functionality of each block can be described in a formal

manner using a programming language as C/C++, Matlab, or even using formal verification

methods depending on the system complexity and size. It can also be described in a less formal

manner but it has to be very precise.

As a rule of thumb the number of subsystems is up to four but it depends on system complexity

and size which is crucial for such a decision. This procedure is repeated for every subsystem, and

following the same rule of thumb up to three times for a moderate system.

Subsystems functionality and interfaces which include physical connections and the protocol of

communication, is crucial to be well defined at this procedure.

At the end of that phase a quite detailed block diagram of the system and its subsystems is

available on the designer.

Depending on the platform and technology several design decisions have to be taken at this phase

for each block. For example the memory system is usually very important for a computing system.

Using FPGAs, designer has to think of the internal very high bandwidth memory (BRAM) and the

way of communicating with the external memory. With such an approach block functionality is

closer to what can be actually be implemented in a system.

6.1.2 Bottom Up Modeling

Using the block diagrams of the Top Down analysis, for the hardware part, the designer starts to

model each block. Modeling is done with a Hardware Description Language which can be low level

as VHDL or Verilog or a modern high level language as Maxeler Java Extension[Maxeler], Vivado

C/C++ [Vivado], SystemC [SystemC] etc. The designer can also use modules from module

libraries, such as protocol implementations, DDR controllers, video controllers, several filters or

even a general purpose processor. The designer can also use other design tools as Xilinx

Coregen[Coregen],MatLab Simulink [Simulink], which produce modules for specific technology.

With such tools the designers usually produce memory controllers, floating point arithmetic units or

even modules implementing more complex arithmetic operations.

In this procedure an equivalent functional module is built for each block. The module is tested for

the equivalent functionality vs. the initial model. The results of the tested modules are validated vs.

the results that are produced from the corresponding software solution. After the testing phase the

integration procedure commences. Usually two tested modules are connected as a subsystem and

the functionality of the subsystem is proved to be equivalent to the reference system. Then, a new

tested module is added and with this procedure is repeated adding a new block. In that manner

designer follows the reverse procedure of the Top Down analysis, building the complete system

using subsystems as in the block diagram.

Modular modeling and integration are really useful to the design procedure as several designers

can work in parallel, following the block diagram and the interface descriptions. In that manner the

design procedure is significantly faster vs. a serial implementation of the hardware components.

The independent working designers procedure proves how crucial is to have a proper and well

defined Top Down analysis, as any functional overlap between the blocks, or any ambiguous

description of interfaces can lead to block diagram revision and consequently to new block

modeling for several blocks.

QualiMaster Deliverable 3.1

Page 48(of 66) www.qualimaster.eu

6.1.3 Debugging Approaches

Debugging stages follows the Bottom Up Modeling stages, and the integration phase. At every

single module that have been build a test bench applies in order to certified that the its functionality

is equivalent to the desired as it was described at Top Down analysis and the bottom up modeling.

Several debugging tools are used, the most common of which are simulators as ISE simulator or

ModelSim. More sophisticated tools are used for complex platforms as Vivado Simulator, Maxeler

Simulator, Convey Software-Hardware Simulator. These tools usually provide to the designer a

visualized representation of the system functionality.

Modules debugging is a demanding procedure. It is very important to have the proper testing

vectors for each module. Debugging and test vectors creation is better to be created from

designers that have not be involved in modeling phase. This independent procedure helps to

detect more problems as wrong or missing functionality. In order to have the proper test vectors,

and for complex subsystems, the designer makes small applications to produce them.

Simulations should be exhaustive for small modules and extensive for the most complex ones.

Exhaustive simulation examines and proves the complete functionality of the system but it is very

time demanding procedure. For this reason, for more complex systems an extensive simulation is

usually performed. The system is examined at several different states for several thousand or

millions clock cycles. A careful selection of states and test vectors should be done in order to test

the complete module functionality. This procedure is repeated for every module that has been

build. At integration phase it is repeated for every module added to the subsystem.

The simulation phase starts with the functional model which specifies only the functionality of the

model without any timing data, such as set up / hold time for example (these are timing constraints

for proper clocking of sequential circuits). When the proper functionality has been checked for each

module, a new simulation has to be done where a timing model for the target technology is

included to test the module or the subsystem with timing parameters. The test vectors are the

same, without any changes from stage to stage.

After this procedure the designers have a confidence on their model that it will work in real world.

This functional model, also, defines a very abstract resource utilization and the clock speed

achieved by the full system design. There are two factors for a system to work in simulation and

not in real world. The first case (most typical) is not the extensive testing of a module, which can

lead to functional failures. The second factor is that functional models simulate the real world but

they are missing some important parameters, e.g. delays at inputs or external noise, which can

lead to timing problems and thus to the complete wrong functionality.

6.1.4 Verification Issues

When the complete model has been build, the simulation procedure has to be used for verification.

As an algorithm or a software have been modeled the hardware designer has to prove that it

produces the same results, or for approximate methods results with a standard error.

The designed system runs using as inputs several typical data sets and the outputs are compared

against an official distribution of software or a reference software-based implementation running

the same inputs. In order to compare outputs(as output can be a very large file), the designers can

implement software to compare automatically the hardware data results vs. the reference system

or the desired behavior as it is determined by simulators.

Deliverable 3.1 QualiMaster

© QualiMaster Page 49(of 66)

6.2 Count Min (CM) Design
This section presents our initial proposed hardware-based architecture for the Count-Min

algorithm. Our proposed solution was mapped on a high-end Maxeler MPC-series platform using a

single FPGA device.

6.2.1 Top Down analysis

First, we had to define the parameters as far as the size of the sketch data structure. The typical

values for both ε and δ are in the space [0.05, 0.2]. In our first implementation, we used the typical

values ε = 0.085 and δ = 0.05, which lead to a sketch that has d = 3 different hash functions and w

= 32 elements in each row. Our proposed system is fully parameterizable, which means that we

can change dynamically the dimensions of the sketch data structures according to the needs of our

application.

Figure 16 presents our proposed top level architecture. In our initial approach, we mapped the

update function on the reconfigurable hardware, while the query process is resolved in software.

The system starts with initializing the Count-Min tables on hardware platform. Next the system

accepts a stream of (id, value) tuples. These tuples are batched and then we pass them into the

reconfigurable part where the sketch update takes place. When a query arrives, the system uses

the sketch that is built in reconfigurable platform and answers the query.

Figure 16: Count-Min Top level Architecture

6.2.2 Bottom Up Modeling

This section describes the individual components that are presented in Figure 16.

The CPU device executes the initialization steps of the Count-Min data structure. Also, it is

responsible for sending the streaming data to the reconfigurable part of the system. Last, the CPU

can read the Count-Min data structure from the shared memory and it resolves any query over it.

Figure 16 shows the mapping of the update function on reconfigurable hardware. The implemented

module takes as input the streaming ids and their corresponding values. The hash functions are

implemented as lookup tables in reconfigurable hardware, where the precomputed values have

been loaded before the start of the processing. The lookup tables take as input the streaming IDs

and output the corresponding values from the hash functions. These values are used as index to

the memories, as presented in Figure 17. Each memory module corresponds to a single row of the

sketch data structure. The values are updated and stored again in Block Rams (BRAMs). When

the processing finishes, the values of the memories return to the shared memory, which can be

accessed by the CPU, too. The query processing takes place from the CPU. When a new query

QualiMaster Deliverable 3.1

Page 50(of 66) www.qualimaster.eu

arrives, the CPU reads the CM sketch data structure from the shared memory and returns the

query estimation.

Figure 17: Update function Architecture

6.2.3 Debugging Issues

The software code, which initializes the Count-Min data structure and resolves the queries, was

ported in the MaxIDE platform. The reconfigurable part was implemented using the the Max Java

language. The system was simulated, using the Maxeler simulator, keeping both the software and

the simulated hardware running.

6.2.4 Verification Issues

The MassDAL Public Code Bank[40] offers a C version code that implements both the update and

the query processing of a Count-Min data structure. The results were verified vs. the results from

the officially distributed code of the Count-Min algorithm from the MassDAL Public Code Bank.

6.2.5 Performance Evaluation

Our proposed system was mapped on a single DFE without taking into account the parallelization

that the multi-DFEs can offer us. The testing dataset was random items that reached up to 1010.

This initial performance comparison showed that our system outperforms the single threaded

official software solution for about 7 times. This our first implementation mapped only the update

function of the Count-Min data structure while the estimation function takes place in software. In

our future plans, we aim to propose an architecture that will implement both the update and the

estimation function in reconfigurable platform. Also, we will take advantage of the coarse grained

parallelism that the algorithm can offer, where we will map Count-Min data structures in

independent FPGA devices, which will be combined in order to conclude to the final Count-Min

data structure.

6.3 Exponential Histogram (EH) Design
This section presents our proposed hardware-based architecture of the Exponential Histogram

algorithm. Our proposed solution was mapped on a Maxeler server using a single FPGA device.

Deliverable 3.1 QualiMaster

© QualiMaster Page 51(of 66)

6.3.1 Top Down analysis

First, the top level analysis of the system that implements the Exponential Histogram algorithm on

hardware is presented. As referred in Section 5.3, we both implemented the functions of updating

the EH data structure and estimating the number of the elements with value 1 on the

reconfigurable hardware. The system starts with initializing the EH data structure and its

corresponding counters. Next, the streaming values with their corresponding timestamps are

passed to the reconfigurable device for updating the EH structure. The estimation of a specific

timestamp or batches of timestamps are passed from another streaming port to the reconfigurable

module and the corresponding results return back to the CPU. It is important to mention that for

this first approach only one of the two streaming processes (streaming a new value or estimating a

new timestamp) at each clock cycle can take place. Figure 18 presents the top level system

architecture.

Figure 18: Exponential Histogram top level architecture

As defined in Section 5.3, the EH data structure consists of non-overlapping buckets. The buckets

have increasing sizes. The first bucket has size k+1 while the rest buckets have size k/2 + 1. The

variable k is bounded by the 1/ε value, where the typical values for the error value ε are between

[0.05, 0.2]. We used ε= 0.1 in our implementation, thus the bucket of the first level consists of 11

elements and the remaining ones consist of 6 elements. The window size defines the number of

buckets of the EH data structure. Our proposed architecture is fully parameterizable, which means

that we can change dynamically the dimensions of the EH according to the needs of the

application.

6.3.2 Bottom Up Modeling

First, the CPU resolves the building of the interconnection between the CPU and the

reconfigurable part. Second, the CPU sends a signal that initializes the EH structure and the

corresponding counters. Next, the reconfigurable module takes either a stream of elements with

values 1s or 0s with their corresponding timestamps or a stream of timestamps for estimation. The

update process is separated into two stages: the first stage omits the expired data from the

processing bucket while during the second one a new value from the input or the previous bucket

is put in the bucket. In case of a new input, the timestamp of the new value is passed into the first

level bucket. As shown in Figure 19, the buckets are 1-D arrays in range of [6, 20], as analyzed in

Section 5.3.3, which work like a complex shift-register. In other words, when a new timestamp-

value arrives at the input of a bucket all the previous values are shifted to the right for one position.

After the insertion completes, there is specific logic which checks for merging condition for the last

two elements of the bucket. If a new merged value needs to be passed to the next level, it is stored

in the pipeline registers and the process continues the second level during the second clock cycle.

The important issue here is that our implementation is fully pipelined which means that each level

can serve the insertion/merge of a different timestamp. In other words, our proposed system

exploits the fine grained parallelization that the hardware can offer by processing in parallel N

different input values (like the number of total levels).

QualiMaster Deliverable 3.1

Page 52(of 66) www.qualimaster.eu

Moreover, our proposed system implements the estimation processing either for the total window

or for a specific timestamp. As shown in Figure 19, the EH module takes as input the timestamp

that we want to estimate the number of elements with value 1. In case, that we want to calculate

the 1‟s estimation value of the complete processing window, we pass the timestamp value -1.

During the estimation processing, the value passes to the first level, where the estimation module

calculates the estimation of this level. At the next clock cycle, the estimated value of the present

level with the estimation timestamp passes to the next level bucket. The processing finishes when

the score reaches to the last level and it returns back to the CPU. It is clear that our proposed

architecture is fully pipelined taking advantage of the hardware fine grained parallelization.

6.3.3 Debugging Issues

The initial software code that initializes the EH sketch data structure was ported in the MaxIDE

platform. The reconfigurable part was implemented using RTL coding, i.e. VHDL. The hardware-

based code was mapped on a single DFE device of the Maxeler platform.

6.3.4 Verification Issues

We tested our system with various input datasets and different configurations, i.e. number and size

of buckets. We queried our system for the estimation of different estimation timestamps and in

different times and the results were verified vs. the results of the official Java code of the EH data

structure[35].

Figure 19: Architecture of Exponential Histogram module

6.3.5 Performance Evaluation

We compared the performance of the hardware-based solution for the EH algorithm vs. the official

software solution. The initial results showed that our proposed system can offer 4 times faster

processing of the EH data structure vs. the official code of the EH data structure[35]. It is

important to mention that the presented architecture is not fully optimized as we do not take

advantage of the parallel nature of the algorithm. Lastly, we aim that our next system architecture

will take advantage of the coarse grained parallelization implementing EH data structures on

independent streams taking advantage of the low resource utilization (only 4% of the resources of

the FPGA device are used) that our proposed architecture offers.

6.4 Correlation Design
This section presents a first hardware-based architecture for the HY estimation algorithm. Our

proposed solution was mapped on a Maxeler server using a single FPGA device.

Deliverable 3.1 QualiMaster

© QualiMaster Page 53(of 66)

6.4.1 Top Down analysis

Our proposed architecture is a software-hardware co-design system. The software part builds the

data in proper data structures while the hardware part implements all the computations. The

system starts with the initialization of the internal data structures and the correlation matrix that is

stored in the shared memory of the Maxeler platform. Next, the streaming of input data begins. The

software reads all the transactions for a single timestamp and updates the arrays that were

described in Section 5.4.4. In more details, the software updates the transaction values of the

overlapping time intervals for all the pairs of the input stocks(only if there was transaction for one of

the two stocks of the pair). Also, it updates the table with the transactions of the single stocks.

Then, these tables are streamed to the reconfigurable part of the system, which computes the new

coefficients for the HY correlation estimator. Last, the software is responsible for calculating the

correlation matrix using the intermediate results, i.e. coefficients that have been computed by the

hardware and stored in the shared memory. Figure 20 presents the top level system architecture.

Figure 20: Top level system architecture

6.4.2 Bottom Up Modeling

As referred above, the proposed architecture is a software-hardware co-design system. The

presented architecture is an initial attempt to map the HY correlation algorithm on Maxeler

platform. The CPU initializes the internal data structures and the correlation matrix. Also, it reads

all the transactions for a single timestamp and updates the corresponding data structures that are

transmitted to the reconfigurable part for further processing. The reconfigurable part of the system,

i.e. HY module, calculates the HY coefficients for the calculation of the HY correlation estimator.

The HY Module is mapped on a single FPGA device and it calculates the HY estimation value for

each one of the market stocks pairs. As shown in Figure 21, it takes as input the transaction values

of a pair of stocks and computes the HY covariance value at each clock cycle. Also, it takes as

input the transaction prices for each one of the input stocks and calculates the denominator of the

HY estimator. The final values are stored in shared memory. Lastly, the CPU reads these values

from the shared memory and computes the final correlation matrix.

QualiMaster Deliverable 3.1

Page 54(of 66) www.qualimaster.eu

Figure 21: Architecture of Hayashi-Yoshida Estimator module

6.4.3 Debugging Issues

First, the software code, which initializes the internal data structures, calculates the correlation

matrix and receives the stock market transactions, was ported in the MaxIDE platform. The

reconfigurable part was implemented using the Max Java language. The hardware-based module

was mapped on a single DFE device of the Maxeler platform.

6.4.4 Verification Issues

We tested our system with various input datasets, i.e. number of market stocks. The results of the

hardware-based system were verified vs. a reference software-based implementation.

6.4.5 Performance Evaluation

We evaluated our system with a test dataset, which consisted of the transactions from 40 different

market stocks. Our results showed that we can calculate the correlation matrix of the input market

stocks in maximum 8ms, which means that it is almost in real time taking into account that the

transactions arrive at our systems every second. Our system will offer really good performance for

higher numbers of stock markets, taking into account that our system does not utilize the full

communication bandwidth between the CPU and the DFE and it does not take advantage of the

full parallelization level for these initial performance results. Also in our future plans, we aim to

transform the current system in order to calculate the correlation estimator for a big number of

stock markets over a sliding time window.

6.5 SVM Design
This section describes the design of the SVM Training method for hardware, given that we are

using Maxeler technologies. Thus, we provide a top down analysis that contains a general block

diagram of our architecture, we describe in detail the implemented blocks in the bottom up

Deliverable 3.1 QualiMaster

© QualiMaster Page 55(of 66)

modeling section, and finally we present debugging and verification issues that were met during

this process.

6.5.1 Top Down analysis

In general, a top down analysis provides all necessary information to describe the different

components of our implementation, as well as how they are interconnected. In particular for the

SVM Training method we created the following design.

Figure 22: Abstract SVM training method block diagram for Maxeler platform

A detailed description of the implementation of our architecture follows in the Bottom Up modeling

section. In this section we present the general contribution of each block to the overall system.

CPU Code

The CPU Code block contains software code that is written in C and C++. It contains two modules

the SVM Train module and the SVM Module. The first receives as input the data file, processes its

elements and creates the svm_problem structure described in 3.2.4. Then, the SVM module

utilizes this structure in order to solve the dual optimization problem. Each iteration of the

optimization problem recalculates and updates certain variables. Among these computations the

most time consuming one involves the computation of the expression 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) presented in

Section 5.5.4. Thus, we let the hardware side produce the expression‟s outcome so as to exploit all

potential parallelism.

Note that the software side should provide the hardware side with all the necessary material. Thus,

the output of the CPU code module consists of the training data, as well as of the size of the data

in bytes.

Manager

In general, the Manager provides a predictable input and output streams interface to the Kernel. In

particular, it comprises a Java API that allows configuring connectivity between Kernels and

external I/O. That said it is evident why we have placed the specific module between the CPU

code and the Kernel. The CPU code and Kernel should interact in order to exchange information.

The first should provide all necessary data in order for the latter to carry out the appropriate

computations, and the latter should return the final outcome.

Kernel

As mentioned above, the Kernel module uses the data instances of the software to produce the

outcome of 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) presented in 3.2.4. However, due to the fact that it is not suitable to

QualiMaster Deliverable 3.1

Page 56(of 66) www.qualimaster.eu

calculate the exponent on the hardware side, we assign to the hardware side only the computation

of the expression in the exponent:

𝑔𝑎𝑚𝑚𝑎 ∗ 𝑑𝑜𝑡 𝑥𝑖 , 𝑥𝑖 + 𝑑𝑜𝑡 𝑥𝑗 , 𝑥𝑗 − 2 ∗ 𝑑𝑜𝑡 𝑥𝑖 , 𝑥𝑗 .

We stress that function dot(xi,xj) computes the dot product of vectors xi and xj , and that gamma is a

constant number. Briefly the main difference between implementing the aforementioned formula on

hardware and implementing it on software is that in the first case the results of the three dot

products can be produced simultaneously. Furthermore, the execution of the dot product function

implies performing n multiplications and n totals, where n is the size of the vectors. However,

multiplications can be produced in parallel and the same applies for calculating pairwise totals.

Once the kernel has produced the final outcome of a pair of vectors it outputs the result back to the

CPU code module via the Manager module.

So far, we have described the architecture of the SVM Training method, by presenting the general

components, their respective subcomponents, as well as I/Os of the system. In the next section we

will deepen in each component separately and we will completely illustrate the execution of the

SVM Training method.

6.5.2 Bottom Up Modeling

In this section we begin by describing in detail each individual component of Figure 22 and then we

mention how they are interconnected.

CPU Code

Both components included in the CPU Code module have been provided by LibSVM.

Nevertheless, we have applied several modifications to the source code in order to allow the

integration of software and hardware.

SVM Train

The SVM Train component is written in C. We have not applied any modifications to the

corresponding LIBSVM code as its contribution to the SVM Training method is trivial. More

specifically, SVM Train receives as input a file with data instances and sequentially parses this file

in order to copy and organize all data into a data structure. The description of the file‟s format has

been presented in Section 5.5.1. Furthermore, the created data structure is the svm_prob

structure described in Section 5.5.4. Recall that this structure contains a two dimensional list with

all elements of the input file, a list with their respective labels and an integer that denotes the

number of the elements (rows in the file). In addition, SVM Train receives as input possible user

inputs. These may define the type of kernel computation (rbf, linear, polynomial, sigmoid), certain

constant values (gamma, degree, coefficient), or the type of classification that we want to execute.

However, if the user does not provide any input, the program sets default values for these

variables, if they are needed.

Once, svm_prob is created, SVM Train calls the svm_train() function, which is located in the SVM

component. This function receives as input the svm_prob structure, as well as a structure that

contains parameters provided by the user, or their respective default values. Moreover, svm_train()

returns the SVM Training model which is the solution of the optimization problem, i.e., the result of

the SVM Training method.

Deliverable 3.1 QualiMaster

© QualiMaster Page 57(of 66)

SVM

The SVM component is also part of the LIBSVM package and comprises the most essential steps

of the SVM Training method. In particular, it uses the svm_prob structure to find the support

vectors that will be used during the SVM Classification phase. We do not present a detailed

description of the execution flow of the algorithm, as the respective theory is described in Section

4.4. However, note that during the training phase of the algorithm, LIBSVM solves the following

primal optimization problem.

Solving an optimization problem implies an arbitrary number of iterations which depends on the

size of the input data set. At the end of each iteration the variables of the primal optimization

problem are updated based on the new calculations. Specifically, for the LIBSVM implementation

the α values and the Q coefficients are reconstructed. This process is repeated until a stopping

condition is met, or the algorithm converges. The processing for the optimization problem takes

place in function Solve() of the SVM file. At this point we will continue with the description of our

contribution to LibSVM. In order to do so, we need to mention that the functions described in

Section 5.5.3 are used for the computation of coefficient Q and this is why they occupy a

significant percentage of the execution time. Reconstructing the a values is not time consuming

due to the fact that it only requires comparisons operations between relatively small vectors.

The computation of Q is executed in the get_Q() function which receives as input variables i and

length. Both variables are integer numbers and the first denotes the index of a data instance

selected during the specific optimization loop, whereas the latter variable shows the total number

of the data instances. Note that only during the initialization phase of the optimization problem

index i takes all values between 0 and length i.e. all data instances are considered by get_Q().

Furthermore, get_Q() outputs a vector of float numbers with size at most equal to length. We

stress out that the output of get_Q() equals Q and more specifically:

𝑄𝑖 ,𝑗 = 𝑦𝑖𝑦𝑗 ∗ 𝐾(𝑥𝑖 , 𝑥𝑗)

As mentioned in Section 6.4.1 due to the existence of the exponential in the selected kernel

function (rbf) it is not efficient to implement the entire expression in hardware. Therefore, the final

outcome of the above expression is computed in get_Q(). Moreover, get_Q() calls the functions

that are implemented on hardware. However, hardware functions cannot receive as inputs multi-

dimensional data structures, or structures of arbitrary size. Therefore, we reconstructed the two

dimensional arbitrary sized data structure svm_node **x, described in Section 5.4.4, into a fixed

size one dimensional vector. Let us call this vector x_array. In particular, its size equals the

number of data instances*maximum feature number, which is the biggest possible size svm_node

**x can have. In addition, when we call a hardware function we need to declare the fixed size of the

input structures in bytes. Therefore, in get_Q()we compute this number, with respect to memory

alignment constraints. Finally, once the hardware execution has produced the appropriate value,

the remaining computations are performed in get_Q() and the results of the above expression are

QualiMaster Deliverable 3.1

Page 58(of 66) www.qualimaster.eu

stored in a vector of float numbers. This vector contains all the reconstructed Q values and is

returned back to Solve() function.

Kernel

The Kernel component is written in Maxeler Java-like code and contains hardware

implementations that perform numerical operations on data. We stress out that data is transferred

from software to hardware one-by-one. More specifically, during one unit of time called a tick, the

Kernel executes one step of computation, consumes one input value and produces one output

value. Thus, neither can hardware receive all data at once, nor can it produce all outputs together.

We could not overcome this limitation, which affects significantly our current architecture.

Final Output

To begin with, the Final Output hardware component receives as input a single data element of

thex_array vector described in the SVM component, every tick. Similarly, it outputs a result every

tick. A simple architecture of the Final Output is presented in Figure 23. Block Data represents the

input stream and scalars, Inner Dot Product denotes the Inner Product component, and the

computations of the figure indicate the calculation of the expression that we will describe

immediately after.

Figure 23: Block Diagram on Inner Dot Product Calculation

In order to clarify the role of hardware in the SVM method, we present the loop that is being

unrolled on hardware.

𝑓𝑜𝑟 𝑗 = 0; 𝑗 < 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑥 𝑎𝑟𝑟𝑎𝑦; 𝑗 + +

{

 𝑟𝑒𝑠𝑢𝑙𝑡 𝑗 = −𝑔𝑎𝑚𝑚𝑎 ∗ 𝑥_𝑖 + 𝑑𝑜𝑡 𝑥𝑎𝑟𝑟𝑎𝑦 𝑗 , 𝑥𝑎𝑟𝑟𝑎𝑦 𝑗 − 2 ∗ 𝑑𝑜𝑡 𝑥𝑎𝑟𝑟𝑎𝑦 𝑖 , 𝑥𝑎𝑟𝑟𝑎𝑦 𝑗 ;

}

As we have previously mentioned, gamma is a constant coefficient that depends on the user.

Moreover, the loop runs for number of times equal to the size of x_array described in the SVM

module. An intuitive explanation of this loop is that x_array contains all elements of the input data

Deliverable 3.1 QualiMaster

© QualiMaster Page 59(of 66)

set. More specifically, cells 1 to the maximum number of the dataset features (max) correspond to

the first data instance. The same applies for the rest of the data instances, i.e. the second data

instance will be located from max + 1 to 2*max, the third data instance from 2*max+ 1 to 3*max

and so on. Note that the loop is independent of index i , which means that all variables associated

with this index remain fixed throughout a loop. For instance, x_i is the dot product of element

x_array[i] with itself. Due to the fact that x_i remains the same during the whole loop, we can avoid

computing it on hardware. Another element that remains constant throughout the loop is the data

instance i, that corresponds to x_array[i]. In case max is relatively small, then we can assign each

feature of data instance i to a variable and input these variables to hardware, instead of sending

data instance i as a stream. Thus, we avoid the initialization overhead of an extra stream.

Moreover, due to the fact that hardware can receive and output only a single element at a time, we

produce an actual result[j] output every max ticks. A more detailed explanation follows in the

InnerProduct component. We are currently designing an architecture that will take into account this

case and that will allow a bigger number of features, which will calculate more than a single result

in parallel.

Inner Product

The Inner Product component only comprises numeric operations, since it calculates the dot

product of two equal size vectors.

Given A = [A1, A2, … , An] and B = [B1, B2, … ,Bn] the dot product is defined as:

𝑨 · 𝑩 = 𝑨𝒊𝑩𝒊 = 𝒏
𝒊=𝟏 𝑨𝟏𝑩𝟏 + 𝑨𝟐𝑩𝟐 + 𝑨𝟑𝑩𝟑 + 𝑨𝟒𝑩𝟒 + ⋯+ 𝑨𝒏𝑩𝒏

In Section 5.4.3 we described how the computation of a dot product can be parallelized. Here, we

present an illustrated version of the same description. More specifically, a parallel version of the

dot product computes in parallel all products from 1 to n. Once these are produced, calculating the

sum takes place. In particular, the sum of 1 and 2 (5) is calculated in parallel with the sum of 3 and

4 (6) and so on.

Although we would expect to produce all products in a single tick, this assumption does not apply

due to the fact that we can only receive a single data input of the stream every tick. More

specifically, in the first tick we will get element A1, in the second tick we will get element A2 and in

the n tick we will have gotten all elements. Thus, the final outcome is produced after n ticks have

passed, instead of in a single tick and this introduces delay to the hardware implementation.

Nevertheless, once the dot product of the two vectors is computed the result returns to Final

Outcome and the outcome produced by hardware is returned to software.

6.5.3 Debugging Issues

As a first step the software needs to be ported and executed through the MaxCompiler platform.

Then the Kernel that calculates the dot products was implemented, along with the appropriate

Manager. The project was simulated, using the Maxeler simulator, keeping both the software and

the simulated hardware running. The design was tested using small and constructed datasets, as

… n 4 3 2 1

… k 6 5

QualiMaster Deliverable 3.1

Page 60(of 66) www.qualimaster.eu

the simulation needs a significant amount of time to complete (100 times more than software.

These slow run times are times for the simulated run of the design using CAD tools and not run

times on actual hardware – only complete and debugged designs are run on actual hardware,

because instrumentation of the design is easier in the CAD tool platforms (e.g. monitoring internal

signals to see if data is progressing, if synchronization of resources is correct, and if operations are

done properly) and in order to protect the valuable hardware resource from a design which could

erroneously short-circuit a signal and damage the system. The simPrintf() debug function was

used in order to print the intermediate results and prove correctness of the functions implemented.

This function can be included in the hardware design coding, but is executed only on simulation

mode.

6.5.4 Verification Issues

The verification of our design was done by executing the software for a certain dataset while

gathering the results produced by the dot product function. The hardware implementation was

tested with the same dataset and the results were compared one by one with the software‟s. The

dataset had to be small enough in order for the simulation to complete in short amount of time.

Larger datasets were also tested, but for a small amount of their products. We also used

constructed (small) datasets in order to test boundary conditions.

6.5.5 Performance Evaluation

We evaluated the performance of the current hardware-based design with various numbers of

input items but with a small number of features for each one of them. Our performance results

showed degradation up to one order of magnitude vs. the performance achieved by the single

thread software code. This is due to the low parallelization level achieved with the small number of

features.

6.6 LDA Design
The SparseLDA algorithm (described in Section 5.6.4) is very efficient both on performance and on

memory utilization. Basically, because the execution of the most time consuming function

(sampleTopicsForOneDoc ()) is very efficient on software. Implementing an architecture for FPGAs

would be meaningful only if we could execute the same operations faster.

The FPGAs gain performance over software implementations by utilizing parallelization as much

as possible (resources are the limiting factor) and by allowing the implementation of really deep

pipelines.

After careful inspection of the operations of the SparseLDA, and more specifically of the

sampleTopicsForOneDoc() function we concluded that the operations executed are sequential and

can‟t be parallelized. Mainly the bubble sort parts, which run in small parts of the topic array,

cannot be pipelined. Basically the algorithm bubbles one value up the array and does not sort the

whole array (which could be effective on FPGAs). The code that bubbles the new value up is

shown below:

𝑤𝑕𝑖𝑙𝑒(𝑖 > 0 && 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠[𝑖 − 1]

{

 𝑖𝑛𝑡 𝑡𝑒𝑚𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 ;

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 − 1 ;

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑇𝑜𝑝𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑠 𝑖 − 1 = 𝑡𝑒𝑚𝑝;

 𝑖 − −;

}

Deliverable 3.1 QualiMaster

© QualiMaster Page 61(of 66)

There is some parallelization that can be utilized, mostly on arithmetic operations for the

probabilities calculations (pipelined floating point cores), but it cannot hide the sequential

operations‟ execution time.

The SparseLDA has a parallel version where each thread samples different documents. This

parallelization can be utilized by streaming multiple docs in the FPGA (up to 8 streams on Maxeler

machines). This parallelization factor isn‟t enough for the FPGA to be faster than the software, as

the clock frequency for the Maxeler system is 150 MHz which is at least 20 times lower than the

clock frequency of a modern high end CPU. Lastly, the sequential nature of the SparseLDA

algorithm led us to the conclusion that even an efficient hardware-based system will have lower

execution times than the corresponding software solution.

6.7 Hardware based system evaluation

The previous Sections presented four initial different hardware-based systems, i.e. the SVM

algorithm, the Count-Min data structure, the Exponential Histogram sketch data structure and the

Hayashi-Yoshida correlation estimator. We tested our systems with various input datasets. As our

initial non-optimized performance results indicate, Table 2, our systems offer good performance

achievements vs. the corresponding software solutions. In our future plans, we aim to take

advantage of the full parallelization level that the DFEs can offer and the full communication

bandwidth for the data I/O in order to take much better performance results.

Lastly, the LDA algorithm was analyzed and an initial hardware-based solution was evaluated. We

reached to the conclusion that an hardware implementation of such complex and low-parallelized

algorithm would not give better performance results.

Algorithm HW-based systems performance

SVM algorithm One order of magnitude worse performance vs. SW

Count-Min algorithm About 7x better performance vs. SW

Exponential Histogram About 4x better performance vs. SW

Hayashi-Yoshida

Correlation Estimator
About 8ms for computing Correlation Matrix for 40 Stock Markets

Table 2: HW-based Systems Performance

It may appear that the results in the table, above, are rather poor, however, there are several

reasons why they are actually very good: the initial version of each design aims at correct

execution of the corresponding algorithm, so that it will serve as a reference design. Subsequent

versions exploit parallelism with techniques including pipelining, multiple functional units, data

forwarding (i.e. setting up buffers to deliver data where it needs to be for processing, rather than do

so through the memory), etc. The key factors that determine whether an initial design seems

promising are three: (a) that the design does not fully utilize the resources of the hardware, i.e.

there exist substantial resources that can be exploited in subsequent versions of the design, (b)

that the system is not Input/Output limited, i.e. a speedup of the initial design will not lead to no

performance benefit due to the impossibility of getting data in and out of the new design, and (c)

the intrinsic parallelism of the algorithm, i.e. that there are aspects of the algorithm which can be

executed in parallel, given the resources and an appropriate design. In the case of the four

designs, above, and especially in the case of the last three algorithms we are highly optimistic that

reconfigurable computing will offer very substantial speedups.

QualiMaster Deliverable 3.1

Page 62(of 66) www.qualimaster.eu

7 Conclusions
The QualiMaster project fuses several state-of-the-art technologies in order to process Big Data in

streaming form, and extract in real-time useful information. The various processing requirements

as well as the characteristics of the data require the processing to be done in an adaptive pipeline,

the QualiMaster pipeline, an integral part of which is the reconfigurable hardware (FPGA

computing) processing element. In reconfigurable computing algorithms are mapped directly to

hardware, which is a different computational paradigm vs. that of algorithm execution on general-

purpose computers (including single computers and multiprocessors, clusters, cloud computing,

etc.)The reconfigurable processing element of the QualiMaster pipeline needs to operate

seamlessly with the software, run the same algorithms, and be employed on-demand. The above

considerations are the scope of the WP3 of QualiMaster. This present deliverable D3.1 details the

year‟s progress in WP3, as well as the Work Package‟s interaction with all other Work Packages of

the QualiMaster project.

A summary of the progress is that the algorithms chosen by the software partners, namely,

Support Vector Machines (SVM), Latent Dirichlet Analysis (LDA), Count Min, Exponential

Histogram, and Hayashi-Yoshida Correlation Estimator were all studied with respect to their

potential for hardware implementation. Four of these algorithms (all, except for LDA) were found to

be suitable to a greater or lesser extent (i.e. they seem promising for exceptional or good

speedups vs. software execution, respectively). In addition, a MaxelerC-Series FPGA-based

computer of the QualiMaster partner TSI was integrated seamlessly with the Storm environment

which will be employed in the QualiMaster adaptive pipeline. No such result has been reported in

the literature to date, and the ability to easily and seamlessly direct data into the Maxeler

reconfigurable processor as needed will no doubt give the QualiMaster project very interesting

capabilities for realistic experiments.

To conclude, WP3 is progressing according to plan and in a timely fashion, with a number of

technical issues, such as the integration of the reconfigurable computing node with the Storm

platform, already having been solved. The promising results in terms of potential for hardware

(FPGA) implementation in four of the five algorithms chosen by the software partners allow for

great optimism that the QualiMaster adaptive pipeline will demonstrate performance capabilities

which cannot be achieved with conventional distributed computing methods, and work is underway

to implement and test these algorithms on reconfigurable computing platforms. Last but not least,

the very close cooperation of the software and the hardware partners of the project is very

beneficial to all, as the software partners are exposed to computational capabilities which would

otherwise be out-of-reach and hence they have more tools with which to implement their

algorithms of choice, whereas the hardware partners have meaningful driving problems, complete

with realistic Input/Output requirements, real-time operation requirements, and reference software

designs for the assessment of their work.

Deliverable 3.1 QualiMaster

© QualiMaster Page 63(of 66)

References

[1] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., &Zdonik, S.

(2003). “Aurora: a new model and architecture for data stream management”. The VLDB Journal—

The International Journal on Very Large Data Bases, 12(2), (pp. 120-139).

[2] Chakravarthy, S., & Jiang, Q. (2009). Stream data processing: a quality of service perspective:

modeling, scheduling, load shedding, and complex event processing (Vol. 36). Springer.

[3] Klein, A., &Lehner, W. (2009). “Representing data quality in sensor data streaming

environments”.Journal of Data and Information Quality (JDIQ), 1(2), 10.

[4] Geisler, S., Weber, S., &Quix, C. (2011, November). “An ontology-based data quality

framework for data stream applications”. In 16th International Conference on Information Quality.

[5]Pang, B., Lee, L., &Vaithyanathan, S. (2002, July). “Thumbs up?: sentiment classification using

machine learning techniques”. In Proceedings of the ACL-02 conference on Empirical methods in

natural language processing-Volume 10 (pp. 79-86).Association for Computational Linguistics.

[6]Vapnik Vladimir, N. (1995). The Nature of Statistical Learning Theory.Spring-Verlag, New York.

[7] Cortes, C., &Vapnik, V. (1995). “Support-vector networks”.Machine learning, 20(3), (pp. 273-

297).

[8] Drucker, H., Wu, S., & Vapnik, V. N. (1999). Support vector machines for spam categorization.

Neural Networks, IEEE Transactions on, 10(5), (pp. 1048-1054).

[9] Dumais, S., Platt, J., Heckerman, D., &Sahami, M. (1998, November). “Inductive learning

algorithms and representations for text categorization”.In Proceedings of the seventh international

conference on Information and knowledge management (pp. 148-155).ACM.

[10] Joachims, T. (1998). “Text categorization with Support Vector Machines: Learning with many

relevant features”. Machine Learning: ECML-98, 1398, (pp. 137-142).

[11] Manning, C. D., Raghavan, P., &Schütze, H. (2008). Introduction to information retrieval (Vol.

1, p. 6). Cambridge: Cambridge university press.

[12] Aggarwal, C. C., &Zhai, C. (2012). “A survey of text classification algorithms”. In Mining text

data (pp. 163-222). Springer US.

[13]Aizerman, A., Braverman, E. M., &Rozoner, L. I. (1964). “Theoretical foundations of the

potential function method in pattern recognition learning”. Automation and remote control, 25,(pp.

821-837).

[14]Boser, B. E., Guyon, I. M., &Vapnik, V. N. (1992, July). “A training algorithm for optimal margin

classifiers”.In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-

152).ACM.

[15] Chang, C. C., & Lin, C. J. (2011). “LIBSVM: a library for support vector machines”. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

QualiMaster Deliverable 3.1

Page 64(of 66) www.qualimaster.eu

[16] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). “The

WEKA data mining software: an update”. ACM SIGKDD explorations newsletter, 11(1), (pp. 10-

18).

[17] Datar, M., Gionis, A., Indyk, P., &Motwani, R. (2002). “Maintaining stream statistics over

sliding windows”.SIAM Journal on Computing, 31(6), (pp. 1794-1813).

[18] www.cs.princeton.edu/~blei/lda-c/

[19] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). “Latent dirichlet allocation”.The Journal of

machine Learning research, 3, (pp. 993-1022).

[20] Shah, M., Miao, L., Chakrabarti, C., &Spanias, A. (2013, May). “A speech emotion recognition

framework based on latent Dirichlet allocation: Algorithm and FPGA implementation”. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 2553-

2557).

[21] http://www.r-project.org/

[22] http://mallet.cs.umass.edu/

[23] Yan, F., Xu, N., & Qi, Y. (2009). “Parallel inference for latent dirichlet allocation on graphics

processing units”.In Advances in Neural Information Processing Systems (pp. 2134-2142).

[24] Newman, D., Smyth, P., Welling, M., & Asuncion, A. U. (2007). “Distributed inference for latent

dirichlet allocation”.In Advances in neural information processing systems (pp. 1081-1088).

[25] Smyth, P., Welling, M., & Asuncion, A. U. (2009). “Asynchronous distributed learning of topic

models”. In Advances in Neural Information Processing Systems (pp. 81-88).

[26] Yao, L., Mimno, D., & McCallum, A. (2009, June). “Efficient methods for topic model inference

on streaming document collections”. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 937-946).ACM.

[27] Pell, O., Averbukh, V. (2012). "Maximum Performance Computing with Dataflow

Engines".Computing in Science &Engineering , vol.14, no.4, (pp. 98-103).

[28] Pell, O., Mencer, O., Tsoi, K. H., &Luk, W. (2013). “Maximum performance computing with

dataflow engines”.In High-Performance Computing Using FPGAs (pp. 747-774).Springer New

York.

[29] Multiscale Dataflow Programming ,Maxeler Technologies Ltd, London, UK, 2014

[30] Programming MPC Systems, Maxeler Technologies Ltd, London, UK, 2014

[31] https://storm.apache.org/

[32] SWIG: http://www.swig.org/index.php

[33] http://en.wikipedia.org/wiki/Network_socket

[34]http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

Deliverable 3.1 QualiMaster

© QualiMaster Page 65(of 66)

[35] Papapetrou, O., Garofalakis, M., & Deligiannakis, A. (2012). “Sketch-based querying of

distributed sliding-window data streams”. Proceedings of the VLDB Endowment, 5(10), (pp. 992-

1003).

[36] Hayashi, T., & Yoshida, N. (2005). “On covariance estimation of non-synchronously observed

diffusion processes”.Bernoulli, 11(2), (pp. 359-379).

[37] Arlitt, M., &Jin, T. (2000). “A workload characterization study of the 1998 world cup web site”.

Network, IEEE, 14(3), (pp. 30-37).

[38] http://en.wikipedia.org/wiki/Program_optimization

[39] Amdahl, G. M. (1967). “Validity of the single processor approach to achieving large scale

computing capabilities”. In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, ACM, (pp. 483-485).

[40] http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

[41] Cormode, G., &Muthukrishnan, S. (2005). "An improved data stream summary: the count-min

sketch and its applications. Journal of Algorithms, 55(1), (pp. 58-75)."

[42] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New

York: ACM press.

[43] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.

[44] Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector

machines. Neural Networks, IEEE Transactions on, 13(2), 415-425.

[45] Joachims, T. (2006, August). Training linear SVMs in linear time.InProceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 217-

226).ACM.

[46] Fan, R. E., Chen, P. H., & Lin, C. J. (2005). Working set selection using second order

information for training support vector machines. The Journal of Machine Learning Research, 6,

1889-1918.

[47] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST),2(3), 27.

[48] Cadambi, Srihari, et al. "A massively parallel FPGA-based coprocessor for support vector

machines." Field Programmable Custom Computing Machines, 2009. FCCM'09.17th IEEE

Symposium on. IEEE, 2009

[49] Papadonikolakis, Markos, and C. Bouganis. "A novel FPGA-based SVM classifier."Field-

Programmable Technology (FPT), 2010 International Conference on.IEEE, 2010.

[50] Pina-Ramfrez, O., Raquel Valdes-Cristerna, and Oscar Yanez-Suarez. "An FPGA

implementation of linear kernel support vector machines." Reconfigurable Computing and FPGA's,

2006.ReConFig 2006.IEEE International Conference on.IEEE, 2006.

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

QualiMaster Deliverable 3.1

Page 66(of 66) www.qualimaster.eu

[51] Lai, Y. K., Wang, N. C., Chou, T. Y., Lee, C. C., Wellem, T., &Nugroho, H. T. (2010, June).

“Implementing on-line sketch-based change detection on a netfpga platform”.In 1st Asia NetFPGA

Developers Workshop.

[52] Lai, Y. K., & Byrd, G. T. (2006, December). “High-throughput sketch update on a low-power

stream processor”.In Proceedings of the 2006 ACM/IEEE symposium on Architecture for

networking and communications systems (pp. 123-132).ACM.

[53] Thomas, D., Bordawekar, R., Aggarwal, C. C., & Yu, P. S. (2009, March). “On efficient query

processing of stream counts on the cell processor”. In Data Engineering, 2009.ICDE'09. IEEE 25th

International Conference on (pp. 748-759). IEEE.

[54] Wellem, T., Lai, Y. K., Lee, C. C., & Yang, K. S. (2011, October). “Accelerating Sketch-based

Computations with GPU: A Case Study for Network Traffic Change Detection”.In Proceedings of

the 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications

Systems (pp. 81-82).IEEE Computer Society.

[55] Wellem, T., & Lai, Y. K. (2012, December). “An OpenCL Implementation of Sketch-Based

Network Traffic Change Detection on GPU”. In Parallel Architectures, Algorithms and

Programming (PAAP), 2012 Fifth International Symposium on (pp. 279-286). IEEE.

[56] Fowers, J., Brown, G., Cooke, P., &Stitt, G. (2012, February). “A performance and energy

comparison of FPGAs, GPUs, and multicores for sliding-window applications”.In Proceedings of

the ACM/SIGDA international symposium on Field Programmable Gate Arrays (pp. 47-56).ACM.

[57] Qian, J. B., Xu, H. B., DONG, Y. S., Liu, X. J., & Wang, Y. L. (2005). “FPGA acceleration

window joins over multiple data streams”. Journal of Circuits, Systems, and Computers, 14(04),

813-830.

[58] Ureña, J., Mazo, M., Garcıa, J. J., Hernández, Á.,& Bueno, E. (1999). “Correlation detector

based on a FPGA for ultrasonic sensors”. Microprocessors and Microsystems, 23(1), 25-33.

[59] Fort, A., Weijers, J. W., Derudder, V., Eberle, W., &Bourdoux, A. (2003, April). “A performance

and complexity comparison of auto-correlation and cross-correlation for OFDM burst

synchronization”. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).

2003 IEEE International Conference on (Vol. 2, pp. II-341).IEEE.

[60] Lindoso, A., &Entrena, L. (2007). “High performance FPGA-based image correlation”. Journal

of Real-Time Image Processing, 2(4), 223-233.

[61] Liu, X., Sun, D. J., Teng, T. T., & Tian, Y. (2013). “FPGA Implement of Multi-Channel Real-

Time Correlation Processing System”. Applied Mechanics and Materials, 303, 1925-1929.

