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Executive summary  

This deliverable is the first deliverable of WP2. It reports on the progress of WP2 in the first year of 

the QualiMaster project towards developing scalable and quality-aware methods for real-time 

processing and analysis of data streams. More specifically, the focus of this deliverable is on 

describing the foundations, the concepts and the set of algorithm families that will be considered 

during the course of the project. The deliverable describes families of algorithms for generic data 

stream processing as well as algorithms that are particularly relevant for conducting financial 

(systemic) risk analysis using real-time information from financial market streams such as stock 

trading tick data or currency change quotes. The selection of these algorithms was based on a 

deep analysis of the requirements that resulted in WP1 and in collaboration with the industrial 

members of the consortium. The selected algorithms will be implemented and optimized for higher 

scalability and minimum latency.  

Furthermore, the deliverable describes a set of methods that will be evaluated, optimized or 

customized during the course of the project for processing and analyzing (social) web data 

streams in support of the financial (systemic) risk analysis. The selection of these methods was 

based on the requirements and on an extensive study of the state-of-the-art in web mining and 

recent work on extracting meaningful signals from the social web for the detection of emerging 

events or the prediction of the development in financial markets. 

In addition to studying and selecting specific data processing algorithms and methods, we also 

started implementing and evaluating some of these methods as part of the development of the first 

real-time stream processing pipeline in QualiMaster. This includes the implementation of the 

Hayashi-Yoshida Correlation Estimator as well as the SVM and SentiWordNet sentiment classifiers 

as Apache Storm topologies that are executed and evaluated on a computing cluster.  
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1 Introduction 

One of the key goals of the QualiMaster project, and WP2 in particular, is to analyze, extend, adapt 

and develop families of scalable data stream processing algorithms to perform real-time analysis 

over high volume, high velocity and bursty data streams. This includes algorithms for sketching, 

aggregating, correlating or predicting the evolution of several data streams in order to be used as 

basic data processing elements in the QualiMaster infrastructure. Building on these basic 

processing elements, applications can use the QualiMaster infrastructure to conduct more 

sophisticated analysis on the data streams in real-time. Special focus will be given to the 

application of the QualiMaster in supporting the financial (systemic) risk analysis as the main 

application of the QualiMaster project. Furthermore, a set of data and web mining algorithms and 

methods will be used to harvest the vast amount of user generated data on the web (e.g. in micro-

blogging and social media platforms such as Twitter, YouTube or Yahoo News as well online news 

feeds) in order to extract useful information and signals in support of the analysis that is made on 

the financial data streams.  

The functionality based selection of the algorithm families is derived by the use cases and user 

requirements defined in WP1 (as documented in D1.1 and D1.2). However, the decision of the 

selection of specific implementation is mainly based on whether the implementation of the 

algorithms can be distributed to scale up to high volume and high arrival rate of data in real-time or 

not. While some algorithms are ready for execution in a distributed computing environment, others 

either need to be adjusted first or are not suitable for distributed computing at all. In WP2 we target 

the first two classes of algorithms, and, if required, adjust their implementation in a distributed 

fashion.  

Typically, different implementations (or parameterized variations of the same implementation) of a 

data processing algorithm or method exist that differ in quality/performance tradeoffs. Our goal in 

WP2 is to develop families of algorithms that provide the same functionality and share the same 

interface (in terms of input and output parameters) but differ in quality/performance characteristics 

in order to provide flexibility to the QualiMaster by enabling different configurations at design time 

(e.g. according to user requirements) or by automatic adaptation at run time (e.g. in reaction to 

changes in input load or emerging events). Therefore, in this deliverable we describe the 

evaluation methodologies and measures for the quality and performance of the data processing 

families following the taxonomy of quality parameters and the Adaptation model developed in WP4 

in collaboration with WP2.  

1.1 Relation to other Deliverables 

The selection of the algorithms and the foundations to achieve scalability and quality-awareness 

have been driven by the requirements and use cases of WP1, which are described in deliverables 

D1.1 and D1.2. Some of the considered algorithms are being already translated to reconfigurable 

hardware in WP3, which are then described in D3.1. The quality model and quality dimensions 

applied in this deliverable are the results of a strong collaboration between WP2 and WP4, 

therefore, this deliverable is also connected to D4.1. Finally, the deployment, integration and 

execution of the developed algorithms are being performed on the QualiMaster infrastructure that 

is provided by WP5 and described in deliverables D5.1 and D5.2. 

1.2 Contribution to the QM Priority Pipeline 

During the first year of the project several data processing algorithms have been studied, 

analyzed, adjusted or re-implemented to adhere to the real-time processing and scalability 
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requirements. A special focus have been given to the implementation and experimentation with the 

algorithms that are part of the QualiMaster Priority Pipeline as a proof-of-concept and for testing 

the integration with the components developed in other work packages. The design of the QM 

priority pipeline is illustrated in Figure 1. For more detailed description of this pipeline and its 

integration please refer to deliverable D5.2.  

The contribution of WP2 to this pipeline is the distributed implementation of the real-time 

computation of the correlation matrix from the financial data stream using Hayashi-Yoshida 

Correlation Estimator (component 3b), the pre-processing and annotation of micro-blogs stream 

from Twitter (component 5), and the sentiment analysis of micro-blogs using SVM (components 

6a) and SentiWordNet (components 6b) as part of Apache Storm topologies. More details on these 

methods, their implementation and the preliminary results can be found in Sections  4.1.1,  5.2.1, 

6.1.4 and  6.1.5, respectively. 

 

 

Figure 1: QualiMaster Priority Pipeline 

1.3 Outline of the Deliverable 

The deliverable is structured as follows. First, Section  2 reviews the requirements and challenges 

for developing scalable, quality-aware real-time data stream processing algorithms and then 

describes the QualiMaster approach for addressing them. Section  3 presents three algorithm 

families for generic data stream processing that will be considered in QualiMaster. These are 

algorithms that can be re-used in different scenarios and applications. Section  4 then discusses a 

list of algorithms that have been identified as relevant for the (systemic) risk analysis in the 

financial domain. In particular, the distributed implementation of the Hayashi-Yoshida Correlation 

Estimator and its incorporation in the QM priority pipeline is discussed in more details in this 

section. Next, Section  0 describes some basic methods and tools that are used in QualiMaster for 

adaptive crawling and pre-processing of textual content from the web. Section  0 gives an overview 

of the methods that are being considered in QualiMaster for real-time analysis of social web data 

streams in support of (systemic) risk analysis including sentiment analysis, user and social network 

analysis, event detection and entity network extraction. Moreover, preliminary results of the initial 

implementations of some of the proposed methods and the incorporation of them in the QM priority 

pipeline are also reported in Section 6. Finally, Section  7 summarizes and concludes this 

deliverable with insights on future work towards the next deliverable, which is due in July 2015. 
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2 Scalable, Quality-aware Data Processing 

This section describes the QualiMaster approach for addressing scalability and quality-awareness 
issues of data processing algorithms. We start by reviewing the relevant requirements from D1.1 
and D1.2 and highlight the key challenges as the motivation for the derived solutions. Next, we 
discuss the high level concept for achieving scalability and quality requirements. 

2.1 Requirements 

By analyzing the user requirements and use cases that are described in D1.1 and D1.2, we can 

summarize the algorithm related requirements as follows. For more details, please, refer to D1.1 

and D1.2. 

2.1.1 Real-time Processing 

Real-time processing of online data streams. This requirement is directly derived from the initial 

requirements REQ-DS1 and REQ-Q1 in D1.1. It implies the need for designing and developing 

data stream processing algorithms with a very low latency (possibly in sub-seconds level). 

2.1.2 Support for Processing of Historical Data 

Although processing of real-time streams is the main focus of the QualiMaster project, it is also 

required to provide a support for batch processing of historical data as an important part of any 

analysis or prediction model (see REQ-DS3 in D1.1). This requirement implies providing a batch-

processing implementation of the key algorithms to be developed in QualiMaster as well as 

management mechanisms to provide the input data to the batch processing algorithms in an 

adequate form. As discussed in D5.1, this is done by the Data Management Layer, which manages 

the data sources and sinks for the real-time processing. In order to work on actual data in batch 

processing, the Data Management Layer can be configured to transparently store data received by 

the data sources, intermediary data produced by the data processing pipelines and output data at 

the pipeline sinks. In particular, this includes strategies for managing aged data and for coping with 

the overall data volume. An additional benefit from the use of historical data is that they can be 

obtained at much lower cost vs. real-time stream data, and that due to our ability to construct 

experiments in which we can know a priori where singular events take place we can feed historical 

data to the QualiMaster pipeline and in real-time evaluate its ability to detect these singular events. 

2.1.3 Scalability 

Requirements REQ-DS4, REQ-DS5, REQ-DS6, REQ-DS7 and REQ-Q2 define the minimum scale 

in terms of the input size that the QualiMaster infrastructure (and its algorithms) has to be able to 

process. It is required that the coverage of the data sources (e.g. stock markets) is maximized. 

These requirements also imply that the algorithms need to be capable to process any (possibly 

unexpected) increase in the numbers of input streams or the arrival rates of tuples. 

2.1.4 Quality  

It is expected that optimizing algorithms for low latency, and scalability goals often implies some 

loss in the quality of the output (e.g. approximation vs. exact solutions) and higher cost in terms of 

computational resources. Furthermore, the use web and social media streams (which are 
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inherently noisy and have no quality guarantees) require additional effort on the assessment of the 

quality and reliability of the analysis results that are based on these sources. Requirements REQ-

Q3, REQ-Q4 and REQ-Q5 from D1.1 focus on the quality and cost aspects. It is required that the 

processing algorithms are designed in a way that enables the estimation of the quality of their 

output as well as the computational cost of producing this output. This should enable QualiMaster 

to provide the end users with useful information about any possible trade-offs between quality and 

cost.    

2.2 Sources and Challenges of Data Streams 

We distinguish between two types of data streams that are considered in the QualiMaster project, 

which pose different characteristics and thus different challenges (see Figure 2). The two types 

are: financial data streams and social web data streams.  

2.2.1 Data Sources 

2.2.1.1  Financial Data Streams 

These are online streams of short messages on the trading in the financial markets. Examples 

include trading of stocks in stock markets, currency exchange quotes, futures on indices and 

futures on bonds. The messages are typically of a short length and have a well-defined structure. 

Several streams can be collected from different markets at different levels of granularity. The 

velocity of the streams is considerably high (i.e. data volume is growing at a high rate) making it 

very challenging to deal with it in real time.    

2.2.1.2  (Social) Web Data Streams 

Examples of social web data sources that will be considered in QualiMaster include general-

purpose micro-blogging platforms such as Twitter as well as other more specialized financial blogs 

such as StockTwits and SeekingAlpha, which focus on financial market related topics. QualiMaster 

will also investigate the exploitation of other social media platforms with rich user-generated 

content such as YouTube and Wikipedia. In addition to social media platforms, QualiMaster will 

collect and process news articles from online news RSS feeds. The data collected from the 

aforementioned sources are typically noisy, semi-structured/unstructured data streams, which 

originate from heterogeneous sources. 

2.2.2 Data Challenges: 

The goal of WP2 is to address three key research challenges (see Figure 3) with respect the types 

and characteristics of the data to be processed, which we describe below. 

2.2.2.1  Dealing with high Velocity and high Volume Financial Data Streams: 

The challenge here is to develop scalable algorithms for real-time data stream processing. This is 

particularly crucial for data streams of high velocity (i.e. high arrival rate of new data) such as the 

financial data streams, which can contains millions of messages per second that report in real-time 

about trading activities in financial markets (e.g. stock or foreign exchange markets). The 

algorithms should be re-implemented or adapted to run in a distributed cluster in order to be able 

to exploit state-of-the-art Big Data technologies such as Apache Hadoop and Storm. In addition, 

several variations or alternative implementation of the algorithms that differ in quality and 
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performance should be considered to allow the QualiMaster infrastructure to adapt to (dynamic) 

changes in the volume and velocity of the streams in real-time.   

 

 

Figure 2: Data stream sources and format 

2.2.2.2 Dealing with high Variety and Low Quality Social Web Data Streams: 

The challenge here is to cope with the heterogeneity of the sources and the noise in the data in 

order to be able to extract useful and meaningful signals out of it. This is particularly relevant for 

social web data streams. The task is transform the unstructured (or semi-structured) and noisy 

data streams into well-structured and semantically rich streams that can be further exploited by the 

analytic and visualization tools the same way the structured financial streams are used. Another 

challenge here is to correctly identify and extract relevant information with respect to the 

application goals (e.g. in support of systemic risk analysis), which is not straightforward and 

requires extensive experimentation and investigation of different approaches and strategies.    

2.2.2.3  Combining Financial and Social Web Streams for Better Analysis: 

It is expected that several signals (e.g. time series) will be extracted from the social web data 

streams, which might have different semantics depending on the source and the content of the 

streams. The use of signals from social web streams can help in providing contextual information 

that complements the analysis that is based on financial streams, and possibly enable developing 

better prediction models. However, it is expected that the time series produced from the analysis of 

financial streams will have different scale and granularity than the time series produced from the 

analysis of web and social streams. The challenge here is to develop models and solutions for 

combining, aligning and synchronizing these signals with those that are extracted from the financial 

data streams. 
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Figure 3: Data challenges 

2.3 Scalability Model 

The QualiMaster approach addresses the scalability requirement by applying the following four 

strategies, when applicable: 1) pipelining, 2) distributed and parallel computing, 3) acceleration via 

re-configurable hardware, and 4) load shedding and sampling. The next sub-sections describe 

these strategies in more details. 

2.3.1 Pipelining 

This is a well-known technique in High Performance Architectures which involves breaking down a 

sequential process into sub operations [18]. The sub-operations are then executed in a chain such 

that the output of a sub operation becomes the input of the next one. For example, if a function F 

consists of a sequence of sub-functions, for example a, b and c, such that F(xi)= a(b(c(xi))), then it 

is possible to implement F using pipelined logic. The decomposition of F into three sub-functions is 

illustrated in Figure 4. 

This computation model increases the concurrency and thus the overall throughput as it allows for 

processing k tuples at a time in a pipeline of k sub operations.  For very large numbers of tuples, 

the speedup resulting from the use of a k-stage pipelined implementation is up to k times the time 

needed by a non-pipelined implementation (asymptotically approaching k in the best case). The 

maximum speedup is achieved when the computation time for all k sub-functions is equal or 

comparable. 

QualiMaster will investigate the possibility of employing the pipelining strategy when applicable, by 

decomposing the data processing algorithms into sub-functions or sub-components that can be 

executed independently in a sequential process. 
 

 

Figure 4: A pipelines Structure (example taken from [18]) 
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2.3.2 Distributed and Parallel Computing 

The distributed and parallel computing paradigm has been recently widely accepted and adopted 

by both academia and industry as a practical solution for solving Big Data issues due to the 

proliferation of tools and frameworks that enable seamless setup and configuration of clusters of 

commodity computes. Frameworks such as Zookeeper and Hadoop YARN, for instance, provide 

the necessary stack of services for managing the computing clusters such as resource 

management, task coordination, message communication and fault-tolerance keeping the 

developers focused on the data and processing it. The advantage of this distributed and parallel 

computing model is that it can easily scale-up to processing larger loads by simply adding more 

computing and storage nodes to the cluster without the need to change the processing logic. 

Furthermore, most of the existing frameworks allow for controlling the level of parallelism involved 

in a data processing job by setting the number of nods, tasks, or threads to be involved in the 

processing.  

2.3.2.1  Stream Processing via Apache Storm       

In QualiMaster, we focus mainly on stream processing. Therefore, we have decided to use the 

Apache Storm framework for stream processing (See D5.1 and D5.2 for more detailed discussion 

on the other options). There are three main concepts in the Storm model (see 

http//:storm.apache.org): 

- Streams: this is the core abstraction in the Storm model. It is defined as an unbounded 

sequence of tuples that are processed and created in parallel in a distributed fashion. 

- Stream grouping: this concept defines how streams can be partitioned or merged at run 

time at some of the logical computing nodes (e.g. bolts). 

- Spouts: these are the sources of the streams. Typically, a spout reads the stream from 

external sources and emits its tuples to the Storm application.  

- Bolts: these logical processing nodes. The processing of the stream tuples is done in bolts. 

Bolts receive an input stream (or several streams) and process each tuple and produce an 

output stream, which can then be sent to the next tuple for further processing.  

- Topologies: Storm topologies are graphs of connected spouts and bolts. They define the 

structure of the real-time processing applications. Topologies are designed to run forever 

(or until they are stopped by the user). 

The distribution and parallelism degree of running a Storm topology can be configured by setting 

up the number of workers (i.e. physical JVMs) or tasks (i.e. threads per worker). 

In QualiMaster, we will implement all the processing algorithms that are considered in the project 

for generic stream processing (such as sampling or sketching), for financial streams processing 

(such as computing the correlation matrix or the mutual information) and for web and social 

streams (such as text annotations or sentiment analysis) as Storm topologies that run on a 

distributed cluster.      

2.3.2.2  Batch Processing via Apache Hadoop MapReduce 

For the support of processing historical data we also use the Hadoop MapReduce model in 

QualiMaster. All algorithms that will be used in the historical data processing use cases will also be 

implemented as MapReduce jobs for batch processing. For example, the sentiment analysis 

methods, which will be developed as Storm topology for real-time stream processing will also be 

implemented as a Hadoop MapReduce job that can be applied on historical offline collection of 

blogs or micro-blogs.       
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2.3.3 Acceleration via Re-configurable Hardware 

Acceleration by hardware is one of the key strategies of QualiMaster for achieving scalability. This 

is accomplished by transforming the execution of some of algorithms from CPUs into FPGAs. By 

translating some of the bottleneck codes or the most frequently used codes into hardware, we aim 

at gaining significant speedup in the processing of streams. The design and implementation of the 

FPGA-based algorithms is done in WP3. However, the selection of the algorithms to be translated 

to hardware is done in strong collaboration between WP2 and WP3. Please, refer to D3.1 for more 

details on this.    

2.3.4 Load Shedding and Sampling 

This strategy is useful in situations where the input load suddenly and dramatically increases to 

levels that cannot be handled by the physical infrastructure. Instead of breaking the infrastructure 

and stopping the real-time processing of streams it is better to discard some of the input tuples 

(load shedding) or apply some random or semantic based sampling of the input. Although this can 

have an impact on the quality (accuracy) of the analysis, it still remains a practical alternative to 

completely shutting down the real-time analysis (which might have been already running for a 

while).  

2.4 Quality Model 

As mentioned earlier, one of the requirements in QualiMaster is to develop quality-aware data 

processing algorithms. In order to achieve quality-awareness we need a set of quality parameters 

and their measures for the algorithms. The key quality parameters (or dimensions) we consider in 

QualiMaster have been defined in deliverable D4.1 as a result of a consortium-internal quality 

survey based on initial work between WP2 and WP4. In this Section we present a brief overview of 

these quality dimensions (that are illustrated in Figure 5) and refer the reader to D4.1 for more 

details on the quality survey, the overall quality taxonomy as well as the propagation of quality 

parameters through a data processing pipeline.   

2.4.1  Quality Dimensions 

Figure 5 gives an overview of the taxonomy of the quality dimensions and parameters that are 

considered in QualiMaster. As the quality dimensions apply to the entire QualiMaster approach, we 

discuss, below, the parameters and their specific instantiation for algorithms. The quality survey 

conducted by WP4 indicated a high relevance for measuring and analyzing data confidence, 

latency, correctness as well as memory consumption characterizing computational cost. For the 

actual construction of the quality taxonomy and the underlying quality survey, please refer to D4.1. 

In Sections  3,  4,  0 and  0, when we describe the specific algorithms we will refer back to them with 

more details.   

2.4.1.1 Time Behavior 

Time behavior (or timeliness) is the time-related sub-dimension of performance efficiency of [105]. 

The quality survey of WP4 indicated two quality parameters of particular relevance for WP2, 

namely latency and throughput, both targeting timeliness. 

The aim of the latency parameter is to minimize the overall delay between the arrival of a tuple in 

the input stream and the emitting of the results of processing this tuple by an algorithm. It is 

measured in terms of response time, i.e., in time units such as seconds or milliseconds. The 

algorithms will be optimized for low-latency so that the processing time of a tuple is minimized. 
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There is typically a trade-off between timeliness and other quality dimensions such as resource 

utilization or quality parameters such as throughput or accuracy. 

Throughput measures the amount of items that is processed per unit of time or, related to volume, 

as the bytes processed per time unit. Obviously, throughput is related to latency, i.e., increased 

latency reduces the throughput. The aim of QualiMaster is to achieve a high throughput under 

varying conditions. 

2.4.1.2 Resource Utilization 

The aim of this parameter is to minimize the consumption of computational resources by an 

algorithm. The primary measure for this dimension is the memory consumption of algorithms 

during the design and the implementation. Further, we aim at CPU time as quality parameter, i.e., 

the actual execution time as opposed to the response time, as a measure for the utilization of the 

processor(s). However, here the notion of software-based processor utilization and hardware-

based processor utilization need to be aligned. Also tools for monitoring the actual resources 

consumption at run-time will be deployed by the QualiMaster infrastructure (see D5.1, D5.2 and 

D4.1 for more details on the monitoring mechanisms of QualiMaster). There is usually a trade-off 

between cost-efficiency and output integrity or timelines. The more accurate or fast the data 

processing should be, the more resources typically are consumed to satisfy this requirement. 

Figure 5: Quality dimensions (from D4.1, based on [105]) 
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2.4.1.3 Functional Suitability 

As discussed in D4.1, functional suitability in QualiMaster in particular the notions of data integrity, 

and, in WP2 to the quality of the algorithm’s output data. It measures the integrity of the output 

data in several aspects as described below. 

- Data Completeness: 

Completeness refers to the extent to which data is sufficient in breadth, depth and scope 

for the task at hand. In QualiMaster we use this property to measure the completeness of 

the input streams. This can be computed by measuring the coverage of the sources (e.g. in 

terms of stock markets, market players etc.), the sampling degree that is applied to the 

streams, and/or the recall of the applied algorithms(e.g. in classification algorithms). The 

goal is to maximize the completeness of the data as much as possible. However, this 

implies a trade-off with other quality dimensions such as timeliness and cost efficiency.  

- Data Accuracy: 

Accuracy measures the extent to which data is correct, reliable and certified free of error. 

We use this property to measure the accuracy of the data processing and analysis output. 

The measurement of the data accuracy can vary from an algorithm to another depending 

on the concrete definition of the accuracy of the specific algorithms. Examples of possible 

metrics include the confidence or precision value of a prediction or a classification 

algorithm, or the error rate of an approximation algorithm.    

- Data Relevance: 

One of the challenges in processing and analyzing social media streams and web sources 

in general is finding and extracting relevant information with respect to the user query out of 

the large volume of unstructured or semi-structured and noisy data that comes from a 

variety of heterogeneous sources. By data relevance we refer to the estimation of the 

relevance of the processed content (e.g. a blog or a news item) to the user query (e.g. to a 

specific stock or market player). For example, measuring the similarity degree between the 

user query and the entities mentioned in an online post gives an estimation of the 

relevance of that post to the query, which in turn can be used to judge the reliability of the 

analysis that is done based on the content of this post.  

- Data Believability (Credibility): 

The importance and the potential impact of the content of social media streams varies a lot 

depending on the source. We measure the data credibility based on the estimation of the 

credibility of the source or the authors of the content. This can be achieved, for example, by 

manually or automatically evaluating the popularity of a specific source (e.g. blog) or by 

measuring the influence of users in social networks, and taking this measurement as a 

basis for filtering the user-generated content in these networks.    

2.4.1.4 Scalability: 

The aim of this quality dimension is to measure the capability of the algorithm to scale-up to higher 

volume and/or higher velocity input loads. To achieve higher scalability we deploy the four 

strategies as described earlier in Section  2.3.   

The scalability is measured by the maximum throughput of algorithm in terms of the maximum 

volume (in bytes) that can be processed per second (volume scalability) or the maximum number 

of tuples that can be processed per second (velocity scalability).  
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Scalability can also be characterized by the number of financial and social media streams that can 

be processed in parallel (called variety in D4.1). It can also be measured in terms of some domain-

specific criteria such as, the number of financial markets or stocks that are analyzed 

simultaneously, or the depth of the market data streams. 

Increasing the scalability of an algorithm or a processing pipeline implies the readiness to consume 

more resources (such as more computing nodes). 

2.4.2 Algorithmic Families 

Several algorithms can provide the same functionality but differ in the quality parameters (e.g. 

timeliness and resource consumption). Quite often, the decision on which algorithm is the best 

always depends on the user requirements. Therefore, in QualiMaster we adopt the concept of 

algorithm families. An algorithm family is an abstract representation of a class of algorithms that 

perform the task (i.e. functionality), take the same input and produce the same output. For 

example, Sentiment Classification of tweets could be seen as an algorithm family whose task is to 

take a tweet as input and annotate this tweet with one of three sentiment classes: positive, 

negative, or neutral. There could be several implementations for this family, which we call 

members. One example member of the Sentiment Classification family is an SVM-based 

supervised classifier that is trained to detect the right sentiment class of a single tweet. Another 

possible member is an unsupervised method that doesn’t depend on any training data set but still 

is able to annotate each tweet with a sentiment class. The two family members share the same 

interface of the algorithm family, and thus can be (logically) swapped at any time in a running 

application without affecting the functionality of the application. However, these two 

implementations might differ in terms of quality (e.g. accuracy of the prediction of the right 

sentiment class or latency) and/or resource consumptions. This variety with respect to quality-

performance trade-offs provides at run-time room for flexibility and adaptivity to any possible 

changes in the input characteristics or in the user needs. 

 

As a rule of thumb, in QualiMaster our aim is to develop several alternative implementations for 

each algorithm family. Notice that the alternatives can be either completely different 

implementations (as in the above sentiment classification example) or just variations of the same 

implementation, which are differed by setting some algorithm parameters differently.   
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3 Generic Data Stream Processing Algorithms 

Efficiently processing data streams is typically achieved using synopses, i.e., data structures that 

allow representing the most vital characteristics of the provided data while requiring much less 

space for their storage/maintenance. The idea is that instead of using the original data to perform 

(approximate) query processing, we now use the generated synopses. 

 

The use of synopses for processing data streams has been shown essential for current information 

systems, especially since the majority of these systems need to handle massive data collections. 

This led to the suggestion and development of several families of synopses. The families of 

synopses that are mostly related to the context and processing needed in the QualiMaster 

infrastructure are: (i) histograms: data are separated into buckets (i.e., subsets), with each bucket 

focusing on computing specific statistics for summarize the data placed in the particular bucket; (ii) 

sketches: correspond to synopses that provide representative trends in the provided data; and (iii) 

distributed monitoring: focuses on generated synopses in massively-distributed streaming data, 

which implies that this family needs to also handle the related communication issues. 

 

Trade-Offs Histograms are considered simple to interpret, which makes programmers to prefer 

them when developing stream processing algorithms. Dealing with high speed streams of data is 

more effective with sketches and algorithms based on distributed monitoring. However, the typical 

situation is that each sketch focuses on answering a single type of query, which means that 

handling many query types will require incorporating a number of sketches. Finally, processing 

massively-distributed streaming data is more efficiently achieved using algorithms from distributed 

monitoring. 

 

In the following paragraphs, we discuss the synopses that are mostly related to the processing 

required by the QualiMaster infrastructure. Reference [2] provides additional information related to 

existing families of synopses for data stream processing as well as more details for the families 

discussed in the following paragraphs. 

3.1  Histograms 

This family of synopses separate the data of the stream into buckets (i.e., subsets), with each 

bucket focusing on specific statistics that summarize the data placed in the particular bucket. 

Actually, the statistics in each bucket can be used to (approximately) recreate the data that were 

summarized in the particular bucket. To process queries using histograms we need to identify the 

set of buckets that are related to the specific query.  

 

Histograms have been extensively studied and have been already incorporated and used in 

various database-related systems. For example, they have been used in database query 

optimizers for more than twenty years. They can be easily used for processing various types of 

queries. For instance, we can use one-dimensional histograms for approximately answering 

queries related to range-sum, i.e., retrieve the number of the stream data with values in a given 

range. To process more general query types, i.e., involving more than one attribute, we must use 

multi-dimensional histograms, which is a straightforward generalization of one-dimensional 

histograms.  
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The introduced techniques for multi-dimensional histograms can require multiple passes over the 

stream data or only a single pass, with the latter being more efficient. The basic idea of multi-pass 

techniques is to start from a single bucket which is then separated into more buckets. For example, 

[15] starts from a bucket that contains data from various dimensions and then chooses a single 

dimension to further split the bucket. Similar processing is performed by the approach in [16] but 

now each bucket is separated into two buckets at each step. To reduce the required processing 

time of multi-pass techniques, the community has introduced a technique that construct histograms 

in a single pass [17]. 

3.2 Sketches 

During the past years, we have witnessed extensive development for handling streaming data 

using sketch techniques. These techniques typically create a compact synopsis for the observed 

streaming data. This synopsis is vastly smaller than the original data and can be use for answering 

queries over the original stream data. The latter is achieved by updating the synopsis when new 

data are observed. Note that we use a sketch for a particular set of queries and that queries are 

answered by executing a procedure over the defined sketch. We could of course have different 

procedures for the same query type, with each procedure providing different guarantees. 

 

The sketch techniques are considered especially appropriate for streaming data, since for 

streaming data we need to handle large amounts of data and continually update the synopsis. For 

this reason, various sketch techniques have been proposed. Each sketch type focuses on a 

particular query type, e.g., for estimating the frequency of an item in a data set (the so-called 

frequency queries, that can be answered by Count-min sketches), or for deciding the existence or 

absence of an item in a data set (membership queries, for which we can use Bloom filters). For 

processing financial data streams as required by the QualiMaster infrastructure, we will consider 

the query types and thus the related families of sketch techniques discussed in the following list: 

1. Membership queries that return whether a given stream contains a particular item X. 

Handling this type of query is achieved by sketch techniques from the Bloom filter family. 

Some examples are the original Bloom filters, Counting filters, as well as Bloom filter 

extensions. 

2. Set cardinality estimation that return how many distinct items are contained in a given 

stream, for example Flajolet–Martin Sketches [6]. This functionality is supported by sketch 

techniques based on Bloom filter extensions. 

3. Count of arrivals over sliding windows that return how many items arrived in a requested 

time, for example during the last 10 seconds. The state-of-the-art data structures for 

supporting these queries are exponential histograms and randomized waves.  

4. Frequency counts that return many times a particular item X has been contained in a given 

data stream. These are by far the most frequently requested queries. They can be supported 

using Count-min sketches [1] and ECM-sketches (ECM-sketches provide the same 

functionality over a sliding window constraint). 

5. Self-join and inner-product size estimation that provide the self-join size of the item 

frequencies in a data stream. This query type is typically used for constructing efficient query 

plans in relational databases and is typically required for the full implementation of query 

planners. Such query types can be supported by the Count-min sketches [1], AMS sketches 
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[4, 5], and ECM-sketches (ECM-sketches provide the same functionality over a sliding 

window constraint).  

3.3 Distributed Monitoring 

More recent efforts have concentrated on scaling stream processing techniques to massively-

distributed streaming data. In such settings, we not only need to deal with the strict space and time 

requirements but also with the related communication aspects. Several communication-efficient 

streaming tools have been recently proposed for handling a number of challenging query tasks. 

This, for example, includes distributed tracking of simple aggregates [8], quantiles [10], and 

complex join aggregates [9].  

 

A state-of-the-art approach for monitoring arbitrary functions over distributed data streams is the 

geometric method [11, 12]. The geometric method addresses the basic problem of monitoring 

distributed threshold-crossing queries; that is, monitor whether f(v(o))<τ or f(v(o))<τ, for any 

arbitrary, possibly complex, non-linear function f() of a global statistics vector v(o) fragmented over 

Ν sites, and a fixed threshold τ. The core idea is that, since it is generally impossible to connect the 

values of f() on the local statistics vectors to the global value f(v(o)), one can employ geometric 

arguments to monitor the domain (rather than the range) of f(). Since this method relies on 

geometric insights to enable local inference, it drastically reduces the communication cost 

monitoring of such functions.  

 

Recent work has extended the geometric approach. For instance, the approach introduced in [13] 

explains how to make the geometric monitoring more efficient using prediction models. Another 

example is the approach introduced in [14]. This approach combines the geometric approach with 

AMS sketch estimators and this allows the efficient tracking of a broad class of complex queries 

over massive, high-dimensional distributed data streams with provable error guarantees. 

3.4 Evaluation Methodology 

Evaluating the data stream processing algorithms is performed using metrics that are in two 

categories: (1) generic metrics and (2) family- or algorithm-specific metrics. The former involves 

the typical metrics used for evaluating the majority of algorithms, such as the required time for 

processing queries and scalability tests from testing how the processing algorithms scale to large 

streaming data. 

 

The metrics used for the second category, i.e., family- or algorithm-specific metrics, aim at 

evaluating the processing incorporated and followed in the particular algorithm(s). For example, a 

commonly used algorithm-specific metric for distributed monitoring is for the communication cost 

and this provides the number of messages transmitted in the network across different thresholds 

for specific network configurations (e.g., a network with 10 sites). 
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4  Algorithms for Processing Financial Data Streams 

There were numerous attempts in the research community to define systemic risk [102, 101, 98, 

97]. The general consensus is that in order to identify systemic risk, some sort of network structure 

has to be recovered from the available market player data. The network should be later analyzed 

for potential fallbacks of the market player dependency structure. The main difficulty lies in 

determination of the most suitable measure of symmetrical and asymmetrical dependency different 

market players. 

A symmetrical dependency does not infer a directional relationship, i.e., one stock price drives 

another stock price. It only says that there is some sort of relationship between two market players, 

for example there exists a linear correlation of prices. It is not known whether the directionality of 

the dependency is critical for systemic risk identification. The symmetrical dependency measures 

are cheaper to compute, and possibly sufficient to define systemic risk. The following two 

measures are chosen: 

 

1. Hayashi-Yoshida linear correlation coefficient estimator [7] - Linear correlation coefficient 

provides a measure of linear relationship between two vectors of data. The Hayashi-

Yoshida correlation is a cheap-to-compute estimator of the linear correlation coefficient for 

asynchronous data.  

The Hayashi-Yoshida estimator can offer better accuracy [7, 99] than approaches based on 

previous step interpolation, linear interpolation or next step interpolation. This should allow 

for better estimation of linear symmetrical dependence between different market players. 

This in turn should allow for more accurate systemic risk identification.  

 

2. Mutual Information - In contrary to the Hayashi-Yoshida method presented in bullet 1, 

above, mutual information can account for non-linear relationships between two data 

vectors. It is known that financial data often follows heavy tailed distributions, to capture 

those relationships the dependency measure needs to take into account higher order 

statistics [97, 96, 104]. These may be critical for identification of systemic risk, yet come at 

a cost [97]. Computational complexity of mutual information is quadratic. Furthermore, 

mutual information relies on either model or model-free estimates of data series probability 

density function estimations, which can introduce substantial noise in the systemic risk 

calculations. Data synchronization is also necessary for mutual information calculation.  

Despite the potential drawbacks the non-linearity might be crucial for identification of 

systemic risk and mutual information metric is included in the QualiMaster infrastructure.   

Asymmetrical dependency is usually defined as causality, i.e., one stock price is dependent (not 

solely) on the past prices of a different stock. If the measure can capture directionality a directed 

graph can be constructed. There is a strong support in literature that asymmetrical dependencies 

are important for systemic risk identification [103, 72, 60, 59]. The disadvantage is that the 

directional metrics are more computationally intensive and for analysis they require computation of 

directionality in both directions. To understand the impact on the computation cost, one can 

imagine a dependency matrix. The matrix is non-symmetrical and requires N^2 calculations. In the 

case of non-casual measures the matrix is symmetrical, and only N(N-1)/2 calculations are 

required.  
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The following two measures are chosen to include directionality:  

3. Hayashi-Yoshida linear cross-correlation estimator [99] - as in 1. Majority of infrastructure 

required to calculate 1. is reused, making this metric a very attractive choice. The 

computation of asymmetric relationship between two market players can introduce 

significant additional cost.  

 

4. Transfer Entropy [100] - Similar to 2 sharing the disadvantages. It measures casualty of two 

data vectors for a specified lag. It takes into account non-linear relationship between two 

data vectors.  The computational complexity is cubic, becoming a potential bottleneck for a 

large number of market players.  

The biggest difficulty lies in probability density functions estimation required for transfer 

entropy calculations. They are three dimensional, and the result is very sensitive to their 

estimation. As in the case of mutual information, there are multiple possible approaches.  

Despite the potential drawbacks the non-linearity might be crucial for identification of 

systemic risk and mutual information metric is included in the QualiMaster infrastructure.   

In this section, we describe the algorithm families that will be considered for processing data 

streams with financial data. These families are (i) correlation matrix estimators, (ii) mutual 

information, and (iii) transfer entropy. During the first year of the project, we have focused on 

studying and incorporating algorithms from the 1st family, i.e., correlation matrix estimators. We 

plan to investigate algorithms in the other two families, i.e., mutual information and transfer 

entropy, in the following months. 

Consequently, in this deliverable we provide a detailed discussion on the family focusing on 

correlation matrix estimations (Section  4.1). This also includes the algorithms corresponding to the 

particular family. We then present the mutual information and transfer entropy families (Section 

 4.2,  4.3) and discuss the algorithms we are currently examining to incorporate in the QualiMaster 

infrastructure.  

4.1 Correlation Matrix Estimators 

This family of algorithms measures correlations between the requested market stocks. The 

correlation between two stocks is a value between +1 and −1 inclusive, where 1 illustrates a 

positive correlation, 0 illustrates no correlation, and −1 illustrates negative correlation. Since 

QualiMaster will be typically requested to provide the correlation between a collection of market 

stocks (i.e., S1, S2, …, Sn), the result of the algorithms in this family is a matrix with each cell 

showing the computed correlation between two specific stocks (i.e., Si and Sj, with i,j<=n). 

4.1.1 Hayashi-Yoshida Correlation Estimator 

The first estimator we have considered for the QualiMaster infrastructure is the Hayashi-Yoshida 

Correlation Estimator [7]. The main advantage of this estimator over the similar estimators found in 

the literature is that it can be applied directly on the series of prices as they are observed in the 

stream without any additional manipulation.  

The Hayashi - Yoshida Estimator estimates the correlation of unsynchronized streams without the 

need of their synchronization. Let: 
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two time-series whose correlation we want to calculate. Let          be the observation times of 

     respectively. The observation intervals: 

             

             

and the respective increment (delta) of the time-series for these intervals: 

          
      

  

          
      

  

The correlation estimator is defined as: 

    
                           

                      

 

That is, the product of any pair of increments         and         will make a contribution to the 

nominator summation only when the respective observation intervals   and   are overlapping. 

 

Since the estimator is not bound by 1 in magnitude, the bounded transformation is applied: 

                

therefore 

            

 

4.1.1.1 Incorporation in the QualiMaster Infrastructure  

We utilize Hayashi-Yoshida estimator to compute the correlation between every pair of the input 

streams. These pair-wise correlations form the correlation matrix of the input. To compute the 

correlations we use sliding (time) windows of configurable size (e.g., a sliding window of one hour) 

and advance (e.g., an advance of 10 minutes). For each symbol (stream) and at each tick, we 

maintain information relevant to the latest interval of the stream, its delta and its overlap with the 

intervals of every other stream. Furthermore, we update (when necessary) the estimator’s 

nominator for every pair of symbols in a rolling fashion. The sum of the squared deltas 

(denominator) is updated as well.  

Whenever a window expires (i.e. when window_size millisecs have passed), we calculate the 

correlation matrix of the input streams simply by dividing the nominator with the appropriate 

denominator of each symbol pair. Note that at the time of the correlations calculation, the 

estimator’s nominator as well as most of the denominator have already been computed for each 

stream pair. 

After the correlation matrix calculation takes place, we shift the sliding window by advance 

seconds. For every stream interval that has now expired ---that is, the interval’s end is earlier than 

the window beginning--- we cancel its contribution to the estimator, and we discard all relevant to it 

information. 

In order to fully utilize the computer cluster provided by QualiMaster infrastructure we parallelize 

the computation of the correlation matrix among every available machine. This is achieved by the 

following technique: Let   be the count of available cluster nodes and and   the dimension of the 

correlation matrix (count of symbols). Then, we partition the correlation matrix to blocks of size 

   
 

 
  and we assign the calculation of each block to a node, following a round robin fashion while 
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iterating the diagonals of the correlation matrix (starting from the second one). Since           

          and               it is only logical that we calculate only the upper triangle of the 

correlation matrix. 

4.1.1.2 Example  

Provided the nodes   ,   ,     (   ) and symbols               (      ), the size of the blocks 

that we will partition the matrix into is      . To partition the matrix, we traverse the matrix 

diagonals (starting from the second one), we create square blocks of dimension b and assign each 

block to a node using round robin. The result is shown in the following matrix where the subscript 

in each cell denotes the node and the superscript denotes the iteration at which the block was 

assigned to the corresponding node. 
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4.1.1.3 Preliminary Evaluation  

To evaluate our implementation we used FOREX symbols data provided by Spring API. The 

created dataset is a subset of the actual data collection available to QualiMaster, and it comprised 

of 143 symbols that result in 10153 correlation pairs. The particular dataset was selected by the 

QualiMaster application partners in order to enable easy and preliminary quality evaluation. We 

defined the window size to 1 hour and reported the correlation matrix each second. That means 

that our estimator used tick data from the last hour to calculate and report the correlations every 

second. Our implementation used Apache Storm framework running on a 3-node computer cluster. 

The average calculation time for estimating all pair-wise correlations is about 280ms. The 

correlation results were manually verified with respect to quality by the QualiMaster application 

partners. 

4.1.2 Pearson Correlation Estimator 

Pearson coefficient is a measure of linear correlation between two random processes. In contrast 

to Hayashi-Yoshida estimator, Pearson estimator can only be used with synchronized data; 

therefore techniques as previous tick interpolation have to be applied to the data before using it. 
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Let            two synchronized time-series and   
                 ,    

 
        

                   their values sampled at regular intervals. Then the Pearson correlation 

coefficient is defined as: 

    
  

     
      

  
         

 
     

  
      

   

      
      

  
    

  
        

 
     

  
    

 
 
   

 

The values of the estimator are bounded by -1 and +1 inclusive, where 0 means no correlation, +1 

total positive correlation and -1 total negative correlation. 

4.1.3 StatStream Correlation Estimator 

StatStream [53] implements a data stream monitoring system, for computing a variety of single and 

multiple stream statistics in one pass with constant time (per input) and bounded memory. Multi-

stream statistics such as synchronous as well as time-delayed correlation and vector inner-product 

are computed in a continuous online fashion. This means that if a statistic holds at time t, that 

statistic will be reported at time t + v, where v is a constant independent of the size and duration of 

the stream. For any pair of streams, each pair-wise statistic is computed in an incremental fashion 

and requires constant time per update. This is done using a Discrete Fourier Transform 

approximation. The approximation has a small error under natural assumptions. Even when the 

data streams are monitored over sliding windows, no revisiting of the expiring data streams is 

needed. 

The system distinguishes three time periods: 

● timepoint - the smallest unit of time over which the system collects data, e.g. second. 

● basic window - a consecutive subsequence of timepoints over which the system maintains 

a digest incrementally, e.g., a few minutes. 

● sliding window - a user-defined consecutive subsequence of basic windows over which the 

user wants statistics, e.g. an hour. The user might ask, “which pairs of stocks were 

correlated with a value of over 0.9 for the last hour?” 

 

4.1.3.1 Statistics to Monitor: 

Consider the stream si = 1, …, w. Possible statistics the system can monitor are: 

1. Single stream statistics, such as average, standard deviation, best fit slope.  

2. Correlation coefficients 

           

 
 

        
    

          
             

   

 

3. Autocorrelation: the correlation of the series with itself at an earlier time. 

4. Beta: the sensitivity of the values of a stream s to the values of another stream r (or 

weighted collection of streams). For example, in financial applications the beta measures 

the risk of a stock. A stock with a beta of 1.5 to the market index experiences 50 percent 

more movement in price than the market: 
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4.1.3.2 Maintaining Statistics over Sliding Windows 

To compute the statistics over a sliding window, the system maintains a synopsis data structure for 

the stream to compute the statistics rapidly. The sliding window is equally divided into smaller 

windows called “basic windows”, in order to facilitate the efficient elimination of old data and the 

incorporation of new data. It keeps digests for both basic windows and sliding window. For 

example, the sum over the sliding window is updated as follows: 

 

    
   

     
   

             

 
 

 

Figure 6: Sliding windows and basic windows (image is from [53]) 

 
The size of the basic window is important because it must be possible to report all statistics for 

basic window i to the user before basic window i+1 completes (at which point it will be necessary to 

begin computing the statistics for window i+1). 

4.1.3.3 Computing Pair-wise Correlations 

The efficient identification of highly correlated streams potentially requires the computation of all 

pairwise correlations and could be proportional to the total number of timepoints in each sliding 

window times all pairs of streams. The system makes this computation more efficient by (1) using 

a discrete fourier transform of basic windows to compute the correlation of stream pairs 

approximately; (2) using a grid data structure to avoid the approximate computation for most pairs. 

The system computes the discrete Fourier transformation over each basic window for each stream 

and then updates the sliding window Fourier approximation by using the existing basic window 

digests. At this stage, every stream is described by a set of Fourier coefficients. Using DFT 

properties, the correlation between two streams is shown to be equal to the Euclidean distance of 

their normalized Fourier coefficients. Hence, the system can use a Grid structure and hash each 

stream s to a certain cell based on a subset of its first few Fourier coefficients. When the input 

query is to find all streams that are correlated with stream s with a correlation higher than a certain 

threshold t, then only streams hashed in neighboring cells in the grid structure need to be 

examined as they consist of a super set of the true correlated streams (false positives). No false 

negatives are introduced. 

4.1.3.4 Incorporation in the QualiMaster Infrastructure  

The StatStream system has been implemented into a distributed Storm architecture in order to 

utilize the QualiMaster infrastructure. The system can scale depending on the number of available 

nodes in the cluster. Each stream is hashed to a certain node of the cluster. The load is partitioned 
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equally among nodes. Each node needs to compute single stream statistics (e.g. moving average, 

fourier coefficients, etc.) over basic windows as described. Then, it needs to hash each stream to 

the grid structure based on its Fourier coefficients. The grid structure is currently implemented into 

one single node for simplicity but can easily be partitioned and scaled based on available nodes. 

4.1.4 Correlation Estimator by using the Processing Methodology of StatStream 

The StatStream framework can be altered to incorporate different algorithms with similar 

“philosophy”. StatStream itself uses DFT as an approximation and the Grid Structure as the 

indexing structure. Different combinations of approximation technique/indexing structure (e.g., 

curve fitting/R-tree index) can be incorporated into the system and replace the existing ones 

depending on algorithmic needs. Note that StatStream’s basic idea can also be used in different 

use cases and is not restricted in finding pair-wise correlations. Basically all singled-stream 

statistics can be easily computed in an online fashion using StatStream. Additionally, multi-stream 

statistics can also be incorporated computed as long as the approximation mechanism and the 

indexing structure used can be efficient for the computation of the metric the streams are tested 

against. For example, in the correlation computation setting introduced in Section  4.1.1, the metric 

to be examined is the pair-wise correlation, which is in turn reduced to the Euclidean distance of 

the DFT coefficients (approximation mechanism). Hence, a Grid Structure (indexing) is very 

efficient in this setting as it is an indexing structure optimized against the Euclidean distance 

metric. 

4.1.5 Trade-Offs Between the Algorithms of the Family 

A typical method for measuring co-movements between stocks is the Pearson Correlation 

Estimator (Section  4.1.2). However, as this estimator is influenced by several effects, such as the 

non-synchronicity of the transactions [3], other estimators are preferred. The Hayashi-Yoshida 

Correlation Estimator (Section  4.1.1) is one of the estimators preferred instead of Pearson, since it 

can be applied directly on the series of prices as they are observed in the stream without any 

additional manipulation.  

StatStream (Section  4.1.3) can be used with limited computing resources. It optimizes the 

processing of query "Given stream id X, which are the streams that have a correlation more than T 

with X?", which is basically a subset of correlations returned by the other estimators. Note that 

StatStream a framework that can work with external estimators (Section  4.1.4) and can, thus, be 

also used for processing the Pearson or Hayashi-Yoshida Correlation Estimator with limited 

computing resources.   

4.2 Mutual Information 

Mutual information is frequently used for retrieving the complete dependence structure between 

two time series (including nonlinear dependence). It basically computes the data shared between 

the given time series, which (intuitively) can be seen as measuring how much knowing variable X 

(or variable Y) reduces uncertainty about variable Y (or variable X). 

Given two time series X={           } and Y={            }, then the mutual information of X and 

Y is computed by the following formula [57]: 
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With symbol          we denote the joint probability density function between X and Y, and 

symbols       and       denote the marginal probability density functions. 

The main challenge for evaluating the mutual information formula is on computing the probability 

density function, and more specifically on estimating this probability. To deal with this issue, 

several methodologies computing such an estimation have been suggested. Some examples 

(explained in [57]) are the kernel density estimators, the k-nearest neighbors, the Edgeworth 

approximation of differential entropy, and adaptive partitioning of the XY plane.  

For incorporating a mutual information family in the QualiMaster infrastructure we will study 

existing estimators aiming at computing the probability density function, for example the ones 

mentioned above such as adaptive partitioning and the kernel density estimators. This is work that 

we have recently started and plan to progress on it during the following months. 

4.3 Transfer Entropy 

Transfer entropy quantifies the amount of information transfer from one variable to another 

variable, and it is considered as a valuable method for detecting the coupling strength between two 

time series [22]. It is denoted as     , where X and Y are two time series, i.e., X={           } and 

Y={            }. Given X and Y, then transfer entropy from Y to X, i.e.,     , is defined as the 

average information contained in the source Y about the next state of the destination X that was 

not already contained in the destination's past.  

Let us now assume that the two time series X and Y are first-order Markov processes. Then the 

transfer entropy from Y to X is given by the following formula: 

                          
               

          
 

   
 

 

As with the computation of the mutual information (Section  4.2), the main challenge when 

processing the above formula for transfer entropy is estimating the probability density function. To 

deal with this problem, researchers estimate the probability density function using different 

methodologies. Such alternative methodologies will become the algorithms that will be included in 

the QualiMaster infrastructure for the specific family. Some examples of alternative algorithms for 

estimating the probability density function are introduced in [22].  

As explained at the beginning of Section  4, we have recently started investigate algorithms in this 

family. With respect to algorithms for the transfer entropy family, we are currently studying the 

kernel density estimation and adaptive partitioning. More specifically, the probability density 

function in the kernel density estimation is computed by summing individual distributions centered 

at each data point, with the shape of the individual distributions denoted by a chosen kernel. 

Adaptive partitioning estimates the probability density function by applying the Darbellay-Vajda 

partitioning algorithm to transfer entropy estimation.  
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5 Crawling and Pre-processing of (Social) Web Data Streams 

In addition to the financial data streams, the QualiMaster infrastructure will support the processing 

and analysis of data streams from the web in general and from social media platforms and online 

news feeds in particular. As discussed earlier in Section  2 2.2, the goal is to extract useful 

information and signals from the very noisy and unstructured web data in real-time. More 

specifically, we want to process and analyze different online streams from social micro-blogging 

platforms and news feeds to produce high quality and well-structured streams (in the form of time 

series) that can be further exploited by analytic and visualization tools as illustrated in the example 

of Figure 7. In this example, the input is unstructured (or semi-structured) and noisy web data 

streams such as textual content of online news articles, posts on social platforms such as Twitter 

and YouTube or graph structures of social networks. The output stream in this example is a time 

series that consists of tuples, where each tuple has a clean and pre-defined structure such as: a 

stock name, a timestamp, the number of posts containing the stock name and the percentage of 

positive posts.  

    

This process involves several steps. The first step to crawl and filter the web data streams. The 

next step is to perform NLP pre-processing and annotation tasks on the textual content of the 

stream (such as tokenization, Named Entity Recognition etc). Finally, analysis methods are applied 

on the pre-processed text such as sentiment evaluation (i.e. objectiveness or polarity), event 

detection or user expertise analysis. 

 

In this section we discuss the first two steps on crawling, filtering and pre-processing input web 

data streams and in the next section we present and describe in more details the web data 

analysis methods that will be considered in QualiMaster to support the analysis of financial data 

streams in general and the systemic risk analysis in particular. 

 

 

Figure 7: Making sense of Social Web Data 
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Table 1 gives an overview on the main social web sources that are currently being considered in 

the project. During the course of the project, we will investigate further sources as well, when 

possible.  

 

Source Description 

Twitter 

The micro-blogging platform Twitter provides a public Streaming API that can be used 
to connect to and receive the live feed of posts (tweets) in real-time. In QualiMaster we 
are using the following endpoints: 

 The filtered stream, which returns public statuses that match one or more filter 

predicates (https://stream.twitter.com/1.1/statuses/filter.json) 

 The sample stream, which a 1% random sample of all public statuses 
(https://stream.twitter.com/1.1/statuses/sample.json) 

 

For a detailed overview, please refer to:  
https://dev.twitter.com/streaming/overview  

StockTwits 

StockTwits is a financial short message communications platform for the financial and 
investing community. StockTwits provides a REST API access to their data. 
 

http://stocktwits.com/ 

SeekingAlpha 

Seeking Alpha is a financial blog platform for investment research where insights are 
provided by investors and industry experts directly, such as suggestions for buy/sell 
stock candidates. It can be accessed via RSS feeds. 
 

http://seekingalpha.com/ 

News RSS 
feeds 

We collect news RSS-feeds from the top international news agencies. The news 
articles are then fetched and stored locally for later use. 

Yahoo News 

Yahoo! News is one of the leading news aggregators, which attracts a large number of 
users who follow news stories around the world and comment on them with over 138 
million distinct yearly visitors. 
 
http://news.yahoo.com/  

YouTube 

YouTube is the most popular video sharing site, and an online community centered 
around user-generated, comprises 60% of the videos watched on-line. In 2014 
YouTube reported having over 1 billion unique visitors each month and over 100 hours 
of videos being uploaded each hour. 
 
https://developers.google.com/youtube/analytics/  

Yahoo Finance 
Earnings 
Calendar 

Contains information indicating scheduled events when companies announce their 
quarterly, annual earnings. Some entries also contain the estimated sentiment in terms 
of a score (pos/neg). 
 
http://biz.yahoo.com/research/earncal/today.html 

Wikipedia 

Wikichanges is a node.js library for getting an edit stream from the 37 major language 
Wikipedias. The Wikipedia MediaWiki installations are configured to log changes in 
specific IRC channels. wikichanges joins all these channels, listens for updates, which it 
then parses, and sends as JavaScript objects to a callback of your choosing. It is 
available in Github (https://github.com/edsu/wikichanges). An example application that 
utilizes Wikichanges to visualize the edits in real-time is Wikistream: 
http://wikistream.wmflabs.org/  

Table 1: Main web data sources that are currently considered in QualiMaster 

 

https://stream.twitter.com/1.1/statuses/filter.json
https://stream.twitter.com/1.1/statuses/sample.json
https://dev.twitter.com/streaming/overview
http://stocktwits.com/
http://seekingalpha.com/
http://news.yahoo.com/
https://developers.google.com/youtube/analytics/
http://biz.yahoo.com/research/earncal/today.html
https://github.com/edsu/wikichanges
http://wikistream.wmflabs.org/


Deliverable 2.1 QualiMaster 

© QualiMaster Page 31 (of 74)  

 

5.1 Adaptive Crawling 

There is a tremendous amount of new data that is being created on the web every day. In addition 

to online news articles that are published by news agencies, high volumes of user-generated 

content are being published in blogging and micro-blogging platforms. Moreover, user ratings and 

comments on content published by organizations or by other users has become a very common 

and popular behavior in Web 2.0. Many of the popular Web 2.0 platforms (like the ones listed in 

Table 1) provide public and/or commercial interfaces for querying and downloading content. 

However, finding relevant content with respect to a given query (e.g. a specific market player or 

stock symbol) is not trivial. Keyword based search has the limitation that only documents or posts 

that explicitly mention the keyword are returned, which leads to low recall. The goal of the adaptive 

crawling is to maximize the completeness (i.e. recall) and the relevancy (i.e. precision) of the 

collected data. This is similar to the idea of query expansion with relevance feedback in information 

retrieval.  

Figure 8 gives a high level overview on how adaptive crawling is realized in QualiMaster. Staring 

with a user query (e.g. stock name, or market player name) as a seed, query expansion is 

achieved in two ways: 

1- Based on knowledge bases: one basic approach using DBpedia knowledge base 

(http://dbpedia.org), for example, to expand the set of query terms could be by making use of 

the “owl:sameAs“ property in order to collect alternative names for a certain company. 

Additionally we can use properties like “dbpedia-owl:manufacturer of” and get names of products 

which are produced by a certain company.  We are currently investigating this approach and 

the possibility to construct an initial domain knowledge base that includes information on 

market players, their organizations, products, stock symbols etc. from DBpedia (see for 

example the information on Apple Inc. at http://dbpedia.org/page/Apple_Inc. and 

http://en.wikipedia.org/wiki/Apple_Inc., which includes links to the stock symbol of the 

company, the stock exchange market, its products etc.) In addition, manual enriched of the 

initial knowledge base by domain experts will be considered as well. 

2- Based on statistics on keyword co-occurrences: This method computes the co-occurrence of 

terms with the initial user query terms inside the retrieved documents or posts. The most 

frequently co-occurring terms are then used to expand the query terms. The purpose of this 

method is to capture new terms that are connected to emerging topics or events, which might 

not be covered by the user’s initial query. For instance, in the case of Twitter stream, this 

method can detect Hashtags that frequently used in posts that include the user’s query terms. 

Unlike classical information retrieval, relevance feedback in this case is not based on user input. 

Instead, we automatically measure the relevance of the collected posts based on their content. 

The goal of this step is to filter out posts that are noise. A post is considered noise if its content is 

off topic, e.g. is on arts or sports when the topic is financial markets. Another reason for classifying 

a post as noise or irrelevant could be the language or writing style of the post, which might be too 

different than posts that are classified as relevant and on topic. We use ground truth datasets to 

characterize relevant posts and identify irrelevant ones. Both supervised and unsupervised 

methods can be applied to classify the posts using the ground truth datasets. Moreover, by 

estimating the relevance of the retrieved posts we can optimize the selection of the query 

expansion terms by ranking them based on the number of relevant posts that include each term. 

In the rest of this section we describe the initial implementation of adaptive crawling in 

QualiMaster, in particular, for crawling Twitter public streams using the filter endpoint, which 

returns only tweets that include a given set of terms.  

 

http://dbpedia.org/
http://www.w3.org/2002/07/owl#sameAs
http://dbpedia.org/ontology/manufacturer
http://dbpedia.org/page/Apple_Inc
http://en.wikipedia.org/wiki/Apple_Inc
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Figure 8: Adaptive crawling of web streams in QualiMaster 

5.1.1 Query Expansion for Crawling Twitter Stream 

Since early 2013, we continuously collect and archive data from Twitter using its public sample 

stream API, which provides a random sample (about 1%) of the whole set of tweets posted on the 

platform in real time. In addition to this collection, we started in 2014 to use the focused crawling 

approach in order to increase the amount of tweets that are directly relevant for the financial 

domain using Twitter’s public filter stream API. Using this API users can provide a list of filter terms 

to the API when the connection is established, which will then be used by Twitter interface to filter 

the tweets based on those terms. As a result, whenever a tweet that includes at least one of the 

filter terms is posted it will be sent to the receiver in real-time via the established connection.  

The terminology used in Twitter is highly dynamic; especially the use of so called Hashtags is very 

dependent on events. For instance, when a certain event occurs Twitter users agree relatively fast 

on the use of a certain Hashtag for marking tweets as related to this event.  

We performed a series of experiments for analyzing the opportunities and difficulties when working 

with a dynamic set of keywords for filtering the Twitter stream. The main challenges here are to 

decide when a new keyword should be selected for the stream filtering and when a keyword 

should be removed from the stream filter. For our experiments we used sliding windows of different 

sizes. While a larger window allows the detection of slowly evolving new Hashtags it also reacts 

slower to fast changes. For our basic setup we decided to add a new keyword or Hashtag if it 

occurs within a certain percentage of the collected messages. If we increase the window size we 

have to reduce this percentage because otherwise no new Hashtags will be added to the stream.  

Selecting the right window size and the correct percentage for a keyword to be added to stream is 

the most difficult part for an automatic keyword adoption in such a scenario. In our experiments we 

realized that too small windows are very vulnerable for spammers. If a spammer sends hundreds 

of messages that contain a keyword we are interested in, within a few seconds our sliding window 

gets filled with these messages and all other Hashtags that are inside the messages are part of a 

large percentage of the sliding window. To reduce this problem we tested methods where only 

distinct messages are considered or only messages from distinct users are taken into account. 

Alternatively we can increase the window size. With a larger window size it becomes very unlikely 

that spammers fill up the whole window and due to that the method becomes less vulnerable to 

spammers.  
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5.1.2 Relevance-based Filtering of Twitter Stream 

When collecting from Twitter data related to certain market players by using the query expansion 

strategy described in previous section, we always face a tradeoff between the number of tweets 

we get and the relevance of these tweets to the market players. Therefore, we need to 

automatically estimate the relevance of the collected tweets in order to balance quantity (i.e. 

number of retrieved tweets) and quality (i.e. relevance of the retrieved tweets to the user query).  

   

 

Figure 9: Relevance estimation of collected tweets 

 

Defining whether a tweet is relevant or not is not an easy task. As described earlier, our relevance 

estimation approach is based on the use of ground truth datasets. Therefore, we collected 

messages from the StockTwits (http://stocktwits.com) platform using its public API to serve as 

ground truth for financial relevant tweets. We decided to use this platform because it has similar 

characteristics to the Twitter platform including its interface and communication style (e.g. the use 

of Hashtags and Cashtags for stock symbols, the restriction on message lengths, the re-tweeting 

and user mentioning style etc). An advantage of this platform is that it is dedicated for the posts on 

topics related to the stock markets. Therefore, our assumption is that a large number of messages 

posted at this platform are of high relevance to the financial domain. Choosing a large set of 

messages from this platform allows us to build models which can measure the relevance of a tweet 

based on its similarity to messages from the ground truth dataset.  

 

For calculating the relevance of the collected tweets we used a Tf/IDF based relevance measure. 

The results of these experiments are shown in Figure 9. As Ground truth we used a set of 100.000 

messages from the StockTwits platform. From these messages we extracted the most relevant 

keywords using their Tf/IDF values. Using this set of keywords as query we calculated the 

relevance of different sets of collected tweets. For comparison we used the following strategies:  

● Random Tweets: A set of 100.000 randomly collected tweets from the streaming API. 

These tweets serve as a very simple baseline. 

● Manual Selected Keywords: This stream was generated using a set of keywords that are 

relevant for the stock market. The keywords were selected based on general observation of 

stock related tweets, such as mentions of exchange markets or stock indices. 

● Stock Names: This is a stream using a set of 2.000 market player stock symbols from the 

NYSE. Examples of market player names are “$AAPL” for Apple or “$AMZN” for Amazon. 
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● Co-Occurring Terms: This stream is collected using the top 100 co-occurring keywords 

from the market player based stream without further filtering. Using a stream like this 

provides a high number of tweets of which many are relevant for the financial sector. 

 

The comparison of the collected tweets shows us that compared to a random sample of tweets all 

presented methods collect tweets which are of much higher relevance at the cost of recall. For 

instance, the use of selected keywords that are related to the financial domain leads to higher 

relevance but lower recall. Selecting tweets that explicitly mention stock names performs best in 

terms of relevance but worse in terms of volume of the retrieved tweets. The collection of tweets 

based on co-occurring terms allows the collection of a large amount of tweets with still a relatively 

high relevance.  Table 2 shows the normalized ([1-0] scale) average relevance of the different 

Twitter filtered streams.  

    

Method 
Random 
Tweets 

Manual Selected 
Keywords 

Stock Names 
Co-occurring 
Terms  

Relevance 0,0775 0,4792 0,6264 0,513 

Tweets per Day ~500 Million ~3.000.000 ~20.000 ~ 15.000.000 

Table 2: The average estimated relevance of tweets based on different filtering strategies 

5.1.3 Conclusion 

The methods presented in this section allow the collection of different sets of tweets with different 

quality parameters. Overall the collection of tweets is in most cases a tradeoff between the 

completeness and the relevance of the collected tweets. Methods like the relevance based filtering 

will allow us to select parameters that provide a good quality of the collected messages together 

with an acceptable completeness level.  

5.2 Text Pre-processing and Annotation 

Extracting relevant information from the collected data and adding additional meta information to 

the data is one of the first major steps that has to be done in order to give a meaning to the data 

and using it in the following processing steps. The main components for the information extraction 

are text pre-processing steps like the tokenization and the Part of speech tagging (POS). Another 

set of methods is aiming at detecting Named Entities (NER) within the analyzed text. Once entities 

are detected additional methods can link these entities to external knowledge bases like Wikipedia 

or DBpedia. 

5.2.1 NLP Processing and Named Entity Recognition 

One of the available tools for NLP is the IXA pipeline [89] (http://ixa2.si.ehu.es/ixa-pipes/) 

developed by the IXA NLP Group (http://ixa.si.ehu.es/Ixa), which has been developed in the 

context of the European projects OpeNER (http://www.opener-project.eu/) and NewsReader 

(http://www.newsreader-project.eu/). In NewsReader the IXA pipes are used for tokenization, part 

of speech tagging, named entity recognition and other NLP processes. Many of these processes 

are also required within the QualiMaster Project.  

 

http://ixa2.si.ehu.es/ixa-pipes/
http://ixa.si.ehu.es/Ixa
http://www.opener-project.eu/
http://www.newsreader-project.eu/
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The tools contain a variety methods that be used in our scenario for the processing of the gathered 

messages. One of the major advantages for using the IXA pipeline in the QualiMaster project is the 

modular structure of the tools. The different modules of the framework can be changed so that 

different Quality parameters can addressed in different situations. Within the framework itself there 

are also parameters that can be changed in order to adopt the framework. Additionally the data 

centric architecture makes the different modules independent and allows therefore the use of other 

toolkits where required. The reported performance values of the tools also sound promising for the 

use in a real time scenario. The modules use the so called KAF format for the in- and output. This 

format well defined and allows us to integrate new modules in the pipelines. The methods used by 

the POS tagging and NERC are maximum Entropy and Perceptron.   

 

At the moment the IXA pipeline offers 5 different pipes for the processing of the data: 

● Tokenizer 

● POS Tagger & lemmatizer 

● NERC 

● Constituent parser 

● Coreference resolution 

This set contains most of the methods we are planning to use when processing the social web 

data. Beside the integrated tools the IXA pipes include a set of third party tools like Named Entity 

Disambiguation and Wikification using DBpedia Spotlight. We are planning to compare all of these 

tools in order to select the best methods or tools for different situations.  

In the area of NER a variety of different tools and methods are available. A large set of these tools 

use Machine learning algorithms for the detection of entities. Additionally some tools use external 

knowledge bases which in some cases also allow the linking of the entities.  

In the area of entity linking we analyzed two different tools and their performances, namely the 

Illinois Wikifier (http://cogcomp.cs.illinois.edu/page/software_view/Wikifier) and the Wikipedia Miner 

(http://wikipedia-miner.cms.waikato.ac.nz/). Booth tools allow the linking of detected entities to 

Wikipedia Pages and due to that the connection of the annotated messages to a large knowledge 

base. This additional knowledge, which links messages and Wikipedia topics can be used in 

several scenarios but, compared to standard named entity recognition, requires more memory and 

computational resources. Both methods use machine learning algorithms for the annotation 

process. The Illinois Wikifier uses a SVM while Wikipedia miner uses Bagged C4.5 classifier. 

Detailed descriptions of the two toolkits can be found in [87], [88] and [89]. 

 

 

Figure 10: Performance comparison of Wikiminer and Wikifier 
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We started with a series on experiments that compared the performance of the two tools when the 

size of the annotated text is changing. For this scenario we choose to select a number between 1 

and 7 tweets. For each run we annotated 10000 tweets related to the financial domain. We can 

see that the Wikipedia miner performs better when the text is shorter but the processing time 

increases relative strong when more tweets are processed in one run. The reason for processing 

more than one tweet per run is based on the fact that this context improves the quality the 

annotations. In the case of the Wikipedia miner the algorithm uses this context for disambiguation 

and entity linking. A behavior like the one observed in these experiments can lead to an adoption 

of the pipeline when different texts have to be processed. Beside the processing time also the 

quality of the annotation is important. 

 

The quality of the produced annotations has been evaluated in [90] and the results are shown in 

Table 3. These results are based on the annotation of a public available dataset from the Making 

Sense of Microposts Challenge 2014 (http://www.scc.lancs.ac.uk/microposts2014/). In contrast to 

long texts the annotation of Microposts is a much harder task because of special language used in 

the messages. 

 

 
F1 Macro AVG Micro AVG 

Model LOC MISC ORG PER P R F1 P R F1 

Illinois Wikifier 0.34 0.09 0.46 0.68 0.44 0.38 0.39 0.63 0.50 0.55 

Wikipedia Miner 0.29 0.04 0.29 0.67 0.28 0.46 0.32 0.32 0.57 0.41 

Table 3: The results of the annotation quality assessment reported in [90] 

We can see that the Illinois Wikifier outperforms the Wikipedia Miner in most of the categories. On 

the other hand our experiments showed that the Wikipedia Miner can outperform the Wikifier in 

terms of processing time. This can lead to adoptions of the pipeline where the Wikipedia Miner is 

used when low latency and high throughput is more important and the Wikifier when a high 

accuracy is more important. 

5.2.2 Topic Detection 

In the area of topic detection we tested two different methods so far. One is LDA the other is a 

method using the Wikipedia category graph for assigning topics to entities and therefore to 

documents containing entities. The use of topic detection methods may allow is in the project to 

base our predictive algorithms only on sets of documents or messages which are related to a given 

topic, or alternatively to adjust the weight of documents based on their topics. Besides that the 

information about the topic of messages or documents can serve as feature and show temporal 

changes in the publishing behavior of certain information sources.   

5.2.2.1 Entity-based Topic Detection 

For the assignment of topic based on entities we use a background knowledge base namely the 

Wikipedia category graph or alternatively the category information stored in DBpedia. We can use 

the categories assigned to the entities and merge these to topics in order to buildtopics based on 

the entities. The process of merging topics is possible due to the structure of the Wikipedia 

category graph which contains parent and child relations for categories. Using this structure allows 

http://www.scc.lancs.ac.uk/microposts2014/
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the merging of very special topics to more general topics up the level of the Wikipedia top 

categories. With DBpedia we could use similar information the category relations are stored within 

dcterms:subject and could be used in the same way as in Wikipedia. Additionally we could use 

attributes like rdf:type which link to knowledge bases like yago (http://www.mpi-

inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/). The use 

of entities together with external knowledge bases offers an alternative to use of LDA for Topic 

Detection. 

5.2.2.2 Latent Dirichlet Analysis (LDA) 

Latent Dirichlet Analysis (LDA) can be employed for uncovering the latent semantics of corpora. 

Latent Dirichlet allocation identifies a given number of |Z| topics within a corpus.  The number z is 

the most important parameter for LDA because itdetermines the granularity of the resulting topics. 

In order to find the latent topics, LDA relies on probabilistic modeling. This process can be 

described as determining a mixture of topics z for each document d in the corpus, i.e., P(z|d), 

where each topic is described by terms w following another probability distribution, i.e., P(w|z). By 

applying LDA we are able to represent latent topics as a list of terms with a probability for each 

term indicating the membership degree for the topic. Furthermore, for each document in our 

corpus we can determine through topic probabilities P(zj|di) to which topics it belongs and to which 

degree. The model needs to be trained on an example dataset and can be applied to any 

document later assigning the probabilities of topics to occur in that document. 

An LDA topic is summarizing a set of coherent terms and this can help to detect events [85, 86] by 

counting their joint bursts as event evidence and aggregating them. Furthermore, it can also be 

useful for clustering users according their expertise regarding particular topics, or to describe their 

expertise with a set of coherent terms. Whilst topic detection using an existing LDA model is rather 

computationally inexpensive and can be performed in real time applications, training of the model 

is very costly (although parallelizable)  in terms of time and hard/software resources, it requires 

high amount of training documents and can take up to several hours for a good quality LDA model. 

Training once a day can be suitable for detecting topics that do not change in time very quickly, 

however a hardware implementation that can be trained much faster would open a promising 

direction for boosting the process and enable real time adaptation also for the quickly changing 

topics and streams with high topical diversity. 

 

 

 

 

 

 

 

 

 

 

 

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
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6 Methods for (Social) Web Data Analysis 

This section discusses a set of methods that are being considered in QualiMaster for processing 

and analyzing web data streams, including both news feeds and social media streams. More 

specifically, methods for sentiment analysis of (micro) blogs, user and social network analysis, 

event detection and entity network extraction will be considered in QualiMaster. The selected 

methods are the results of a study of the state-of-the-art and recent related work that have shown 

the potential of extracting useful and meaningful signals from web content in general and social 

media in particular (see [21], [23],  [20], [24], [19] for example). 

Moreover, a set of use cases that describe the use of the proposed methods in supporting financial 

risk analysis on the stock markets have been defined in collaboration with WP1 and in light of the 

user requirements analysis that have been conducted described in D1.1 and D1.2.  

Figure 11 gives an example scenario for combining the different methods that will be part of the 

QualiMaster infrastructure for processing and analyzing web data streams. Two types of input 

streams are considered in this scenario: streams for social platforms such as Twitter and 

StockTwits and News RSS feeds. The overall task in this scenario is to monitor the opinions of the 

users of these social platforms in real-time towards the developments in the financial markets in 

general or towards specific market players. Therefore, the micro-blogs that are posted by the users 

of the social platforms are retrieved online by connecting to their public APIs. Next, the textual 

content of the posts are pre-processed and annotated using NLP tools (as described in Section 

 5.2). Then the annotated posts are filtered based on user preferences (e.g. focusing on posts of 

some language or posts originating from some region or country). The input streams can also be 

filtered based on some events, which are detected in real-time by an Event Detection module that 

monitors (in parallel) the social media streams and news RSS feeds. Next, an additional filtering 

step can be applied on the posts based on the author of the post. This step utilizes a so-called 

User Index that is updated continuously by a User Analysis module. The User Analysis module 

incrementally builds and maintains profiles of users of social platforms in the User Index in order to 

model their influence and their expertise based on their posts and their network. Posts can then be 

filtered based on the user’s profile in order to filter out spam and irrelevant content. Finally, the 

sentiment of the posts is evaluated using sentiment analysis techniques to identify the polarity and 

opinion of the author towards the target query. The results of this step are then aggregated over 

time to build a time series that shows the development of the opinions over time. 

 

Figure 11: Example scenario for social web and news analysis 
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The reminder of this section reviews the different processing and analysis methods that are being 

considered in QualiMaster, describes their use cases, and discusses some initial and preliminary 

evaluation and investigation results that have been produced in the first year of the project. 

6.1 Sentiment Analysis 

In recent years, we have witnessed an increasing amount of opinionated text appearing on the 

Web, with people discussing ideas and political issues, criticizing movies, reviewing books, or 

elaborating on features of their newly-bought camera. Not surprisingly, this content is not only 

appreciated by ordinary end users but also by professionals ranging from marketing and 

advertisement specialists to political strategists. The growing interest and demand for automatic 

analysis techniques and tools for opinionated digital texts have also fuelled research and led to 

various approaches in opinion mining and sentiment analysis [68]. 

 

Much of the work in this field has focused on the task of sentiment classification [28, 29]) which 

deals with the problem of automatically assigning opinion values to documents or topics using 

various text-oriented and linguistic features. Table 4 presents a couple of examples of objective, 

positive and negative tweets from the Sanders Dataset  (http://www.sananalytics.com) where 

users write their opinions towards the entity Apple.  

 

Objective Tweets 

@APPLE freaks is Siri available for Iphone 4 yet? 
 
#IOS5  needed to include a landscape mode for reminders @Apple 

Positive Tweets 

Not Bad! @Apple Sells Over 4 Million #IPhones in Debut Weekend - Bloomberg - #smartphone 
#sm RT @VinodRad 
 
loving new technology from @apple iPhone 4s 
 
@Apple Safari Reader owns the worldwide web 

Negative Tweets 

THIS IS WHAT WILL KILL APPLE http://t.co/72Jw4z5c RIP @APPLE 
 
@apple why my tunes no go on my iPhone? iPhone lonely without them. silly #iOS5 
 
I just need to exchange a cord at the apple store why do I have to wait for a genius? @apple 

Table 4: Examples of objective, positive and negative tweets 

In an early work, Pang et al. [28] studied the problem of classifying movie reviews, based on the 

sentiment expressed into positive or negative using various classification methods. Their results 

showed that the SVM approach using various textual features provides the highest accuracies for 

the task of movie reviews sentiment classification. In our recent work [67], results showed that 

Naïve Bayes and Logistic Regression are usually inferior to SVM classifiers for the query 

sentiment classification task and that v-SVC (from LIBSVM) performs at best. 

 

A couple of recent works studied the problem of sentiment classification of micro-blogs based 

on the opinions they express.  In [62] the authors investigate the performance of supervised 

methods on Twitter and report that the SVM method using a unigram-based document 

representation outperforms the Naïve Bayes and MaxEnt approaches. In a more recent work [61], 

http://www.sananalytics.com/
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the results show that, while models trained on textual unigrams perform relatively well, some 

improvements of up to 4% can be obtained by (1) incorporating features based on prior polarities 

of words in conjunction with part-of-speech tags and (2) training the models on a significant larger 

amount of data. Kouloumpis et al. [63] elaborate on the usefulness of linguistic features. The 

authors claim that, micro-blogging features such as intensifiers, emoticons and abbreviations could 

improve the classification effectiveness. 

Some other papers have tackled the problem of sentiment classification in the financial 

domain. O’Hare et al. [64] attempt to predict the sentiment of financial blogs towards companies 

and their stocks, with the focus on the usefulness of word, sentence and paragraph level features. 

Martinez et al.  [65] propose using gazetteer lists as sentiment lexicons in order to predict the 

opinion value of financial news documents. Smailovic et al. [66] propose an active learning 

approach for estimating the overall sentiment of a Twitter stream in correlation with the stock 

indexes. 

In [26], we developed a framework able to capture the temporal development of opinions on 

politicians. Our experimental studies in the context of the US 2008 election campaign showed that 

purely data-driven approaches can already capture trends, peaks and switches for public opinion 

in the political domain. Here we achieved further improvements by utilizing, in addition to blog data, 

a history of past opinion polls results for learning parameters that capture intrinsic differences 

between blogosphere and the “real world”. 

Building on our previous works, in QualiMaster we aim at capturing the real-time development of 

opinions in social media on certain entities (such as financial market players) or reactions to news 

events. The Sentiment classification methods from QualiMaster will involve a couple of steps which 

are briefly described in Figure 12. In a preliminary step, our main focus is on retrieving and filtering 

stream-based Tweets and Financial Messages. In the second step, we will make use of both 

supervised and lexicon-based sentiment classification methods in order to assign the documents 

to either the positive, negative or objective class. Finally, the set of methods will include a 

sentiment aggregator and time-aware aggregator capable of providing a representative sentiment 

mood estimator over the input stream.    

In QualiMaster, we will make use of both supervised and lexicon based approaches (which we 

latter discuss in this section) in order to construct the Sentiment Classification components. Our 

focus will be on adapting and enhancing the effectiveness and efficiency of SVM based 

approaches together with SentiWordNet in the context of the financial domain. Moreover, our work 

considers investigating the applicability of other resources in order to deal with the Twitter specific 

challenges that involve for instance ambiguity, vagueness and slang. 

 

 

Figure 12:  Temporal development of opinions 

 



Deliverable 2.1 QualiMaster 

© QualiMaster Page 41 (of 74)  

 

More specifically, in QualiMaster we are working on implementing the use cases 1, 2 and 3 that 

are listed below for support of the financial risk analysis application: 

 

Use Case 1 Monitoring opinions about a market player 

Description Analyze and monitor development of people opinions about a certain market 

player over time 

Input ● Social media streams 

● Features of a market player (name, stock, products etc) 

Steps 1. Receive posts from social media streams 

2. Select posts about the given market player 

3. Perform sentiment analysis on posts 

Output a time series, where each point is a vector of indicators (# of posts, # of 

positive posts, # of negative posts) along with a timestamp 

 

 

Use Case 2 Monitor public mood (investor fear) 

Description Analyze and monitor the development of general public mood with respect to 

financial market over time 

Input Social media streams 

Steps 1. Receive social media streams 

2. Select posts related to financial market and business domain 

3. Perform sentiment analysis on posts 

4. Consider average users, domain experts and influential users 

separately 

Output a time series, where each point is a  vector of indicators (# of related posts, # 

of positive posts etc) along with timestamp 

 

 

 

Use Case 3 Monitoring reactions to news events 

Description Analyze people reactions in social media to a specific event 

Input ● Social media streams 

● Features of a news event (URL, headline, and/or keyword etc) 

Steps 1. Receive social media streams 

2. Select posts about the given news event (comments, tweets etc) 

3. Perform sentiment analysis on posts 

Output a time series, where each point is a  vector of indicators (# of reactions, # of 

positive etc) along with timestamp 
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6.1.1 Supervised Approaches for Sentiment Classification 

Text classification refers to the supervised machine learning approach in which a model capable to 

distinguish documents belonging to different classes (also known as categories) is learned. In 

order to learn the classification model, a set of labeled training documents is required. The learned 

model can be applied to predict the class labels for a set of test documents, for which the class is 

unknown. Training and test documents, which are given to the classifier, are represented as 

multidimensional vectors             . These vectors can, for instance, be constructed using TF 

or TF ·IDF weights which represent the importance of a term for a document in a specific corpus 

[30, 31]. In this deliverable, we briefly describe a couple of state-of-the-art text classification 

approaches which were also frequently used in various works focusing on  sentiment classification 

in Twitter and the financial domain (see for instance [66, 62, 61, 64]) . 

 

Support vector machines (SVMs) were introduced by Vapnik et al. [32, 33] and are considered to 

be highly accurate methods for a various set of classification tasks [34, 28, 35, 36]. Manning et al. 

[37] provide a formalization of the SVM classification method in the context of text classification. 

Given a set of n training documents               with        and            the 

corresponding class labels, we make the assumption that the training data is linearly separable. 

The linear SVM method aims at finding a hyperplane             that separates the set of 

positive training documents from the set of negative documents with a maximum margin. Because 

of its final role on deciding to which class a new document should be assigned to, the separating 

hyperplane is also known as the decision hyperplane [37] or decision surface [38]. 

 

Traditionally, SVMs have been used for binary classification scenarios, but they can be adapted for 

a multiclass case as well. In our work, we will build binary and multiclass classifiers using the SVM 

formulation implemented in the LIBSVM package [39]. However, other implementations exist such 

as the SMO variant and the L2-loss linear methods implemented in the Weka library [40]. 

 

The Naive Bayes classification method [37] is a probabilistic approach which makes the “naive” 

assumption that the term attributes are conditional independent of each other, given the document 

classes. For a test document d, the Naive Bayes approach can estimate the probability of d to 

belong to class    , where           based on: (1) the prior computed conditional probability of 

each term     in d to occur in a document of class     and (2) the fraction of training documents 

belonging to class   . 

 

The Logistic Regression [41] is a statistical and probabilistic classification method which learns a 

logistic (sigmoid) function in order to predict binary outcomes. In our work, we will build classifiers 

using the Multinomial Naive Bayes and the Simple Logistic Regression methods from the Weka 

library. 

6.1.2 Lexicon based Sentiment Analysis 

Recent work in the area makes use of annotated lexical resources such as SentiWordNet [42] or 

SentiStrength [43] to detect the sentiment classes (e.g., the former thesaurus is employed in [44]). 

There are several works that make use of sentiment thesauri for exploratory studies. For instance, 

in [31] we use SentiWordNet to analyze sentiment in YouTube comments and the relationship 

between sentiment and comment ratings. In [45] the SentiStrength resource is leveraged for 

studying sentiments in Yahoo! Answers with respect to temporal and demographic aspects. Vural 

et al. [46] employs a sentiment thesaurus to guide a focused crawler for discovering opinionated 
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web content. For our future work in QualiMaster, we plan to explore the applicability of already 

existing sentiment lexicons in order to enhance the classification modules related to the financial 

domain. Here, our main focus will be on exploiting SentiWordNet. However, we will also investigate 

the performance of other possible methods. Moreover, our future work will also investigate relevant 

methodologies for generating sentiment lexicons specific for the financial domain. 

 

SentiWordNet  is an enhanced lexical resource which was built on top of WordNet and can be 

exploited in various sentiment analysis tasks. WordNet is a thesaurus containing descriptions of 

terms and semantic relationships between terms (examples are hypernyms: “car” is a subconcept 

of “vehicle” or synonyms: “car” describes the same concept as “automobile”). WordNet 

distinguishes between different part-of-speech types (verb, noun, adjective, etc.) A synset in 

WordNet comprises all terms referring to the same concept (e.g. {car, automobile}). In 

SentiWordNet a triple of three senti values (pos, neg, obj) corresponding to positive, negative, or 

rather neutral sentiment flavour of a word respectively) are assigned to each WordNet synset (and, 

thus, to each term in the synset). The sentivalues are in the range of [0, 1] and sum up to 1 for 

each triple. For instance (pos, neg, obj) = (0.875, 0.125, 0) for the term “awesome” or (0.125, 0.75, 

0.125) for the term “wrong”. Sentivalues were partly created by human assessors and partly 

automatically assigned using an ensemble of different classifiers. 

6.1.3 Evaluation Measures 

In order to evaluate the effectiveness of a sentiment classifier, which is usually trying to assign 

previously unseen documents to one out of two classes (e.g., positive vs negative, subjective vs 

objective), various evaluation metrics can be employed. Within the rest of this subsection we will 

briefly describe a couple of popular measures used in the literature. Note that these measures are 

in concordance with the quality dimensions described in Section 2.4.1 (Figure 5). For instance, the 

Accuracy measure in our classification scenarios refers directly to the accuracy in the given 

taxonomy, while Precision and Recall refer mostly to the Accuracy vs. Completeness dimensions. 

Let us consider a two-class classification problem, where the learned model can be applied to 

predict the class labels for a set of test documents, for which the class is unknown. For a new 

previously unseen test document, the task is to assign it to the “positive” or the “negative” class. 

For each individual prediction, documents can be correctly (true) or incorrectly (false) classified as 

belonging to the positive or negative class. In this context, we can define the following subsets and 

use them for defining a couple of standard evaluation measures used in the literature. 

 

Tp = positive instances correctly classified as belonging to the positive class 

Tn  = negative instances correctly classified as belonging to the negative class 

Fp =  negative instances incorrectly classified as belonging to the positive class 

Fn =  positive instances incorrectly classified as belonging to the negative class 
 

Accuracy: the fraction of documents correctly classified: 

     
     

           
 

 

Precision: the fraction of documents correctly classified as belonging to the positive class: 
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Recall: the fraction of positive documents that are correctly classified: 

  
  

     
 

Precision-Recall Curves: provide a more informative picture for the performance of a text based 

classifier, taking into account the confidence of the classifier towards assigning an item to the 

positive or negative class. 
 

 

Break-Even Points (BEPs): precision/recall at the point where precision equals recall, which is 

also equal to the F1 measure. 

 

F Measure: represents an evaluation measure computed based on the weighted harmonic mean 

[37] of precision and recall: 

   
 

 
 
       

 
 

 

where         is a parameter which can be used to emphasize the importance of either the 

precision or recall of the classifier. A common version of the F measure is the F1 score, which 

gives equal weights to both precision and recall (   
 

 
 ). 

 

F1  Measure (F1 Score): the harmonic mean of precision and recall: 

 

      
                

                
 

 
The Break-Even Point and F1 Score represent a single value measure that provides an overview 

for the precision recall curves. 

 
Receiver Operating Characteristic (ROC) Curves: describes the True Positive Rate (TPR) vs. 

the False Positive Rate (FPR) of a classifier, where: 

 

    
  

     
 

and 

     
  

     
 

 

mainly allow to judge classifiers in terms of costs (the number of incorrectly classified negative 

examples) vs. benefits (the number of correctly classified positive examples), as claimed in the 

literature [25, 27].  

 

AUC – Area under the ROC Curve: provides a one single value in the interval [0, 1] 

summarization for the ROC Curve. 

Due to the difficulty of the task, there are text classification scenarios which are not feasible for 

high accuracy/precision scenarios. However, trading recall against precision might lead to 

applicable results. For instance, given a recall of 0.1, it can be that we can obtain a precision 
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higher than 0.9. Alternative measures which focus on the True Positives and the amount of 

correctly identified documents coming from the “positive” class exist. 

 

Despite the common use of ROC curves in the machine learning domain, Precision-Recall curves 

have been preferred in the area of Information Retrieval, especially for tasks with a skewed 

distribution for the document classes [27, 69]. Moreover, the P-R curves are claimed to provide a 

more detailed picture for algorithms, which Davis et al. formalizes under the theorem claiming that 

“a curve dominates in ROC space if and only if it dominates in PR space” (please see Theorem 3.2 

in [27]). 

6.1.4 Sentiment Classification in Micro-blogs 

In this section, we study the applicability of state-of-the-art sentiment analysis methods for 

detecting the sentiment classes of tweets. Twitter documents exhibit inherently different 

characteristics in comparison to classical corpora used for sentiment analysis (i.e., news stories, 

blogs, product reviews, and comments). In this part, our goal is to exploit features obtained from 

the pure tweet text, while applying and evaluating the current sentiment detection techniques for 

this source of data with its unique characteristics. The performance is evaluated on more than 

12,000 human annotated tweets coming from three datasets. 

 

Dataset In this part of the work, we aim at building a general purpose classifier which tackles the 

scenario where we do not have any training labeled instances for a specific domain. Therefore, our 

models are constructed and evaluated using a mixture of three publically available datasets: 

1. Sanders-Twitter Sentiment Corpus: contains 5,513 hand sentiment-labelled tweets 

retrieved for the topics Apple, Google, Microsoft and Twitter. The dataset is available at 

http://www.sananalytics.com. 

2. The Dataset used in [49] which is available upon request and contains 5,127 tweets. Each 

tweet in this collection was labelled as being either positive, negative, neutral or junk. 

3. SemEval-2013 Dataset: contains manual annotated tweets relevant for a range of topics 

such as Steve Jobs, Kindle, iphone and earthquakes. This data was used for the Message 

Polarity Classification Task, where the goal was to detect if a message is positive, negative 

or neutral with respect to the expressed sentiment. The dataset is available for download at 

http://www.cs.york.ac.uk/semeval-2013/task2/index.php?id=data . 

 

For constructing the general purpose sentiment dataset, we sampled from each of the above 

mentioned datasets, samples of equal sizes for the positive, negative and the neutral classes. 

This resulted in a final set of approximately 12,000 tweets, with 4,000 tweets in each sentiment 

class. 

 

Setup:  For our classification experiments, we constructed feature vectors based on the text of the 

tweets. We constructed multi-dimensional feature vectors using TF-IDF weights of the terms 

appearing in the tweets. While doing this, we also accounted for negations (i.e., if a negation, say, 

“not", immediately precedes another term t, we created a virtual term not_t in a similar way as 

described in [47]). We employ a state-of-the-art text classification approach, namely the ν-Support 

Vector Classification (ν-SVC) formulation of SVM from LIBSVM [39]. We built three types of binary 

classifiers to separate each sentiment class from the other two classes, i.e. we applied a “one vs. 

all” (OVA) strategy.  

 

http://www.sananalytics.com/
http://www.cs.york.ac.uk/semeval-2013/task2/index.php?id=data
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In order to train the classifiers we randomly split the instances from the target class into two sets 

reserved for training and testing, and randomly selected an equal number of instances from the 

remaining two classes for training as well as for test sets. In this way, we created balanced training 

and test sets for each classifier. This is similar to the approach employed by [48] to eliminate the 

effect of any underlying bias for a particular sentiment class in the data. We repeated the 

experiments by switching training and test sets and computed the averages for the evaluation 

metrics. We chose the number of training tweets in such a way that the maximum number of 

available annotated documents could be used during the training and testing. As approximately 

4000 tweets are annotated as positive, the positive vs. all classifier was trained with 2000 tweets 

from the positive class and 1000 tweets selected from each of the negative and objective classes. 

The test set was created analogously. For the negative vs. all and objective vs. all classifiers, we 

trained and evaluated the models with the same amount of tweets. 

 

Results Our quality measures are the precision-recall curves as well as the precision-recall break-

even points (BEPs) for these curves (i.e. precision/recall at the point where precisionequals recall, 

which is also equal to the F1 measure, the harmonic mean of precision and recall in that case). 

The detailed precision-recall curves for the three classifiers are shown in Figure 13. The main 

observations are: 

 Using the bag-of-words texts, binary ν-SVC classifiers positive vs. all, negative vs. all 

and objective vs. all yield BEP values of 0.658, 0.685, and 0.668, respectively. 

 All three types of classifiers provide relatively good performance for Recall < 0.4. 

 Trading recall against precision leads to applicable results. For instance, we obtain 

prec=0.876 for recall=0.1, and prec=0.839 for recall=0.2 for the positive-vs-all 

classification scenario; this is useful for finding candidates for positive-opinionated 

tweets in large Twitter sets. 

 

 

Figure 13: Precision-recall curves and BEPs for (a) positive vs. all, (b)  negative vs. all 

We also applied the well-known lexicon-based method SentiWordNet in order to predict the 

sentiment classes of the test Tweets. Here we used the test documents from each of the preceding 

classification tasks. SentiWordNet yielded accuracy values of 0.649, 0.619 and 0.651 for the test 

sets employed in positive-, negative-, and objective-vs-all classification experiments. These values 

are relatively close to the accuracy scores provided by the SVM method, 0.661, 0.680 and 0.676. 

However, using the unsupervised approach we were able to classify only approximately one third 

of the messages, as many of the documents do not contain a value in the SentiWordNet’s 

vocabulary list. 
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6.1.5 Sentiment Classification in Financial Micro-blogs 

Preliminary Term Analysis The textual content of the financial microblogs coming from the 

StockTwits dataset can provide clues on the vocabulary used by the professional users in the 

dedicated microblogging platform. 

 

As a first step, we conducted a term analysis on the financial microblogs texts to compare the 

subjective (“bullish” and “bearish” tweets) vs objective ones. We ranked the microblogs terms (after 

stemming)  using the Mutual Information (MI) measure, which mainly quantifies how much the joint 

distribution of terms deviates from a hypothetical distribution in which terms and sentiment classes 

are independent of each other. In other works, the MI is also employed for the detection and 

extraction of opinionated words [50]. In our case, we just exploit this measure for identifying the 

most probable words appearing in the two distinct sentiment classes (subjective vs objective). 
 

Table 5 shows the top-20 stemmed terms with the highest MI scores for the subjective vs. 

objective classes. Note that the term lists are quite intuitive. The objective class involves mainly 

general financial market terms (e.g., open, close, median, list, report), company market names 

(e.g., aapl, s&p, dow jones, s&p).  In the other class, many of the terms are general opinionated 

terms (e.g., good, short, long, strong, big), or terms that could be considered financially 

opinionated (e.g., buy, sell, bull, bearish).  

 

Terms for Subjective Financial Microblogs Terms for Objective  Financial Microblogs 

short share strong 

sell money profit 

compani bull high 

buy volum bear 

dump long good 

ebola cover peopl 

earn tomorrow suit 

pump bearish sale 

price lol big 

come million click 
 

aftr averag energi 

close continu publish 

trade drop aapl 

open point recent 

rate block interest 

median nasdaq event 

report upsid volatil 

list qtrs wk 

s&p etf thought 

post correct dow 
 

Table 5: Top-30 (stemmed) terms w.r.t. MI values for subjective(left) vs. objective(right) category 

In this subsection we study the performance of SVM models for predicting the sentiment class of 

microblogs coming from the financial domain, namely the StockTwits platform. 

Here we mainly repeat the “one vs. all” experiments from the previous classification task on a new 

type of data. Therefore we built three types of binary classifiers to separate each sentiment class 

from the other two classes. In this case the “positive” microblogs are those labelled as “Bullish”, the 

negative ones the “Bearish” ones and finally the microblogs not containing any such market label 

the objective ones. 

We construct the feature vector of a StockTwit document using the frequencies of the terms 

occurring in the document, normalized by the number of terms occurring in the document. We 

removed stopwords and terms occurring just once in the corpus, and applied the stemming method 

implemented in the Lucene library. Similar to our General Purpose Classification presented in the 
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previous subsection, we used the ν-Support Vector Classification (ν-SVC) formulation of SVM from 

LIBSVM [39].  

 

Results 

Our quality measures are again the precision-recall curves as well as the precision-recall break-

even points (BEPs) for these curves (i.e. precision/recall at the point where                            

precision equals recall). 

 

The detailed precision-recall curves for two classifiers are shown in Figure 14. The main 

observations are: 
 

- Using the bag-of-words representation, binary ν-SVC classifiers positive vs. all, negative 

vs. all and objective vs. all yield BEP values of 0.664, 0.669, and 0.583, respectively.  

- The pos-vs-all and neg-vs-all classifiers provide relatively good performance for Recall = 

0.1 (0.755 and 0.781, respectively). 

- The BEP for the pos-vs-all classifier is slightly higher for the financial microblogs, while the 

classification effectiveness is higher for the other two classifiers, neg- and obj vs all.  

 

 

 

Figure 14: Precision-recall curves and BEPs for (a) positive vs. all, (b) negative vs. 

In addition to the SVM supervised approach, we also applied the unsupervised lexicon-based 

approach for predicting the sentiment classes of the test StockTwits messages. Here we used 

again the test documents from each of the preceding classification tasks. SentiWordNet yielded 

accuracy values of 0.612, 0.604 and 0.578 for the test sets employed in positive-, negative-, and 

objective-vs-all classification experiments. These values are slightly lower then the accuracy 

scores provided by the SVM method, 0.661, 0.667 and 0.583. Using the unsupervised approach 

we were able to classify only approximately one third of the messages, due to the fact that many of 

the documents do not contain a value in the SentiWordNet’s vocabulary list. 

 

  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P
re

ci
si

o
n

 

Recall 

(a) positive-vs-all classifier 

0 

0.2 

0.4 

0.6 

0.8 

1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P
re

ci
si

o
n

 

Recall 

(b) negative-vs-all classifier 



Deliverable 2.1 QualiMaster 

© QualiMaster Page 49 (of 74)  

 

6.2 User and Social Network Analysis 

Estimating the influence of users within a social network and investigating the expertise of users 

based on the topics they frequently write about can help in estimating the relevance of the content 

generated by their users for the analysis task in hand. This is particularly useful for filtering the 

noise and the spam from the vast amount of content that is generated in social media every day. In 

the scope of the QualiMaster project we want to use this information for estimating the credibility 

and reliability of the content. For instance, it is important to know who spreads certain news in 

order to allow a prediction on how this could influence future topics and sentiment towards certain 

entities in the network. Users with a strong influence in a social network can reach many people 

with a single message and change their mood towards a certain market player relative quick. 

Moreover, users with a lot of expertise in specific domain may be the first who report about 

interesting news in certain areas or about new products and developments from specific market 

players. The following two use cases will be considered and implemented in QualiMaster towards 

building a User Index that can be then used to evaluate and/or filter new content posted by users 

in social networks. 

 

Use Case 4 Identifying Influential Users in Social Networks 

Description Analyze user profiles and their contributions in social networks to identify 

influential users 

Input Social media streams 

Steps 1. Receive social media streams 

2. Analyze the social network of users (e.g. followers, retweets etc) 

3. Estimate the influence of users in their social networks 

4. Store the estimated influence scores in the User Index 

Output A User Index that is updated continuously. Each user is assigned an 

influence score. Further metadata such location, language, etc is also stored 

in the user profile. 

 

 

Use Case 5 Identifying Domain Experts in Social Networks 

Description Analyze user profiles and their contributions in social networks to identify 

domain experts 

Input Social media streams 

Steps 1. Receive social media streams 

2. Analyze the content of user posts in social media 

3. Estimate the expertise of users with respect to the financial domain  

4. Store the estimated expertise scores in the User Index 

Output A User Index that is updated continuously. Each user is assigned an 

expertise score (with respect to a topic. e.g. a specific stock or market 

sector). Further metadata such location, language, etc is also stored in the 

user profile. 
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6.2.1 User Expertise Analysis 

In this section we describe some initial work that has been conducted in the first year of the project 

in the context of user expertise analysis. We distinguish here between two approaches that are 

being considered and evaluated: statistical and probabilistic approach using LDA, and entity-

centric approach using Wikipedia. 

6.2.1.1 LDA-based Expertise Detection 

The work described in this section aims at distinguishing groups of users based on the content 

they published in different social networks. In the work described here we used data gathered from 

LinkedIn as a ground truth data for describing the expertise of the analyzed user. This ground truth 

allows us to analyze how users of different professions make use of social networks and if they 

use social networks like Twitter to talk about topics related to their professional skills.  

Our approaches where developed to analyze the influence and the expertise of a user in real time 

with high accuracy. However, typically, high accurate methods are complex and therefore could be 

slower. Therefore, we will develop several alternative methods, where some methods are 

optimized for accuracy and other methods are optimized for efficiency. One example here is the 

collection of several tweets for one user in order to generate a complete user profile. Based on a 

single tweet it is possible to calculate values for the influence of the specific user, based on the 

number of followers or list counts that the user has, but a complete user model requires more data, 

so in order to create such a profile the memory consumption of the method increases because the 

users tweets need to be stored. Additionally the latency of the results increase because the 

algorithm would have to wait until a certain amount of tweets from the user is collected to generate 

her profile. We analyzed 3 methods in more detail which are presented in this section. 

The first method and the corresponding analysis focus on the differences and commonalities of 

different groups of users with expertise in different domains across different networks. Many 

studies exist on general communication and connection practices within these networks. These 

studies on expertise search suggest the existence of subgroups centered around a particular 

profession. For this analysis we investigated 94,155 public user profiles. 

 People who work in similar professions typically share particular skills. Further, if people are asked 

to indicate their skills, it is expected that the skills they mention vary in granularity. For example, 

someone working in public relations may indicate skills in social networking and marketing, but 

also specific skills such as DTP software, writing press releases and time management. It is also 

known that people from different professions or cultural backgrounds have different practices in 

how they communicate with one another, the communication mechanisms that they choose and 

the topics that they discuss [106]. These differences can also be observed on a more private, 

personal level: programmers are usually more informal than bankers, people working in public 

relations are typically more active in social media than investors, and pastors will most likely talk 

about different topics than real-estate agents. 

In this section, we investigate differences in communities within self-reported skill networks. We 

are particularly interested in discovering differences in their communication practices, since these 

information can help us to detect users that are experts in the domains related to the market 

players we are investigating in the project. To analyze this we monitor for instance how well a 

professional community is connected or how often people post updates via Twitter, what are the 

topics that they talk about, and what is the overall tone or sentiment of these communications? 

 

Based on our analysis we generated an overview on how skills in professional networks are 

related and categorize these skills into professions. Further, we investigated to what extent 
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different professions differ from one another in terms of connections, topics, sentiment and shared 

content. 

  

Dataset 

 In order to create our dataset, we first collected a set of 94,115 public user profiles from About.me, 

using the crawling strategy employed by Liu et al. in [107]. About.me is a personal profile site 

where users can include all their social-web accounts. From each profile, we collected the users' 

LinkedIn, Twitter and Facebook accounts. For LinkedIn, our crawler gathered the public profile 

data, including skills and expertise tags, industry, job and number of connections. For each 

account from Twitter, we gathered the complete user profile with information like number of 

followers and friends or number of lists the user is in. In addition, we crawled the latest 200 tweets 

using the Twitter Rest API (https://dev.twitter.com/docs/api). The average number of tweets posted 

by the users is 5,833, with a median of 1812. This indicates that most of our users are quite active 

in Twitter. We also had 33 users with more than 100.000 followers, which can be interpreted as 

already influential. Within QualiMaster we will use Twitter as a source for the social web data, 

therefore we will not mention the details on the dataset collected from Facebook. The details can 

be found in [91]. Since the LinkedIn account serves as a source for our topics describing the users, 

we use for our analysis only Twitter and Facebook profiles that have a corresponding LinkedIn 

profile, resulting in a final set of 7,740 users. Our datasets are inherently noisy, as they represent 

human behavior. For example, the skills from LinkedIn are self-reported. Similarly, tweet content 

and Facebook posts are a mix of - among others - work-related announcements, private updates, 

and responses to others. However, this noise is reduced by the fact that our analysis is based on a 

fairly large collection of users. 

   

Subgroups in skills and expertise networks 

 Different professions are expected to have differences in terms of communication behavior, the 

way people are connected, the topics they talk about, the resources they use, and the way they 

express themselves. In order to study topics beyond individual tags and to obtain more context-

related information, we additionally employed Latent Dirichlet Allocation (LDA) and modeled each 

LinkedIn Skills and Expertise tag-based representation of a user as a mixture of latent topics. For 

this, we used the LDA implementation in the Mallet library. Given a set of term sets (users ui 

represented by their Skills and Expertise tags in our case) and the desired number of latent topics, 

k, LDA outputs the probabilities P(zj|ui) that the Skills and Expertise topic zj is contained (related) in 

the user profile ui. In addition, LDA computes term probabilities P(tj|zi) for tags tj ; the terms with the 

highest probabilities for a latent topic zi can be used to represent that topic. We empirically chose 

the number of latent topics as 50 for our LinkedIn dataset. Table 6 shows the top-10 most probable 

terms for10 selected latent topics, as assigned by the LDA method. In addition, the table contains 

short topic labels which were manually assigned. 

 

Topic Label Top-10 Topic Terms 

E-commerce-
Strategy 

marketing media social digital online strategy advertising analytics web 
management 

Entrepreneur-
Start-up 

business development strategy management start ups strategic entrepreneurship 
marketing planning 

Marketing-Events, 
Press 

communications media marketing relations social management public strategic 
corporate event 

Financial 
financial management analysis insurance finance planning business banking 
accounting risk 

https://dev.twitter.com/docs/api
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Manager-Project 
Planner 

management business project process analysis improvement strategy leadership 
team planning 

Real Estate  real estate homes home buyers sales property residential properties investment 

Journalist journalism editing media writing news radio social style broadcast ap 

IPR Person, Legal 
Analyst 

law legal litigation property writing corporate intellectual research contract civil 

Sales Manager  
sales management business marketing development strategy selling product 
strategic account 

Human Resources, 
Team Manager 

skills problem solving communication team leadership thinking creative people 
building 

Table 6: The manually assigned topic labels and the most probable top-10 terms (assigned by the 
LDA method) for the 10 selected “Skills and Expertise” topics 

 

  Differences in Topics 

In order to compare what users of different areas talk about in different networks, we indexed the 

tweets and Facebook posts of the users into a Solr Index. All the messages were processed 

through a standard text processing pipeline, in which we removed stop words and used a 

stemming algorithm. Beside this, we also removed links from the text as we are only interested in 

the `real words' used by a user. For tweets, we also removed the mentions of other users as well 

as the hash-symbol from hash tags. 

This indexing allows us to compute the cosine similarity between different users and different 

professions. The similarity is calculated using the Solr more like this functionality, which finds 

documents similar to a given document or a set of documents, based on the terms within the given 

document. These terms are selected based on their TF/IDF values for the given document, which 

allows us to obtain a representative set of query terms for each user or profession. For our 

experiments, we selected the 500 most representative terms that occurred within at least five 

documents. 

The main Question we want to answer here is: Do people use Twitter to talk about their 

professional skills as described in LinkedIn? If we find a strong correlation between the used 

vocabularies we can use the gathered terms to build up sets of experts for areas we are interested 

in. Additionally this experiments allow us to verify the expertise we find inside twitter based on the 

linkedin profiles of the users.  

To answer these question, we built queries based on the terms used for the different skill and 

expertise groups (professions) from LinkedIn. Using these queries, we computed the score for the 

tweets or posts of every user. For each profession, we calculated the average score. The result of 

this computation is a matrix that shows how similar the users from the different professions are to 

the keywords of these professions. The resulting matrix is shown in Figure 15. In order to make the 

differences better visible, we normalized the results for every query by dividing it by the maximum 

score. This ensures that the results are within a   [0, 1] interval and are comparable for every 

LinkedIn profession. The diagonal line shows that most users use Twitter to talk about their 

professional skills. In Twitter we observed a stronger correlation than in Facebook, which indicates 

that Twitter is used for professional communication to a larger extent than Facebook. These 

findings confirm the use of twitter as medium to gather professional insides from domain experts. 

Inside Twitter, we got an average self similarity (between the same profession cluster in LinkedIn 

and Twitter) of 0.884, while inside Facebook this values decreases to 0.741. 
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Figure 15: Similarity of skill tags from LinkedIn and terms used in Twitter Similarities are 
summarized per profession 

   

Differences in Sentiment 

The main goal here is to build models which can later help to interpret messages from a user of 

certain group in the right way. This can be important when looking at the relative sentiment of the 

messages of specific group, because some groups might be overall positive while others might be 

on general more negative in their messages. Additionally this can help when two different groups 

talk about the same product or market player. Considering the average mood inside these groups 

and normalizing the expressed sentiment can lead to a clearer interpretation of the messages.  

In order to calculate the sentiment of messages we made use of the SentiWordNet lexicon. We 

studied the connection between the users' professions and the sentiment features of tweets and 

Facebook posts written by these users. SentiWordNet is a lexical resource built on top of WordNet. 

It contains triples of sentivalues (pos, neg, obj) corresponding to positive, negative or objective 

sentiment of a word. We restrict our analysis to adjectives, as we observed the highest accuracy in 

SentiWordNet. Finally, we computed the average positivity, negativity and objectivity over all 
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tweets and Facebook posts that belong to a profession. This information is of particular interest in 

the Project because this allows us a better understanding of the sentiment expressed by different 

users. Based on our analysis we might want to handle a very positive comment from an expert in a 

technical area different than a positive comment from a sales manager. 

The users with skills in computer technical support and data analysis programmers tend to post the 

most negative messages. Their posts or tweets often offer or request help for problems, i.e., 

“@user Sounds like a hard drive issue. Either it's hitting bad sectors or the drive has literally 

slowed down and is having read/write issues”. On the other side, users related to human 

resources, logistics and health, as well as lifestyle advisors post the most positive content in our 

collection. Some hand-picked examples from Twitter include “Best food moments of 2013 #food 

http://t.co/JdYO36wVAY”, “Kids Eat and Stay Free at the Holiday Inn Washington DC. Bring the 

entire family for a holiday trip http://t.co/RhYa3zuHgu”. We also observed that users tend to be 

more objective in Twitter than Facebook, particularly for some of the professions. The differences 

in sentiment between the different skills and expertise groups may reflect that people in some 

professions are more positive or negative in general, or that they tend to formulate their messages 

more positively or negatively. Our interpretation, however, is that the differences in sentiment are 

largely caused by differences in intentions of tweeting. The most positive groups are professions 

that use social media for selling and promoting items and events; it seems natural that these 

promotional messages are positive and motivating. On the other hand, the most negative group 

consists of people who work individually on programming or writing tasks.  

  

Conclusions 

With this set of experiments we investigated differences in communication and connection 

practices between professions, as represented by the skill and expertise groups that we extracted 

from a representative dataset. In our analysis, we used a combination of exploratory analysis, 

visualization and interpretation. The aim was to give some insight in the people, professions and 

conversation topics that constitute these structures. These insights call for separate analysis or 

treatment of activities within these subgroups, and provide several starting points for new 

functionality when working with messages from domain experts within twitter. Within the 

QualiMaster project we see several directions on how to use the gathered insights:  

● The connections between Linkedin (which can serve as a ground truth) and twitter may 

allow us to scan twitter for certain keywords to build sets of experts for certain domain.  

● The analysis of the sentiment of different groups can improve the interpretation of 

messages from certain users. 

● The collected data can be used train models for categorizing users into specific expertise 

groups.   

 

6.2.1.2 Entity-based Expertise Detection 

Another way of measuring expertise in certain areas we are currently investigating is based on the 

occurrences of certain concepts or terms within the posted messages. This method uses the 

annotations linking to external knowledgebase like Wikipedia described in Section  5.2.2.1. The 

basic idea behind the approach is that based on the mentioned concepts it is possible to infer the 

domain a user interested in as well as the expertise the user has in that domain. We investigated 

how the use of the Wikipedia category graph can help to extract this information from tweets and 

other textual resources. The results of our experiments have been published in several research 

paper [92], [93], [94], [95]. 

http://t.co/RhYa3zuHgu
http://t.co/RhYa3zuHgu


Deliverable 2.1 QualiMaster 

© QualiMaster Page 55 (of 74)  

 

The basics approach is based on 3 different steps shown in Figure 16. The extraction of Wikipedia 

concepts from the posted messages, the categorization of these concepts and the aggregation of 

the concepts on a user level. 

 

Figure 16: Entity-based expertise detection - overview 

In the first step, the Extraction, we annotate all tweets of the user using the Wikipedia Miner Tool-

kit or one of the alternative methods. The tools provide us links to Wikipedia articles. The links 

discovered by Wikipedia Miner have a similar style to the links which can be found inside a 

Wikipedia article: Not all words which have a related article in Wikipedia are used a links, but only 

word which are relevant for the whole topic are used as links. Since tweets are rather short it is 

relatively hard to define the context, to deal with problem we consider larger sets of tweets from 

one user, if possible. This is also one of the performance tradeoffs we have to deal with in this 

approach. When increasing the number of analyzed tweets we also increase the latency and 

decrease the possible throughput of the method. On the other side we increase the accuracy of the 

method. The more tweets we analyze for one user the better the profile describes the user. 

In the second stage, Categorization, we extract the categories of each entity that has been 

mentioned in the users tweets. For each category, we follow the path of all parent categories, up to 

the root category or a set of selected categories we are interested in. In some cases, this 

procedure results in the assignment of several categories to an entity. Since the graph structure of 

Wikipedia contains in some cases also links to less relevant categories we only follow links to 

parent categories which distance to the root is shorter or less than the one of the child category. A 

more detailed description of the method can be found in the published papers. Also in this stage 

the number of analyzed tweets per user influences the latency and the throughput of the algorithm, 

since for every detected concept this step has to be repeated. We can pre-compute the relations 

from article or concept to category so only a simple lookup is required for finding the corresponding 

categories but storing these relations increases the memory requirements of the algorithm. 

For each category a weight is calculated by first defining a value for the detected entity. This value 

is based on the distance of the entity to the root node. Following the parent categories (which are 

closer the root category) we divide the weight of each node by the number of siblings categories, 

resulting in each entity receiving a n-dimensional vector representing the relations to a predefined 

set of categories. Based on this calculation we give higher scores to mentions which are deeper 

inside the category graph and are more focused on one topic. 
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In the final stage, Aggregation, we perform a linear aggregation over all of the scores for a tweet 

in order to generate the final user profile. The generated user profile displays the topics a user 

talks about as well as the expertise in a certain topic.  

Several experiments have shown that an aggregation method like this performs well in different 

scenarios. In [93] we annotated paragraph from a set of Wikipedia articles and made a user study 

in order to assess the quality of the annotations. The results are shown in Figure 17. The users 

rated the quality of the assigned topics on a 5 point Likert scale with an average of 3.9, indicating 

that most of the assigned topics where very relevant for the given paragraph. 

 

Figure 17: Distribution of user ratings for topic annotations 

Besides the overall score we also analyzed how much the results differed between the different 

topics. We can see in Figure 18 that the distribution over the different topics is very similar, 

indicating that our method works equally well for all top categories. 

 

Figure 18: Average user ratings per topic 

In [94] we analyzed how the topics a user posts about influence the topics of the links posted by 

that user. Additionally we analyzed how much the topics of a user change over time, and how 

much information we can get from a single tweet related to specific keyword.  

To analyze this we collected tweets for different topics by filtering the streaming API with a set of 

related keywords. After this step we collected 200 tweets for every user in our collection and 
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downloaded the textual content of published links for the message related to the topic. After that 

we used the proposed method to generate 3 profiles for every user: one based on a single tweet, 

one based on the 200 tweets, and one based on the textual content of the posted URL. The 

comparison between the profiles where performed using the cosine similarity between the profile 

vectors containing the weight for the 25 Wikipedia main categories.  The results are shown in 

Table 7. We see that for most of the analyzed topics we got relatively high similarities showing that 

also a single tweet can be used for generating a user profile. 

 

 
URL Content 

 
URL Content 

 
Single Tweet 

 
Single Tweet 

 
User Tweets 

 
User Tweets 

Edward Snowden 0.995 
 

0.968 
 

0.961 

Higgs Boson 0.812 
 

0.628 
 

0.496 

Iphone 5 0.961 
 

0.698 
 

0.664 

Israel Palastinian Talks 0.984 
 

0.884 
 

0.867 

Nexus 5 0.968 
 

0.972 
 

0.956 

Obamacare 0.983 
 

0.79 
 

0.752 

World Music Avards 0.921 
 

0.718 
 

0.614 

All topics average 0.946 
 

0.808 
 

0.759 

Table 7: Similarity comparison of user profiles generated by different methods 

 

Figure 19: Topic coverage in user profiles who mentioned “Obamacare” in their tweets 

Figure 19 shows the coverage of the profiles of the users who mentioned “Obamacare” in one of 

their tweets. We can see that these users mainly talk about topics like “Society” and “Politcs”. The 

topic “Health” is only covered in the single tweet related to “Obamacare”. This shows that more 

tweets are helpful for generating a complete user profile for covering all topics a user talks about 

and not being influenced too strong by entities mentioned in just one of the users’ tweets.  

 

Table 8 summaries the different attributes of the two presented methods for generating profiles 

based on the content of the posted messages. Most of the parameters of the LDA and entity based 

approaches are depended on the number of tweets that are available per user, and therefore on 

the timeframe which is taken into account for the calculation. While the keyword based approaches 

offer relative good accuracy we assume, that the entity based approaches can outperform them 
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because of the availability of additional metadata for the detected entities. This increase of 

accuracy is depended on additional processing steps like entity detection and linking. 

 

Method Accuracy Completeness Believability 
Memory 

Consumption 
Complexity 

LDA based 

Models 
medium 

Depended on 

Timeframe 

Depended on 

Timeframe 

Depended on 

Timeframe 
Medium 

Entity based 

Models 

Medium - 

High 

Depended on 

Timeframe 

Depended on 

Timeframe 

Depended on 

Timeframe 
High 

Table 8: Quality and performance comparison of user profile analysis methods 

6.2.1.3 Related Work 

Our focus on skill and expertise networks fits in the research area of automated expert finding, in 

which both explicit and implicit information is used for identifying experts in a particular area. Our 

interest in differences between expertise domains in how people connect and communicate online 

follows the tradition of social media analysis. Yimam-Seid and Kobsa [108] argue that for the 

effective use of knowledge in organizations, it is essential to exploit tacit knowledge that is hidden 

in various forms, including in the people's heads. The authors also separate the need for 

“information” from the need for `expertise': the need for people who can provide advice, help or 

feedback - or who can perform a social or organizational role. Their expertise recommender made 

use of a hand-tailored expertise model. Ghosh et al [109] leveraged social media (Twitter) content 

for seeking experts on a topic. Their results indicate that endorsement in other users' Twitter Lists 

(of which the topics need to be extracted) infers a user's expertise more accurately than systems 

that rely on someone's biography or tweet content. 

Guy et al [110] examined indicators for expertise and interest as expressed by users of enterprise 

social media. The results are based on a large-scale user survey. They separate “expertise” (being 

knowledgeable or skilled) from “interest”(curiosity, basic knowledge, desire to learn more). As 

expected, interest and expertise ratings are correlated, with values for interest higher than for 

expertise. Results indicate that blogs and microblog provide different, more useful, information 

than communities and forums. The above-mentioned studies suggest that people's skills and 

expertise can be derived from both explicitly provided lists and from their connections and 

communication patterns. Kumar et al [111] analyzed the structure and evolution of online social 

networks. They showed that networks typically have one well-connected core region, but most 

users are located in one of several more or less isolated communities around it. These 

communities are typically centered around one central person, and it is unlikely that two isolated 

communities will merge at some point. Abel et al [112] compared different approaches for 

extracting professional interests from social media profiles. Results indicate that dedicated tag-

based profiles and self-created user profiles are most suitable for this task. Twitter profiles are 

more diverse but also more noisy; this effect can be reduced by extracting entities from running 

text. In a follow-up study, Abel et al [113] analyzed the completeness of user profiles in different 

social media. The outcomes suggest that user profiles in networking services, such as LinkedIn, 

are more complete than those in services like Twitter. Further, the topics that users talk about differ 

between channels, but the overlap in topics is higher between services that are used for similar 

purposes. 
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6.2.2 User Influence Analysis 

The calculation of influence of users within Twitter is another way we can use for ranking and 

filtering messages from certain user groups. These measures will allow us to distinguish messages 

from the broad masses in twitter and the influential users which may influence the overall 

perception of certain topics inside the whole network. These features can also help us sorting out 

messages from potential spam user. A user posting several messages in a short time with a very 

low number of followers and retweets has a higher probability of being a spammer than a user 

which is retweeted several times and has connections to several other users.  

When analyzing the influence of a user within Twitter it is a common and easy way to take into 

account the number of followers this user has in the network or the number of lists the user was 

added to. A major advantage of this methods is the fact that this information is easily available as it 

is directly included in the JSON we get with every tweet. This allows us to compute a basic 

influence score with a very low latency. Also the memory consumption is very low. The basic 

features we can use for calculating a influence score are the user details we get within one tweet. 

These numbers are: 

● Number of friends 

● Number of followers 

● Number of Lists the user was added to 

● Number of favorites of the user 

● Date the account was created 

● If the Account is verified  

● Number of tweets of the user 

 

In previous works [citPNew1], [citPNew2] the users influence or impact was defined as a function 

of the users followers, followees (friends) and listings. The formula user by [citPNew1] for 

calculating the users influence is:  

                        
                        

       
  

This formula uses the number of followers and the lists (squared) of the user as a positive feature 

while the number of friends is used a negative feature.  

In terms of Accuracy this formula can be considered as relatively good, but the pure influence of a 

user does unfortunately not say much about the influence in certain domains or the expertise in 

these domains. We plan to use this definition of influence as a basic starting value to describe the 

influence of users where we do not have additional information about the user. This could be the 

case if it is the first tweets of a user we observe. Once we have collected several tweets from a 

user we can use the before mentioned method to define the areas the user normally talks about 

and align this with the influence value. 

Another way to calculate the influence of a user is to take into account the retweet rate at which 

tweets from a user are retweeted within the community. The advantage of a measure like this is 

that not only the popularity of a user is used to calculate the influence but also the quality of the 

content of his/her tweets. One way to incorporate the number of retweets to an influence metric 

would be to use an h-index like measure for defining the influence of a user. A formal definition of 

this metric would be that a user with N tweets has an h-index of h if h of the users tweets have 

been retweet at least h times each, and the other (N − h) papers have no more than h citations 

each. This metric would be similar to the h-index used for citations of scientific works. A drawback 

of this method that it is relative costly to store and collect all past tweets of all relevant users. We 
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are planning to make experiments with a fixed set of tweets for the given users and measure the 

correlation to other influence metrics. 

Additionally one could also measure the number of mentions a user gets within the community as 

this also indicates some kind of influence. In contrast to the indegree - outdegree based method 

mentioned in the beginning these methods can be seen as more accurate with the drawback that 

more tweets are required to calculate these values, like for the h-index based method.  

In the scope of the project we are planning to store a certain amount of tweets and user data. 

These tweets will be stored in the cluster and will build a database from which user profiles can be 

inferred and updated when new tweets from the users are collected. 

This would allow us to compute more accurate user influence models at the cost of memory 

consumption and a higher latency. These models will increase their accuracy once enough data is 

collected, but will perform relative poor with small datasets.  

The relevant information could also be collected by using the Twitter seach API, we could collect a 

set of old tweets for the stored users and build user profiles or calculate their influence score 

based on these old tweets. A major drawback of this method arises from the API limitation for the 

Twitter search API. A basic API key is only allowed to make 200 requests of this kind within 15 

minutes. Since it is a valid assumption that the expertise and influence of a user is not changing 

frequently we are still planning to collect tweets for the users we are interested in and store them. 

This database can then be updated and increased over the time. 

Table 9 summaries the attributes of the 3 presented methods for calculating user influence scores. 

 

Method Accuracy Completeness Believability 
Memory 

Consumption 
Complexity 

Indegree – 

Outdegree  
Low - Medium High Medium Low Low 

Retweet 

based  
Medium - High High High Medium - High 

Low - 

Medium 

Mentions 

based 
Medium High Medium Medium - High 

Low - 

Medium 

Table 9: Quality and performance comparison of user influence estimation methods 

6.2.3 Summary 

In this section we present the different methods and algorithms used for building user profiles 

based on the collected messages from social media streams. The main goal of these methods is to 

increase the quality of the collected messages and to improve the use of these messages by 

adding additional metadata regarding the author of the messages. In the scope of the QualiMaster 

Project we are focusing on real time applications and due to that most of the presented methods 

are able to work with small set of tweets for each user or even with a single tweet. While other 

methods in this area make use of the whole social network we are focusing on information 

regarding each user which are fast and easy to collect. Methods making use of the social graph as 

a whole are not applicable in our scenario due to limitation of the availability of this information in 

real time. Methods that make use of the metadata we get with every message are relative easy to 

compute while offering first insights about the kind of user providing the message. In the 

QualiMaster project we will make use of all the different methods, since all methods offer 

advantages which cannot be compensated by other methods. 
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6.3 Event Detection 

Recently, monitoring changes on web has turned to be mandatory for many real- world tasks such 

as scientific innovations, medicine, technology production, politics, etc. Users have been aware of 

the importance of detecting events that can be actually anomalous. In the area of business for 

instance, an early detection of events related to investment can reduce personal costs as well as 

the cost for society. However, retrieving content related to events of interest is a hard task, 

requiring searching an ever-increasing amount of data available at different sources and sites 

through the Web. Therefore, it has been clearly needed to develop event detection algorithms that 

can support the users in the task of finding events of interest. In this context, a lot of techniques 

have been worked up to meet the growing demands in several areas and domains, especially in 

data mining and information retrieval.  

Social media data tends to reflect current events with a very short delay and has inspired much 

research on the reaction to current events and the detection of trends. Sakaki, Okazaki and 

Matsuo [56] were among the first researchers who have focused on detection of events on Twitter. 

They have constructed an earthquake reporting system in Japan and have proved in their work, 

that careful mining of tweets can be used to detect events such as earthquakes. Texts from social 

media such as Twitter and blogs have been used to predict global social trends [26, 50] and 

product sales [51], amongst other things. Zheng Liu, et al. have developed in [58] techniques to 

detect priming events which are defined as influential events triggering abnormal movements over 

time based on a time series index and evolving document stream.  

 

Using Twitter data, Thelwall et al. [52] found that the occurrence of popular events is linked to 

increases in negative opinions. Opinion information has also been used to detect significant 

events. For example, Balog et al. [54] use LiveJournal mood labels to detect events based on 

times where mood time series has bursts. Similarly, Nguyen et al. [51] use a similar dataset to find 

the most positive or negative periods of a time period (macro events) as well as local bursts (micro 

events). Akcora et al. [55] also try to detect changes in public opinion. They track changes in the 

frequency of word use on social media, based on the idea that during an ongoing event, there are 

changes to the topics discussed, and therefore also to which words are used.  

6.3.1 Event Detection in QualiMaster 

The goal of the algorithms in this family is to detect burst or abnormalities in the textual streams 

such as news articles or user generated content (blogs/tweets). Some web sources provide 

information about emerging events directly or indirectly. Such source is WikiChanges 

https://github.com/edsu/wikichanges where Wikipedia edits can be monitored in real time. The 

assumption thereby is that in case of an event the corresponding Wikipedia also receive a burst of 

edits. There we can use supplementary information like category structure of the corresponding 

page, or user edit history to enrich the event with additional data. Other source is Yahoo Earnings 

Calendar http://biz.yahoo.com/research/earncal/today.html where business events are scheduled 

such as yearly balance and budget changes that are reported from the companies. Unfortunately 

Yahoo! does not provide an API to access the data, thus the HTML page needs to be parsed and 

we created such a parser, adoptable to different HTML templates. We are collecting those 

scheduled events on daily bases. This way it is theoretically possible to adapt the pipeline 

parameters pro-actively for processing future events. Such adaptation may be adding or removing 

keywords for stream filtering, or estimating the necessary throughput increase by judging the 

impact of the event due to high popularity of a particular stock. 

 

https://github.com/edsu/wikichanges
http://biz.yahoo.com/research/earncal/today.html
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The use cases 6, 7 and 8for event detection in QualiMaster are summarized in the following tables. 

 

Use Case 6 Events detection in news media 

Description Detect (breaking) news events and optionally rank them with respect to 

specific user query 

Input  news feeds 

 (optionally) a user query 

Steps 1. Receive news feeds 

2. Detect bursts or stream abnormalities in time as events 

3. Acquire context information for the given time period 

4. Save the event as time period along with the context information 

Output A set of news to be monitored/further analyzed along with a set of contextual 

features (e.g. keywords) describing the event. The set of breaking news along 

with the event description can be used to  

 

 

Use Case 7 Events detection from social media 

Description Detect emerging events in social media streams and optionally rank them 

with respect to specific user query 

Input ● Social media streams 

● (optionally) a user query 

Steps 1. Receive social media streams 

2. Detect bursts or stream abnormalities in time as events 

3. Acquire context information for the given time period 

4. Save the event as time period along with the context information. 

Output A set of contextual features (e.g. keywords) describing an event, which can 

be used to adapt the monitoring of news feeds or social media streams in 

order to focus on the emerging event. 

 

Use Case 8 Events extraction from public calendars 

Description Extract events descriptions and metadata from public online calendars 

Input ● Online public calendars (e.g. Yahoo Earnings Calendar) 

Steps 1. Regularly parse the online calendars  

2. Extract event metadata including references to entities (e.g. market 

players) and temporal information (e.g. scheduled date of events) 

3. Save the events and the time information along with the metadata 

Output A set of scheduled events along with temporal information and additional 

metadata including references to entities, which can be used to pro-actively 

adapt the monitoring of news feeds or social media streams in order to 

prepare for the upcoming event. 
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6.3.2 Event Detection Approaches 

In order to analyze the posting behavior on Twitter in the area of stock markets we collected tweets 

related to 2900 different stock names listed at the NYSE. This collection consists of 470.000 

Tweets. All of these Tweets have very strong relation to the market player we specified since they 

contain a keyword in the form of $ followed by the market player abbreviation, for example $AAPL 

stands for Apple. Figure 20 shows the distribution of tweets over time. We see that during the 

weekdays more tweets with stock symbols are published compared to weekends. 

 

 

Figure 20: Distribution of tweets mentioning stock names over time 

Whilst we plan to exploit different techniques for event detection, simultaneous co-occurrences of a 

burst or abnormality in different streams, will count as additional evidence for an event. 

Social media and news streams are typically characterized by topics that appear, grow in intensity 

for a period of time, and then fade away. The appearance of such a topic in a document stream 

joined to certain features rising sharply in frequency as this topic emerges is considered as a burst 

of activity. There exist a number of basic algorithms with some of them described above. Table 10 

depicts and compares the most popular techniques the moving average and the Kleinberg Burst 

detection algorithm. We plan to evaluate several methods by collecting ground truth and computing 

precision recall curves. 

Moving average: The basic idea of such algorithms is to maintain a moving time window 

monitoring the live statistics and detect if there is relatively unusual variation in the number of 

messages as an indication of an event. This number is compared to historical statistics of the 

average frequency which needs to be collected in advance. Whilst such algorithms are simple, the 

accuracy is connected to the size of window and an optimal size can usually not be fixed. 

Burst detection: Kleinberg has developed through his work a formal approach for modeling 

bursts, in such a way that they can be efficiently and robustly identified by minimizing a cost 

function that assumes a set of possible burst states, where it is costly to increase and cheap to 

decrease a level.  

 

There will be two groups of strategies considered for event detection. The first group of “Content 

based” algorithms will analyze the textual content of the stream, whereas the second group 

“Feature based” makes use of other features like user annotations, tags, likes, mentioning 

frequency.  
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Content - based event detection: The algorithms in this family typically monitor the stream of 

data using a sliding time window and detect abnormalities in the features appearance (features 

such as words, topics or entities) or bursts using the statistics based on the prior experience. 

 

Feature - based event detection: This strategy is very similar to the previous one as the same 

algorithms. However the features are not extracted from the textual content but rather constructed 

from the indirect characteristics such as number of reposts of a message, source diversity or likes. 

 

 Method Complexity Accuracy Evaluation 

Moving 
Average 

Deviation of feature frequency 
from the statistical average 

Simple low 
Precision recall 
curves. 

Kleinberg Burst 
detection 

Sharply increased occurrence 
of specific features 

Complex high 
Precision recall 
curves. 

Table 10: Comparison of event detection methods 

 

Strategy Complexity Accuracy Completeness 

Content - based 
High (NER, Topic extraction 
like LDA or Wikiminer, etc.) 

Medium High 

Feature - based Low Low Medium 

Table 11: Comparison of event detection strategies 

Table 11 compares the two strategies. Content based strategy requires heavy preprocessing such 

as extracting words and selecting named entities or topics. Precision is still a subject to evaluate, 

but expected to vary, however the coverage can be expected to be very high given certain 

accuracy of the concrete algorithm implementation. Feature based event detection does not 

require a lot of preprocessing as the information is often provided directly through the API’s of the 

data sources, however the correlation of this information and real events is still a subject to 

evaluate and expected to be low resulting also in probably low coverage. Finally we can use 

sources like scheduled events which provide highly precise event prediction, but the coverage will 

depend on the focus of the source. In terms of additional profit, whilst for the content based 

techniques only terms itself can be used to label and explain identified events, semantics of the 

features can be exploited in the feature based technique and additional information like user 

annotations or Wikipedia category structure. 

6.3.3 Preliminary Work 

In order to perform experiments on the scalability and efficiency of event detection algorithms, we 

are currently developing a storm pipeline framework which will exploit our datasets of news items 

and Twitter messages as described. Figure 21 depicts the main components of this pipeline.  First 

RSS items and social messages are collected and stored into HBase in parallel additional files 

such  as  HTML-pages with the corresponding news article are stored on Hadoop file system. The 

items are first filtered within the focused crawling step as described in Section  5.1 and passed over 

to the Event Detection Family, where the events are detected and the event related information is 

stored into HBase. Extracted events can further be ranked by relevance to user query e.g. by using 
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similar methods as described in Section  5.1. The already implemented prototype is currently 

successfully used to crawl RSS news and scheduled events from Yahoo calendar. 

 

Between June and October 2014 we have collected more than 2 million news articles from top 

news international agencies such as Reuters, BBC, NYT, CNN, The Guardian as well as Google 

News.  In addition, We collected from Yahoo Finance Calendar around 350,000 scheduled events 

from ~20,000 companies in the time period of 1999 to 2016 (This number also include rescheduled 

events).  

 

 

 

Figure 21: Collection and analysis of news feeds for event detection 

6.4 Entity Network Extraction 

Large networks of companies are present in many parts of the Web, for instance, in form of co-

occurrence in a news article, or tweets as well as web pages. Social networks extracted from these 

rich information sources can be exploited in many ways and for various purposes. Node centrality 

measures in networks can help to identify important and influential companies or communities in a 

variety of business. Furthermore, knowing the topology of social graphs can shed light on the 

propagation of knowledge and innovations in networks.  

There is a plethora of work on social network extraction from text and visual data. In [70] social 

connections between fictional characters are inferred from dialogs in books; similarly, in [71] a 

social network was extracted from the narrative of an Ottoman scholar and world traveler. In [73] 

social connections are constructed from a historical multimedia repository by leveraging co-

occurrences of faces in images. Bird et al [74] extract social networks from email corpora. A 

number of works also explore the extraction of networks using search engine queries. [75] is 

probably the first of these articles. The authors exploit co-occurrences of names on results pages 

to identify connections between persons; however, the resulting networks are relatively small and 

centered on a single person. The POLYPHONET system [76] determines co-occurrence counts in 

Google queries to identify pairwise connections. In addition, different types of relationships and 

correlations with topic-related keywords are taken into account. In [77] search engines are used to 

retrieve connected email addresses. The Flink system [78] focuses on the mining of author 
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networks and combines web search with information from emails and publications. In [79] co-

occurrences of persons in search result snippets are leveraged. There are few attempts to 

increase efficiency in discovering entity relations on the web [80, 81]; their contribution focuses on 

snippet clustering and entity disambiguation to reduce the number of pair-wise entity queries.  All 

of the current methods are based on pair-wise entity queries, making them hard for gathering 

larger graphs. Textual patterns are often used for relationship mining. In [82] a bootstrapping 

algorithm is employed for iteratively extracting new patterns and semantic relationships. In [83] 

categorical facts and concept hierarchies are extracted from Web and News Corpora. Cimiano et 

al [84] leverage pattern-based search engine queries for building ontologies.  Although close to our 

problem, these works tackle the problem of relation mining rather than extracting social networks.  

6.4.1 Entity Network Extraction in QualiMaster 

In QualiMaster, we plan to investigate the possibility and effectiveness of extracting networks of 

financial market players from social web data. In particular, we plan to realize the following two use 

cases: 

 

Use Case 9 Extracting Entity Networks From News Streams 

Description Detect co-occurrence of company/stock names in news articles 

Input News article streams 

Steps 1. Receive news articles 

2. Extract entities co-occuring in articles (company names / stock) 

3. Build the network assuming that co-occurring entities are connected 

through an edge. 

Output Network of entities 

 

 

Use Case 10 Extracting Entity Networks From Social Media 

Description Detect co-occurrence of company/stock names in social media 

Input Social media streams 

Steps 1. Receive social media streams 

2. Extract entities co-occurring in user posts (company names / stock) 

3. Build the network assuming that co-occurring entities are connected 

through an edge. 

Output Network of entities 

 

To realize the above mentioned use cases, the company or stock name mentions need to be 

extracted from the text data. To this end we need to evaluate existing NER tools, described earlier 

regarding their ability to detect such entities. Furthermore, the extracted networks will have to be 

continuously updated based on new data from online streams to be able to capture the dynamicity 

in the network structure and its evolution over time and provide several type of analyses as 

described earlier. Similarly to the event detection scenario, two general extraction techniques with 

complexity can be exploited, namely content based and feature based techniques.  
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6.4.2 Preliminary Results 

As a proof of concept we extracted a market player network consisting of company abbreviations 

co-mentioned in our StockTwits dataset (where the co- mentions are stored as features for each 

posting). Figure 22 depicts a sub-graph of the resulting network. For illustration purposes we only 

selected top 40 nodes and high weight edges, calculated based on mention frequency. Here we 

can observe 3 clusters one consisting of IT companies such as Google (GOOG), Facebook (FB), 

Apple (AAPL), second is related to Medicine and Genetics Hemispherx Biopharma (HEB), 

NewLink Genetics (NLNK), Lakeland Industries (LAKE) and finally a gold cluster: Gold Trust 

(GLD), Junior Gold Miners Index (JNUG), Gold Miners (GDX). Furthermore, we can observe that 

the cluster can have different structure. For example the “medical” cluster is much higher 

interconnected compared to the “IT” cluster. During the course of the project we will investigate the 

exploitation of several features that can be extracted from social web and news streams to build 

more accurate representation of market players networks that reflect the real-world. This work can 

exploit, for example, the results of the sentiment analysis and event detection methods to use them 

as additional features (together with co-mentions).   

Furthermore, results obtained by this work will be compared and combined with results obtained 

from the correlation estimation between market players that is computed based on the financial 

streams in order to evaluate the effectiveness of the analysis on social web data.    

 

 

Figure 22: StockTwits graph of co-mentioned stocks 
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7 Conclusions and Future Work 

This deliverable is the first deliverable of WP2. It describes the overall approach for scalable and 

quality-aware real-time data stream processing algorithm and methods. An overview of several 

families of algorithms and methods that are being considered in WP2 is provided as a result of an 

extensive study of the state-of-the-art and in light of the user requirements and use cases defined 

in WP1. 

Different processing algorithms and analysis methods have been presented for the financial data 

streams as well as for the social web streams. Furthermore, initial and preliminary results of the 

first implementations or evaluations of the selected methods are also reported in the respective 

sections. As a proof-of-concept, some of the algorithms have been implemented or adjusted to be 

executed as Apache Storm (sub) topologies that are then integrated in the QualiMaster priority 

pipeline in WP5. This includes the Hayashi-Yoshida Correlation Estimator as well as the SVM and 

SentiWordNet sentiment classifiers. 

The next steps in WP2 will be the further development and optimization of the algorithms and 

methods presented in this deliverable towards the completing the first prototype (version 1), which 

is deliverable D2.2 (due in July 2015). Extensive experimental evaluations will be conducted to 

have a better estimation of the quality and performance of each of the individual members of the 

proposed families. In addition, measurements of the scalability of the developed algorithms using a 

computing cluster with several computing nodes will be evaluated using real-time streams of 

financial and web data streams. 

Finally, several strategies to combine financial and web data streams in a meaningful way in order 

to support the financial risk analysis application will be investigated and evaluated.  
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