
Document ID: INDENICA – D3.1
Deliverable Number: D3.1
Work Package: 3
Type: Deliverable
Dissemination Level: PU
Status: Final
Version: 1.01
Date: 2011-10-18
Contributing partners UNIVIE, PDM, SAP, SIE, TUV, SUH, TEL

Project Start Date: October 1st 2010, Duration: 36 months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

In INDENICA, the notion of Virtual Service Platforms (VSP) shall be leveraged to
protect the investments into service-based applications against potential external
negative influences and threats such as the heterogeneity of the involving service
platforms, service discontinuation, service evolutions, etc. In this report, we present a
view-based design time and runtime architecture for developing and tailoring VSPs.
The view-based approach supports each stakeholder to work with the most
appropriate views for his current work tasks. The Model-Driven Software
Development paradigm shall be exploited in order to separate the levels of
abstraction. That is, high-level, technology- and domain- independent concepts and
elements are separated from the technology- and domain-specific ones. This way, we
can better support stakeholders in formulating and tailoring a particular VSP that
integrates different service platforms. We also present the plans for collaborating
and integrating the view-based architecture with other components of INDENICA.

View-based Design Time and Runtime
Architecture for Tailoring VSPs

Version History
0.1 01. Jun 2011 Initial version

0.2 15. Jun 2011 Update Section 2

0.3 20. Jun 2011 Add figures of view models to Section 2

0.4 15. Jul 2011 Update the content w.r.t. the plan in Hildesheim meeting

0.5 22. Jul 2011 Update figures, add motivations in Section 1

0.6 08. Aug 2011 Revise content, add more figures

0.7 12. Aug 2011 Add the overall architecture

0.8 18. Aug 2011 Update the content in Section 2.4 and 3.2

0.9 26. Aug 2011 Update with TUV’s contribution in Section 5.6 and Figure 11

0.10 29. Aug 2011 Update the content in Section 3.3

0.11 05. Sep 2011 Update Chapter 2. Update chapter 5.4.

0.12 15. Sep 2011 Merge partners’ contributions and revise the content

0.13 22. Sep 2011 Consolidate contributions and address reviewers’ comments

0.14 28. Sep 2011 Update Section 5.7

1.0 29. Sep 2011 Finalise the deliverable

1.01 18. Oct 2011 Corrected Typo

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents .. 3

1 Introduction... 6

1.1 Motivations ... 6

1.2 Objectives ... 6

1.3 Relationships with other INDENICA components ... 7

2 View-based Design Time and Runtime Architecture for Tailoring VSPs 8

2.1 INDENICA Virtual Service Platform .. 8

2.2 Overall Platform Architecture View ... 8

2.3 Overall View-based Architecture ... 10

2.4 Core Model ... 12

2.5 Service Component View ... 12

2.6 The Service Deployment View ... 15

3 Runtime Realization and Code Generation... 17

3.1 Extension mechanisms .. 17

3.2 Low-level, technology specific views ... 18

3.2.1 Introduction to Service Component Architecture (SCA) 18

3.2.2 The Low-level Service Component View for SCA 19

3.2.3 Refining high-level to low-level Service Component View 21

3.3 Runtime View .. 23

3.4 Code Generation ... 25

4 Roles of various stakeholders .. 29

5 Integration with other INDENICA components ... 30

5.1 Integration of View Models with Goal Models ... 30

5.2 Integration of View Models with Architectural Decisions........................... 31

5.3 Integration of View Models with Variability Modelling 31

5.4 Integration of View Models with Enterprise Architecture Management 32

5.5 Integration of Adaptation and Monitoring ... 35

5.6 Integration of Deployment .. 38

5.7 Integration of Platform Service .. 39

6 Conclusion ... 41

Table of Figures ... 43

INDENICA D3.1

 4

References .. 44

Appendix ... 46

INDENICA D3.1

 5

Abbreviations and acronyms
AD Architectural Decision

AK Architectural Knowledge

EAM Enterprise Architecture Management

ERP Enterprise Resource Planning

DSL Domain-Specific Language

MDSD Model-Driven Software Development

QoS Quality of Service

SCA Service Component Architecture

VSP Virtual Service Platform

WMS Warehouse Management System

WSDL Web Service Definition Language

INDENICA D3.1

 6

1 Introduction

1.1 Motivations
Today’s service-oriented approaches bring huge impact on the market that leads to a
plethora of service platforms. Examples include service platforms providing services
for enterprise resource planning (ERP), data storage, mobile communication, etc.
That naturally leads to a considerable amount of challenges in developing a service-
based application that typically integrates functions provided by different platforms.

First, there is a high degree of heterogeneity of the involving service platforms
leading to various fragmentations such as quality fragmentation, interface
fragmentation, and technical fragmentation [DoW]. Second, it becomes too complex
to develop and maintain the service-based application using a single representation,
from a single perspective, by a single stakeholder. As a consequence, it poses several
business and technical risks such as service discontinuity, service evolutions, and so
on.

In INDENICA, the notion of Virtual Service Platform shall be leveraged to shield the
investments into service-based applications against the aforementioned potential
external negative influences and threats. In particular, we aim at providing unified
development interfaces, techniques, and tools for reconciling the heterogeneity of
service platforms. A view-based approach shall be developed to support each
stakeholder to work with the most appropriate views for his current work tasks.
Moreover, the Model-Driven Software Development (MDSD) paradigm shall also be
leveraged in order to separate the levels of abstraction. That is, high-level,
technology- and domain- independent concepts and elements are separated from
the technology- and domain-specific ones. This way, we can better support
stakeholders in formulating and tailoring a particular VSP that integrates different
service platforms.

1.2 Objectives
This deliverable is part of the WP3. WP3 aims at delivering an architecture,
component, and tools for implementing and tailoring of service platforms. The major
objectives of WP3 are including:

 Development of a view-based design time architecture for tailoring Virtual
Service Platforms

 Development of a runtime architecture for tailoring Virtual Service Platforms and
their governance

 Development of tools and generator templates which allow the tailoring and
adaptation of Service Platforms

 Development of tools for Service Platform Engineering

The deliverable D3.1 shall report the results of task T3.1 in WP3. Task 3.1 aims at
designing the view-based design time architecture for tailoring virtual service
platforms. The major achievement is an architecture based on the notion of
architectural views and the model-driven software development paradigm to, on the
one hand, separate different dimensions of service platform variability (identified in

INDENICA D3.1

 7

WP2), and, on the other hand, enable the ability to support various stakeholders’
perspectives and enhance the automation in developing virtual service platforms.

1.3 Relationships with other INDENICA components

Figure 1 Relationships with other INDENICA components

The major components presented in this report are the View-based Modelling Tool
and the Generation Tools (see Figure 1). The View-based Modelling Tool provides
stakeholders with different view models from different perspectives of the virtual
service platform under consideration. It aims at reducing the complexity of the
virtual service platform models as well as enhancing the ability to tailor the platform
models to different stakeholders’ domains of interest. Based on the view models for
a virtual service platform created using the View-based Modelling Tool, the
Generation Tools can offer the stakeholders systematic ways to generate code such
as service definitions, skeletons for service implementation, deployment
configurations, monitoring directives, and so on.

The development of view models using the View-based Modelling Tool shall take
into account the design decisions and constrains stemmed from the requirements of
the resulting virtual service platform. These decisions and constrains are the
outcomes of the Decision Support Framework developed in WP1. In addition,
mechanisms provided by the Generation Tools shall support different kinds of
generated artefacts that are inputs for the Deployment Manager, Monitoring Engine,
and Adaptation Engine developed in WP4. The bespoke relationships shall be
explained further in Section 5.

INDENICA D3.1

 8

2 View-based Design Time and Runtime Architecture for
Tailoring VSPs

In this section, we present our view-based design time runtime architecture and for
developing and tailoring virtual service platforms.

2.1 INDENICA Virtual Service Platform

Figure 2 Overview of an INDENICA Virtual Service Platform

The main focus of INDENICA is to address the heterogeneity and integration of
multiple service platforms used by a certain service-based application in a systematic
way. Such heterogeneity is leading to a strong fragmentation of service platforms
along various dimensions such as quality fragmentation, interface fragmentation,
and technical fragmentation.

As a result, companies are forced to create virtual service platforms (VSP) in order to,
on the one hand, shield their applications from such fragmentations, and on the
other hand, reduce the risks such as service discontinuations, payment model
changing, etc. caused by the dependencies between service providers and
consumers. According to the specific requirements of the service-based applications
atop, the underlying virtual service platforms can be substantially different.

To the best of our knowledge, there is a lack of existing approach, technique, or
framework that supports stakeholders to efficiently develop such VSPs. In the next
sections, we present a view-based, model-driven approach for enabling the
systematic development of VSPs, enhancing the reusability of VSP development
artefacts, and tailoring to various stakeholders’ perspectives.

2.2 Overall Platform Architecture View
Especially during the development of a VSP an all-embracing architectural view is
indispensable to handle the complex task of planning, tailoring and managing the

INDENICA D3.1

 9

service platform. The view introduced in this section is derived from the Siemens
Enterprise Architecture Management (EAM) methodology and offers an overview
about the overall platform architecture, ranging from the actual business functions
over integration and infrastructure layer to supporting guidelines and processes. This
view furthermore allows the distinction between pure business application
components and more generic application components (e.g. logging or monitoring)
that are shared between the business application components.

While business functions and can be refined to high-level and low-level services
using the service architecture view, the platform architecture view deals with global
aspects of the platform development and provides insight to the overall target
architecture at an abstract level. It is therefore possible to define the infrastructure
components that will serve as base and runtime for the business components and
document decisions like the choice of the application server. Furthermore, non-
technical cross-cutting concerns like quality management or SoA governance can be
addressed using this view.

The model itself is flexible and can easily be adapted to the needs of the domain as it
only defines the architectural layers without specifying any concrete application or
infrastructure components. All components and functions mentioned in Figure 3 are
just placeholders used for illustrating the intended usage of the model. If, for
instance, no rules engine is needed by the service platform, it can be left out.

Figure 3: the technical architecture overview diagram from the EAM methodology with sample

components in the respective layers

While the categorization of components that are not directly related to business
cases is rather simple, deciding whether a component is generic or not may be more
elaborate. One possible approach is the creation of a usage matrix in order to
retrieve qualitative results on redundant functionality that is scattered over various
components. This information may then be used to identify candidates for shared
components. Afterwards the business value of each candidate can be determined by

INDENICA D3.1

 10

examining factors like estimated cost or development time. All components whose
value-cost ratio exceeds a pre-defined threshold are considered to be generic
components. The resulting list of shared components can be further prioritized and
allows for the creation of a roadmap for the realization of the service platform.

The following sections will focus on the refinement of the business functions and
their mapping to actual services on different abstraction levels.

2.3 Overall View-based Architecture
An important element of service platforms is the concept of service. A service
embraces an essential computational unit having functionality exposes via
standardized interfaces (aka contracts). For instance, a Web service’s interface can
be defined using WSDL [W3C] whilst an OSGi service’s interface can be described
using the OSGi manifest description [OSGi]. Service interface descriptions might
comprise further information such as communication protocols, security policies,
and so forth.

A typical service platform often provides platform-specific services working on top of
a number of infrastructure services. Services provided by multiple platforms can be
combined in order to fulfil a certain business goal, for example, handling a customer
order, booking a travel itinerary, etc. Service implementations and service-based
applications need to be deployed to execute in an adequate hosting platform
[MM2004, DS2005]. A virtual service platform (VSP) is a special kind of service
platform aiming at shielding the heterogeneity of the underlying service platforms
away and providing appropriate abstract layers to the service-based application
developers (see Figure 2).

Figure 4 Overview of the view-based design time and runtime architecture

INDENICA D3.1

 11

The notion of architectural view has been widely used for efficiently managing the
complexity of software system models [RW2005, THZ+09, CBB+2010]. The
complexity of modern, especially large-scale software systems make them difficult to
grasp all at once. Instead, we restrict our attention at any one moment to one (or a
small number) of the software system’s structures, which we represent as views. A
view is a representation of a set of system elements and the relations associated
with them [RW2005, CBB+2010].

We propose a view-based architecture to support modelling various aspects of a
virtual service platform. Leveraging the view-based architecture, stakeholders will be
able to work with view models that are more appropriate to their expertise. For
instance, software architects might leverage high-level abstractions to communicate
with the business analysts or customers while developers merely work with low-
level, technology-specific descriptions.

The Model-driven Software Development (MDSD) paradigm [SV2006] provides a
potential solution to this problem by separating the platform-independent and
platform-specific models. A platform-independent model is a model of a software
system that does not depend on the specific technologies or platforms used to
implement it while a platform-specific model links to particular technologies or
platforms. Leveraging this advantage of the MDSD paradigm, we devise a model-
driven stack that has two basic layers: abstract and technology-specific (see Figure
4). The abstract layer comprises the view models abstracted from the technical
details whilst the technology-specific layer contains the views that embody concrete
information of technologies or platforms.

A low-level, technology-specific view model can be directly derived from the Core
model or based on an existing abstract one. By refining an abstract layer down to a
technology-specific layer, this view-based architecture can help bridging the
abstraction levels along the vertical dimension, i.e., the dimension of abstraction
[THZ+09].

Based on the specifications of view model, stakeholders can create different types of
views for describing the services and service collaborations that constitute a
particular VSP. A new concern can be integrated into the view-based architecture by
defining a corresponding New-Concern-View model that extends the basic concepts
of the Core model and defines additional concepts of that concern. By adding new
view models for additional concerns, we can extend the view-based approach along
the horizontal dimension to deal with the complexity caused by the various tangled
concerns of a virtual service platform.

The Generation Tools, which implement model-to-code transformation techniques
[SV2006], can be used to generate code for VSP such as service descriptions and/or
implementations, deployment configurations, monitoring directives, etc. out of the
created views. The resulting code and configurations, which may be augmented with
hand-written code, can be deployed in an appropriate hosting platform for the
aforementioned VSP.

INDENICA D3.1

 12

In the subsequent sections, we will describe the specifications of the
aforementioned view models as well as the view refinement and code generation
techniques in detail.

2.4 Core Model
Aiming at the openness, extensibility, and better integration of the view-based
architecture, we devised a Core model as a basis for creating other view models.
Figure 5 shows a representation of the Core model using the UML Class Diagram
notations [OMG-UML]. The Core model provides a basic set of conceptual elements:
NamedElement, Annotation, AnnotatedElement, View, and ViewELement. These are
abstract classes that must be extended further in the extended view models.

Figure 5 The Core model

At the heart of the Core model is the View class that represents the concept of
architectural view. A certain View might comprise several ViewElement. Each specific
view element has to concretize the View class to represent one particular
perspective of the virtual service platform. In other words, view models representing
various concerns of a VSP are mostly defined by extending concepts of the Core
model. As such, the view models are independent of each other, and the Core model
becomes the place where the relationships among the view models are maintained.
Hence, the relationships between concepts of the Core model are necessary for
extending view models, managing dependencies between views, and generating
code.

2.5 Service Component View
Nowadays, component-and-connector (C&C) models have been extensively used in
both academia and industry for describing software system architectures [HC2001,
Szyperski2002, LW2007, TMD2009]. In a component and connector model, the
system is viewed as a collection of entities called software components. While
executing, a component might need to interact with others. Therefore, a connector
is used to represent means for the interaction between two components. Examples
of connectors are pipes and sockets. Shared data can also act as a connector. If the
components use some middleware to communicate and coordinate, then the
middleware is a connector [HC2001, Szyperski2002, LW2007, TMD2009].

INDENICA D3.1

 13

To provide abstract notions of elements of VSPs, we devise a so-called Service
Component View, based on traditional C&C models, at the abstract layer of the view-
based architecture in order to formulate VSP architectures. The primary elements of
this view are components and connectors (see Figure 6).

Figure 6 The high-level Service Component View model

We present a (semi-)formal representation of the Service Component View in Figure
6 using the UML Class Diagram notations. A component is the corresponding abstract
notion of a service which is provided either by a certain service platform or by the
virtual service platform. A connector represents the interaction between two
corresponding components [HC2001, Szyperski2002, TMD2009]. A component may
contain a number of sub-components. The relationship between a component and
its children is represented by the aggregation “nestedComponent”.

Access to the functionality encapsulated in a certain component is defined through
its interfaces, namely, Ports. A port of a component can be considered as an
abstraction of the corresponding service’s interface. There are two kinds of ports.
Provided ports represents the functionality that a component exposes to the others
whilst required ports are functionality that the component asks for.

In addition, Properties and Stereotypes can be used in the Service Component View
in order to augment the semantics of its constituent elements. For instance, one can
assign a certain component with stereotypes “Web service” or “RESTful service” to
indicate that the component is actually a Web service or RESTful service,
respectively. Similarly, one can also assign particular properties to a component,
connector, or port. These properties can be used for rigorously analysing and
reasoning about system architectures.

For validation of Service Component Views at design time, we devise OCL-based
rules that are implemented using the Check language of the EMF Xpand/Xtend
technologies (see Figure 7) [M2T]. Examples of basic validation rules are the name
attribute of a NamedElement must exist, ports are not direct children of a Service

INDENICA D3.1

 14

Component View, a connector must link a required port to a provided one, a
property must have at least name and value attributes, and so on.

Figure 7 Essential OCL-based rules for validating a Service Component View

In Figure 8 we depict a graphical proof-of-concept representation of the Service
Component View implemented using Eclipse Modelling Technologies such as EMF
[EMF], GEF [GEF], and GMF [GMF]. This is a Service Component View describing a
fictional retailer system that uses services provided by other service platforms such
as an enterprise resource planning (ERP) platform, a warehouse management system
(WMS) platform, and a delivery service platform. Services provided by each platform
are abstracted by components, respectively. The interactions between these
components are represented by the connectors linking the components’ ports. In
this way, software architects can leverage Service Component Views to as means for
sketching out the basic functionality of software systems (and in particular, virtual
service platforms) as well as efficiently communicating with both non-technical and
technical stakeholders.

INDENICA D3.1

 15

Figure 8 An example of the Service Component View

2.6 The Service Deployment View

Figure 9 The Service Deployment View

The Service Deployment View provides another perspective of a virtual service
platform (see Figure 9). It specifies where, and probably how, artefacts of a virtual
service platform are going to be deployed at runtime [OMG-UML] according to the
abstractions provided in the Service Component View. We provide abstract concepts
for representing the deployment perspective based on the UML 2 Deployment
Diagram [OMG-UML] which is widely used in both academia and industry for the
aforementioned purpose. An UML 2 Deployment Diagram can be seen as a concrete
refinement of this Service Deployment View. As a result, the integration with,

INDENICA D3.1

 16

exchange, or reuse existing UML 2 Deployment models and tooling can be possibly
conducted with reasonable efforts.

Similar to the Service Component View, the Service Deployment View is a
specialisation of the abstract View defined in the Core model. The elements
constituting the Service Deployment View are sub-classes of the ViewElement
accordingly. A Service Deployment View can comprise a number of Deployment
elements each of which associates an Artifact and a Node.

An Artifact comprises an association to an architectural element such as a
component (e.g., a Web service, an OSGi service, etc.) or even a complex connector
(e.g., a shared file, a tuple space, etc.). An Artifact has an optional attribute fileName
that indicates the path of the file containing that Artifact.

A Node represents an appropriate hosting element in which the corresponding
Artifact can be deployed and executed. Examples of a typical Node include a Web
server, an application server, a business process engine, an enterprise service bus,
and so on.

Figure 10 Essential OCL-based rules for validating the Service Deployment View

INDENICA D3.1

 17

Figure 11 An example of the Service Deployment View

We also define rules that are essential for validating a Service Deployment View (see
Figure 10), for instance, an Artifact must refer to an element of type either
component or connector. In Figure 11, we present a proof-of-concept
implementation of the Service Deployment View in terms of a graphical editor using
the same technologies as those used to implement the Service Component View.
The Service Deployment View shall be extended and used in WP4, in particular, the
Deployment Manager, for deploying runtime artefacts of virtual service platforms.
We will discuss further about the integration between WP3 and WP4 on service and
virtual service platform deployment in Section 5.6.

3 Runtime Realization and Code Generation

3.1 Extension mechanisms
These abstract views aim at capturing high-level domain-related concepts, and
therefore, they are in the first place potentially useful for enhancing the
communication with non-technical stakeholders. Nonetheless, the developers often
need more information, especially platform- and technology-specific descriptions.
According to the specific requirements on the granularity of the views, we can refine
these views toward more concrete, technology-specific views using extension
mechanisms [THZ+09].

A view refinement is performed by, firstly, choosing adequate extension points, and
consequently, applying extension methods to create the resulting view. An extension
point of a certain view is a view's element that is enhanced in another view by
adding additional features (e.g., new element attributes, or new relationships with

INDENICA D3.1

 18

other elements) to form a new element in the corresponding view. Extension
methods are modelling relationships such as generalisation, extend, etc., that we can
use to establish and maintain the relationships between an existing view and its
extension. In the subsequent sections, we introduce a refinement of the high-level
Service Component View presented in Section 2.5 for Service Component
Architecture (SCA) technology.

3.2 Low-level, technology specific views

3.2.1 Introduction to Service Component Architecture (SCA)
Service Component Architecture (SCA) is a set of specifications for building software
systems using a service-oriented architecture. Leveraging concepts derived from C&C
models, SCA enables the development of service-based systems based on
components that offer their capabilities through service-oriented interfaces and/or
consume functions offered by other components also through service-oriented
interfaces [OSOA].

One of SCA’s advantages is to enhance the decoupling of service implementation and
of service assembly from the details of infrastructure capabilities and from the
details of the access methods used to invoke services. On the other hand, SCA aims
at supporting service implementations written using any one of many programming
languages including conventional object-oriented and procedural languages (e.g.,
Java, C++, COBOL), process-centric languages (e.g., BPEL), scripting languages (e.g.,
JavaScript), declarative languages (e.g., SQL), and so on. Interactions between SCA
components include a wide range of remoting binding mechanisms such as Web
services, messaging systems, and CORBA IIOP [OSOA].

We exemplify SCA for the technology-specific layer of the view-based architecture.
Other runtime technologies, for instance, Open Services Gateway initiative
framework (OSGi) [OSGi], are applicable in the view-based architecture as well with
reasonable efforts. Figure 12 depicts an example of an SCA system built upon a
number of SCA Composites, SCA Components, and SCA Bindings.

Figure 12 An example of an SCA-based system

System

Component
X

Composite A

Component
Z

Component
Y

Composite B

Service Reference

Implementation
of Y

Implementation
of Z

INDENICA D3.1

 19

3.2.2 The Low-level Service Component View for SCA
In Figure 13, we present the low-level Service Component View for SCA technology.
This is an extension of the high-level Service Component View. Thus, a number of
concepts extend the corresponding concepts of the high-level counterpart. For
instance, the SCA Composite and SCA Component are sub-classes of the Component.
References and Services of SCA Composite and SCA Components are sub-classes of
the Port.

We also add new elements and attributes to represent the specificity of the SCA
technology such as the SCA Implementation, SCA Interface, SCA Binding, SCA Call-
back, and so on.

Figure 14 illustrates an example of the low-level Service Component View containing
elements refined from the high-level counterpart for the same retailer system. Note
that the components have been refined accordingly to SCA Composites or SCA
Components, respectively, and there is a root SCA Composite embracing these
elements.

Figure 13 The low-level Service Component View for SCA technology

destination : String
connectionFactory : String
requestConnection : String
responseConnection :
String
initialContextFactory :
String
jndiURL: String

ScaBindingJMS

component::
Component

portKind: PortKind

component::Port

component::
Connector

component::
ComponentView

ScaView

defaultNamespace : String
targetNamespace : String
local : boolean = true
autowire : boolean = true

ScaComposite

autowire : boolean = true

ScaComponent

ScaImplementation

implementation

component*
1

class : String

ScaImplementationJava

location : String

ScaImplementationSpring

bundleSymbolicName : String
bundleVersion: String
classes : String[*]
imports : String[*]

ScaImplementationOSGi

ScaWire

ScaPort

name : String
remotable : boolean

ScaInterface

name : String

ScaCallback

name : String
uri : String

ScaBinding

interface
1

callback

1

binding

*

ScaCompositeService ScaComponentService

autowire : boolean = true
wiredByImpl : boolean

ScaCompositeReference
autowire : boolean = true
wiredByImpl : boolean
nonOverridable : boolean

ScaComponentReference

binding

*

ScaBindingSca

wsdlElement : String
wsdlLocation : String

ScaBindingWS

interface : String
callbackInterface : String

ScaInterfaceJava

interface : String

ScaInterfaceWS

core::ViewElement

Figure 14 An example of the low-level Service Component View for SCA

3.2.3 Refining high-level to low-level Service Component View
Creating the low-level Service Component View from scratch is a time-consuming
task. Given an existing high-level Service Component View, we propose model-to-
model techniques to help stakeholders to quickly achieve a low-level Service
Component View. Obviously, the resulting low-level Service Component View will
miss technical details that are not possible to infer from the abstract, high-level
Service Component View. Nevertheless, it can server as a starting point that the
software architects and/or developers can add further technical details that are
specific to SCA.

Note that SCA allows only one nesting level. That is, an SCA Composite can contain
only SCA Component and an SCA Component is not allowed to have sub-component.
In addition, an SCA Component is not allowed to be a standalone element, i.e., it
must be contained inside an SCA Composite.

As such, our model-to-model transformation rules will focus on two essential
strategies: (1) transforming non-nested high-level components to low-level
counterparts and (2) transforming one-level nested high-level components to low-
level ones. Figure 15 illustrates the former strategy and Figure 16 depicts the later.

In summary, a non-nested component shall be transformed into an SCA Component
that is wrapped inside an SCA Composite. A component contains a sub-component
shall be mapped into an SCA Composite whilst its child shall be transformed into the
SCA Component contained inside that SCA Composite. In both cases, components’
ports will be transformed and wired accordingly. We develop a proof-of-concept
implementation of the aforementioned view refinement using the Eclipse Xtend

INDENICA D3.1

 22

technology [M2T]. More details of the Xtend transformation rules will be shown in
the Appendix B.

Figure 15 Refining non-nested high-level components to low-level components

p1

p2 p4

p3

component A
{

provide port p1
require port p2

}

component B
{

require port p3
provide port p4

}

A B

connector {
conn1 { source = p3; target = p1 }
conn2 { source = p2; target = p4 }

}

conn1

conn2

A B

Composite A Composite B

p1

p2 p4

p3

p1

p2 p4

p3

conn1

conn2

composite A {
service=p1 promote=A/p1
reference=p2 promote=A/p2
component A
{

service p1
reference p2

}
}

composite B {
reference=p3 promote=B/p3
service=p4 promote=B/p4
component B
{

reference p3
service p4

}
}

INDENICA D3.1

 23

Figure 16 Refining nested high-level components to low-level components

3.3 Runtime View
The Runtime View aims at enabling stakeholders to describe the concepts that are
necessary at runtime such as QoS and monitoring properties, adaptation strategies,
etc. These concepts can be used, on the one hand, to capture the contractual
agreement between a service provider and a service consumer, and, on the other
hand, to specify corresponding runtime Measurements and/or Actions that can be
taken when a certain violation occurs. The contractual agreement is so-called a
service level agreement (SLA) [SLA]. Service level objectives (SLOs) are key elements
of an SLA [FEM+2007]. SLOs are specific measurable characteristics of the SLA such
as availability, throughput, response time, etc., [FEM+2007]. An example of a high-
level specification of the QoS property of an SLO is: “The availability of the service X
must be greater than or equal to 99%”.

Figure 17 illustrates the concepts of the Core model being extended in the Runtime
View. Each measureable element of the type ViewElement involved in an SLO will be
annotated with a QoS measurement. To precisely constraint the annotation of QoS
properties, we can define similar OCL-based rules as those for the Service
Component View and Service Deployment View models. Furthermore, elements of
the type ViewElement can be annotated with actions that are to be performed when
the QoS measurements violate an SLO. The actions to be performed aim to ease the
adherence to SLOs, either passively by notifying the operator of the violation
(NotificationAction) or actively by performing corrective changes to the running
system, to autonomically mitigate and/or prevent further violations from occurring

INDENICA D3.1

 24

(AdaptationAction). In the figure, three example adaptation actions are depicted:
ChangeServiceBinding means that one service client in the VSP is now rebound to a
different service provider. SwitchVariant means that an alternative variant of a
component is used, e.g., a component produced by selecting different features using
the variability model researched in WP2. Finally, RegenerateAndRedeploy captures a
very intrusive type of adaption, where configurations in the view-based model are
adapted, and the resulting code is generated anew from the updated models.
Nevertheless, we implement the Runtime View using Eclipse Xtext technology
[Xtext]. Xtext is a powerful modelling framework aiming at supporting the
development of domain-specific languages (DSL) providing appropriate textual
syntaxes for domain experts, technical experts, and/or non-technical stakeholders.
Xtext can be well integrated with other Eclipse modelling technologies such as EMF
[EMF], Xpand and Xtend [M2T] that we leveraged for developing the proof-of-
concept implementation so far. Furthermore, Xtext also supports nice error and
warning messages that are seamlessly integrated with the Eclipse IDE.

Figure 17 The Runtime View model

The formal grammar of the language is presented in detail in the Appendix A. In
Figure 18 we illustrate an excerpt of the Runtime View in the textual syntax
developed in Xtext.

Measurement

core::View

RuntimeView

core::ViewElement

Action

email : String

SendMail

sms : String

SendSMS

hour = 0
minute = 1
second = 2
millisecond = 3
week = 4
day = 5
month = 6
year = 7
percent = 8
dollar = 9
euro = 10

<<enum>>
UNIT

Equal = 0
GreatherThan = 1
LessThan = 2
GreaterThanOrEqual = 3
LessThanOrEqual = 4
NotEqual = 5
Not = 6

<<enum>>
PREDICATE

Performance

Availability

ResponseTime

AverageThroughput

predicate: PREDICATE
value : String
unit : UNIT

Expression

expression 0..1

file : String

Log

obliged : String
start : String
end : String
target : ViewElement

ServiceLevelObjective

measurement

* slo

1

action

slo*

1

NotificationActionAdaptationAction

ChangeServiceBinding SwitchVariant RegenerateAndDeploy

INDENICA D3.1

 25

Figure 18 An example of Runtime View in textual syntax

The concepts of the Runtime View can be used for enhancing the communications
among multiple stakeholders such as domain experts, software architects,
developers, and probably users. As a result, these are rather at high-level of
abstraction. Therefore, the Runtime View shall be adequately mapped into low-level
representations or even into implementations using specific runtime technologies by
using, for instance, methods and techniques presented in [OZD2010]. Extensions of
the Runtime View designed in this deliverable shall aim at supporting runtime
monitoring and adaptation methods and techniques in WP4. We will discuss further
in the integration between WP3 and WP4 in Section 5.5.

3.4 Code Generation
There are two basic types of model transformations: model-to-model and model-to-
code [SV2006]. A model-to-model (M2M) transformation maps a model to another
model. Model-to-code (M2C), so-called code generation, often produces schematic
recurring, and maybe executable, code, that makes up the software products from
the models. In both types of transformation, the transformation rules are often
defined, firstly, based on the source model. In addition, the transformation rules in

INDENICA D3.1

 26

M2M require the specification of the target model while the transformation rules in
M2C may need specific platform-definition models.

In the view-based architecture, model-to-code transformation is used to generate
VSP code out of one or many input views. In the literature, there are different code
generation techniques such as template-based transformation, inline generation, or
code weaving have been proposed [SV2006]. In our proof-of-concept
implementation, we exemplify the template-based technique realised using the
Xpand language [M2T] to implement the code generations.

In the following listing, we show an excerpt of the Xpand rules for generating SCA
code out of the low-level Service Component View for SCA.

«DEFINE COMPOSITE(List[sca::ScaComposite] composites) FOR List»
 «FOREACH composites AS composite»
 «IF composite != null && composite.name != null
 && composite.name.length > 0»
 «FILE composite.name + ".composite"»

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <sca:composite name="«composite.name»"
 xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0"
 «IF composite.targetNamespace != null
 && composite.targetNamespace.length > 0»
 targetNamespace="«composite.targetNamespace»"
 «ELSE»
 targetNamespace="http://«composite.name.toLowerCase()»"
 «ENDIF»>
 «EXPAND COMPONENT(composite.nestedComponent)»
 </sca:composite>
 «ENDFILE»
 «ENDIF»
 «ENDFOREACH»
«ENDDEFINE»

«DEFINE COMPONENT(List[sca::ScaComponent] components) FOR List»
 «LET getScaDSL() AS ScaDSL»
 «FOREACH components AS component»
 «IF component != null && component.name != null
 && component.name.length > 0»
 <sca:component name="«component.name»">
 «FOREACH implementation.select(i|
 i.component.contains(component.name)) AS impl»
 «EXPAND SCA_IMPLEMENTATION(impl)»
 «ENDFOREACH»
 «FOREACH component.port AS port»
 «EXPAND SCA_PORT(port)»
 «ENDFOREACH»
 </sca:component>
 «ENDIF»
 «ENDFOREACH»
 «ENDLET»
«ENDDEFINE»
...

INDENICA D3.1

 27

And an excerpt of the SCA configuration generated using the aforementioned
template rules is following.

<?xml version="1.0" encoding="UTF-8"?>
<sca:composite
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0"
 xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
 name="Retailer"
 targetNamespace="http://retailer">
 ...
 <sca:component name="Manufacturing">
 <sca:implementation.java
 class="wms.manufacturing.impl.ManufacturingImpl"/>
 <sca:service name="ManufacturingOrder">
 <sca:binding.ws/>
 <sca:binding.sca/>
 </sca:service>
 </sca:component>
 <sca:component name="ERP">
 <sca:implementation.java class="wms.erp.impl.ERPImpl"/>
 <sca:reference name="ProductRequest"> </sca:reference>
 <sca:reference name="ShipRequest"> </sca:reference>
 </sca:component>
 <sca:component name="Warehouse">
 <sca:implementation.java
 class="wms.warehouse.impl.WarehouseImpl"/>
 <sca:service name="ProductRequest">
 <sca:binding.ws/>
 <sca:binding.sca/>
 </sca:service>
 <sca:reference name="ManufacturingOrder"> </sca:reference>
 </sca:component>
 <sca:component name="Delivery">
 <sca:implementation.java class="wms.delivery.impl.DeliveryImpl"/>
 <sca:service name="ShipRequest">
 <sca:binding.ws/>
 <sca:binding.sca/>
 </sca:service>
 </sca:component>
</sca:composite>

The generated SCA code can be deployed to execute on any implementation of SCA
runtime that is compatible to the SCA specification V1.00 such as Apache Tuscany
1.61. To ease this task for stakeholders, we also develop transformation rules to
generate a simple launcher in Java that can load and deploy the bespoke SCA
configuration in Apache Tuscany 1.6.

«DEFINE LAUNCHER(List[sca::ScaComposite] composites) FOR List»
 «FOREACH composites AS composite»
 «IF composite.name != null && composite.name.length > 0»
 «FILE "launcher/" + composite.name +"Launcher.java"»
 package launcher;
 import org.apache.tuscany.sca.host.embedded.SCADomain;
 public class «composite.name»Launcher {

1 http://tuscany.apache.org

INDENICA D3.1

 28

 public static void main(String[] args) {
 SCADomain domain =
 SCADomain.newInstance("«composite.name».composite");
 System.out.println("SCA started (press enter to
shutdown)");
 System.in.read();
 domain.close();
 System.out.println("SCA stopped");
 }
 }
 «ENDFILE»
 «ENDIF»
 «ENDFOREACH»
«ENDDEFINE»

The resulting Java code that can be directly executed is as following.

package launcher;

import org.apache.tuscany.sca.host.embedded.SCADomain;

public class WarehouseLauncher {
 public static void main(String[] args) {
 SCADomain domain = SCADomain.newInstance("Warehouse.composite");
 System.out.println("SCA started (press enter to shutdown)");
 System.in.read();
 domain.close();
 System.out.println("SCA stopped");
 }
}

INDENICA D3.1

 29

4 Roles of various stakeholders

Figure 19 Overview of different roles of stakeholders in INDENICA architecture

The view-based architecture and mechanisms mentioned above are the essential
parts shaping the view-based design time and runtime architecture for virtual service
platforms in INDENICA. The architecture and accompanying tools aims at supporting
Platform Integrators in modelling and implementing VSPs as being highlighted in
Figure 19.

The inputs of the View-based Modelling Tool are requirements for VSPs that have
been interpreted and translated into corresponding architectural decisions and
constraints by the Decision Support Framework. According to the bespoke
requirements, the software architects and developers will start describing functional
properties of the VSPs, for instance, by using high-level and low-level Service
Component Views (c.f. Section 2.5 and 3.2.2), as well as non-functional properties
and runtime monitoring and adaptation strategies, for instance, by using the
Runtime View (c.f. Section 3.3). The deployment of VSPs can be specified, for
instance, using the Service Deployment View (c.f. Section 2.6) and its extensions.

INDENICA D3.1

 30

These deployment models become inputs of the Deployment Manager that is
responsible for loading and deploying VSPs and services into the hosting platforms.

5 Integration with other INDENICA components

5.1 Integration of View Models with Goal Models
Goals provide a well-known and widely used solution for requirements elicitation,
but they also provide a flexible and customizable means to address the problem at
different levels of abstraction, and with different degrees of precision. The
interesting aspect, as for INDENICA, is that the usual goals have been extended with
the capability of identifying the requirements for variability and also for adaptation.
This means that a single notation/approach can be used to elicit functional
requirements, non-functional requirements (often known as qualities of service),
variability needs, and also adaptation capabilities. All these concepts can be
rendered through natural language, and they would only be useful to the
professionals involved in the process, but they can also be stated in more precise
and rigorous ways, and thus become the inputs for the automatic derivation of
different artefacts in the INDENICA solution:

 Functional requirements and qualities of service will feed the architectural
decision process;

 Qualities of service and adaptation goals will be used to identify the
dimensions that should be monitored at runtime, how they should be
probed, and also the corrective actions in case of problems;

 Variability “annotations” will help identify the actual needs in terms of
variability and thus they will support the actual modelling of variability.

This is to say that goals provide a well-scoped view to the view-based approach
adopted in INDENICA. They define the first view of the INDENICA solution, and its
elements are then mandatory to feed the next steps (views). The complete proposal
for the Goal-based solution proposed for eliciting requirements is presented in D1.2,
which identifies the main concepts and mechanisms; it also proposes a first version
of the meta-model defined to describe these concepts.

The integration between the goal model(s) and the other views is mainly at design
time, where the artefacts in the requirements domain are “transformed” into their
counterparts in the solution space. Since everything is based on sound meta-models,
the transformation (integration) of the different artefacts can be done through
automated rules, but the actual degree of automation depends on the completeness
and richness of the goal model: the more precise and rigorous it is, the more the
whole process can be automated. Even if, there have been already some proposals
that promise to transform requirements into running systems automatically, we
think that a semi-automatic solution is much more realistic, given the different
amounts of information available —and needed— in the two spaces. We can also
envisage an incremental approach with a decreasing amount of information that is
provided by the professionals, and an increasing amount of automation on the
transformation process.

INDENICA D3.1

 31

5.2 Integration of View Models with Architectural Decisions
Architectural Decisions (ADDs) capture knowledge that may concern a software
system as a whole, or one or more components of software architecture. In recent
years, software architecture is often considered as a set of principal ADDs rather
than the components and connectors constituting a system’s design [JB2005,
TA2005, LK2007, ZGK+2007]. The idea behind this new perspective is to document
not only components and connectors but also the design rationale of the
architecture as well as to contribute to the gathering of Architectural Knowledge
(AK). All these approaches share the problem of a significant extra effort necessary
to record AK. INDENICA will address this problem by integrating AK recording with
model-driven views, to easier enable a link between the models and decisions from
which they originate – which is one of objectives of task T1.3 of WP1.

In this light, design models (aka architectural views) of a certain virtual service
platform (VSP) developed using techniques provided by the view-based framework
(see Section 2) shall be influenced by the architectural decisions about that VSP.
Furthermore, the ADs about the VSP are, in turn, often derived from its
requirements. As a result, one can see the ADDs as one of the bridges between a
VSP’s requirements and its actual designs and/or implementations. Therefore, the
integration between the view-based framework and ADs shall be the linking of the
decision models to view-based models in order to connect decisions and the models
that created following the decisions.

We aim at bridging ADs and architectural views by introducing models capturing the
mapping between them. The main objective is to enable traceability and consistency
checking between ADDs and architectural views and/or leverage MDSD to potentially
automate the generation of initial instances of architectural views that reflects the
design decisions. Besides, the generation of formal constraints that can be used for
checking the consistency between the ADs and the architectural views might also be
supported in order to assure that ADs and views remain consistent.

5.3 Integration of View Models with Variability Modelling
Variability Modelling is used to describe a range of potential customizations of a
software system. This approach was initially developed in the context of product line
engineering. In INDENICA this is used to describe potential customizations of service
platforms. This can be applied both to basic technical services of a service platform
(e.g., specific monitoring capabilities), as well as for customizing domain-specific
parts of a platform (e.g., yard management might not in all contexts cover the same
range of capabilities).

The INDENICA approach to variability modelling uses variability decisions as a basis,
as described in D2.1. A variability decision is a placeholder (parameter) that can be
set to different values, each representing a different platform instance. Industrial
size platforms may have hundreds, if not thousands of these decisions. Of course
often constraints among these decisions will exist. Within INDENICA we will in
particular provide support for composing the variability in different platforms and for
deriving partial instances of platforms. While the former can be used to represent

INDENICA D3.1

 32

the variability of virtual platforms that are derived by composing several base
platforms, the later can be used to derive domain-specific instances of platforms.

The capability to compose partial variable parts also allows to represent components
as in the SCA technology individually and then compose them into a combined
variable compound. As the composition in INDENICA variability is fully recursive,
there is no such restriction as in SCA where only one level of nesting is possible.

The variability-modelling platform in INDENICA will support comprehensive
variability management. As part of this it will also support the specification of
instances of the generic (parameterized) platforms. It will also be possible at any
time to query the corresponding values of the decision of the relevant product line.
Thus, one potential approach to mapping variability to the multi-view framework will
be to specify variability information for Named elements, e.g., in the form of an
additional attribute or annotation2stereotype. The editor would then be able to
query the necessary information at runtime to also form instances of a platform
view. (Such instances would ever parameterize certain elements or even remove
certain elements.)

Instantiation has complex consequences. Variability may lead to certain parts
implemented differently or even not at all. This is particular important when the
runtime view is generated. A simply way to handle this will be to make the variability
explicit in the transformation process described in Section 3.4. The INDENICA
variability management environment will also be able to manage this transformation
and instrument the code generation process illustrated above.

5.4 Integration of View Models with Enterprise Architecture
Management

Experience has shown that large systems or software landscapes cannot be
developed or planned without considering the underlying business needs since there
was a change regarding the consumption of information over the last two decades.
Information becomes more and more important and the timely access to the right
information may well decide over raise or decline of companies. The importance of
time- and cost efficient processes grows and the enterprise IT landscape is no
exception. The classic approach to questions like “How can we know what process
are affected by withdrawing an IT system?” is to set up a project that eventually
finds the answer to this question. This works well but is rather inefficient: if the same
question is raised half a year after the first investigation, no one would feel
comfortable in taking the old result again. So another project is started. Why is that?
The answer is simple: no one knows the big picture of the enterprise architecture.
There are IT architects who may focus on the overall application landscape but miss
the connection between business processes and IT applications for handling these
processes. This is the point where Enterprise Architecture Management (EAM)
comes into play. EAM is the answer to the insight that processes are not just
something the business does but that processes are the business (see Figure 20).
EAM is a holistic and enterprise-centred approach that aims at capturing and

2 In UML this could also be realized using stereotypes.

INDENICA D3.1

 33

maintaining the overall enterprise landscape including people, processes, businesses
and technologies. This blueprint of the enterprise’s structure offers transparency and
provides the opportunity to perform changes in business processes or the IT
landscape while being able to control the corresponding risks. Companies that utilize
EAM are then able to manage the complexity of large enterprise IT systems much
more efficiently and can answer questions like the one mentioned above without
needing to set up dedicated projects for retrieving the answers [DR2011].

The term enterprise architecture (EA) stands for a description of all components of
an enterprise and the relationships between them and is part of the enterprise
architecture management approach. In this context, the term enterprise may refer
to a public or private company as well as to a governmental organization (e.g. the
department of defence). It is important to note that the term “architecture” is not
limited to the information systems used by an organization but also includes people,
business entities, information and their relation. Is it therefore more than a
description of the enterprise’s IT landscape and aims at the alignment of business
processes and IT-tools in order to increase the efficiency of operations.

Figure 20 NIST enterprise architecture model
(http://en.wikipedia.org/wiki/File:NIST_Enterprise_Architecture_Model.jpg)

Over the decades many methods and frameworks for enterprise architecture
management have been suggested, the following being the most popular ones
[SR2007]:

INDENICA D3.1

 34

 TOGAF3: The Open Group Enterprise Architecture Framework, developed by
the Open Group consortium, offers an architecture development method
(ADM) and various standards for describing different types of architecture.
This is one of the most popular EA frameworks.

 Zachman Framework: This is one of the first frameworks for describing an
enterprise with all its components. In contrast to TOGAF, it does not define
any methods or processes for collection of information but rather focuses on
the description and organization of the architectural artefacts.

 FEA: The Federal Enterprise Architecture combines the approaches from
Zachman and TOGAF by offering both a comprehensive taxonomy as well as a
set of processes for the information collection.

Siemens derived another EAM methodology from the TOGAF framework, as shown
in Figure 21. Basically it is divided into four phases:

 Vision and scoping: This phase focuses on the business and IT vision and
covers existing guidelines, frameworks and tools. After the scope and the
goals for the enterprise architecture assessment have been defined, the EA
framework is tailored to meet the goals as efficiently as possible.

 Analysis: in depth knowledge of existing structures, processes, functions,
data, applications and their relations is gathered. This information is
documented alongside with existing high-level architectures and more
technical, low-level architectures.

 Planning: Based on the business vision, business goals, requirements and
improvement lists, the target architecture is planned. Core business functions
are defined as well as high-level and low-level architectures in form of a
service map. Besides these technical artefacts, guidelines like software
development processes or architecture principles are suggested.

 Execution. As soon as the target architecture has been defined, a comparison
between the as-is and the target architecture is performed. Possible gaps are
documented and qualified (e.g. cost and time). A roadmap with the further
activities will be compiled which then can be followed in order to implement
the necessary measures for reaching the target architecture.

3 http://www.togaf.info/

INDENICA D3.1

 35

Figure 21: The Siemens Enterprise Architecture Management framework

The architectural views described in Section 2 can be mapped to the EAM
development cycle as depicted in Figure 22. Since the views are meant to be used
during the definition of the VSP’s service landscape they can be considered to be a
part of the planning phase. While actual business requirements and business data
models are developed and documented using different views and diagrams, the
target architecture (logical and functional) and logical data objects like components
can be documented using the views described in Section 2.5 and 2.6. The overall
platform architecture can be described using the platform architecture view as
described in Section 2 leading to the following overlap between the EAM
development cycle and the INDENICA Architecture Views:

Figure 22: INDENICA architecture views mapped to the planning phase of the EAM development

cycle

The platform architecture view covers both the technical architecture (infrastructure
and integration components) as well as the (business) functional architecture. The
details of the functional architecture are refined by the service architecture views as
mentioned in Section 2.5. Processes, organization and data are not covered by any of
the views and have to be modelled and managed by other means.

5.5 Integration of Adaptation and Monitoring
In INDENICA, both, VSPs and service platforms, are monitored at runtime, in order to
track the health of the system. If performance degradations are detected, adaptation

INDENICA D3.1

 36

actions can be executed. The components mainly responsible for those tasks are the
Monitoring Engine (sensing the system state in an event-based fashion) and the
Adaptation Engine (triggering adaptations, such as reconfiguring service platforms,
or regenerating VSP components).

Both the Monitoring Engine and the Adaptation Engine are central parts of the VSP,
and are generated from view-based models during deployment. They are modelled
as Components in the Service Component View, and their concrete deployment to
SCA components is modelled using the Service Deployment View. To this end, the
view-based code generation tools described in Section 3.4 are used to generate SCA
deployment descriptions, component launch code and SCA composites as necessary.
However, most important for the integration of the Monitoring and Adaptation
Engine with the view-based modelling framework is the Runtime View.

Figure 23: Runtime Model Extension Capturing Monitoring Rules

The INDENICA approach to monitoring is based on top-down refinement of
monitoring policies. On the top level (the high-level view in Figure 4), human system
operators specify performance goals on a non-technical level, in terms that make
sense for domain specialists (e.g., the VSP needs an availability of 0.9999). Technical
personnel refines these goals semi-automatically into lower-level monitoring
objectives, and adds adaptation actions that can be used to improve the system
health if the objectives cannot be fulfilled. Finally, in a third refinement step, these
(still technology-independent) monitoring objectives and adaptations are mapped to
concrete monitorable metrics, aggregation rules for these low-level metrics, and
concrete adaptations of the running systems. At runtime, the available adaptations
are determined from adaptation actions derived during the top-down refinement
process unified with information on unbound variabilities to be resolved at runtime,
their dependencies and constraints as specified in the variability model (Section
Integration of View Models with Variability Modelling). For instance, a concrete VSP
may be using Esper4 to implement event-based monitoring. In order to demonstrate
how view-based modelling can be used to generate Esper Event Processing Language
(EPL) statements, we first need to slightly extend the Runtime View model in Figure
17 (see Figure 23). As additional elements, we introduce monitoring rules (which are
composable, i.e., a monitoring rule can be defined as a composition of other rules).

4 http://esper.codehaus.org/

INDENICA D3.1

 37

Every rule has zero or more data sources (rules with zero data sources only make
sense in case of composed rules), and exactly one time window. The window defines
the duration interval of a measurement.

The process of mapping the monitoring rules defined as instances if this model to the
implementation level is illustrated on the basis of a concrete example. The following
listing contains an excerpt of the template used to generate the monitoring
specification for measuring the availability of a service (i.e., ratio of successful service
requests to total service requests). This monitoring specification is represented by an
instance of the class AvailabilityRule, which serves as the input to the template. The
output of the template-based code generation process is a concrete query
specification written in EPL, which aggregates the number of logged service
invocations (CountInvocationsRule) over a certain time window (rule.window.duration).
The example illustrates the composition of monitoring rules, since AvailabilityRule is
composed of two instances of CountInvocationsRule (one for filtering all failed
invocations, and one for counting all invocations) via the association rule.childRules.
The generation template separates the output definitions of the different types of
monitoring rules, and cross-references these definitions where needed (e.g.,
outputCountInvocations is called from within outputAvailability), which allows for
recursive composition of monitoring rules.
«DEFINE main FOR AvailabilityRule»

«FILE "AvailabilityMonitoringQuery.esper"»
«EXPAND outputAvailability(this)»

«ENDFILE»
«ENDDEFINE»

«DEFINE outputCountInvocations(CountInvocationsRule rule) FOR AvailabilityRule»

select count(invocations)
«IF rule.resultDescription != null»

as «rule.resultDescription»
«ENDIF»
from «rule.dataSources.get(0).name»
(«rule.dataSources.get(0).filter»)
«IF rule.window != null»

.win:time(60*60*«rule.window.duration»)
«ENDIF»
as invocations

«ENDDEFINE»

«DEFINE outputAvailability(AvailabilityRule rule) FOR AvailabilityRule»

select 1 - (
(«EXPAND outputCountInvocations(

(CountInvocationsRule)rule.childRules.get(0))»)
/
(«EXPAND outputCountInvocations(

(CountInvocationsRule)rule.childRules.get(1))»))
as «rule.resultDescription»

«ENDDEFINE»

The resulting EPL looks as follows.
select

(

INDENICA D3.1

 38

(select count(invocations)
from ServiceInvocationFailedEvent(service='ERPService')

.win:time(60*60*24.0) as invocations

(select count(invocations)
from ServiceInvocationEvent(service='ERPService')

.win:time(60*60*24.0) as invocations))
as unavail

This EPL statement integrates two event streams (the stream of
ServiceUnavailableEvent, indicating that a service should have been
invoked, but was unavailable, and of ServiceInvocationStartedEvent,
indicating that a service should be invoked) over a time period of one day.

Events emitted by the Monitoring Engine are consumed by the Adaptation Engine. A
concrete VSP may be using the Drools Expert5 rule engine as basis of the Adaptation
Engine. An example DRL (Drools Rule Language) rule looks as follows:

rule “When availability too low, increase service redundancy level”
when
 $e : ServiceAvailabilityReportEvent(actualAvailability < 0.9999)
then
 NotificationActions.notifyOperator($e);
 AdaptationActions.increaseRedundancyLevel();
end

5.6 Integration of Deployment
The Deployment Manager which will be developed in WP4 is responsible for
deploying the SCA components to the runtime of the Virtual Service Platform.
Therefore some deployment descriptors are needed. The SCA deployment
descriptors can be divided into three groups. First for the description of the physical
structure of the SCA domain, second the logical description of the SCA domain and
third SCA metadata. The descriptors for the physical structure specify the SCA
domain cloud composed of a set of SCA runtime instances each containing a subset
of all SCA composites of the domain including binding details. This information can
be derived from the Service Deployment View.

The Deployment Descriptors for the logical structure of the SCA domain is content of
the Service Deployment View. One descriptor contains all SCA composites
representing the virtual domain (derived from High-Level-View) whereby each SCA
composite has a descriptor assembling its SCA components (Low-Level-View). The
third and last group contains SCA metadata. At one hand a file describing all SCA
contributions of the domain modelled in the Service Deployment View, at the other
hand metadata for each SCA contribution that contain information about the usage
scope for the contained composites. This information can be derived from the
Service Component View. Concrete information about the descriptors can be found
in the SCA 1.0 Specification [OSOA] and in the documentation of Apache Tuscany6.

5 http://www.jboss.org/drools
6 http://tuscany.apache.org/

INDENICA D3.1

 39

5.7 Integration of Platform Service
In the second year of INDENICA, we will design and implement the integration with
services provided by different service platforms described in WP5. In particular, our
architecture and tooling will support modelling and generating necessary service
adapters/converters/mediators that can be used to connect the underlying service
platforms with the virtual service platform.

A brief description of services provided by the aforementioned platforms is
following.

Services provided by WMS Platform (SIE)

Warehouse Management
Service

This service provides basic logic to access the
contents of the warehouse.
New storage units can be registered prior to the
actual storage procedure. Afterwards an appropriate
bin location can be searched and reserved. The
service also offers a functionality to handle the
transport of a storage bin to a reserved bin location.
In order to perform a checkout for an order, all
storage units that contain a specific article can be
searched. Based on this information, a checkout
order can be created and processed which ultimately
completes the whole checkout procedure.
Service consumers may register and unregister for
service events like successful storage or arrival of a
storage unit at a checkout desk.

Conveyor Control Service This service provides access to the conveyor belt
system that moves storage units within the
warehouse building. Based on their unique identifier,
storage units can be sent to a bin location, retrieved
from a bin location and transported to checkout
desks and handover platforms.
This service is internally used by the warehouse
management service. A usage by external client is
not intended.

Services provided by YMS Platform (SAP)

Yard Management Service This service provides basic logic to handle common
yard management processes.

New shipping tasks including their advanced shipping
notice can be registered in the system. Arriving
truckloads will be scheduled and assigned to loading
docks or to a waiting area (dock door scheduling,
DDS). Thereby business rules have to be taken into
account like docks for oversized goods or docks for
rapidly spoiled food, which needs cooling. Also logic

INDENICA D3.1

 40

for rescheduling because of delays is included.
Additionally, it provides a basic framework for
building a yard management web interface (based on
Spring), including a graphical interactive
representation of the actual yard.

The yard management service will mainly be used by
the yard manager for administration and monitoring
as well as by the gate guard to register new
truckloads and communicate scheduled docks.

Yard Jockey Service This service allows scheduling of tasks for yard
jockeys. These tasks include fetching or relocating
trailers on the yard. Additionally, locations of trailers
are maintained which allows intelligent scheduling of
tasks and optimizes the path of the yard jockey. The
trailer position will also be used to select the jockey
to which to assign the specific task.

By providing generic user interface components,
tasks can be created by the yard manager. After
creation, the yard jockey will be notified of these
new tasks. The jockey can update his status for
monitoring purposes.

Mobile Communication
Service

This service provides functionality for communicating
with mobile devices. To allow fast and effective
communication, several persons can be equipped
with such devices. This service can be used to
distribute notifications and to monitor the state of
several yard entities in near real-time. The yard
jockey receives notification on new tasks and
updates his state whether he is searching for a
trailer, carrying a trailer or idling. In case of a delay,
the truck driver can send a notification that triggers a
rescheduling of the dock occupations. Truck drivers
on the yard can receive information about their
assigned docks. They will be notified whenever a
change occurs. The warehouse staff can update the
loading or unloading status of the current trailer
easily and receive notifications about new loading
tasks.

This service also facilitates development of mobile
user interface by supplying an application framework
for mobile YMS UIs. It thereby provides a
development environment for building native apps
for mobile devices based on Spring Android.

Location Service Mobile devices can also be used to communicate

INDENICA D3.1

 41

their position via GPS or similar. This information
helps to determine the time till arrival of truck
drivers. Additionally, it provides yard jockeys with
precise positions about the trailers to be fetched.
Because the YMS knows the position of all yard
jockeys, it can better assign fetching tasks to the best
suited yard jockey.

EDI Service Electronic data interchange (EDI) allows for
standardized information exchange between
organizations. This service interfaces the YMS to
other organizations by allowing information
exchange via EDI. This service will be used by
external organizations to transfer advanced shipping
notices to the YMS in an electronic way.

Services provided by Remote Management Platform (TARC)

Call Session management The service will allow different user to contact other
users performing a call or send directed message to
one or a group of users. The caller will also
automatically provide his/hers current location, and
other context information.

This service will also include direct messaging which
can be easily integrated with emergency services to
provide fast one-click emergency application.

Callers will be able to share picture or other data
needed during the call.

Remote monitoring The monitoring service will allow responsible staff to
check the performance of the whole system in near-
real time. Information from various sources will be
aggregated and pre-analysed and on-demand reports
will be able to be generated in just few seconds.
Stored data will also give a chance to perform some
data mining in order to produce charts and deeper
analysis of trends.

Complex Event Processing and supporting prediction
components will allow to observe critical parameters
of the subsystems and prepare/perform actions
before the critical events occur.

6 Conclusion

So far we have presented a view-based design time and runtime architecture for
virtual service platforms (VSP). We elaborated on how the notion of architectural

INDENICA D3.1

 42

views have been exploited for dealing with the complexity of the horizontal
dimension, i.e., the dimension of different concerns, of a VSP, and how the model-
driven development paradigm is leveraged for the separation of abstraction levels.
We also proposed a number of view models that can be used for formalising
essential VSP concerns such as the Service Component View, Deployment View, and
Runtime View.

In order to provide view models that are more appropriate and relevant to the
various stakeholders’ interests, we devised a model-driven stack that organises these
view models into abstract and technology-specific layer. The abstract layer includes
view models that offer high-level concepts and structures of which non-technical
stakeholders can better understand and communicate to discuss on certain business
goals or requirements. The technology-specific layer consists of view models that are
merely relevant to developers who are responsible for implementing, deploying, and
maintaining VSPs. This combination of the separation of concerns principle and the
separation of abstraction levels offers a flexible, extensible methodology for VSP
development. Furthermore, the view-based architecture can also support code
generator technique for generating VSP code, deployment configurations,
monitoring directives, etc., from views, and therefore, enhances the automation and
productivity.

We also proposed future plans for the potential integration of the view-based
architecture with other components of INDENICA. The integration is naturally based
on the collaboration between WP3 and other WPs in the upcoming milestones.

INDENICA D3.1

 43

Table of Figures

Figure 1 Relationships with other INDENICA components.. 7

Figure 2 Overview of an INDENICA Virtual Service Platform 8

Figure 3: the technical architecture overview diagram from the EAM methodology
with sample components in the respective layers ... 9

Figure 4 Overview of the view-based design time and runtime architecture 10

Figure 5 The Core model.. 12

Figure 6 The high-level Service Component View model .. 13

Figure 7 Essential OCL-based rules for validating a Service Component View 14

Figure 8 An example of the Service Component View .. 15

Figure 9 The Service Deployment View .. 15

Figure 10 Essential OCL-based rules for validating the Service Deployment View 16

Figure 11 An example of the Service Deployment View ... 17

Figure 12 An example of an SCA-based system .. 18

Figure 13 The low-level Service Component View for SCA technology 20

Figure 14 An example of the low-level Service Component View for SCA 21

Figure 15 Refining non-nested high-level components to low-level components 22

Figure 16 Refining nested high-level components to low-level components 23

Figure 17 The Runtime View model ... 24

Figure 18 An example of Runtime View in textual syntax ... 25

Figure 19 Overview of different roles of stakeholders in INDENICA architecture 29

Figure 20 NIST enterprise architecture model
(http://en.wikipedia.org/wiki/File:NIST_Enterprise_Architecture_Model.jpg) 33

Figure 21: The Siemens Enterprise Architecture Management framework 35

Figure 22: INDENICA architecture views mapped to the planning phase of the EAM
development cycle .. 35

Figure 23: Runtime Model Extension Capturing Monitoring Rules 36

INDENICA D3.1

 44

References

[CBB+2010] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Merson, P., et al. (2010). Documenting Software Architectures: Views
and Beyond (2nd ed., p. 592). Addison-Wesley.

[DoW] INDENICA Project Description of Work, April 23th, 2010.

[DR2011] Davis, Rob (2011). Processes in Practice: Putting the "E" back into
Enterprise Architecture. http://www.bptrends.com/

[DS2005] Dustdar, S., & Schreiner, W. (2005). A survey on web services
composition. International Journal of Web and Grid Services, 1(1), 1-
30. Inderscience. doi:10.1504/IJWGS.2005.007545

[EMF] Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf

[FEM+2007] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar.
Integrating Quality of Service Aspects in Top- Down Business Process
Development Using WS-CDL and WS-BPEL. In EDOC ’07: Proceedings
of the 11th IEEE International Enterprise Distributed Object
Computing Conference, page 15, Washington, DC, USA, 2007. IEEE
Computer Society.

[GEF] Eclipse Graphical Editing Framework. http://www.eclipse.org/gef

[GMF] Eclipse Graphical Modeling Framework. http://www.eclipse.org/gmf

[HC2001] G. T. Heineman and W. T. Councill, Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley, 2001.

[JB2005] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions,” in The 5th Working IEEE/I- FIP Conf. Software
Architecture, pp. 109–120, IEEE Comp. Soc., 2005.

[LK2007] L. Lee and P. Kruchten, “Capturing Software Architectural Design
Decisions,” in 2007 Canadian Conference on Electrical and Computer
Engineering, pp. 686–689, IEEE, 2007.

[LW2007] K.-K. Lau and Z. Wang, “Software Component Models,” IEEE Trans.
Softw. Eng., vol. 33, no. 10, pp. 709–724, 2007.

[M2T] Eclipse M2T Project. http://www.eclipse.org/modeling/m2t

[MM2004] Milanovic, N., & Malek, M. (2004). Current Solutions for Web Service
Composition. IEEE Internet Computing, 8(6), 51-59.
doi:10.1109/MIC.2004.58

[OMG-UML] OMG. Unified Modeling Language.
http://www.omg.org/spec/UML/2.0

[OSOA] Open SOA (2007). Service Component Architecture (SCA)
Specifications V1.00. http://www.osoa.org

[OSGi] OSGi Alliance. Open Services Gateway initiative framework.
http://www.osgi.org

INDENICA D3.1

 45

[OZD2010] E. Oberortner, U. Zdun, S. Dustdar, Patterns for Measuring
Performance-Related QoS Properties in Distributed Systems. In
Proceedings of the Pattern Languages of Programming Conference
2010 (PLoP 2010), Reno, Nevada, USA, ACM, October, 2010.

[RW2005] Rozanski, N., & Woods, E. (2005). Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives (p.
576). Addison-Wesley Professional.

[SLA] The Service Level Agreement Zone. http://www.sla-zone.co.uk

[SR2007] Sessions, Roger (2007). A Comparison of the Top Four Enterprise-
Architecture Methodologies. http://msdn.microsoft.com/en-
us/library/bb466232.aspx

[SV2006] T. Stahl and M. Völter. Model-Driven Software Development:
Techonology, Engineering, Management. Wiley, 2006.

[Szyperski2002] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. Boston, MA, USA: Addison-Wesley, 2nd ed., 2002.

[TA2005] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying
Architecture,” IEEE Softw., vol. 22, no. 2, pp. 19–27, 2005.

[THZ+2009] Tran, H., Holmes, T., Zdun, U., & Dustdar, S. (2009). Modeling Process-
Driven SOAs - a View-Based Approach. In J. Cardoso & W. M. P. van
der Aalst (Eds.), Handbook of Research on Business Process Modeling.
IGI Global.

[TMD2009] Taylor, R. N., Medvidovic, N., & Dashofy, E. (2009). Software
Architecture: Foundations, Theory, and Practice (p. 712). Wiley.

[W3C] W3C. Web Service Definition Language 1.1.
http://www.w3.org/TR/wsdl

[Xtext] Eclipse Xtext Project. http://www.xtext.org

[ZGK+2007] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster,
“Reusable architectural decision models for enterprise application
development,” in Proc. of QoSA 2007, pp. 15–32, Springer-Verlag,
2007.

INDENICA D3.1

 46

Appendix

A. Formal grammar for the QoS language implemented in Xtext 2.0

grammar dsl.Runtime with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate runtime 'http://cs.univie.ac.at/swa/viewbased/runtime'

RuntimeView:
 {RuntimeView}
 name=QualifiedName
 (
 'measurement' '{'
 (measurement+=Measurement)*
 '}'
)?
 (
 'actions' '{'
 (action+=Action)*
 '}'
)?
 (
 'Service Level Objective'
 '{'
 (serviceLevelObjective+=ServiceLevelObjective)*
 '}'
)?
 ;

Measurement:
 ResponseTime | ProcessingTime | AverageThroughput | Availability
 ;

ProcessingTime:
 {ProcessingTime}
 name=ID
 'ProcessingTime' expression=Expression
 ;

ResponseTime:
 {ResponseTime}
 name=ID
 'ResponseTime' expression=Expression
 ;

AverageThroughput:
 {AverageThroughput}
 name=ID
 'AverageThroughput' expression=Expression
 ;

Availability:
 {Availability}
 name=ID
 'Availability' expression=Expression
 ;

Expression:

INDENICA D3.1

 47

 {Expression}
 predicate=PREDICATE value=VALUE unit=UNIT
 ;

enum UNIT:
 hour='hour' |
 minute='minute' |
 second='second' |
 millisecond='millisecond' |
 week='week' |
 day='day' |
 month='month' |
 year='year' |
 percent='%'|
 dollar='$' |
 euro='€'
 ;

terminal VALUE returns ecore::EDouble:
 ('0'..'9')* ('.'('0'..'9')+)?
 ;

enum PREDICATE:
 Equal='=' |
 GreaterThan='>' |
 LessThan='<' |
 GreaterThanOrEqual='>=' |
 LessThanOrEqual='<=' |
 NotEqual='!=' |
 Not='not'
 ;

ServiceLevelObjective:
 {ServiceLevelObjective}
 name=ID
 '{'
 ('obliged='obliged=STRING)?
 'validity''start='start=DATETIME 'end='end=DATETIME
 'measurement=' measurement+=[Measurement] (','
measurement+=[Measurement])*
 'action=' action+=[Action] (',' action+=[Action])*
 'target=' target+=ID (',' target+=ID)*
 '}'
 ;

Action:
 AdaptationAction | NotificationAction
 ;

AdaptationAction:
 ChangeServiceBinding | SwitchVariant | RegenerateAndDeploy
 ;

ChangeServiceBinding:
 name=ID 'ChangeServiceBinding'
 ;

RegenerateAndDeploy:
 name=ID 'RegenerateAndDeploy'
 ;

INDENICA D3.1

 48

SwitchVariant:
 name=ID 'SwitchVariant'
 ;

NotificationAction:
 SendMail | SendSMS | Log
 ;

SendMail:
 {SendMail}
 name=ID
 'Send e-mail to'email+=STRING (',' email+=STRING)*
 ;

SendSMS:
 {SendSMS}
 name=ID
 'Send SMS to'sms+=SMS (',' sms+=SMS)*
 ;

Log:
 {Log}
 name=ID
 'Log event to file'file+=STRING (',' file+=STRING)*
 ;

terminal SMS:
 ('+')?('0'..'9')+
 ;

terminal DATETIME:
 ('1'..'2')('0'..'9')('0'..'9')('0'..'9') // YYYY
 '-' ('0'..'1')('0'..'9') // MM
 ('-'('0'..'3')('0'..'9'))? // DD
 ('T'
 ('0'..'2')('0'..'9') // hh
 (':'('0'..'5')('0'..'9'))? // mm
 (':'('0'..'5')('0'..'9'))? // ss
)?
 (('Z'|('+'|'-'('0'..'2')('0'..'9')':'('0'..'5')('0'..'9')))
)? // UTC
 ;

QualifiedName:
 ID ('.' ID)*
 ;

B. Model-to-model transformation rules for refining view models

create sca::ScaView this
mapMultipleSingleComponentsToComposite(component::ComponentView cv):
 let components = cv.element.typeSelect(component::Component) :
 let connectors = cv.element.typeSelect(component::Connector) :
 resetGlobalIndex()
 -> storeGlobalVar("connectors", connectors)
 -> this.setName(cv.name)
 -> this.setId(cv.id)
 -> this.annotation.addAll(cv.annotation.duplicate())

INDENICA D3.1

 49

 -> this.element.add(mapComposite(components, cv.name))
 -> this.element.addAll(connectors.createScaWire())
 ;

private create sca::ScaComposite this
mapComposite(List[component::Component] components, String name):
 this.setName(name)
 -> this.setTargetNamespace("http://" + this.name.toLowerCase())
 -> this.nestedComponent.addAll(components.mapComponent(this))
 ;

private create sca::ScaComponent this
mapComponent(component::Component c, sca::ScaComposite parent):
 let provideds = c.port.select(p|p.kind ==
component::PortKind::PROVIDED) :
 let requireds = c.port.select(p|p.kind ==
component::PortKind::REQUIRED) :
 this.setName(c.name)
 -> this.setId(c.id)
 -> this.annotation.addAll(c.annotation.duplicate())
 -> this.port.addAll(provideds.mapProvidedPortToComponentService())
 ->
this.port.addAll(requireds.mapRequiredPortToComponentReference())
 -> parent.port.addAll(provideds.select(p|isNotConnectedPort(p,
(List)getGlobalVar("connectors"))).mapProvidedPortToCompositeService(
this))
 -> parent.port.addAll(requireds.select(p|isNotConnectedPort(p,
(List)getGlobalVar("connectors"))).mapRequiredPortToCompositeReferenc
e(this))
 ;

private create sca::ScaCompositeService this
mapProvidedPortToCompositeService(component::Port p,
sca::ScaComponent promoted):
 let promoteds = promoted.port.select(s|s.name == p.name &&
sca::ScaComponentService.isInstance(s)):
 this.setName(promoted.name + "_" + p.name)
 -> this.annotation.addAll(p.annotation.duplicate())
 -> this.setKind(p.kind)
 -> if (promoteds != null && promoteds.size > 0) then
this.setPromote((sca::ScaComponentService)promoteds.get(0))
 ;

private create sca::ScaCompositeReference this
mapRequiredPortToCompositeReference(component::Port p,
sca::ScaComponent promoted):
 let promoteds = promoted.port.select(r|r.name == p.name &&
sca::ScaComponentReference.isInstance(r)):
 this.setName(promoted.name + "_" + p.name)
 -> this.annotation.addAll(p.annotation.duplicate())
 -> this.setKind(p.kind)
 -> if (promoteds != null && promoteds.size > 0) then
this.promote.add((sca::ScaComponentReference)promoteds.get(0))
 ;

private create sca::ScaComponentService this
mapProvidedPortToComponentService(component::Port p):
 let provideds = getGlobalVar("provideds") != null ?
getGlobalVar("provideds") : {} :
 this.setName(p.name)

INDENICA D3.1

 50

 -> this.annotation.addAll(p.annotation.duplicate())
 -> this.setKind(p.kind)
 -> provideds.add(this)
 -> storeGlobalVar("provideds", provideds)
 ;

private create sca::ScaComponentReference this
mapRequiredPortToComponentReference(component::Port p):
 let requireds = getGlobalVar("requireds") != null ?
getGlobalVar("requireds") : {} :
 this.setName(p.name)
 -> this.annotation.addAll(p.annotation.duplicate())
 -> this.setKind(p.kind)
 -> requireds.add(this)
 -> storeGlobalVar("requireds", requireds)
 ;

private create sca::ScaWire this createScaWire(component::Connector
c):
 setName(c.name)
 -> this.annotation.addAll(c.annotation.duplicate())
 -> setSource(c.source.mapRequiredPortToComponentReference())
 -> setTarget(c.target.mapProvidedPortToComponentService())
 ;

create sca::ScaComposite this
mapSingleComponentToComposite(component::Component c):
 let promoted = c.mapSingleComponentToComponent() :
 let provided = c.port.select(p|p.kind ==
component::PortKind::PROVIDED) :
 let required = c.port.select(p|p.kind ==
component::PortKind::REQUIRED) :
 let services =
provided.mapProvidedPortToCompositeService(promoted) :
 let references =
required.mapRequiredPortToCompositeReference(promoted):
 this.setId(c.id)
 -> this.setName(c.name)
 -> this.annotation.addAll(c.annotation.duplicate())
 -> this.port.addAll(services)
 -> this.port.addAll(references)
 -> this.nestedComponent.add(promoted)
 ;

create sca::ScaComponent this
mapSingleComponentToComponent(component::Component c):
 let provided = c.port.select(p|p.kind ==
component::PortKind::PROVIDED) :
 let required = c.port.select(p|p.kind ==
component::PortKind::REQUIRED) :
 this.setName(c.name)
 -> this.annotation.addAll(c.annotation.duplicate())
 -> this.setId(c.id)
 -> this.port.addAll(provided.mapProvidedPortToComponentService())
 ->
this.port.addAll(required.mapRequiredPortToComponentReference())
 ;

