
Document ID: INDENICA – D4.1
Deliverable Number: D4.1
Work Package: 4
Type: Deliverable
Dissemination Level: PU
Status: draft
Version: 0.7
Date: 2011-09-30
Contributing Partners: PDM, SAP, SIE, TUV, SUH, UNIVIE, TEL

Project Start Date: October 1st 2010, Duration: 36 months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document describes the Framework for (semi-)automatic instantiation and
supervision of Virtual Service Platforms as a part of INDENICA.

The document includes the description of all parts of the framework including
Monitoring Engine, Adaptation Engine, Repository, Deployment Manager and
Integration Interface. This report includes requirements and the architectural
description of the components and shows how these elements work together with
regards to the outcomes of other Work Packages.

Report Describing a Framework for
Deployment, Monitoring & Controlling of

Virtual Service Platforms

Version History
0.1 30 May 2011 initial TOC version

0.2 07 July 2011 Initial TOC version revised

0.3 31 August 2011 TOC updated and finalized

0.4 16 September 2011 First integrated version

0.5 19 September 2011 Polishing and integration

0.6 26 September 2011 Additional content added

0.7 30 September 2011 Final version - polished and integrated

Document Properties
The spell checking language for this document is set to UK English.

INDENICA D4.1

 3

Table of Contents

Table of Contents .. 3

1 Introduction... 5

2 Overall description of the Framework .. 6

2.1 Monitoring Engine ... 8

2.2 Adaptation Engine.. 8

2.3 Repository.. 9

2.4 Integration Interface .. 9

2.5 Deployment of WP4 components .. 10

3 Monitoring of Virtual Service Platforms ... 11

3.1 Monitoring Overview ... 11

3.2 Monitoring Event Model .. 13

3.3 Monitoring Engine ... 15

3.3.1 Monitoring rules .. 16

3.4 Monitoring Interface .. 17

4 Adaptation of the Virtual Service Platform ... 19

4.1 Adaptation Overview ... 19

4.2 Adaptation Model .. 21

4.3 Adaptation Engine.. 22

4.4 Adaptation Interface .. 23

4.5 Prototype Implementation ... 25

5 Deployment of Virtual Service Platforms ... 28

5.1 Design-time requirements and Platform Variability.................................. 28

5.2 Deployment Process .. 28

5.3 Deployment descriptors ... 30

6 Integration with Other Work Packages .. 32

6.1 Work Package 1 - Requirements Engineering & Methodology for
Interoperable Service Platforms .. 32

6.2 Work Package 2 - Variability Engineering ... 32

6.3 Work Package 3 - View-Based Architecture and Tools for Tailoring Service
Platforms ... 33

7 Conclusions and future steps ... 35

Table of Figures ... 36

INDENICA D4.1

 4

References .. 37

INDENICA D4.1

 5

1 Introduction

This work package - integrates the whole technical work in the project into one
single framework, which will allow deployment and runtime governance of Virtual
Service Platforms. It provides development time, compile time, and runtime modules
for managing the deployment of tailored service platform components, services, and
applications in heterogeneous environments. The focus is put on the development of
tools for supporting the (semi-) automatic instantiation and runtime governance of
Virtual Service Platforms, which are using tools and methodologies provided by WP1,
WP2, and WP3.

WP4 will provide a complete framework and methodologies to manage the lifecycle
of Virtual Domain-specific Service Platforms including deployment, runtime
governance and development of supporting tools and technologies.

This document describes the concept of such framework, its functionalities and the
way it will work including used tools, components, and environments. The designed
framework will be described and the concepts will be implemented in the next two
years of the project in two phases (interim and final) and provided with the
documentation included in deliverables 4.2.1 and 4.2.2 respectively.

Special attention is brought to present novel approaches for Runtime Adaptive
Controllers, which are responsible for assuring end-to-end QoS by dynamic changes
of runtime environment on both service and platform level.

This document consists of following sections: in section 2 there is an overall view of
the Framework including high-level diagrams. In Sections 3, 4, and 5 there are
descriptions of Framework’s main components responsible for Monitoring,
Adaptation, and Deployment respectively. Integration and cooperation with
different work packages is described in section 6. In section 7 we present conclusion
of the current work in this work package and we discuss briefly future steps.

INDENICA D4.1

 6

2 Overall description of the Framework

The described framework is responsible for managing the deployment process and
runtime monitoring of the Virtual Service Platform (VSP).

Heterogeneity of the whole environment requires the integration of different
domain-specific platforms on service level which is supported by tools developed in
WP1, WP2 and WP3. This integration process gives an ability to use a common
interface and messaging technology for monitoring and adaptation purposes.

The runtime monitoring and adaptation framework will be equipped with self-
managing capabilities, which means that it will be able to preserve in dynamic
environment by adjusting to the current situation. It is achieved by additional
runtime modules which support dynamic adaptations as well as runtime monitoring
to meet end-to-end QoS requirements.

The proposed approach to the implementation of the framework for runtime
monitoring and adaptation of VSP is based on the Service Component Architecture
(SCA) model. As a result we are able to provide a programming model for building
applications and system based on Service Oriented Architecture, which takes in
account the domain-specific requirements for both platform and service and the
target deployment infrastructure.

We have decided to base the WP4 runtime environment on SCA because it provides
a “concise and flexible model for describing and developing SOA applications” [1].
Among the benefits of using SCA [1] are: “rapid development and increase in
productivity, higher organizational agility and flexibility, return on Investment
through reuse”. Moreover, SCA is a mature concept with a number of reliable open
source platforms which support it, such as Apache Tuscany1 or Fabric32.

The proposed framework will be declarative in terms of accommodation domain-
specific variability in non-functional requirements of both platform and application
components. The proposed framework includes also design-level constraints into
compile time bindings of features to services which appropriately take into account
the target components. Moreover, domain-specific non-functional requirements will
be automatically compiled into runtime policies to be used for dynamic instantiation
or migration of components.

To achieve the objective of the framework, the following actions will need to be
done:

• Development of deployments manager for the deployment of service
platforms and the virtual service platform

• Development of runtime modules to support dynamic adaptations and
runtime monitoring to meet end-to-end QoS requirements

1 http://tuscany.apache.org/home.html
2 http://www.fabric3.org/

INDENICA D4.1

 7

• Development of common monitoring and adaptation interfaces for the
heterogeneous environment

• Development of runtime policy-driven adaptive components which will
interface with platform infrastructure and application components to
manage dynamic instantiation and migration to meet QoS requirements

In summary, the proposed monitoring and adaptation framework significantly
improves the lifecycle management of Virtual Service Platforms. An overall notion of
the WP4 framework is presented in the Error! Reference source not found..

Figure 1: Overall architecture of WP4 Framework

Components that will be developed within WP4 are marked in blue colour, while
supporting models and model instances are marked in green. Cooperation between
the components and usage of models are visualized as directed arrows.

The central element of the figure is the Repository which acts both as a back-end
database and online caching storage. From the monitoring perspective, the
Repository is used to store raw events directly from the monitoring interface (from
domain-specific platforms) as well as processed events in order to use them both for
adaptation and presentation layer (dashboard). The Monitoring Engine uses
monitoring rules to catch proper events or sequences of events. The Repository also
stores models which define how the platform variants differ from each other, i.e.
particularly the partially instantiated variability model with unbound runtime
variabilities and the related asset model which points to the concrete components
realizing the options and alternatives represented by the variabilities.

INDENICA D4.1

 8

Based on the monitored events, the Adaptation Engine launches adaptation actions
accordingly to previously defined adaptation Rules and Policies. In some cases an
adaptation action may require a change in how the Monitoring Engine monitors
different components (red arrow). Adaptation Engine uses the adaptation interface
to perform adaptations directly on domain-specific service platforms.

In order to make it possible to use common monitoring and adaptation interface for
arbitrary underlying service platforms, these platforms will need to comply with
these interfaces.

2.1 Monitoring Engine
The main purpose of monitoring is to filter and analyze events in various ways, and
to respond to events of interest in real-time. The monitoring facilities are also
responsible for efficiently gathering required information from the VSP components.
This includes determining optimal strategies for monitoring, in order to reduce
overhead and provide ‘detailed enough’ information. Furthermore the Monitoring
Engine will track QoS and SLA specific parameters from domain-specific platforms as
well as components of the Virtual Platform. The Monitoring Engine uses monitoring
rules provided by the Adaptation and Monitoring Rule Editor. These Rules are
generated based on QoS parameters and SLA.

The input data for the Monitoring Engine will be both events generated by the
execution on the service platforms and instructions from Deployment Manager.

The monitoring facilities store the monitoring data, reports and logs in the
Repository. Results from the Monitoring Engine are sent to Adaptation Engine and
dashboard/user interface.

As a part of Monitoring Engine complex event processing (CEP) is used to deliver
high-speed processing of many events across all the layers. Existing technologies
used to develop the Monitoring Engine will include ESPER, JMX and ActiveMQ.

2.2 Adaptation Engine
The Adaptation Engine is responsible for adapting components according to specified
policies and rules, e.g., as reaction to changes in the environment. The complexity of
the envisioned target platforms makes it necessary to add autonomic adaptation
capabilities controlled by policies and high-level objectives. The Adaptation Engine
receives input from the Monitoring Engine and performs reasoning based on that
data. Additional information affecting the behaviour of the Adaptation Engine, such
as adaptation policies and system capabilities, are stored in the Repository.
Furthermore, the Adaptation Engine is able to refine and optimize provided policies
based on observations and experiences gathered after applying them. There are
various kinds of adaptation actions which can be triggered by the Adaptation Engine,
ranging from direct adaptation of a concrete platform to exchanging models at
runtime.

INDENICA D4.1

 9

2.3 Repository
The Repository acts as a database for input and output of monitoring and adaptation
engines. The Repository also stores the information about on-going adaptation
activities in order to enable evaluation of these activities. Moreover, the Repository
is also used for storing monitoring data and policies concerning constraint violations.
Monitoring data stored in the Repository are pre-processed for further evaluation.
The Repository is used both for support both of the development and runtime
environment. More details about the Repository are provided in D2.3.1.

2.4 Integration Interface
INDENICA provides a common Interface (Figure 2) which enables various platform
providers to connect to the INDENICA platform. This interface enables seamless
integration of platforms with INDENICA Virtual Service Platform. The main task of
this interface is to enable the exchange of control and adaptation instructions
between the monitoring and adaptation engines in order to communicate with the
domain-specific platforms and vice-versa.

The Monitoring Interface mediates between Monitoring Engine and external service
or platform. It is based on an event-based information exchange model with a
standardized event message format. The events can be hierarchised based on the
“level” of the publishing entity (service platform).

The Adaptation Interface mediates between the INDENICA Adaptation Engine and
the external platform adaptation services. The message format used in this interface
is based on a standardized, formal language which will be developed as one of the
framework components.

The Integration Interface is described in section 3.2 (monitoring) and 4.4
(adaptation).

Figure 2: Integration Interface

INDENICA D4.1

 10

2.5 Deployment of WP4 components
The proposed model for the INDENICA framework is based on the SCA methodology
which uses a wide range of technologies for service components and for the access
methods which are used to connect them. One feature of the proposed model is that
it is also possible to automatically control the deployment process of underlying SPs.

Based on preferences of consortium members the Apache Tuscany platform has
been chosen as a base runtime environment for WP4. Apache Tuscany provides a
comprehensive infrastructure for SOA development and management that is based
on the Service Component Architecture (SCA) standard. It “extends the SCA
programming model with its support for many different binding types,
implementation types, and runtime environments” [2]. Apache Tuscany currently
offers a stable implementation of SCA specification version 1.0, while an
implementation of version 2.0 is currently available as beta.

Deployment components from one side will be responsible for applying output from
compile time tools (models, generators from different WPs) and from the other one
to run policy-driven adaptive components to support dynamic instantiation and
migration of underlying components.

Deployment of the whole WP4 environment will be partially automated and users or
the administrator will use configuration files for manual inputs.

Deployments process will also take into account self-monitoring which will enhance
the governance of the Virtual Platform at runtime. Such monitoring will be able to
provide information about various problems of WP4 components that might occur at
any time.

INDENICA D4.1

 11

3 Monitoring of Virtual Service Platforms

3.1 Monitoring Overview
The main purpose of monitoring is to filter and analyse runtime events in various
ways, and respond to of interest in real-time. The monitored events can originate
either from service platform instances or from the running Virtual Service Platform
(VSP) instance. The purpose of runtime monitoring is to ensure the fulfilment of
functional and non-functional requirements imposed on the running VSP instance by
providing feedback to the Adaptation Engine. Additionally monitoring information
will be provided in human readable form to a System Operator who can also interact
with the system as required. Furthermore, monitoring is a prerequisite of adaptation
at runtime, as discussed in Section 4.

Monitoring will be implemented in the Monitoring Engine runtime component. This
component will rely on Complex Event Processing (CEP) to deliver high-speed
processing of many events across all the layers. One of the key features of Complex
Event Processing is the capability to “continuously process event streams to detect a
specified confluence of events, and trigger a specific action when the events occur”
[3]. As a result of applying CEP, the platform can be monitored in near-real time
based on the flow of events (see [4] for examples). Thanks to applying CEP, it will be
possible to process and aggregate events received by the Monitoring Engine into
complex events based on predefined functional and non-functional requirements.

The interactions of the Monitoring Engine with the underlying Service Platforms and
other components of the VSP are illustrated in Figure 3. The basic assumption is that
the Monitoring Engine should be able to receive and understand events from any
current or future underlying service platform. In order to ensure this, a generic and
extensible Monitoring Event Model is introduced (described in section 3.2), which is
used to convert events generated by SPs to internal INDENICA events. The
implementation of this conversion will take place in the Monitoring Interface
component, which is described in section 0.

INDENICA D4.1

 12

Figure 3: Interaction of the Monitoring Engine with the underlying Service Platforms and the VSP

As can be seen in Figure 3 we assume that each platform will have to be adapted to
INDENICA monitoring mechanisms, which is denoted by the ‘INDENICA Integration’
box. To comply with INDENICA monitoring, each service platform will have to be
extended by a module which will be responsible for establishing a monitoring
communication channel between the service platform and the INDENICA monitoring
interface. Whether this module could be generated automatically by INDENICA tools
is still an open issue, but our goal will be to automate this integration as much as
possible.

What can also be observed on Figure 3 is that the Monitoring Engine will be
responsible for self-monitoring of the runtime platform, by handling monitoring
events from the Adaptation Engine. The events generated by the Domain Specific
Service instance will have to comply with the event model, as the service will be
subject to the same monitoring and adaptation workflow as the underlying Service
Platforms.

We identify two key challenges for monitoring implementation in INDENICA. The first
is to provide a solution for associating a shared semantics to various events across
diverse service platforms in order to support monitoring of arbitrary service
platforms. The second is to derive universal monitoring interfaces (and an approach
to their implementation) able to support arbitrary service platforms. The following
sections describe the INDENICA design for solving these challenges.

INDENICA D4.1

 13

3.2 Monitoring Event Model
The purpose of the monitoring event model is to provide a structure for events that
should be understood and processed by the INDENICA framework. This structure
should be generic enough to cover all events from any existing service platform. At
the same time it should be detailed enough to allow for creation of detailed rules for
triggering adaptation actions under specific conditions. Our general approach is
twofold: on the one hand, we provide an event hierarchy, which serves as the main
classifier for concrete events. This main event model defines what types of events
exist in the system. In addition to the main event model, and orthogonal to it, there
is an event feature model. This model defines what additional purposes any event
can serve. More precisely, any concrete event is of exactly one type from the main
event hierarchy, but may implement any number of features from the event feature
model. The event model presented here is loosely based on earlier work [6]Error!
Reference source not found.Error! Reference source not found.Error! Reference
source not found.Error! Reference source not found.Error! Reference source not
found.Error! Reference source not found. that some of the INDENICA partners have
carried out as part of the VRESCo project [7].

Our initial version of the main event model is depicted in Figure 4. All events inherit
from the common BaseEvent, which contains some basic event information
(timestamp of when the event has been triggered, unique event identifier, and some
optional additional data). On the second level of hierarchy, we distinguish four broad
classes of events. ManagementEvents refer to events triggered by internal VSP
activities, such as querying the Repository or triggering an adaptation. Similarly,
LifecycleEvents are triggered whenever the status of one of the VSP components
changes, for instance, if a new domain-specific service is started, finished starting, or
is stopped. ExecutionEvents tracks service invocations in the VSP. There are events
triggered when invocations start, finish, fail or are interrupted. Finally, StatusEvents
are triggered by sensor-style components. These events are typically not associated
with any concrete activity in the VSP or the platforms. Instead, StatusEvents are
often generated periodically.

Figure 4 – Main Event Model

INDENICA D4.1

 14

The third hierarchical level is formed by concrete events from the event classes
discussed above. We have exemplified some important events from the
ManagementEvent, ExecutionEvent and LifecycleEvent classes, even though this
model is not necessarily complete. In the remainder of the project, we plan to
extend the model with additional event types and classes, as we identify them. Note
that there is no further concretization for StatusEvents at the moment.

Figure 5 depicts the initial version of the event feature model. Like the main event
hierarchy, this model is not exhaustive, i.e., it is to be expected that we will identify
additional features that have to be added to the model in the course of the project.
Unlike the main event hierarchy, the feature model is mostly a flat structure. Any
concrete event may implement any number of features from the feature model. In
its current version, we provide features for role-based access control
(RBACEnabledEvent, which contains the RBAC typical data like subject, role and
context), versioning (VersioningAwareEvent, which indicates that an event knows
which version of a component has produced it), models at runtime
(ModelAwareEvent and ModelInstanceAwareEvent, linking events to concrete
models and model instances from the view-based modelling framework), and
aggregation (AggregateEvent, which indicates if an event has been produced from a
series of lower-level events using techniques of complex event processing).

Figure 5 - Event Feature Model

We now demonstrate an example of the usage of the INDENICA event model based
on a concrete event from the case study. Let us consider an initiation of a video call
between two system users. The main concrete event named VideoCallInitiatedEvent
is fired by invocation of a domain-specific service at one of the underlying platforms.
Because of that, this event is of the type ExecutionStartedEvent. The event also
implements the event features ModelInstanceAwareEvent and RBACEnabledEvent.
The resulting event including all event properties is depicted in Figure 6. Note that
some of the properties are fixed for certain types of events, for instance the property
UUID targeting always refers to the UUID of the domain-specific video-on-demand
service. Finally, the VideoCallInitiatedEvent also contains a larger number of event-
specific fields, which are specific to the video-on-demand domain. The INDENICA
event model allows events to contain arbitrary additional information, which may be
ignored by generic monitoring rules, but which may be important to some
components, which are aware of the specifics of the respective domain.

INDENICA D4.1

 15

Figure 6 - Example Event

3.3 Monitoring Engine
The Monitoring Engine (Figure 7) can be best described as a flexible runtime
validation platform that exploits a Publish/Subscribe middleware to distribute
information to different analysers. Though our initial architecture presented within
this document consists of only two analyzers (described below) the architecture will
be able to support multiple event analysers which will be added at later stages if
required.

One of the event analyzers will be implemented with the use of the Esper Complex
Event Processing Engine to process collected events and to provide inputs to other
analysers if needed. Esper provides an Event Processing Language (EPL) that allows
developers to easily define complex event conditions, correlations, and aggregations,
thus effectively minimizing the effort required to keep track of a distributed system's
behaviour.

The second analyzer will be implemented based on a rule engine (such as e.g., the
JBoss Rule Engine) used to evaluate business-related rules and which could be used
by other external analysers for special-purpose validations. The JBoss Rule Engine
(Drools) is a business rule management system (BRMS). It supports the JSR3 standard
for its business rule engine and enterprise framework for the construction,
maintenance, and enforcement of business policies in an organization, application,
or service.

The publish/subscribe event notification service ensures the correct distribution of
information with a large number of communicants and high volumes of events. It will
also be possible to dynamically combine multiple analyzers in a pipe-and-filter
fashion.

3 http://jcp.org/en/jsr/detail?id=94

INDENICA D4.1

 16

Figure 7: The architecture of the Monitoring Engine

The middleware also defines a normalized event format for the data that flow
through P/S infrastructure, and provides configurable adapters for the different
components.

3.3.1 Monitoring rules
Monitoring rules, to feed the different analysers, can be extracted semi-
automatically from the goal model (see D1.2.1 for more details on goals). Soft goals,
which are dedicated to non functional (or qualities of service) requirements can
easily be used to identify the quality dimensions of interest, and if, properly
formalized, they can also be used to derive monitoring directives directly.

There are a number of approaches that can be used to specify goals. Currently we
identify the following existing possibilities:

- Natural language. If goals are only rendered in natural language, the
monitoring directives can only be generated by hand.

- Formalized language. If goals are specified using languages like OCL (Object
Constraint Language) or even more sophisticated languages (e.g., Linear
Temporal Logic), we could easily apply transformation techniques based on
the two different meta-models, to translate constraints in the problem space
into directives into the solution space.

The decision on a specific method of specifying goals will be made during the
implementation phase of the project.

Any monitoring activity requires the availability of suitable data. Its proper collection
depends on the probes available in the infrastructure. Probes mainly differ on how
(push/pull mode), and when (periodically/when certain events take place) data must
be collected. If data are collected in a push mode, the Monitoring Engine just

INDENICA D4.1

 17

receives them from the corresponding probes. Instead, if data are collected in a pull
mode, the infrastructure is responsible for activating the collection (periodically or at
specific execution points). Every time a new datum is available the middleware
distributes it to all interested parties.

The definition of the monitoring directives depends on the monitoring capabilities
provided by the Monitoring Engine. There are a several possible types of constraints
that could be verified by the engine (untimed or temporal, fuzzy or crisp). There are
also two different approaches to implementing verification of these constraints, that
is synchronous(if a result is provided right after the constraint is verified) or
asynchronous (if a result is provided in a different moment than when the constraint
is verified).

In general this section presented a number of aspects related to the implementation
of monitoring rules, together with a number of possible solutions to each of these
aspects. All the presented options will be evaluated during implementation phase of
the project to achieve the desired flexibility of the Monitoring Engine.

3.4 Monitoring Interface
INDENICA will create an integration interface for monitoring which will enable
various platform providers to comply to and to enable seamless integration with the
Virtual Service Platform. The integration interface for monitoring will be event-
driven and will rely on a standardized event message format. Each platform provider
will be responsible for defining a mapping between the events generated by their
platform and selected events from the monitoring events model of the INDENICA
platform. This mapping will be all defined using INDENICA design-time tools, which
will generate pieces of code that will facilitate the integration of the service platform
with INDENICA.

The monitoring interface is an entity which consists of two elements in terms of
software: a generated piece of code that has to be integrated with a service platform
(monitoring client) and the monitoring event receiver being a part of the Virtual
Service Platform (monitoring server) (see Figure 8).

INDENICA D4.1

 18

Figure 8: Monitoring Interface overview

The monitoring client receives events from the service platform and translates them
into the INDENICA event model, based on rules generated from design-time tools. It
is also responsible for sending these events to the monitoring server in the virtual
service platform. The code for the monitoring client is generated by INDENICA design
time tools, but it will require some manual integration with the platform code which
has to be done once per platform. One specific part of the monitoring client will be
the generic resource monitoring framework SPASS-meter which offers a uniform
view on the resource consumption of the individual service platform in terms of its
running services, components and dynamic variability.

The monitoring server (Monitoring Event Receiver) is a server-type component being
a part of the VSP, which is able to receive events from remote service platforms. It
accepts only events compliant with the monitoring events model, and passes them
to the Monitoring Engine component.

The communication between monitoring components will be based on a
publish/subscribe middleware, for example JMS or more sophisticated
implementations, to allow for the complete decoupling between data sources and
analyzers.

The JBoss Rule Engine (Drools) is a business rule management system (BRMS). It
supports the JSR4 standard for its business rule engine and enterprise framework for
the construction, maintenance, and enforcement of business policies in an
organization, application, or service.

4 http://jcp.org/en/jsr/detail?id=94

INDENICA D4.1

 19

4 Adaptation of the Virtual Service Platform

4.1 Adaptation Overview
In this section we describe the architecture and functionality of INDENICA’s
adaptation capabilities. Virtual Service Platforms as envisioned by INDENICA enable
applications and services to view complex service environments as a unified service
delivery platform independent of the subsystems’ specifics. These requirements
demand for integrated systems management functionality and support of flexible
adaptation mechanisms. The complexity of today’s IT systems is steadily rising, and
especially large-scale, heterogeneous systems, consisting of a large number of
subsystems, are difficult to manage effectively. To make such complex systems
manageable, a high degree of automation is necessary to support system
administrators. This high degree of freedom given to the system should be
controlled by high-level policies and goals. Hierarchical structures allow for divide-
and-conquer adaptation strategies and support different levels of abstraction. Thus,
domain experts can provide their expertise where it is needed and are not
overwhelmed by the overall complexity of the system.

Figure 9: Adaptation Overview

Based on these requirements, we developed the INDENICA adaptation framework
architecture shown in Figure 9. In order to support a wide range of service platforms,
the INDENICA platform provides a generic adaptation interface for their integration.
Platform providers use the adaptation interface to specify the adaptation capabilities
of their respective platforms. Similarly, the monitoring interface is used to describe
monitoring capabilities, which is used by the Monitoring Engine (cf. Section 3). The
Adaptation Engine is responsible for executing adaptation policies, based on input

Adapta on
Engine

Monitoring
Engine

Adapta on
Interface

Service Pla orm X

Monitoring
Interface

Adapta on
Engine

Monitoring
Engine

Adapta on
Interface

Service Pla orm Y

Monitoring
Interface

Adapta on
Engine

Monitoring
Engine

Adapta on
Interface

Service Pla orm Z

Monitoring
Interface

Adapta on
Engine

Monitoring
Engine

Repository

Information Flow

- Adapta on Policies
- Adapta on Capabili es
- ...

INDENICA D4.1

 20

provided by the Monitoring Engine. There are different types of adaptation policies,
e.g., specific rules, consisting of trigger and adaptation action, or high-level goals,
which only express desired system states, without recipes stating how to achieve
them. Adaptation policies and adaptation capabilities can be retrieved from the
Repository, which is described in D2.3.1. The adaptation framework is designed in a
layered manner, to allow for effective management of multiple service platforms.
The architecture shown in Figure 9 represents an example configuration of the
adaptation framework, and in general, monitoring and adaptation controller
components can be arranged in arbitrary tree-like structures.

We will demonstrate the functionality of the adaptation framework using a
simplified INDENICA use case, shown in Figure 10.

Figure 10: Adaptation applied to simplified warehouse use case

The scenario consists of an automated warehouse supporting different storage and
retrieval strategies, which can be adapted. Additionally, a video monitoring system is
used for surveillance and is able to identify incoming and leaving trucks. The
Warehouse Controller is responsible for local management of the warehouse, such
as reactions to failures in the transport system or lift modules. The Video Monitoring
Controller is likewise responsible for local management of the Video Monitoring
System. Moreover, it is responsible for adaptation processes, such as, video stream
quality adjustments; therefore, influencing the detection rate of the truck
identification mechanism. Both controllers process incoming monitoring data, and
forward combined, analysed and filtered data to the combined controller. This
allows the Combined Controller to make decisions from a more abstract point-of-

Adapta on
Interface

Warehouse Management
System

Monitoring
Interface

Adapta on
Interface

Video Monitoring System

Monitoring
Interface

Information Flow

Warehouse Controller

Combined Controller

Video Monitoring
Controller

INDENICA D4.1

 21

view, spanning multiple systems, exceeding a single controller’s capabilities. As an
example, suppose that the Video Monitoring Controller detects and forwards, that a
high number of loaded trucks is about to arrive. The Combined Controller can then
trigger an adaptation of the storage strategy in the warehouse using the Warehouse
Controller; therefore, resulting in modification of the storage density of stored items.

4.2 Adaptation Model
The INDENICA adaptation model (AM) is designed as a set of layered Adaptation
Engines, each implementing autonomic MAPE [8] managers. This facilitates
separation of concerns, allowing for low-level Adaptation Engines to deal with
granular changes in system behaviour, and high-level Adaptation Engines to focus on
the specification of overall service level goals.

Traditionally, adaptation frameworks rely on predefined management policies, which
are to be carried out. However, in complex distributed systems, management
policies of different components can be conflicting, causing undesirable system
behaviour and errors [9].

The INDENICA adaptation model allows for different levels of adaptation actions, as
shown in Figure 11, represented as an escalation model ordered by invasiveness and
degree of automation:

 Adaptation of concrete service platforms via the Adaptation Interface;
 Adaptation of the deployed VSP, using a capability model stored in the

Repository, specifying possible adaptation actions for the deployed
components;

 Adaptation of runtime variability as specified in the variability model;
 Adaptation of the models used to create the VSP instance;
 Notification of an Administrator.

Figure 11: Levels of Adaptation

Adapt Service
Pla orm

Adapt VSP

Switch Variant

Modify Model

No fy
Operator

Es
ca

la
on

INDENICA D4.1

 22

In order to provide for dependability and reliability, the model allows for the
definition of escalation scenarios for adaptation actions. The adaptation framework
will always try to fulfil high-level adaptation goals by executing the most effective
and the least invasive actions; moreover, if no suitable automated measures can be
taken then it will notify the system administrator.

Adaptation actions performed by administrators can also be monitored.
Furthermore, if it is possible, adaptation actions can extend the used policies to
gradually increase the self-healing capabilities of the VSP.

4.3 Adaptation Engine
An Adaptation Engine (AE) is responsible for carrying out adaptation actions. Its basic
architecture is shown in Figure 12.

Figure 12: Adaptation Engine Overview

The AE contains an exchangeable rule engine and an execution component,
providing an adaptation interface for higher-level AEs. Furthermore, the AE is
designed in an extensible manner, allowing for the introduction of new functionality.
Rule-based adaptation policies specify monitoring events, relevant for deciding if
adaptation actions are necessary. An AE subscribes to all relevant events, and the
rule engine is invoked whenever new events arrive, to evaluate the rule’s conditions.
When a policy rule matches, the adaptation executor carries out the adaptation
action by invoking the adaptation interface, directly executing the action in the
target platform or lower-level AE. As mentioned before, this layered approach allows
developers and system administrators to specify abstract service level goals in high-
level AEs, which need not be concerned with specifics on how to actually achieve
these goals. Low-level AEs, on the other hand, can be created with a focus on specific
platforms, incorporating expert knowledge about individual systems, providing
optimized adaptation actions for fulfilling high-level goals.

Adapta on
Executor

Rule
Engine

Repository

Adapta on Engine

Adaptation
Policies

(To Adaptation Interface)

Monitoring
Events

Adaptation
Commands

INDENICA D4.1

 23

To evaluate the capabilities of the proposed approach, we extended a high-level AE
by adding a Policy Optimization component, able to detect and prevent policy
conflicts and system failures, shown in Figure 13. This is achieved by deriving a
Markov Decision Process (MDP) representation from the gathered monitoring data
and observed policy actions (log data). The Policy Creator is then able to employ
machine learning techniques to optimize the created MDP representation, thus
generating an optimized management policy.

Figure 13: Policy rule optimization component

4.4 Adaptation Interface
The INDENICA platform provides a generic adaptation interface (AI) for service
platforms to be integrated. Platform providers use the AI to specify the adaptation
capabilities of their respective platforms, and to map INDENICA adaptation
commands to platform-specific actions.

The AI is based on a capability model, allowing for the description of all available
adaptation actions, annotated with information about their cost, failure probability,
preconditions, and effects. Platform providers can store all available information
about adaptation actions using the capability model.

As illustrated in Figure 14 the Adaptation Interface consists of two elements: the
adaptation interface SCA component which is a part of the INDENICA platform, and
an INDENICA adaptation commands translator which is a piece of code located on
the target service platform.

Improved Policy
Policy Optimizer

Canonical Representation

Log Adapter

MDP

MDP Creator Policy Creator Optimized
Policy

Log

INDENICA D4.1

 24

Figure 14: Adaptation Interface overview

The AI SCA component provides a unified interface for passing adaptation
commands to integrated service platforms. Integrated service platforms are
identified either by ID or type, the adaptation actions to be performed are specified
in the capability model, and necessary parameters can be supplied. The adaptation
commands are then passed to the INDENICA adaptation commands translator
running on the target service platform.

The INDENICA adaptation commands translator is a piece of code which receives
adaptation actions sent by the AI SCA component and maps them onto platform
specific adaptation actions. The communication part of this code is rather generic
and could be generated by INDENICA tools; however the actual integration of this
piece of code with the service platform requires manual modifications of the service
platform. These modifications are required to:

a) Bundle the generated code with the service platform (e.g. so that it is started
and stopped together with the service platform).

b) Translate received INDENICA adaptation commands into service platform
specific adaptation commands, which also include adding actual code which
is able to execute those adaptation actions.

The procedure for integrating the Adaptation Interface with a service platform is a
step that will need to be done only once per platform, to make it INDENICA
compliant.

INDENICA D4.1

 25

4.5 Prototype Implementation
We have implemented a prototype of the architecture presented in this section, as
shown in Figure 15.

Figure 15: Prototype implementation architecture

The adaptation and monitoring modules are realized as SCA components, based on
the Apache Tuscany framework. The Monitoring Engine utilizes the Esper5 Complex
Event Processing Framework, which offers a Domain Specific Language for event
processing, the Event Processing Language (EPL), which allows for dealing with high
frequency time-based event data. The Adaptation Engine employs the Drools
Expert6 rule engine, a business rule management system with a forward chaining
inference based rule engine, i.e., a production rule system using the Rete algorithm.

The runtime configuration of the prototype is shown in Figure 16, describing the
components that constitute the system. Furthermore, references between
components, as well as service endpoints are defined in the configuration.

5 http://esper.codehaus.org/
6 http://www.jboss.org/drools/drools-expert.html

Adapta on
Interface

Service Pla orm

Monitoring
Interface

Adapta on Engine

Drools Expert

Monitoring Engine

Esper CEP

INDENICA D4.1

 26

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://WP4Runtime"
 xmlns:hw="http://WP4Runtime"
 name="WP4Runtime">

 <component name="ComponentInitializerComponent">
 <implementation.java
 class="wp4.deployment.ComponentInitializerImpl" />
 <reference name="monitoringEngine"
 target="MonitoringEngineComponent" />
 <reference name="monitoringInterface"
 target="MonitoringInterfaceComponent" />
 <reference name="adaptationEngine"

 target="AdaptationEngineComponent" />
 <reference name="adaptationInterface"
 target="AdaptationInterfaceComponent" />
 <reference name="repository" target="RepositoryComponent" />
 </component>

 <component name="MonitoringEngineComponent">
 <implementation.java
 class="wp4.monitoring.component.MonitoringEngineImpl" />
 <reference name="adaptationEngine"
 target="AdaptationEngineComponent" />
 <reference name="repository" target="RepositoryComponent" />
 </component>

 <component name="MonitoringInterfaceComponent">
 <implementation.java
class="wp4.monitoringInterface.component.MonitoringInterfaceImpl" />
 <reference name="monitoringEngine"
 target="MonitoringEngineComponent" />
 <reference name="repository" target="RepositoryComponent" />
 </component>

 <component name="SamplePlatformMonitoringInterfaceComponent">
 <implementation.java
class="wp4.monitoringInterface.component.SamplePlatformMonitoringInte
rfaceImpl" />
 <reference name="monitoringEngine"
 target="MonitoringEngineComponent" />
 <reference name="repository" target="RepositoryComponent" />
 </component>

 <component name="AdaptationEngineComponent">
 <implementation.java
 class="wp4.adaptation.component.AdaptationEngineImpl" />
 <reference name="adaptationInterface"
 target="AdaptationInterfaceComponent" />
 <reference name="repository" target="RepositoryComponent" />
 </component>

 <component name="AdaptationInterfaceComponent">
 <implementation.java
class="wp4.adaptationInterface.component.AdaptationInterfaceImpl" />
 </component>

 <component name="RepositoryComponent">
 <implementation.java

INDENICA D4.1

 27

 class="wp4.repository.component.RepositoryImpl" />
 <reference name="adaptationEngine"
 target="AdaptationEngineComponent" />
 </component>

 <component name="RandomNumberGeneratorPlatformComponent">
 <implementation.java
 class="wp4.sampleplatform.RandomNumberGeneratorPlatformImpl" />
 <reference name="monitoringInterface"
 target="SamplePlatformMonitoringInterfaceComponent" />
 </component>
</composite>

Figure 16: Prototype runtime configuration

Figure 17 shows an exemplary query used by the Monitoring Engine, calculating the
availability of the ‘ERPService’ during the last 24 hours. The Monitoring Engine uses
this query to create a ServiceAvailabilityReportEvent containing the value
of the calculated avail variable in the actualAvailability attribute.

select
 1 - (
 (select count(invocations)
 from ServiceInvocationFailedEvent(service='ERPService')
 .win:time(60*60*24.0) as invocations)
 /
 (select count(invocations)
 from ServiceInvocationEvent(service='ERPService')
 .win:time(60*60*24.0) as invocations))
as avail

Figure 17: Sample EPL Query calculating service availability

The Adaptation Engine uses the adaptation rule shown in Figure 18 to evaluate the
ServiceAvailabilityReportEvent generated by the Monitoring Engine, to
determine, if the current system state requires corrective measures. In this particular
example, the Adaptation Engine attempts to increase the service platform’s
redundancy level if the measured availability drops below 99.99%. The adaptation
action increaseRedundancyLevel is interpreted by the adaptation interface,
which in turn performs the actual corrective measures on the service platform.

rule “When availability too low, increase service redundancy level”
when
 $e : ServiceAvailabilityReportEvent(actualAvailability < 0.9999)
then
 NotificationActions.notifyOperator($e);
 AdaptationActions.increaseRedundancyLevel();
end

Figure 18: Sample DRL adaptation rule

INDENICA D4.1

 28

5 Deployment of Virtual Service Platforms

5.1 Design-time requirements and Platform Variability
This chapter provides an overview of the deployment manager and its requirements,
its functionality and the deployment process itself. The deployment manager is in
charge of packaging, publishing and starting the service platforms as well as the
virtual service platform itself. To fulfill these tasks, different kind of information is
required.
Platform providers have to describe the respective deployment process of their
platform in terms of a generic deployment script because no limitations on used
technology for the service platforms should be superimposed. The deployment-
specific variability as described in the generic deployment script will be resolved at
deployment time and the instantiated deployment scripts will be used for packaging,
publishing and running the service platforms.
Information from the service component view, the service deployment view and the
runtime view (respectively the more specific artifacts generated by the generation
tools) are used together with adapters and descriptors for the monitoring framework
to package the Virtual Service Platform. Finally, deployment scripts for publishing
and starting the packaged virtual service platform have to be generated and
executed.

5.2 Deployment Process
This section describes the process of the deployment manager (DM). The domain of
the DM is to package the virtual service platform and deploy it to the runtime
environment. The process is started by the platform integrator in the course of
deploying the virtual service platform or in the course of a RegenerateAndRedeploy
adaptation activity (cf. D3.1, section 3.3).

The prerequisite for the deployment process is that the variability of the individual
service platforms has to be resolved until deployment binding time. The runtime
variability will be left, because no assumptions should be superimposed about the
service platform target environment. The following process is divided into two main
stages, namely instantiation, packaging and deployment of 1) of the individual
service platforms to be integrated and 2) the virtual service platform.

As a first activity, the monitoring glue code will be generated. For the creation of
artefacts for the monitoring framework, the platform provider has to supply
mappings between platform-specific events and events used by the INDENICA
platform (cf. section 3.4). This information is used by the DM to generate glue code
as far as possible to adapt the monitoring- and Adaptation Engine of every platform
contained in the virtual service platform (Figure 14). To unify the monitoring view on
the resource consumption of every platform, particularly of the activated variants
realized as services or components, the generic resource monitoring framework
SPASS-meter is used. The DM generates a monitoring scope definition for SPASS-
meter based on the monitoring requirements, the variability model and the asset
model. Furthermore, the DM triggers the static instrumentation process of SPASS-

INDENICA D4.1

 29

meter to insert monitoring probes according to the scope definition into the
respective platform. The next step is to package and publish the service platforms.
Thereby, deployment time variability will have already been bound using information
from the variability model (WP2), the artefact model (WP2) and the service
deployment view model (WP3). Generic deployment scripts, supplied by the
platform provider, are instantiated by tools from WP2 and WP3 and used by DM for
the concrete packaging and publishing of the service platforms together with the
monitoring artefacts.

The second stage concerns the instantiation and deployment of the virtual service
platform. This stage is divided into three main activities, namely 1) the packaging of
the virtual service platform including the monitoring and adaption framework, 2) the
generation of deployment descriptors for the virtual service platform and 3) the final
publishing of this platform. First, all artifacts of the Virtual Service Platform are
packaged by the DM into a deployable format called SCA Contribution as defined as
[10]. This includes all SCA descriptors, the virtual service components, as well as the
artifacts concerning the monitoring and adaption framework. The Service
Deployment View, respectively the generated UML 2 deployment model, contains
vital information about the deployment process itself and will be interpreted by the
DM. Based on this information, the deployment-ready packages are processed.
Deployment scripts are generated that are tailored to the existing infrastructure (as
described in the Service Deployment View). After everything is generated and
packaged, the actual deployment process of the virtual service platform begins. The
service platform and the technology platform will be deployed at once using the
generated deployment scripts, which contain all steps necessary to publish and start
artifacts at specific nodes, according to the deployment diagram. By executing these
scripts, the deployment process is finalized. For executing this activity, Maven is
used, but the process is not specific to Maven and could be extended to be used with
other deployment tools as well. The Maven script contains information about the
target environment, the artifacts that need to be deployed and additional
dependencies. More specifically, it contains a mapping of which artifact needs to go
to which runtime environment.

INDENICA D4.1

 30

Figure 14: Deployment Process

5.3 Deployment descriptors
The Deployment Descriptors for the Virtual Service Platform as well as the individual
service platforms describe how the (partially) configured and instantiated platforms

INDENICA D4.1

 31

will be prepared for packaging, how they are packaged, where they will be published
and how they have to be configured to be used.
In our case we can identify three main groups of Deployment Descriptors. The first
group describes the single service platforms, the second the SPASS-meter instance
responsible for monitoring the platforms and the last group the deployment to the
virtual service platform.
The Deployment Descriptors for the single service platforms are platform specific
and supplied by the platform provider. They comprise a variability description and
will be instantiated with the Variability Resolver.
The descriptors for the generic resource monitoring using SPASS-meter contain the
general configuration of the instrumentation process as well as the monitoring
scope. The monitoring scope lists the individual services and components as well as
the concrete resources to be monitored. This information can be derived from the
monitoring specification from the requirements model, from the variability model,
the related asset model and via the asset model also from the architecture models.
Even if the information in this descriptor will primarily be used at deployment time,
the information will be part of the deployed instance in case that (additional)
runtime instrumentation might be needed, e.g. to consider services and components
to be added dynamically at runtime.
The descriptors for deploying SCA components, modeled in the Service Component
View, to the runtime of the Virtual Service Platform are an output of the Generation
(see D3.1). Also these descriptors can be divided into three groups. First for
description of the physical structure of the SCA domain mainly derived from the
information of the Service Deployment View. The description comprises the
information about all nodes of the domain, their binding and the assignment of SCA
composites to the nodes. The second group contains descriptors holding the
information about the logical structure of the SCA domain which was modeled in the
Service Component View. One descriptor comprises all SCA composites of the SCA
domain whereby each SCA composite has a descriptor assemble its SCA components.
The third and last group contains SCA metadata at one hand for the SCA domain at
the other hand for each SCA contribution. This information is derived from Service
Component View and Service Deployment View.

INDENICA D4.1

 32

6 Integration with Other Work Packages

6.1 Work Package 1 - Requirements Engineering & Methodology
for Interoperable Service Platforms
Needless to say, the requirements elicitation activities carried out in WP1 are
responsible for specifying the requirements of the “integrated“ platform-to-be, and
thus also for the actual Virtual Service Platform. These requirements address
functional and non-functional properties, but also the needs for adaptation and
variability. All of them will be used to design the platform. The more formal/precise
these requirements are, the more fruitfully they will be used in the next phases.

First of all, these requirements will serve to test the platform and understand
whether the implementation satisfies stated requirements. Even if the project does
not comprise any specific activity about testing, this is clearly a very important and
interesting phase.

Since the requirements elicitation is not limited to the functionality of the platform
and its qualities of service, the information provided by WP1 will also be used as
guidance for engineering the variability of the platform-to-be and also for the actual
specification of the monitoring and adaptation artefacts.

The idea here, depending on the formality of provided specification/information, is
that variability annotations will be used to design the actual variability embedded in
the design of the solution, and also the one that must be dealt with at runtime. Also
monitoring directives and adaptation plans are then derived directly and used to
feed the INDENICA infrastructure. Monitoring directives are in the form of assertions
and more generally statements that must hold true on the system, adaptation plans
come in the form of steps the system must undertake to keep itself on track.

6.2 Work Package 2 - Variability Engineering
Variabilities represent options or alternatives in software development assets such
as requirement documents, design models, source code or even executables. The
derivation of a concrete product (here a service platform) from variable assets
happens by binding the variabilities, e.g. defining which alternative should be
enabled. Binding of variability may happen at various points in time during the
software development lifecycle. These so called binding times specify the latest point
in time when a variability may be bound. Furthermore, the binding of a variability
may be constrained by dependencies among variabilities. Dependencies may restrict
the binding of individual variabilities or prescribe the concrete binding dependent on
previously bound variabilities. Variabilities will be derived from the requirements
model defined in WP1 and are described using the variability modelling tool in WP2
in terms of a variability model and an associated asset model which links variabilities
to affected assets.

A subset of the variabilities in INDENICA platforms will be bound at design time
(WP3) by selecting appropriate architectural styles, at generation time of the virtual
platform or the connectors to the technical platforms (WP3, WP4), at compilation

INDENICA D4.1

 33

time of the platforms, or at deployment time. The remaining variabilities to be
bound later than deployment time will be left open to be resolved at runtime (as a
partially instantiated variability model). A subset of the runtime variabilities can be
used to describe the adaptivity of a platform (Dynamic Software Product Line
approach).

The instance of a VSP is a composition of the configured technical platforms based
on their individual variability models (WP2, WP5). The remaining variabilities which
are not instantiated during the development or deployment of the VSP will be input
to WP4 as a partially instantiated variability model. Unbound runtime variabilities
and the dependencies among them define the adaptation space and, thus, the
possible decisions of the adaptation manager. Changing the concrete binding of
runtime variabilities in a technology platform will enact the decision of the
adaptation manager via the technology-platform-specific monitoring and controlling
adapter. The variability model and the asset model may be used to configure
monitoring activities, particularly those regarding quality and resource properties in
the technical platforms using the generic resource monitoring framework SPASS-
meter (see also Section 0).

WP2 will provide the specification of the variability and the asset model for the
implementation and integration activities in WP4 (intended are also APIs for directly
accessing the partially instantiated WP2 models from the WP3 Repository). Parts of
the monitoring activities (e.g. those carried out by SPASS-meter) may be
automatically configured based on the information from WP2. As an overall
constraint, the decisions of the Adaptivity Engine (WP4) must be consistent with the
dependencies and constraints in the variability models of the individual technology
platforms (from WP5).

6.3 Work Package 3 - View-Based Architecture and Tools for
Tailoring Service Platforms
The major contributions of WP3 are a view-based design time and runtime
architecture and its tooling that support stakeholders in dealing with complexity and
heterogeneity of service platforms through the notion of virtual service platforms
(VSP). The view-based architecture aims at providing the stakeholders different view
models for representing VSPs from different perspectives and abstraction levels at
design time and runtime. These view models are derived from the common, abstract
concepts of a Core model, and therefore, are able to be linked to each other via the
Core model. Apart from that, code generation techniques and templates are also
developed for producing code, configurations, and/or runtime monitoring and
adaptation directives (see D3.1 [5]).

The components presented in the previous sections such as Monitoring Engine,
Adaptation Engine, and/or Deployment Manager shall naturally reference to the
concepts and elements, especially the Runtime View, provided by the view-based
architecture (as described in D3.1 [5]). For instance, which service components of
VSP are going to be monitored? Which QoS measurements are applied for such
service components? Which service components are going to be changed or
reconfigured to adapt to a certain new situation?

INDENICA D4.1

 34

Moreover, runtime monitoring directives and queries as well as adaptation rules can
be (semi-)automatically produced based on view models (and/or their extensions)
and code generation techniques provided in the view-based architecture Described
in D3.1 [5].

INDENICA D4.1

 35

7 Conclusions and future steps

In this document we present the complete view of the framework, which will act as
an integration layer for all the technical work on concrete models and tools done in
INDENICA project. It will also be used in the case study as a solid foundation for the
proof-of-concept realisation. The presented framework description depicts
architecture for the realisation of the WP4 tool suite and describes the relation
between these tools.

Although the document is in line with the completion of Milestone 2, which means
that the interim concept of the framework is established, some work on early
prototyping has been already done. This document will help the consortium in
further development of the framework by providing a generally accepted view of the
WP4 platform on the technical and conceptual level. However, the consortium takes
into account that some minor changes in the concept might occur due to the fact
that the technical work goes beyond current State of the Art and in some cases novel
concepts will need to be included.

Throughout the development of the framework, significant focus will be put on the
scalability of the proposed solution and awareness of the possible future exploitation
of the framework (i.e. integration with additional underlying service platforms).
Another key aspect of non-functional requirements for the framework itself will be
to provide pre-requisites for every segment of the framework in which additional
integration will be possible in the future (i.e. exchanging or adding new
components).

With regards to the agreed Description of Work, during the next 6 months the main
focus of work in Work Package 4 will be concentrated on two tasks: 1) the
development process of the tool suite for the framework, including the initial
integration with the tools and concepts from remaining Work Packages; 2)
finalization of the Framework concept.

INDENICA D4.1

 36

Table of Figures

Figure 1: Overall architecture of WP4 Framework ... 7

Figure 2: Integration Interface ... 9

Figure 3: Interaction of the Monitoring Engine with the underlying Service Platforms
and the VSP ... 12

Figure 4 – Main Event Model ... 13

Figure 5 - Event Feature Model.. 14

Figure 6 - Example Event ... 15

Figure 7: The architecture of the Monitoring Engine.. 16

Figure 8: Monitoring Interface overview .. 18

Figure 9: Adaptation Overview .. 19

Figure 10: Adaptation applied to simplified warehouse use case 20

Figure 11: Levels of Adaptation ... 21

Figure 12: Adaptation Engine Overview ... 22

Figure 13: Policy rule optimization component .. 23

Figure 14: Adaptation Interface overview .. 24

Figure 15: Prototype implementation architecture .. 25

Figure 16: Prototype runtime configuration .. 27

Figure 17: Sample EPL Query calculating service availability 27

Figure 18: Sample DRL adaptation rule .. 27

INDENICA D4.1

 37

References

[1] Haleh Mahbod, Raymond Feng and Simon Laws. „Java Feature — What is
SCA? A quick view of concepts through and an example walkthrough“.
Java Developer Journal, February 4, 2007. http://soa.sys-
con.com/node/325183

[2] Haleh Mahbod, Raymond Feng and Simon Laws. „Building SOA with
Tuscany SCA. A simple service-oriented infrastructure,“. Java Developer
Journal, November 9, 2007. http://java.sys-con.com/node/458183

[3] Yehia Taher, Marie-Christine Fauvet, Marlon Dumas, and Djamal
Benslimane. 2008. Using CEP technology to adapt messages exchanged
by web services. In Proceeding of the 17th international conference on
World Wide Web (WWW '08). ACM, New York, NY, USA, 1231-1232.
DOI=10.1145/1367497.1367741
http://doi.acm.org/10.1145/1367497.1367741

[4] Supreet Oberoi. „Introduction to Complex Event Processing & Data
Streams“. SOA World Magazine, October 1, 2007. http://soa.sys-
con.com/node/434463

[5] INDENICA Deliverable D3.1. View-based Design Time and Runtime
Architecture for Tailoring VSPs, 2011-09-30.

[6] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram
Dustdar. 2008. Advanced event processing and notifications in service
runtime environments. In Proceedings of the second international
conference on Distributed event-based systems (DEBS '08). ACM, New
York, NY, USA, 115-125. http://doi.acm.org/10.1145/1385989.1386004

[7] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram
Dustdar. 2010. End-to-End Support for QoS-Aware Service Selection,
Binding, and Mediation in VRESCo. IEEE Trans. Serv. Comput. 3, 3 (July
2010), 193-205. http://dx.doi.org/10.1109/TSC.2010.20

[8] Tesauro, Gerald, "Reinforcement Learning in Autonomic Computing: A
Manifesto and Case Studies" IEEE Internet Computing, 11(1):22 – 30,
Jan./Feb. 2007.

[9] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering, 25(6):852 –
869, Nov/Dec 1999.

[10] SCA Service Component Architecture, Assembly Model Specification, SCA
Version 1.00, OSOA Collaboration, 15th March 2007,
http://www.osoa.org/display/Main/Service+Component+Architecture+S
pecifications

