
Engineering Virtual Domain-Specific
Service Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document represents the report on the state of the art in service platform de-
sign, adaptation, deployment, and monitoring. The document adopts a wide spec-
trum to survey the main achievements and proposals in the fields of service-roeitned
systems, requirements elicitation, adaptation, product line engineering, deployment,
and monitoring techniques to pave the ground to the proposals and techniques de-
veloped within the project.

Document ID: INDENICA – D1.1
Deliverable Number: D1.1
Work Package: 1
Type: Deliverable
Dissemination Level: Public
Status: draft
Version: 2.8
Date: 2011-09-30
Contributing Partners: PDM, SAP, SIE, TUV, SUH, UNIVIE, TEL

Project Start Date: October 1st 2010, Duration: 36 months

Report on State of the Art
in Service Platform Design,

Adaptation, Deployment and
Monitoring

Version History
0.1 01. Jan 2011 Initial version

1.0 01 Feb 2011 First contributions added

1.1 01 Mar 2011 First integrated version

1.2 18 Mar 2011 Polishing and integration

2.0 21 Mar 2011 Consolidated version

2.1 22 Mar 2011 Minor changes

2.2 23 Mar 2011 Bug fixing

2.3 25 Mar 2011 References integrated

2.4

2.5

29 Mar 2011

15 Sep 2011

Proof reading and final version

Refinement of Section 2 (SAP)

2.5.1 15 Sep 2011 Refinement of Section 2.5.3, 4.3, 5.1 (by SUH)

2.6 23 Sep 2011 Refinement of Section 2.6, 4.5 (by UNIVIE)

2.7 30 Sep 2011 Refinement of Section 6 (by TEL)

2.8 30 Sep 2011 Proof reading and new final version (by PDM)

Document Properties
The spell checking language for this document is set to UK English.

Table of ContentsTable of Contents ... 3

1 Introduction... 5

1.1 Structure of this document .. 6

2 Background.. 7

2.1 Service... 7

2.2 Service Oriented Computing .. 7

2.3 Software-, Platform-, and Infrastructure as a Service................................... 9

2.3.1 Some commercial solutions .. 9

2.4 Service Component Architecture (SCA) .. 15

2.5 Software Product Lines and variability management 15

2.5.1 Business orientation ... 15

2.5.2 Management of variability ... 16

2.5.3 Variability management techniques ... 17

2.6 Model-Driven Development .. 19

3 Requirements .. 22

3.1 Requirements engineering for Product Lines ... 24

3.2 Goal-based approaches ... 26

3.3 Requirements for adaptive systems .. 28

3.4 Requirements for the definition of services ... 30

3.5 Variability in requirements for Product Lines ... 31

3.6 Product Line scoping and RoI calculation ... 33

4 Design .. 35

4.1 Methods and techniques for platform design .. 35

4.2 Decision models and patterns ... 38

4.3 Modelling variability in architecture .. 39

4.4 Architectural views .. 41

4.5 Model-Driven services and processes .. 42

5 Adaptation and governance ... 45

5.1 Variability at implementation level .. 45

5.2 Adaptation frameworks ... 45

5.2.1 Types of adaptation.. 46

5.2.2 Further challenges in adaptation frameworks 47

5.3 Service platform governance ... 49

5.3.1 Corporate governance .. 49

INDENICA D1.1

 4

5.3.2 IT governance ... 49

5.3.3 SOA governance ... 50

5.3.4 SOA governance reference models ... 51

5.3.5 SOA governance frameworks ... 53

5.3.6 Governance compliance and runtime monitoring............................... 54

5.3.7 SOA governance tool suites .. 54

5.4 Deployment technologies .. 57

6 Monitoring .. 61

6.1 Quality of Service .. 61

6.2 Service Level Agreement ... 65

6.3 Runtime monitoring .. 68

6.4 Infrastructure for runtime supervision .. 71

6.4.1 Architecture level self-adaptation .. 72

6.4.2 Runtime supervision of service compositions 74

7 Conclusions.. 77

8 References ... 79

INDENICA D1.1

 5

1 Introduction

Service technologies have been gaining more and more attention over the last years.
They started as glue among heterogeneous parties and flexible infrastructures at
application level, and they are now the foundations of the “cloud revolution”: every-
thing is seen and accessible as a service. Platforms and infrastructures offered and
exploited as services are becoming common and many big players (e.g., Microsoft,
Google, and IBM) are already offering complete and interesting solutions. More and
more platforms ---both publicly available and with limited visibility--- will be available
in the next years, but at the same time all these different solutions are posing new
and compelling problems.

We need to clearly define what a platform is. INDENICA defines a service platform as
an assembly of infrastructure assets, like communication middleware or databases,
and platform services that together constitute the interface and programming model
for application service development. These platforms should be able to cope with
user requirements. In these days, one can think of developing a new platform to
cope with particular needs, but we are quickly moving towards scenarios where a
significant set of alternative platforms exists, and new solutions have to be con-
ceived by tailoring and combining them.

The functional and non-functional properties of a service platform and its interface
must vary with the requirements of a domain. This is why INDENICA proposes the
idea of domain-specific service platform as the result of matching users needs, im-
plicit domain assumptions, and available solutions to support applications that re-
quire the integration of services across platform boundaries. Adaptation becomes a
key issue, and product line principles can be an interesting enabler to cope with all
the different alternatives in a consistent way.

This means that the problem of conceiving, designing, and realizing a domain-specific
service platform is multi-faceted and must be tackled under different viewpoints.
This document identifies some interesting aspects (angles), and describes the rele-
vant state of the art to provide an initial assessment of available solutions, identify
significant challenges, and pave the ground to the new solutions proposed by the
project.

The document starts with the definition of some key concepts and a brief survey of
well-known commercial solutions. Then, it addresses the problem under four paral-
lels threads: requirements elicitation, design principles, adaptation, governance and
deployment, and monitoring and runtime supervision. Although platforms are gain-
ing more and more interest, a large amount of existing solutions still address the
problem at application level, but this trend should be reverted in the next few years.
The last part of the document tries to move a step forward the pure state of the art
and concludes the document by identifies some challenges that belong to the re-
search field, and that as such INDENICA will address over the next years.

INDENICA D1.1

 6

1.1 Structure of this document
The rest of this document is organized as follows. Section 2 introduces some defini-
tions of the key concepts behind service platforms, and briefly describes some well-
known solutions. Section 3 addresses the problem of requirements elicitation and
also the business considerations behind the design/selection of a service platform.
Section 4 is about design solutions, architectures, and models. Section 5 presents the
main results as for implementing adaptation, governance, and deployment. Finally,
Section 6 considers the runtime supervision of service platforms and surveys solu-
tions for monitoring their execution, assessing their quality of service parameters,
and enforcing service level agreements. Section 7 concludes the document and iden-
tifies some challenges for the project.

INDENICA D1.1

 7

2 Background

This section introduces the main concepts behind the engineering of virtual domain-
specific platforms.

2.1 Service
There is a plethora of definitions for service. The FP7 project NEXOF-RA has set up a
glossary of terms, which are related to service orientation and platforms1. They have
a very short and pragmatic definition of service: “A service is an action performed by
one Entity that fulfils a request of another Entity” whereas entity is defined as “An
entity is a person or organization”.

In the INDENICA context the definition from ITIL seems relevant2: “A Service is a
means of delivering value to Customers by facilitating Outcomes Customers want to
achieve without the ownership of specific Costs and Risks”. The ITIL also says that:
“From the customer’s point of view the value of a service consists of two basic ele-
ments:

 Utility is the functionality offered by a service to suit a specific need. Utility is also
frequently described as ‘what a product or service does’. In addition to functional-
ity it can also mean the removal of constraints for the business. Utility increases
the performance of the enterprise.

 The second element is Warranty, the commitment or warranty that a product or
a service matches the agreed requirements concerning availability, capacity, con-
tinuity and security. The service warranty reduces the fluctuations in the service
delivery.”

2.2 Service Oriented Computing
Since software development is a complex, time consuming, and expensive process,
vendors as well as customers can benefit from reusable software elements. To
achieve sustainable reusability, on a business-internal as well as on a business-to-
business (B2B) level, a high degree of interoperability and integration is required.
The concept of Service-Oriented Computing [1] (SOC) utilizes services as the funda-
mental elements for application development: services are “self-describing, plat-
form-agnostic computational elements that support rapid, low-cost composition of
distributed applications” [2]. Among the core characteristics of services are loose
coupling (services are not hard-wired but constitute self-contained units that can be
dynamically bound), autonomy and abstraction (services have control over the inter-
nal implementation logic and only provide an abstracted service interface to the out-
side world), service contract (services describe themselves and adhere to certain
interface and protocol agreements), composability (services can be composed to
create higher-level functionality) and discoverability (services can be found via suita-
ble discovery mechanisms) [3]. Today, the most often used technology for imple-

1 http://www.nexof-ra.eu/?q=node/187
2 http://www.itil.org/en/glossar/glossarkomplett.php?filter=S

INDENICA D1.1

 8

menting SOA are Web services [4]. In a nutshell, a Web service is a software applica-
tion that provides a programmatic interface (expressed using the Web Services De-
scription Language, WSDL), uses XML-based messaging protocols (Simple Object Ac-
cess protocol, SOAP) and is subject to different policies that refer to domain-specific
capabilities, requirements, and general characteristics.

A number of technologies, platforms and infrastructures for development and de-
ployment of services have been proposed in recent years. The OSGi framework (for-
merly Open Services Gateway Initiative) [5] defines a service platform and module
system for the Java programming language. It includes a Reference Architecture for
service platforms, including a detailed description of involved entities and specifica-
tion of services of various types. The notion of services in OSGi is very general, rang-
ing from logging services and user administration services to IO connector services or
XML parser services.

Various efforts have been made to develop service platforms for devices with re-
source limitations such as mobile devices [6], smart phones or automobiles [7]. Ser-
vice platforms on such devices often provide contextual information to allow the
implementation of context-aware services, e.g., energy-aware or location-aware
services [8]. The Devices Profile for Web Services (DPWS) [9] is an effort to support
the Web services protocol stack on resource-constrained devices. It includes con-
straints, mapping rules and lightweight alternatives for Web service messaging, dis-
covery, description, and eventing. The SIRENA project presents a service infrastruc-
ture tailored to the requirements of real-time embedded networked devices [10].

Service platforms and infrastructures often build on a service registry, which stores
endpoint information, interface definitions, and other metadata of services. The use
of a service registry allows the service platform to dynamically look up, select, and
bind to candidate services at runtime. In the area of Web service registries, a number
of approaches and standards exist. UDDI [11], which was originally proposed as a
core Web service standard, models characteristics of services (in the form of busi-
nessService, bindingTemplate, and tModel) as well as identifies service providers
(businessEntity contains metadata about a publisher and publisherAssertion de-
scribes relations between parties). UDDI had very limited success and was never fully
adopted by the industry. This claim is supported by the fact that public UDDI regis-
tries of Microsoft, IBM and SAP were shut down in 2005. The set of specifications
collectively described as ebXML (Electronic Business using XML) [12] enables enter-
prises to conduct electronic business over the Internet. Amongst other concepts,
ebXML defines a Registry Information Model and a Registry Services standard. Simi-
lar to UDDI, the ebXML data model is rather unstructured, reducing the service de-
scription to a collection of links to its technical specification, such as the WSDL doc-
ument. A comprehensive service registry and runtime environment is VRESCo [13]
(Vienna Runtime Enviroment for Service-oriented Computing). The VRESCo registry
distinguishes between the metadata model, the service model and the QoS (Quality
of Service) model. IBM’s WebSphere Service Registry and Repository (WSRR) [14]
uses a more structured information model, with the ability to automatically generate
model entities (called logical derivations) from physical documents of well-known
formats such as WSDL, XSD or WS-Policy.

INDENICA D1.1

 9

2.3 Software-, Platform-, and Infrastructure as a Service
A cloud [15] is often used to identify the different layers (users) of the SOA paradigm.
Services are used at application level (SaaS), platform level (PaaS), and Infrastructure
level (IaaS). More precisely:

Infrastructure as a Service: “This is the delivery of hardware (server, storage and
network), and associated software (operating systems virtualization technology, file
system), as a service. It is an evolution of traditional hosting that does not require
any long-term commitment and allows users to provision resources on demand. The
IaaS provider does very little management other than keep the data center opera-
tional and users must deploy and manage the software services themselves just the
way they would in their own data center”.

Platform as a Service: “This is the idea that someone can provide the hardware (as in
IaaS) plus a certain amount of application software - such as integration into a com-
mon set of programming functions or databases as a foundation upon which you can
build your application. Platform as a Service (PaaS) is an application development
and deployment platform delivered as a service to developers over the Web. It facili-
tates development and deployment of applications without the cost and complexity
of buying and managing the underlying infrastructure, providing all of the facilities
required to support the complete life cycle of building and delivering web applica-
tions and services available from the Internet. This platform consists of infrastructure
software, and typically includes a database, middleware and development tools. A
virtualized and clustered grid computing architecture is often the basis for this infra-
structure software. Some PaaS offerings have a specific programming language or
API. For example, Google AppEngine is a PaaS offering where developers write in
Python or Java. EngineYard is Ruby on Rails. Sometimes PaaS providers have proprie-
tary languages”

Software as a Service: “This is the idea that someone can offer you a hosted set of
software (running on a platform and infrastructure) that you do not own but pay for
some element of utilization - by the user, or some other kind of consumption basis.
Here you do not have to do any development or programming, but you may need to
come in and configure the software. You do not have to purchase anything. You just
pay for what you use. A SaaS provider typically hosts and manages a given applica-
tion in their own data center and makes it available to multiple tenants and users
over the Web. Some SaaS providers run on another cloud provider’s PaaS or IaaS
service offerings”

2.3.1 Some commercial solutions
This overview has been prepared in conjunction with the 4Caast project3 based on
[16]. While [16] evaluates different solutions with different abstraction layers we
restrict ourselves to solutions that can be considered a platform. This means the so-
lution has to offer the capability to build a customer-tailored application on top of it.

The following criteria have been considered when evaluating the solutions:

3 http://4caast.morfeo-project.org

INDENICA D1.1

 10

 Domain: the (business) domain in which the solution is offered
 Type: whether the solution can be related to SaaS, PaaS or IaaS
 Target audience: the audience that is the intended customer. As we focus on

developers in the INDENICA project, the audience should match. However, often
the border between a developer and a typical end-user is blurry.

 Integration: the way of integration of the solution into an own application. Ideal-
ly the solution should provide a complete framework for application building.

 Extensibility & Variability: the mechanisms that are used to extend the core func-
tionality offered by the solution. This includes provided variation mechanisms
that allow changing certain aspects of the solution. (Configuration, Extension
Points, APIs (REST, WS, Native), Language)

 Business Model: the business model that is behind the solution.

Amazon Web Services
Amazon Web Service is only a brand for various offerings that can be assigned to the
area of IaaS. These offerings include S3 (storage service), EC2 (virtual machines), EBS
(storage volumes) and VPC (virtual network for EC2 instances).

Domain No particular, technical only.

Type IaaS

Target Audience Developers

Integration EC2 provides a whole operating system in a virtual ma-
chine, for this reason a developer is completely free to
choose the integration. The actual mechanisms depend
on the applications installed inside the VM. EC2 itself
can be controlled via SOAP-WS, bindings for various
languages also exist.

S3 provides access to files via so-called buckets. Access
is granted over HTTP.

EBS and VPC are used in the backend only; they are not
intended for extension.

Extensibility & Variability As a customer has full control over an EC2 instance
he/she is completely free extending the functionality.
The other offerings are not intended for extensions.

Business Model Pay-per-use, based on memory and bandwidth con-
sumption.

URL (if available) http://aws.amazon.com

Gigaspaces
Gigaspaces advertises its product XAP Elastic Application Platform as “Industry’s only
virtual application platform”. An Elastic Application Container is flanked by a de-

INDENICA D1.1

 11

ployment infrastructure that serves as a bridge to existing cloud infrastructures and
an interfacing layer that is use as the basis for application building.

Domain No particular, technical only.

Type PaaS

Target Audience Developers

Integration XAP provides various API including core read/write,
key/value storage, JDBC, POJO domain model and
monitoring. Actual application can be developed as
J2EE, .NET or Spring applications and can therefore use
the full freedom these frameworks offer.

Extensibility & Variability The platform itself does not seem to be intended for
extensions.

Business Model Pay-per-use.

URL (if available) http://www.gigaspaces.com/

Google AppEngine
AppEngine is Google’s PaaS offering. A user is able to develop web application in
either Python of Java and deploy the application into the “AppEngine cloud”.

The services that are offered (and that can be used programmatically) by AppEngine
are of rather basic nature. This includes (among others) fetching internet content, e-
mail, caching, image manipulation, data storage and user authentication.

Domain No particular, technical only.

Type PaaS

Target Audience Developers

Integration The customer develops a web application either in Py-
thon or Java. Google provides appropriate APIs to use
the functionality of the platform. The application itself
may offer SOAP or REST services to be used externally.

Extensibility & Variability A customer is free to structure his application based on
the API the solution offers. The platform itself is not
intended for extensions.

Business Model Pay-per-use. The fee is not based on resource con-
sumption, but on the number of deployed applications
itself.

URL (if available) http://code.google.com/appengine

INDENICA D1.1

 12

Heroku
Heroku is a multi-tenant platform targeting Ruby developers.

Domain No particular. A focus on a certain domain can be es-
tablished by using predefined extension modules.

Type PaaS

Target Audience Developers

Integration The development is performed in Ruby. All Ruby APIs
can be used. For this reason the development can be
done locally, the finished application is deployed into
the Heroku cloud afterwards.

Extensibility & Variability Heroku offers a number of extensions, which are main-
ly connectors to third-party services. These extensions
can be booked by the customer and are either free or
need to be paid. Other extension mechanisms are not
documented.

Business Model Pay-per-use, based on number of processes and num-
ber of active users.

URL (if available) http://www.heroku.com

Microsoft Azure
Azure is Microsoft’s offering for Cloud services. It consists mainly of three parts:
Windows Azure, SQL Azure and AppFabric. The first one is the Windows operating
systems itself, that is offered on-demand, the second provides SQL storage capabili-
ties and the latter is a set of .NET-based components that can be used to build cloud-
aware applications.

Domain No particular, technical only.

Type Both IaaS and PaaS

Target Audience Developers

Integration For the Windows Azure Offering the customer is free to
use and develop his/her own solution. Therefore the
integration mechanisms depend on the actual applica-
tions installed inside an instance.

The SQL Azure offering can be integrated via a REST-
interface. For AppFabric Microsoft provides APIs for all
.NET languages.

Extensibility & Variability The platform itself is not intended to be extended. The
application creation is bound to the capabilities the API
offers.

INDENICA D1.1

 13

Business Model Microsoft allows pay-per-use depending on computa-
tional resources and also a subscription model.

URL (if available) http://www.microsoft.com/windowsazure

NetSuite
NetSuite is both a SaaS and a PaaS solution. The company offers three on-demand
applications for financial management, customer relationship management and
eCommerce. In addition it is possible to use the underlying platform as a PaaS solu-
tion (called SuiteCloud resp. NetSuite Business Operating System (NS-BOS)).

Domain Business applications

Type SaaS and PaaS

Target Audience Developers and end-users

Integration NS-BOS offers a number of APIs which can be used
from a JavaScript script. In addition WS-APIs exist. The
APIs are rather high level; access to lower level func-
tionality of the platform is not supported.

Extensibility & Variability Extensions can be developed by using the provided
JavaScript-API, further (low-level) mechanisms (as indi-
cated above) are not supported.

Business Model Not documented on the website.

URL (if available) http://www.netsuite.com

OrangeScape
OrangeScape is solution that allows the development of business applications using a
visual style modelling interface. It is supported by a development environment called
OrangeScape Studio that runs inside a web browser. The actual applications can be
deployed to other PaaS solutions including Google AppEngine, Microsoft Azure and
Amazon EC2 or to conventional environments like J2EE and .NET in an on-premise
fashion.

Domain Business applications.

Type PaaS

Target Audience Developers, advanced end-users

Integration OrangeScape offers five main services: a component
service for defining business concepts, a workflow ser-
vice, persistence, web access and an AJAX-based
presentation layer. The web access service exposes
functionality via REST and can be used for integration
purposes.

Extensibility & Variability The OrangeScape Studio (the development environ-

INDENICA D1.1

 14

ment) allows the design of data models, forms, pro-
cesses and actions in a visual way. The developer is
bound to the functionality of the visual designer com-
ponent, further extensions are not supported.

Business Model Pay-per-seat, based on the number of developers ac-
cessing the web-based development environment.

URL (if available) http://www.orangescape.com

Salesforce
Salesforce provides the following offerings: a SaaS solution in the area of Customer
Relationship Management (CRM) (“Salesforce CRM”) and a development platform
called force.com. The latter consists of three parts, namely a collaboration platform,
a development platform and a cloud infrastructure.

Domain Customer Relationship Management

Type Saas and PaaS

Target Audience End-users, developers.

Integration Integration can be achieved via WS. In addition there
are public APIs. Salesforce delivers its own program-
ming language called Apex.

Extensibility & Variability Not possible for Salesforce CRM. The force.com plat-
form can be used for creating dedicated applications,
which are offered on a marketplace. These application
must be developed in Apex and make use of the API
that is offered by the force platform.

Business Model Subscription model.

URL (if available) http://www.salesforce.com and http://www.force.com

WorkXPress
WorkXPress is a platform that enables customers to build (business) applications
based on a 5th generation language (5GL). The actual “programming” is done entirely
visually.

Domain Business applications.

Type PaaS

Target Audience (Advanced) End-users.

Integration WorkXPress offers a SOAP-based API. No other integra-
tion possibilities are documented. The applications can
be deployed into commercially available clouds like
Amazon EC2.

Extensibility & Variability The user is bound to the capabilities of the visual edi-

INDENICA D1.1

 15

tors the vendor ships. No other extensions are fore-
seen (resp. documented).

Business Model Pay-per-seat and pay-per-use combination based on
the number of users and the costs of the cloud solution
the application is deployed to.

URL (if available) http://www.workxpress.com

2.4 Service Component Architecture (SCA)
The Service Component Architecture, a standard of the Open SOA Consortium [17],
integrates the service-oriented paradigm with component-based development (for
an overview see [18]). In SCA (Figure 1) components are the building units of mod-
ules and composite applications that communicate with each other via services.
Components are hosted in SCA containers in such a way that the component devel-
oper is shielded from the underlying container technology such as EJB, OSGi, Spring
or WCF. For data-source-independent persistence the SDO standard has been pro-
vided. There are efforts to create a SCA .NET binding.

Figure 1: Composing components to modules in SCA.

SCA represents a potential technology for INDENICA as it is standardized, supported
by many vendors and allows a higher level of integration than services that might be
useful when marrying PLE and SOA.

2.5 Software Product Lines and variability management
Software Product Lines have gained increasing attention as an approach to systemat-
ically develop related software products as a set, which form a so-called product line.
This approach has moved the focus from independently developing single systems to
systematically engineering a landscape of similar products. In [19] the authors define
a software product line (SPL) as a “set of software-intensive systems sharing a com-
mon, managed set of features […] that are developed from a common set of core
assets in a prescribed way”. This section gives a brief introduction to the main ideas
and the general definitions used in this area.

2.5.1 Business orientation
The basic motivation to employ product line engineering is an economic one: Pro-
found planning and management of reuse should lead to significantly reduced costs
and time-to-market compared to independently developed systems.

INDENICA D1.1

 16

Product line engineering focuses on establishing a sustainable family of products
instead of only developing a single project successfully. This demands a more holistic
perspective on the business strategy. Its major goal is not only a timely and cost-
effective delivery of the current product, but must be extended to a strategic view
on the business area that should be covered by a complete range of products, which
form the product line.

The product line approach implies a higher initial effort for building reusable assets,
restructuring development processes etc. After an initial investment, which is need-
ed to set up a product line, significant savings of costs and time usually occur as early
as after three products [20]:

Figure 2: Economics of software product lines [19].

2.5.2 Management of variability
The abovementioned definition of product line focuses on a “common, managed set
of features”. Thus a grounded, systematic analysis and management of commonali-
ties and differences between several products in a product line is crucial to their suc-
cessful engineering. This leads to the discipline of variability management. It further
distinguishes the aforementioned differences of products between variabilities and
product-specific additions as illustrated in Figure 3:

 Variabilities are characteristics that vary between products in the sense that
some (more than one) products share them, whereas other products do not fea-
ture them at all. In Figure 2 these appear as the triangular area at the intersec-
tion of the rectangular-shaped products.

 On the other hand a product-specific characteristic is unique to a single product.
 Commonalities define the core shared of all products in the product line, high-

lighted as the pentagon-shape in the center. They are developed once for usage
in all products of the product line.

products

effort

traditional
development
approaches

Initial
Invest-
ment

product line
development

break-even
after approx. 3 products

INDENICA D1.1

 17

Figure 3: Commonalities, variabilities and product specifics in domain engineering

A successful and cost-effective product line requires thorough planning and engi-
neering from the beginning. At first it is important to understand the range of rele-
vant variation. This is also called scoping [21].

Then it is essential to clearly define which parts belong to the core of all products,
which are shared by some, and which are specific to one product. This information of
variability is captured in the variability model. It includes information on the de-
pendencies among variations and constraints, under which circumstances certain
variations can occur. Research has developed a number of approaches on how to
model variation. These are usually embedded in variability management techniques
as described below.

The common basis of the products is developed in domain engineering: From the
beginning all assets are not developed with a single product in mind, but rather de-
signed for reuse. The domain, defined by the products that shall be developed, is
analyzed for commonalities and variabilities. In application engineering they are
combined with product-specific parts to form the final instances of the product line.

2.5.3 Variability management techniques
Many surveys have been developed to give a comprehensive view on existing varia-
bility management techniques [22,23,24]. The most common approaches are fea-
ture-based modelling [25,26] and decision-based modelling [27]. Below we present a
short overview of these approaches. We do also briefly discuss additional variability
management techniques that cannot be assigned to these categories. Finally, we
describe techniques, which address large-scale Software Product Lines.

Schobbens et al. focused mainly on feature-based modelling approaches [28,29,30].
They compared Feature Oriented Domain Analysis (FODA) [25] with its extensions,
such as the Feature-Oriented Reuse Method (FORM) [31], FeatuRSEB [32] and fea-
ture diagrams with multiplicities [33]. Based on this comparison Schobbens et al.
developed a formal semantics to avoid redundancies and inconsistencies. Van den

INDENICA D1.1

 18

Broek et al. deal with issues of merging feature diagrams together [34]. Additionally,
they also provide a formal definition of such features.

Decision Modelling is a second family of approaches to model variability. It was ini-
tially described in [35]. An important input to variability modelling in the INDENICA
project will be the approach by Schmid and John [36]. In this technique, decision
variables are defined, which are referenced at the specific variation points using de-
cision evaluation primitives. This approach is explicitly open to be used with a num-
ber of different modelling technologies. This makes it well suited for the different
types of technologies relevant to this project. A comparison of Decision Modelling
techniques is given in [316].

Beside the two families of approaches, feature-based modelling and decision model-
ling, there exist a lot of other techniques to handle variability that fall not under the
aforementioned categories, e. g., modelling variability with UML diagrams [37,38]. A
problem that can occur is the resulting complexity of handling the variability, be-
cause variability information is spread across different models. Pohl et al. introduced
the orthogonal variability model, which provides a centralized view of variability in-
formation, to handle this issue. Within this approach, it is possible to link this varia-
bility information with other artefacts, like requirements or UML diagrams [39].

Much current work in variability management deals with handling of complex and
large-scaled software product lines. The aim of approaches like multi-level staged
configuration [306], multi-dimensional variability modelling [307], model fragments
[317], hierarchal variability modelling [308], and Product Populations [309] or Multi
Software Product Lines [319, 320, 321] is to avoid having all variability information in
one central complex variability model.

 Multi-level staged configuration provides separate feature models for every stage of
configuration where different persons are responsible for the configuration choices.
Multi-dimensional variability modelling offers separate variability models for the
different dimensions of variability (e.g. feature dimension and architectural dimen-
sion); also the previously mentioned orthogonal variability model belongs to this
category. Model fragments allow to decompose a complex variability model into
small pieces. For each of these fragments, different stakeholders can be assigned,
which are able to edit these fragments. With hierarchical variability modelling the
variability specification is distributed over a hierarchical set of components decom-
posing a complex system. Product Populations or Multi Software Product Lines go
one step further and facilitate to form products or even new product lines out of
more than one product line infrastructure. In this approach, each product line con-
sists of a variability model and accompanying assets. Several of these are than com-
posed to form the final products. A comparison of model fragments and multi soft-
ware product lines with other useful techniques for complex product lines can be
found in [318].

Regardless of what variability management technique is used, modelling of further
constraints must be supported to manage interdependencies among different as-
pects. These constraints can be used to validate product configurations. Along these
lines several works originated that deal with the representation of those models,
expressiveness and the (efficient) validation of those models [40,41].

INDENICA D1.1

 19

2.6 Model-Driven Development
Model-driven development (MDD) is an emerging software development methodol-
ogy aiming at enhancing development speed and software quality [42,43]. In MDD,
models are first-class artefacts that can be used not only for documentation and
communication solely, but also for many other purposes, such as reasoning about
business or solution domains, analyzing the architecture of the solution, generating
code, and so on, in the software life cycle [42,43,44].

[45] defined a model as a coherent set of formal elements describing something
(e.g., a system, bank, phone or a train) built for some purpose that is amenable to a
particular form of analysis, such as communication of ideas between people and ma-
chines, completeness checking, race condition analysis, test case generation, viability
in terms of indicators such as cost and estimation, standards, and transformation
into an implementation.

[46] presented a formal framework for MDD approaches, in which, the definitions of
models and the system and their relationships are given as follows: System is a de-
limited part of the world considered as a set of elements in interaction. Model is a
representation of a given system, satisfying the substitutability principle. A model is
said to be a representation of a system for a given set of questions if, for each ques-
tion of this set, the model will provide exactly the same answer that the system
would have provided in answering the same question.

In this light, the OMG’s MDA specification [47] can be seen as one specific MDD ap-
proach that is different from the MDD approach in general. The MDA primarily fo-
cuses on interoperability, platform independence, and is merely based on, as well as
often limited to, OMG specifications such as MOF [48], UML [49], OCL [50], etc. MDD
however is not bound to specific standards or technologies and advocates the idea
of using customized, tailored domain-specific languages (DSL) to capture precise rep-
resentations of structure, function or behaviour of systems or software in a particu-
lar domain [43].

A domain under consideration may be divided into smaller sub-domains. Domain-
specific languages (DSLs) are usually used for modelling domain concepts and
knowledge in MDD. DSLs are small, sometimes declarative languages that can offer
powerful expressiveness through appropriate notations and abstractions of a partic-
ular problem domain [50,51,52]. The most important characteristics of DSLs, with
respect to general-purpose languages, are the compactness and expressiveness in a
certain domain, such that domain experts themselves can understand, analyze, vali-
date, modify, and even develop DSLs [51,52,53].

A DSL has one or many concrete syntaxes, which are either textual or graphical. A
DSL’s concrete syntax can be used to define formal models. This concrete syntax is
based on a language model (abstract syntax) [54] that specifies the structure and
static semantics of the DSL’s concrete syntax. A DSL’s abstract syntax is embodied in
a meta-model. Thus, DSLs are sometime mentioned as modelling languages. The
model, i.e. the DSL’s abstract syntax, has to conform to a meta-model that specifies
structure and the semantics of that model [43].

INDENICA D1.1

 20

Model transformation plays a very important role in which another model can be
created from a source model according to some predefined mapping rules
[55,42,43]. For instance, a platform-independent model (PIM) is mapped into a plat-
form-specific model (PSM), or code is generated from a PSM [55,43]. The mappings
between models, i.e., PIM to PIM or PIM to PSM, are model-to-model transfor-
mations, while the generations of code from PSMs are model-to-code transfor-
mations (or so-called, code generation) [55,43]. As such, model transformations es-
tablish relationships between models at the same or different levels of abstraction as
well as between models and generated code. Therefore, they become very im-
portant factors in MDD for enhancing development automation and bridging ab-
straction levels. The results of code generation are usually schematic recurring code
fragments that form the basic skeleton of the systems or software under develop-
ment. The rest must be filled by non-generated code (or so-called, individual code or
handwritten code) that is manually implemented [43].

The role of model-driven development in the context of product line engineering is
an emergent topic [305]. Both PLE and MDD have shortcomings. As Kim et al. state in
[303], instructions and artifact templates in PLE are not precisely defined, resulting in
a still conceptual model as final deliverable. MDD however does not model resuable
assets to be used in product variants. [303] grasp the instantiation of a product vari-
ant based on a feature model as usage of model-driven development techniques.
Furthermore they define a process for model-driven PLE that allows compensating of
these shortcommings and benefit from their synergy.

Schaefer [311] presents a model-driven approach to manage variability of software
product lines. For a core model, representing a valid product variant of the product
line, several so-called -models allow the derivation of other product variants. Those

-models describe transformation steps to construct the variant out of the core
model. This approach is orthogonal to the overall refinement process as the core and
the -models are refined independently for every refinement step.

In [302] domain-specific languages are used to fill the gap between the feature mod-
el and the programming language. DSLs allow a better description of complex fea-
ture specifications by still being in the problem space instead of using general pur-
pose programming languages from the solution space. By combining feature-
modelbased PLE and DSLs, they achieve benefits for managing variability and trace-
bility.

Tracebility is important in PLE as it provides a way to follow requirements forward
and backward in the product lifecycle. This allows e.g. to analyse the impact of
changing requirements in a product line environment, or the originating features of a
concrete variant. The Ample Project [304] provides a combination of MDD tech-
niques in the course of PLE to examine tracebility in SPLs. Furthermore, MDD is used
in all stages of the SPL to express variability allowing requirements refinement to
architecture.

Stahl and Völter state a number of advantages that MDD brings to software devel-
opment, such as increasing productivity through automation, enhancing software
quality and reusability by generating code from proven patterns and architectures,
and improving manageability of complexity through appropriate abstractions [43]. In

INDENICA D1.1

 21

the design space of INDENICA, different stakeholders such as platform integrators,
software architects, developers, etc., are involving in the development of applica-
tions integrated functions provided by various heterogeneous service platforms at
different levels of abstraction with different expertise. Thus, MDD can potentially
support the stakeholders to work with the most appropriate perspective and ab-
straction level for his current work task. In particular, we use the MDD paradigm to
realize the separation of abstraction levels in order to organize the process represen-
tations according to specific stakeholder interests; for instance, high-level represen-
tations used by business and domain experts, whilst technology-specific representa-
tions are employed by IT experts.

By combining MDD for separating abstraction levels with the notion of architectural
views for separating various concerns of the design space, we aim at supporting the
stakeholders in efficiently dealing with the heterogeneity and complexity of the ser-
vice-platforms involving in the development of a certain service-based application. In
addition, MDD transformation techniques shall be exploited to enhance the automa-
tion of producing relevant code, configurations, directives, etc. that are necessary for
integrating and tailoring service-platforms. In the course of model transformations,
existing formal validation and verification techniques can also be used to ensure the
validity, integrity, and soundness of models being used to capture functionality and
properties of service-platforms.

INDENICA D1.1

 22

3 Requirements

Requirements engineering is one of the core disciplines within the product develop-
ment process. As basic discipline at the very front end of the development life cycle,
requirements are a critical success factor for each [software] development project
[56]. Requirements [57] require both management and development.

Management [58] includes all activities about existing requirements as:

 Tracing requirements back to their origin
 Managing cross-references between requirements
 Tracing requirements forward to their implementations
 Managing requirements changes

Development describes all the activities related to getting the correct requirements
for a certain product and its components [58]. Most publications differentiate among
the following requirements engineering activities (Figure 4):

 Requirements Elicitation
 Requirements Analysis
 Requirements Specification
 Requirements Validation

Figure 4: requirements engineering process [57].

Requirements elicitation
The main challenges concerning requirements elicitation are [56]:

 Identification of relevant requirement sources: Many different stakeholders may
serve as sources for various requirements. As the needs of these stakeholders
usually are not consistent but sometimes even contradictory, it is important to
identify and prioritize these stakeholders and to take them into consideration ac-
cording to their relevance for the product to be developed.

 Elicitation of existing requirements from the identified sources: By the use
of appropriate elicitation methods, as interviews, workshops, focus groups etc., it
is essential to reveal the real requirements from the different stakeholders
sometimes hidden behind diverse unstructured statements.

 Development of new and innovative requirements: Beyond the requirements
coming from the identified requirement sources, it is a crucial task to develop

INDENICA D1.1

 23

proactively ideas which can finally lead to new up to now unknown require-
ments.

Requirements analysis
The main challenges concerning requirements analysis are [56,59]:

 Eliminate unnecessary requirements: Identify unnecessary requirements
by clearly defining scope and boundaries of a system and eliminate them.

 Structure requirements: Find the right way to structure requirements thematical-
ly and arrange them hierarchically.

 Add missing requirements: Complete the set of requirements by identifying gaps
within the hierarchical structure and filling these gaps with appropriate require-
ments

 Discover requirements overlaps and conflicts: Each stakeholder has his own view
to the product to be developed. In this process step requirements duplicates
have to be eliminated, and conflicts have to be revealed.

 Analyze the cause for each conflict: Conflicts among requirements may arise
from diverse conflict types: data conflict (e.g. lack of information), interest con-
flict (different interests or goals of stakeholders), value conflict (different criteria
in evaluating an issue). It is crucial to make the type of conflict transparent as
base for negotiating the requirements in the next step

 Resolve the conflicts: Find the right balance to resolve the requirements conflicts
by negotiating, proposing new solutions and final deciding.

 Document the resolution and their rationale: In order to prevent discussions in
the future, it is essential to document the resolution of the conflict together with
its rationale.

 Prioritize requirements: Find the right prioritization among the analyzed re-
quirements by means of pair wise comparison or other appropriate methods.

Requirements specification

The main challenges concerning requirements documentation are [56,57]:

 Find the appropriate way of documenting requirements: There are different ways
of documenting requirements, as: natural-language documentation, documenta-
tion by graphical models, documentation by formal specifications. Depending on
the affected stakeholder groups, identify the most appropriate way of document-
ing the requirements.

 Comply with required quality criteria for requirements documentation: Select
appropriate set of quality requirements for documentation in terms of guide-
lines. Use of existing reference templates may serve for improving the quality of
requirements documentation.

 Define appropriate set of attributes for requirements: In order to structure in-
formation about requirements and keep them up to date along the lifecycle of
the requirement, it is essential to assign and maintain carefully well-defined at-
tributes for each requirement.

Requirements validation
The main challenges concerning requirements validation are [56]:

INDENICA D1.1

 24

 Check the requirements artefacts: Check whether the requirements artefacts
meet the defined quality criteria (unambiguous, complete, non-contradictory)

 Check the context consideration: Check for missing or incorrect context infor-
mation

 Check adherence to process definition: Check for deviations from agreed devel-
opment process

3.1 Requirements engineering for Product Lines
As in [108] a product line is a group of products developed on basis of common, or-
ganized, reusable artefacts of a platform. It covers the market needs of a specific
domain or business. This implies that the products must have a set of common or
similar features big enough, so that the development as a product line is more effi-
cient as developing single products.

Main goal of a product line is to provide customized products at reasonable costs.
With the platform as basis for the product line, strategic reuse is on of the main prin-
ciples. A well-planned platform can help to reduce the development costs, enhance
the product quality and reduce time to market for a single product. Product Line En-
gineering (PLE) helps to get the right setup, processes and methods for developing
product lines

The main characteristics for Product Line Engineering (PLE) consist in [39] [108]:

 The existence of two different development processes:
o Domain Engineering: The process of software product line engineering in

which the commonality and the variability of the product line are defined
and the reusable platform is established.

o Application Engineering: The process of software product line engineering
in which the applications of the product line are built by reusing domain
artefacts and exploiting the product line variability

 Variability as a core concept for PLE
o It defines the parts of the product line which can be tailored to specific

customer needs by selection. It also defines how much members of a
product line differ.

o It is a prerequisite for the systematic construction of the artefacts in do-
main engineering and their reuse in application engineering.

o For more details on variability modelling see chapter 2.5.
 A platform for the product line:

o It contains common reusable development artefacts created by domain
engineering like requirements, architecture, variability models, compo-
nents and tests.

o It is built by domain engineering with the necessary variability in its arte-
facts.

o Systematic and consistent reuse is supported by traceability links be-
tween the artefacts.

o It is used by application engineering for building the specific products by
binding the variability. As a result the platform is customized to the spe-
cific product.

INDENICA D1.1

 25

 A reference architecture
o which captures the high–level design of the product line.
o Which implements architecture relevant product line requirements.
o Which contains variation points for realizing the different customer spe-

cific products.

Figure 5 illustrates the different process steps and highlights where requirements
engineering is located.

Figure 5: Product Line Engineering Process [39].

Impact of PLE on Requirements Engineering (RE)

The splitting into two development processes has impact on the requirements engi-
neering. This has to be done in both parts and has to be synchronized so that domain
artefacts and products fit together.

Domain Requirements Engineering:

In Domain engineering, the variability of the product line is established. In this case
RE has special activities for building the variability into the domain artefacts:

 Defining common requirements by performing a commonality analysis

 Defining variable requirements by performing a variability analysis

 Defining variation points and variants with the help of variability modelling:

In addition domain Requirements engineering has to provide consistent require-
ments artefacts

Application Requirements Engineering:

In Application Engineering the application is built on basis of the common platform
by binding variability. Application Requirements Engineering therefore has to docu-
ment the application requirements artefacts by reusing as much as possible from the
existing domain requirements artefacts. The reuse of the domain requirements arte-
facts is correlated to the reuse of the domain artefacts.

The special activities are

INDENICA D1.1

 26

 Check the feasibility, if the stakeholder requirements can be satisfied by the ap-
plication requirements artefacts

 Check the reuse possibilities by mapping stakeholder requirements to the do-
main requirements artefacts.

 Check for requirements deltas by mapping application requirements artefacts to
domain requirements artefacts

 Communicating the commonality and external variability of the product line to
increase the reuse

 Evaluating the deltas between domain and application requirements for estimat-
ing the realization effort.

 Documentation of the application requirements as basis for later development
phases

3.2 Goal-based approaches
Goals have long been recognized to be essential components involved in the re-
quirements engineering (RE) process. Requirements must specify why a system is
needed, what system features will serve and how the system must be constructed
[60]. In this context goals specify the objectives the system under consideration
should achieve and the properties that have to be ensured.

Goals can have different levels of abstraction: high-level strategic goals can be re-
fined into alternative (OR-refinement) or mandatory (AND- refinement) subgoals,
representing low level technical concerns. Traditionally, goals cover two types of
(conventional) requirements: functional requirements associated with the services
to be provided, and non-functional requirements associated with quality of service –
such as safety, security, accuracy, performance, and so forth. Another important
distinction is between soft goals [61], whose satisfaction cannot be established in a
clear-cut sense, and hard goals [62] whose satisfaction can be assessed through veri-
fication techniques. Soft goals are especially useful for comparing alternative goal
refinements and choosing one that contributes the best to them.

Goals are to be fulfilled by the system-to-be, which comprises the software and its
environment and is made of active components, also known as agents, such as hu-
mans, devices and software. A goal may, in general, require the cooperation of a
hybrid combination of multiple agents to achieve it. A goal under the responsibility
of a single agent in the software becomes a requirement whereas a goal under the
responsibility of a single agent in the environment becomes a domain assumption.
Unlike requirements, assumptions cannot be enforced by the software-to-be, they
will hopefully be satisfied thanks to the system domain.

Goals are considered a fundamental instrument to model requirements for several
reasons [63]:

 They provide a criterion to establish the completeness and pertinence of re-
quirements4;

4 The specification of requirements is complete, with respect to a set of goals, if all goals can be proved to be

achieved from the specification and the properties known about the domain considered. A requirement is
pertinent, with respect to a set of goals in the domain considered, if its specification is used in the proof of at
least one goal.

INDENICA D1.1

 27

 Alternative goal refinements offer the possibility to explore a wider set of choic-
es. Goals also provide the roots for detecting conflicts among requirements and
for resolving them. Managing conflicts among multiple viewpoints is another ma-
jor RE concern.

 Goals implicitly support requirements evolution, since a requirement represents
one particular way of achieving a specific goal; then, the requirement is therefore
more likely to evolve, towards another way of achieving the same goal, than the
goal itself.

An alternative way to model requirements is the adoption of scenarios [64]. A sce-
nario is an example grounded in the real world experience that illustrates a typical
sequence of interactions among system components to meet an objective that is left
implicit. The main drawback of scenarios is that they are too partial, since they do
not cover the whole system behaviour under all possible circumstances. Instead,
goals are global, as they specify all the intended properties of the system. Scenarios
and goals are complementary techniques since scenarios can be adopted to validate
requirements specification as test cases or counter-examples. Among goal-oriented
methodologies we analyze i* [65], TROPOS [66], and KAOS [67].

i* is tailored to the early phases of requirements engineering and focuses on the
stakeholders and their needs. These are represented in terms of agents having inten-
tional properties such as goals, beliefs, abilities and commitments. It adopts a Stra-
tegic Dependency (SD) model to explicitly represent dependencies among actors that
may exist for goals to be achieved, tasks to be performed, and resources to be allo-
cated. The Strategic Rationale (SR) model, in turn, focuses on a single actor and in-
cludes its interests and concerns, and how they might be addressed by various con-
figurations of systems and environments. Because of its focus on the stakeholders,
this methodology is oriented towards agents, their dependencies and goals. As a
result, it does not address goal traceability onto late requirements/specifications and
the system architecture. Furthermore i* does not provide an explicit representation
of the environment.

Instead, TROPOS is an agent-oriented software engineering (AOSE) methodology
that covers the whole software development process. It reuses the concepts provid-
ed by i* and provides a way to express goals through a temporal specification lan-
guage [68]. TROPOS describes the system-to-be as one actor that has a number of
dependencies with other actors of the organization. These dependencies drive the
definition of functional and non-functional requirements. TROPOS links require-
ments to the system architecture, which is defined in terms of subsystems (derived
from the actors) and interconnected through data and control dependencies (sup-
porting the functional and non-functional requirements mentioned above). The be-
haviour of each architectural component can be executed on an agent platform.

Conversely, KAOS does not take into account the dependencies among actors, but
adopts a top-down centralized point of view. KAOS incrementally elaborates four
complementary sub-models: the goal model, the object model, the agent responsi-
bility model and the operation model. Each goal can be specified formally through a
temporal language. From the definition of each goal, the main objects (entities and
events) populating the system-to-be and the environment are detected, together

INDENICA D1.1

 28

with their relationships and attributes. The agents are also identified and are associ-
ated with the goals they are responsible for. Finally, operations represent the tasks
that must be performed for the achievement of a (leaf) goal and are specified in
terms of pre- and post-conditions.

Although all the methodologies presented above are sound, we are convinced that
KAOS is more suitable for the design of adaptable and evolvable solutions. TROPOS
and i* are more focused on stakeholder interactions and have been mainly adopted
for agent-oriented platforms. On the other hand, KAOS adopts a centralized ap-
proach, which is similar to the point of view of the process provider, and focuses on
the operations and objects that must characterize the environment and the software
of the system-to-be. The operation, object, and agent responsibility models provide
a clear way to define a link among the elements of the goal model (operations, ob-
jects, agents). Furthermore the formal definition of goals allows us to reason about
why/how/when process activities must be performed at runtime and how their su-
pervision can take place.

3.3 Requirements for adaptive systems
In general, goal models provide several nice features to support self-adaptive sys-
tems. They embed variability by expressing a large set of possible behaviours. Possi-
ble variability points [69] can be detected by alternative goals refinements (OR-
refinement), different contribution of operations/plan to the satisfaction of soft
goals, and the not mandatory nature of AND-refinements. A different behaviour can
be selected depending on a set of conditions expressed on the context (unintention-
al variability) or user preferences (intentional variability) [70], since a specific alter-
native in the goal model better contributes to some soft-goal than other alternatives.
Goals [71] allow one to reason about obstacles to their fulfilment since violation of
leaf goals can be propagated to higher-level goals. Goals also facilitate the diagnosis
process, since, when a change in stakeholder requirements is detected at runtime,
the goal model can be used to re-evaluate the behaviour alternatives and determine
if a system reconfiguration is needed.

Despite their nice features, goal models have proved to be too general to represent
self-adaptation capabilities along with the conventional requirements of the system
[72]. Adaptation must become a requirement “per-se” and must be elicited along
with the other conventional requirements of the system at design time. As already
stated by Berry et al. [73], the achievement of this objective, especially for context
aware applications, depends on the success at specifying their monitoring and
switching behaviour. According to this view, we retain that the goal model must rep-
resent why/when/where/how adaptation must be performed: this is equivalent to
describing respectively the adaptation objectives, the monitoring, diagnosis and the
adaptation action a system must support.

Some preliminary solutions [71,74] have already tried to achieve this objective by
adopting goal models to elicit the adaptive behaviour of the system. Lapouchnian et
al. [71] exploit alternative paths in the goal model to derive a set of possible system
behaviours. This way, when a requirement is violated, these alternatives are ready to
be selected to perform adaptation. Goldsby et al. [74] use four i* goal models to rep-

INDENICA D1.1

 29

resent the different dimensions that characterize a DAS (dynamically adaptive sys-
tem). First, the non-adaptive behaviour of the system (business logic) is modelled.
Second, the adaptation strategies are designed to handle environmental changes. At
this level, an adaptation scenario is created to represent the requirements of the
monitoring mechanisms, decision-making mechanisms and adaptation mechanisms
necessary to accomplish an adaptation, conceived as a transition from a steady state
system to another one. Then, at the lower levels, the mechanisms needed to per-
form adaptation are represented. In particular, the third level identifies the capabili-
ties the adaptation infrastructure must expose to support the scenario devised by
the first two levels, and the fourth level depicts the various types of adaptation of-
fered by the infrastructure.

The main problem of these approaches is that adaptation is only handled by enu-
merating all alternative paths at design time and there is no way to associate these
alternatives to the changes that can take place in the context, the satisfaction levels
of goals and the contributions to non-functional requirements of the system. Fur-
thermore these models do not provide explicit support to unexpected adaptations.
Instead, adaptation is expressed as enumerations of predefined alternative tasks.

To ensure the continuous satisfaction of requirements, one needs to adapt the speci-
fication of the system-to-be according to changes in the environment (context). This
idea was originally proposed by Salifu et al. [75], and has been extensively exploited
in other works [69,78,79,80]. Salifu et al. [75] provide a way to express monitoring
requirements (what applications must do to detect changes in their operating envi-
ronment that may violate their requirements), and switching requirements (what
applications must do to restore the satisfaction of such requirements by adapting
their behaviour). However the authors focus on making sure that the same set of
requirements is met in every context, without considering the effects of domain var-
iability on requirements and on the adaptive system design.

Context variability may also affect the capability of an agent to satisfy a goal. For
example, Penserini et al. [76] introduce the concept of opportunity that indicates a
set of context conditions (e.g., plans/soft goals contributions and environmental
constraints) necessary for an agent to execute a specific plan associated with the
achievement of a goal.

An important dimension in modelling the context is the location. To this aim, Dalpiaz
et al. [69] extend TROPOS to model location variability. They associate each location
with the behaviour alternatives (specified in the goal model) that can be performed,
are impossible to execute, or are recommended. The authors also perform a set of
analysis on the goal model [77]: LGS (location based goal satisfiability) that detects if
a goal can be achieved in the current location instance, LPS (Location Properties Sat-
isfiability) that diagnoses goals violations and suggests ways for solving the problem,
Preference Analysis (PA) that selects the best alternative among a set of recom-
mended/viable solutions. However context is not only limited to location properties
and a more general notion of context must be provided. For example Ali et al. [78]
represent the context hierarchically. The hierarchical context analysis has the poten-
tial to make the context more understandable and reusable. In fact the context is not
described in terms of a monolithic block and some of its parts can be associated with

INDENICA D1.1

 30

a set of variation points in the goal model or other stakeholders context specifica-
tions. Finally, another work [79] proposes to adopt ontologies to express application
domain and operational context assumptions. These ontologies are linked together
to enable monitoring and adaptation at runtime.

Environment variability may also affect stakeholders’ goals and their refinements.
Lapouchnian et al. [80] explicitly represent the effects of the context on the re-
quirements model. In particular, the authors identify the elements of the model that
depend on the context, and define contextual tags to capture the conditions that
those elements require to be visible in the model.

All these works are interesting for their capability of addressing adaptation at re-
quirements level, but they mainly target context-aware applications and adaptation.

Cheng et al. [81] consider both the environment and the satisfaction of existing goals
among the factors that may trigger an adaptation. The environment is represented in
terms of an UML class diagram that identifies the key physical elements of the sys-
tem and their relationships (sensors, user interfaces). This is useful to identify the
sources of uncertainty and to monitor the environment conditions that pose uncer-
tainty. Threats are also identified: they are the various environmental conditions that
pose uncertainty at the development time and thus may be warrant dynamic adap-
tation at runtime to ensure acceptable behaviour. Mitigation can be performed ac-
cording to 3 possible tactics: define a further subgoal to handle the threat condition,
if partial satisfaction of a goal is tolerable; add a new higher level goal able to sup-
port the objective to correct the failure; or ignore the problem. However this ap-
proach is not flexible enough since tactics constraint the ways a goal model can be
modified. No conflict resolution mechanism is supported and the model does not
provide ways to apply adaptations at runtime, by specifying the events and condi-
tions that activate their execution.

Finally, a different point of view has been adopted by Morandini et al. [82], who re-
fer to BDI agent models as reference architecture. The authors extend TROPOS to
model the environment (the domain knowledge) and specify several types of goals
and constraints between goals. The environment is represented in terms of UML
classes, while the relation between goals is elicited through guard conditions be-
tween goal states and triggering transitions from a state to another. TROPOS has
been extended with the possibility to model undesirable faulty states and recovery
activities (e.g. activities to be performed, or new goals to add). Among recovery, the
authors also propose a new relationship among goals called inhibition that works as
follows: if goal A inhibits goal B, any time A has to be achieved, the achievement pro-
cess of B has to be stopped until A is achieved.

3.4 Requirements for the definition of services
So far, the development of services has been mainly focused on their functionality
and their integration with the existing software systems. This way the major design
decisions are taken neglecting the main objectives the service must achieve. For this
reason, Lau and Mylopoulos [83] adopt TROPOS model as a starting point for the
design of web services. The authors associate each actor with a set of capabilities
necessary to achieve its goals and to support the dependencies on other actors of

INDENICA D1.1

 31

the model. Each capability must be also delegated to a specific agent in the system.
Agents are modelled as web services, whose interface and fundamental data are
described in a WSDL document, while agent capabilities are represented as WSDL
operations. This approach is mainly focused on web services and does not offer the
possibility to specify an interaction protocol (i.e., an order in which the service oper-
ations must be performed).

Other approaches [84,85] are more tailored to service compositions. For example, Lo
and Yu [84] relate business models to “recurring” service-oriented solutions neces-
sary for their realization. Business models refer to the actual design of business, such
as the method of doing business, or a company business architecture. Business mod-
els are represented through i*, since they should express and deliver the vision and
the objectives of the business, as well as model actor relationships and interactivity.
Interactions among actors, devised in the business models, are realized concretely
through business services that can adopt a recurring pattern. These patterns are col-
lected in a catalogue to foster their reusability and can be implemented and execut-
ed via orchestration engines. Another important aspect of the design of processes is
the definition of parameters for the selection of design alternatives depending on
quality attributes or business goals. Unfortunately, current modelling languages, like
BPMN, just provide workflow notations without the possibility to express a relation-
ship between requirements and design alternatives. For this reason, Lapouchnian et
al. [80] adopt a goal model to capture why a business process is needed and the
many different ways how a goal can be attained. The goal model is augmented with
control flow annotations to ease the generation of the workflow. These annotations
can specify parallel or sequential goals, inclusive or exclusive OR-refinements, condi-
tions, loops, event handlers or interrupts. They also model the input and output pa-
rameters of goals to determine resource requirements and the sequencing of goals.
A specific alternative devised by an OR-refinement is selected depending on the
preferences of the user or particular data/events. From the annotated goal model
the authors generate the code of the corresponding BPEL process semi-
automatically.

3.5 Variability in requirements for Product Lines
Within INDENICA it is important to understand how requirements for service plat-
forms will vary. Thus, we discuss here how variation is considered on a requirements
level. From a requirements perspective we can differentiate two main stages in
product line engineering. These are the scoping step and the full requirements level
description. The purpose of product line scoping is to identify the products and the
amount of functionality that the product line shall cover. This boundary is then filled
in terms of the full requirements description. Thus, effort in detailing requirements is
not wasted on functionality that is not part of the final product line scope.

Product line scoping is akin to scoping in project management [86]. There, scoping
has the focus on determining what should be part of the project and what should not
be taken into account. In product line engineering we deal with a number of projects
simultaneously, which leads to a split of the responsibilities of scoping [87]. Here, we
will briefly discuss product portfolio scoping and reuse infrastructure scoping. De-
pending on the specific work, authors sometimes equate one or the other with scop-

INDENICA D1.1

 32

ing in general (or address a third type: domain scoping). Surveys of scoping are pro-
vided in [87] and [88]. For example, when Clements [89] discusses the importance of
scoping, he focuses only on the importance of determining the products that should
be addressed as part of the product line. This view is strongly related to the issue of
product management. In organizations that develop sets of products it must be de-
termined which products should be developed. Along with this the set of supported
requirements must be determined. This is discussed in [90] which discusses a com-
prehensive approach to product management. Scoping is also strongly influenced by
economic considerations. This holds both for the product portfolio where the most
beneficial products must be identified as well as on the reuse infrastructure level,
where the most economic parts from a reuse perspective must be identified. Over
time many different economic models for product lines have been developed [91]. A
form of reference model has been proposed in [92]. This has also been extended into
the SIMPLE-model [93].

Reuse infrastructure scoping on the other hand deals with the question: out of the
functionality relevant to a product line as a whole, which parts should be developed
in a reusable manner? Different approaches have been developed over time. The
most comprehensive approach to date is still [94]. However, newer approaches exist.
For example, [95] does also explicitly support the evolution of the scope.

A major point in the transition from the scoping stage to the full requirements stage
is that while during scoping the product line (and its products) is in some form char-
acterized through an enumeration of features at later stages explicit variability mod-
elling is used. Thus, this transition also marks the transition between an extensional
model and an intentional model. This also implies a significant generalization of the
product line description.

While scoping is always done from the perspective of the product line as a whole,
during full requirements engineering, it is more important to differentiate between
domain requirements engineering and application requirements engineering [39].
While domain requirements engineering takes a perspective of the product line as a
whole, application requirements engineering addresses the concerns of individual
products or variants. As a consequence of this transition it is also important to ob-
serve how variability is integrated into product line requirements. In some ap-
proaches, in particular the early ones, there is no clear differentiation between the
variability model and the domain model. Examples of this are FODA [25] and the HP
approach [96]. A discussion of some early approaches to domain analysis is given in
[97].

Meanwhile a different view has been established in product line engineering: varia-
bility modelling addresses the description of a model of how product configuration
happens and is effective throughout the complete lifecycle. All the artefacts, includ-
ing the requirements, can be configured on the basis of this model. This might be
one of the reasons why on the one hand publications on domain analysis are becom-
ing fewer and on the other hand requirements engineering publications sometimes
cover explicit variability management.

An interesting special case where requirements cannot be clearly separated from
variability is the issue of consistent description of requirements models for product

INDENICA D1.1

 33

lines (i.e., consistency in all possible configurations). An example is [98]. This work
focuses effectively on variation of requirements and discusses the use of general
constraints (including numerical ones) for describing dependencies among them. The
use of numerical constraints is, however, not new. Decision modelling approaches
like [36] or work by Padmanabhan et al. [99] also used such an approach. Lauenroth
et al. present an approach to determine whether requirements on the dynamic be-
haviour of systems remain consistent under variation [100].

Application requirements engineering takes the domain requirements (domain mod-
el) as input and aims to derive a specific characterization of requirements for an indi-
vidual product or variant [39]. This activity poses significant challenges that require a
clear differentiation of the various types of variability. A characterization of these
types of variability is given in [101].

Ideally all requirements of the product can be described as a specific configuration of
the domain requirements. However, while desirable, this will usually not be possible.
Often product-specific requirements will be needed. A third category is introduced
by Monzon [102]. In this approach, he proposes to differentiate between strong and
weak derivation. Strong derivation corresponds to the configuration approach we
outlined above, while weak derivation corresponds to a copy-and-adapt style. How-
ever, in general this approach (which is also called clone-and-own) is often avoided
due to the maintenance problems it may incur.

Several authors also provide specific approaches that aim at application require-
ments engineering. Djebbi et al. [103] propose the RED-approach. This approach
aims to support the decision which requirements from the domain model to use in a
particular product. The matching of product requirements and domain requirements
is explicitly supported. Adam et al. address a similar problem [104]. They focus on
the question how to deal with requirements that fit the product line but have not
been predicted in the domain requirements model [104]. Classen et al. propose a
specific form of process support for application engineering [105]: feature configura-
tion workflows.

As new products are developed and requirements change product line evolution
occurs. A taxonomy of the different kind of requirements-driven evolution patterns
is presented in [106].

3.6 Product Line scoping and RoI calculation
A major result in the domain of Product Line Engineering is the insight into the eco-
nomical value of PLE and the calculation of the return on investment (RoI). A com-
prehensive derivation of the theoretical approach is given in [107]. The approach
used in this work is called PuLSE-Eco and is the only approach that has been validat-
ed in industrial settings.

In [39] a practice-oriented guideline is given whereas [108] collects a summary of
validations of the approach. The calculation of ROI for Product Line Engineering
mainly results in a formula that contains the main influence factors and brings them
into a structured relationship: The cost “C” for developing “n” versions of “X” prod-
uct lines using reuse assets:

INDENICA D1.1

 34

 Corg: Cost for reorganization, process improvement, training, and similar topics
 Ccab: Cost for Core Asset Base development (incl. test)
 Creuse: Cost for reusing core assets (e.g. adaptation, configuration)
 Cunique: Cost for product line specific development (incl. test)
 n: number of versions
 X: number of product lines using the same Core Asset Base

In [109] the authors add to the theoretical background a guideline for application of
the approach. They suggest a Scoping Process that starts with a product line map-
ping in order to identify the planned products and their main features. Then they
propose a domain potential assessment in order to verify that the organization is
really ready for the transition to PLE. Finally a reuse infrastructure scoping is per-
formed where the above-mentioned formulae can be adapted and applied for deci-
sion taking.

Based on experience in industrial environment at Siemens, Kreuter et al. [110] have
enhanced the cost model by introducing several impact factors: Evolutionary versus
revolutionary proceeding, small platform versus everything platform and proactive
versus reactive platform.

A further summary of current practices and approaches in PLE scoping is given in
[88]. They conduct a survey based on following factors: goal, method input, variabil-
ity, method output, application domain, roles, effort, motivation/benefits, descrip-
tion level and maturity. In addition to these factors the “activity” is assessed which
should indicate whether the method is probably used in practice. Applying these
factors to a list of 16 published scoping methods their conclusions are:

 “Scoping has been established as an integral part of product line engineering”
 “Scoping approaches are distributed between different goals”
 “Some industrial applications exist”

But as a conclusion they also see that case studies and success stories are missing. A
deeper survey with directly asking industry for input would be desirable, but industry
is also reluctant, as product portfolio and product data are very sensitive and kept as
company confidential information.

All mentioned approaches focus on the Product Line Engineering paradigm. In IN-
DENICA the view changes to service platforms, which – from a cost model view –
have similarities concerning re-use and domain specific assets. But as the flexibility
of SOA is much broader more factors have to be taken into account. There is very
little literature on these questions that show a promising approach.

INDENICA D1.1

 35

4 Design

4.1 Methods and techniques for platform design
The engineering of virtual domain specific platforms requires a technical foundation
that supports the construction of new functionality based on existing functional
building blocks, also termed “modules”. Modularization has been an established
method for system engineering for many years ranging from IT systems to embed-
ded devices. The INDENICA platform needs to enable communication between these
modules located in different layers of the Totally Integrated Automation (TIA) Pyra-
mid shown in the figure below, ranging from the IT systems used in the Enterprise
Resource Planning down to the controllers used in the Programmable Logic Control-
ler (PLC) layer. This section examines the existing approaches for the design and
runtime lifecycle phases, related projects and existing technologies at different lay-
ers of the TIA Pyramid.

Field Level

PLC

SCADA

MES

ERP

Figure 6: Totally Integrated Automation Pyramid

A usual design principle for platforms is to use a base technology for modularization
and develop technical and / or domain services on top of these technologies. Differ-
ent concepts and technologies like SOA, SCA, OSGi and Enterprise Service Bus (ESB)
have been developed to support modularization and integration of functionality.
Within each of the different layers the platform has to fulfil requirements that may
vary: For example real-time responsiveness is usually not as critical in the ERP layer
as it is in the PLC layer. The requirements to be met and the common functionality to
be supported have to be elicited using the approaches described earlier in this doc-
ument (see Chapter 3). Based on these requirements, a modularization technology
that supports these requirements is chosen for the platform.

Aspects that usually need to be supported comprise governance of the service lifecy-
cle, monitoring of service level agreements (SLA), composing new services based on
existing ones, and enabling the communication between services as described by
Josuttis [111] and Davis [112].

INDENICA D1.1

 36

Regarding the design of technical and domain services, SOA and related modulariza-
tion paradigms are state of the art in the upper layers (ERP and MES) of the automa-
tion pyramid. These paradigms imply that services are described using the Web Ser-
vice Description Language (WSDL)5. Current researches in service platforms at this
layer extend the concepts towards tradability and exchangeability of services. For
this purpose the services are not only described using WSDL but additional non-
functional aspects are described for example using the Unified Service Description
Language6 (USDL) developed to a large extend by the public funded project THESEUS
TEXO7. One focus of this project has been to design a service engineering methodol-
ogy called the “Integrated Service Engineering (ISE) Methodology” as described by
Kett et al. [299] for creating business services based on the USDL and to host and
trade them on a marketplace and therefore enabling the so-called service ecosystem
[117].

To ease the deployment and trading of business services a platform was designed
that provided common services: Amongst others a service catalogue, performance
monitoring, service adaptation, billing and pricing, contracting, SLA management,
access control and a generic hosting environment as shown in the following figure:

Figure 7: THESEUS TEXO Service Platform

The platform was logically divided between a Service Management Platform hosting
common services related to management functionality and a Tradable Service
Runtime that hosted all services necessary for the service execution. This design was
due to the business model to be supported by the market place.

State of the Art for supporting variability in service ecosystems is the use of Business
Process and Rule Engines, as shown in THESEUS TEXO e.g. for allowing different bill-
ing processes and flexible price schemata.

Usually, large enterprise applications are designed using a layered architecture
framework, like the Zachman Enterprise Architecture Framework [301]. It allows a
structured view and follows the idea of “separation of concerns”: Perspectives of
different stakeholders are supported as well as different abstractions like “data”,

5 http://www.w3.org/TR/wsdl20/
6 http://www.w3.org/2005/Incubator/usdl/
7http://www.theseus-programm.de/en-us/theseus-application-scenarios/texo/default.aspx

INDENICA D1.1

 37

“function”, “people”, “motivation”, “time” and “network”. To guide the develop-
ment of services and the formal descriptions of their functional and non-functional
features the Zachman Framework-based “Integrated Service Engineering (ISE)
Framework” and the ISE Methodology described by Kett et. al in [299, 300] have
been created that make use of model-driven software development (MDSD) tech-
nologies.

As outlined before the requirements to be supported by the platform differ with
respect to the layer of the TIA Pyramid. Aspects like tradability of services are less
relevant on device level (PLC). Here, for example real-time capabilities, reliability,
availability and fast inter-service communication are of high importance. The previ-
ously introduced OSGi [5] framework (see chapter 2.2) additionally provides lifecycle
management and dependency management but requires a Java Runtime Environ-
ment.

The following figure shows the container based on OSGi that has been developed for
the OpenSOA communication platform of Siemens Enterprise Networks8.

Figure 7: OSGi based OpenSOA container

It is evident that it has completely different platform services that provide common
functionality to the services running on top of this container in comparison to the
THESEUS TEXO platform.

A promising technology for integration of different platforms is the Service Compo-
nent Architecture (SCA) that has been outlined before (see chapter 2.4). Implemen-
tations like Apache Tuscany9 provide a wide range of bindings and therefore ease the
development of service compositions based on services running in different plat-
forms. Another implementation is the PocoCapsule10 project develops an Inversion of
Control (IoC) container for C/C++ platforms based on SCA.

The challenge of the INDENICA project is to identify the platform services at different
layers of the TIA Pyramid, to provide formal descriptions for their configuration and

8 http://www.siemens-enterprise.com/developerportal/Developer-Community/Resource%20Center/OpenScape-

UC-App/OpenSOA%20SDK.aspx
9 http://tuscany.apache.org/
10 http://code.google.com/p/pococapsule/

Interceptors
Lifecycl

Configuration

Discovery

Services

MoM

INDENICA D1.1

 38

usage and to enable compositions of services regardless of their logical location in
the TIA Pyramid.

4.2 Decision models and patterns
Much work on better support for codifying the architectural knowledge (AK) has
been done in the area of architectural decision modelling. Jansen and Bosch see
software architecture as being composed of a set of design decisions [118]. They
introduce a generic meta-model to capture decisions, including elements such as
problems, solutions, and attributes of the AK. Another generic meta-model that is
more detailed has been proposed by Zimmermann et al. [119, 120]. Tyree and Aker-
mann proposed a highly detailed, generic template for architectural decision captur-
ing [121]. A couple of other approaches are summarized in [122]. All these ap-
proaches share the problem of a significant extra effort necessary to record AK. IN-
DENICA will address this problem by integrating AK recording with model-driven
views, to easier enable a link between the models and decisions from which they
originate.

Question, Options, and Criteria (QOC) diagrams [123] raise a design question, which
points to the available solution options, and decision criteria are associated with the
options. This way decisions can be modelled as such. Kruchten et al. extend this re-
search by defining an ontology that describes the information needed for a decision,
the types of decisions to be made, how decisions are being made, and their depend-
encies [124]. Falessi et al. present the Decision, Goal, and Alternatives framework to
capture design decisions [125]. These approaches all make decision modelling more
formal and precise; hence, we will integrate the experiences from these approaches
in the design of INDENICA’s view-based solutions. However, being more formal and
precise than for example the decision templates by Tyree and Akermann [121] also
means that these approaches require even more extra work to document the AK
completely.

Recently, Kruchten et al. extended these ideas with the notion of an explicit decision
view [126]. A decision view provides an addition and complement to more tradition-
al sets of architectural views and viewpoints: it gives an explanatory perspective that
illuminates the reasoning process itself and not solely its results. INDENICA follows
this idea to combine the concepts of architectural views and AK to their mutual ben-
efit. But INDENICA goes significantly beyond the approach by Kruchten et al. by de-
fining not only the high-level views of the 4+1 view model [127], but also detailed
technical views to allow for the model-driven generation of the software system.

INDENICA proposes to use architectural decisions to select patterns and hence ease
the AK documentation by relying on pattern-based knowledge. Software patterns
capture reusable design knowledge and expertise that provides proven solutions to
recurring software design problems that arise in particular contexts and domains
[128]. To systematically explain how to apply a number of patterns in combination,
many pattern authors document patterns as part of pattern languages. A pattern
language defines a collection of patterns in a domain and describes how these pat-
terns can be combined [129].

INDENICA D1.1

 39

Unfortunately, neither pattern languages nor architectural decision models solve all
design and documentation problems for reusable design knowledge. For example,
most practitioners only know a few patterns, such as the GoF design patterns [130],
although the pattern community has documented patterns for many other domains.
Hence, extensive upfront education is required to maximize the benefits that can
result from using a number of patterns and/or pattern languages. In addition, deci-
sion modelling is most often done retrospectively. It is often seen as a “painful” addi-
tional responsibility without many gains [131, 121]. Different techniques, text tem-
plates, and tool support for decision modelling have been proposed, but failed to
become broadly adopted in practice so far [120].

For these reasons, Zimmermann et al. [119, 120] propose reusable architectural de-
cision models. In particular, Zimmermann et al. present a reusable decision model
for recurring decisions in SOAs that is based on SOA patterns. A reusable architectur-
al decision model is a decision model that is used to guide the architectural decision
making activities [120]. Patterns and architectural decision models have many over-
laps (for details see [131]). For instance, the approach of Zimmermann et al. uses
decision models for pattern selection. The advantage of this approach is that a deci-
sion model which is based on patterns does not have to copy the pattern text and
hence is easier to create than a self-contained decision model.

INDENICA will use these synergies of patterns and decision modelling to ease the
decision modelling process for virtual service platforms. INDENICA will link the deci-
sion models to view-based models in order to link decisions and the models that cre-
ated following the decisions.

4.3 Modelling variability in architecture
In this section, we first explain general aspects how variability can be supported by
an appropriate architecture. This is done on a conceptual level. Afterwards, we dis-
cuss approaches for identifying the right architecture in the context of product lines.

On an abstract level, there are three basic ways to realize variation in an architecture
[20] (Figure 8): adaptation, replacement and extension.

 In the adaptation technique, there is only one implementation available for a
certain component, but it offers interfaces to adjust its behaviour in an object-
oriented manner.

 In the replacement technique, several implementations of a component are
available. Each implementation supports a different product variation.

 In the extension technique only an interface is given. In order to implement vari-
ability, new components must be developed and bound to the interface.

INDENICA D1.1

 40

Figure 8: Three basic techniques for realizing variability in architecture [20].

For facilitating variability at implementation level, an appropriate architecture is
needed. There exist various techniques for modelling architectures with variability
support. These methods can be classified into two different categories: architecting
methods that aim specifically at product lines and single-system methods that could
successfully be used to model software product lines.

Single-system methods that have been successfully applied in the context of soft-
ware product lines are for instance the Attribute Driven Design (ADD) method [132]
and the work of Jan Bosch [133].

Matinlassi [134] compared five different techniques for modelling software product
line architectures: COPA [135], FAST [136], FORM [31], KobrA [137] and QADA [313].
The result was that the compared concepts are not competing with each other. In-
stead, every technique has different focus as follows [134]:

 COPA: Covering all aspects of product line engineering i.e. architecture, process,
business and organization, whereas this method is concentrated on balancing be-
tween top-down and bottom-up techniques.

 FAST: Family oriented process description with activities, artefacts and roles.
Therefore it is very interesting but not applicable as it is.

 FORM: Feature-based approach for capturing commonalities and variabilities
inside a domain. Covers also architecture design and development of code as-
sets.

 KobrA: Simple method for traditional component-based software engineering
with UML.

 QADA: Focus on architectural design according to quality requirements.

Other important techniques for modelling product line architectures that were not
included in [134] are PuLSE-DSSA [139, 140] and Koala [308, 309]. Modern refine-
ments of Koala include MontiArcHV [308] and -MontiArc [311] which also supports
hierarchical variability during the architectural design.

The PuLSE-DSSA (Product Line Software Engineering – Domain Specific Software Ar-
chitecture) methodology developed by the Fraunhofer Institute for Experimental
Software Engineering (IESE) [139, 140]. PuLSE provides a complete framework that
covers the whole software product line development life cycle. PuLSE-DSSA uses the

INDENICA D1.1

 41

input given from scoping and domain analysis to model a reference architecture for
the software product line with means of object-oriented frameworks [141].

An often referenced example is the Koala component model [308]. This component
model supports the integrated specification of variability with the architecture view.
Product Populations [309] extend the Koala component model and facilitate the use
of variable components across several product lines. Furthermore, the Koala compo-
nent model has been extended to support also hierarchical variability in [322] and
more recently in MontiArcHV [308]. The later, however, also emphasises the use dur-
ing design time. MontiArcHV [308], -MontiArc [311], and Plastic Partial Components
[312] extend this approach to provide an architecture discribution language (ADL),
which can be used during architectural design.

4.4 Architectural views
The concept of architectural views is not new. However, to the best of our
knowledge, there are only few approaches that exploit the notion of views to sup-
port business process modelling and development. [142] presents a view integration
approach inspired by the idea of schema integration in database design. Process
models based on Event-Driven Process Chains (EPCs) [143, 144] are investigated, and
the predefined semantic relationships between model elements such as equivalent,
sequence, and merge operations are performed to integrate two distinct views. Se-
mantics-based merging is a promising approach to model integration, but it is hard
to apply it in order to integrate two different types of models, for instance, to merge
a control flow model with a data model. Thus, the authors mainly focus on the merg-
ing of process behaviours (i.e. the control flow).

The AMFIBIA approach [145,146] presents a meta-model for formalizing different
aspects of business processes and provides an open framework to integrate various
formalisms through a central notion of interface. The major contribution in AMFIBIA
is to exploit dynamic interactions of those aspects. AMFIBIA’s framework has a core
model with a small number of important elements, which are referred to, or refined
in other models. The distinct point to our framework is that in AMFIBIA the interac-
tion of different ‘aspects’ is only performed by event synchronization at run-time.
Using view extension and integration mechanisms in our framework, the integrity
and consistency between models can be verified earlier at the model level. Nonethe-
less, AMFIBIA offers no support for the separation of abstraction levels and adapta-
tion to stakeholders’ interests.

The ISO Reference Model for Open Distributed Processing (RM-ODP) [147] is a
standard reference model that defines a set of different viewpoints such as enter-
prise, information, computational, engineering, and technology. Each viewpoint has
its own language and clear semantics. These concepts, similar to those in AMFIBIA,
are defined based on the principle of separation of concerns to help stakeholders
thinking from different perspectives in order to manage complexity of distributed
applications. The advantage of our approach compared to these approaches is that
our view-based model-driven framework does not only support the separation of
process concerns but also the separation of process models into different levels of
abstraction, for instance, abstract and technology-specific layers.

INDENICA D1.1

 42

IDEF3 [148] is a scenario-based framework proposed for modelling business process-
es. IDEF3 provides two fundamental views: the process-centered and the object-
centered view. The process-centered view provides a graphical representation that
supports domain experts and analysts in describing business processes with respect
to events, activities, and their relationships. The object-centered view is a mean for
capturing information about objects of various kinds and their transformations dur-
ing the course of a particular process. The other process concerns such as service
and process interactions, transactions, event handling, etc., have not been consid-
ered in IDEF3.

In the following, we briefly introduce the View-based Modeling Framework (VbMF)
[149,150] that is the conceptual foundation for our work in WP3. However, as VbMF
focuses on business processes, a novel approach will have to be implemented in IN-
DENICA, which follows the general approach and significantly extends the one used
in VbMF. VbMF exploits the notion of views to separate the various process concerns
of a business process in order to reduce the complexity of process-driven SOA devel-
opment and enhance the flexibility and extensibility of the framework. VbMF offers a
number of modelling artefacts, such as view models and view instances (or views for
short) organized in two levels of abstraction. Each view embodies a number of view
elements and their relationships that represent a business process from a particular
perspective. View elements and their relationships are precisely specified by a view
model. In other words, a view model is a (semi-)formalization of a particular process
concern and the views conforming to that view model are concrete instances of the
process concern.

VbMF initially provides three foundational (semi-)formalizations for representing a
business process which are the FlowView, CollaborationView and InformationView
models. The FlowView model describes the orchestration of process activities, the
CollaborationView model specifies the interactions with other processes or services,
and the InformationView model elicits data representations and processing within
processes as well as messages exchanges.

However, VbMF is not merely bound to these view models but can be extended to
capture other concerns, for instance, human interaction, data access and integra-
tion, transactions, and fault and event handling, have been realized in the past.
VbMF view models are derived from fundamental concepts and elements of the
Core model. Therefore, these concepts of the Core model are the extension points of
the view-based modelling framework [149,150]. In INDENICA we will extend this
basic idea with novel, more flexible view concepts and views that are tailored to the
concerns in INDENICA.

4.5 Model-driven service composition
Previous research in the area of Web service composition models has involved the
adaption of traditional formalisms such as process algebras, temporal logic, Petri
Nets, etc., for Web service composition. For instance, Hamadi and Benatallah [151]
used Petri Nets to construct Web service compositions with specific, formally verifia-
ble properties. Margaria et al. propose a novel technique that harmonizes a variant
of linear temporal logic (LTL) for formalising service compositions and situation cal-

INDENICA D1.1

 43

culus for planning the composite services [323]. The approach presented by
Naujokat et al. in [324] aims at supporting the automatic synthetizing of business
processes given a set of descriptions of services being used in the processes. Recent-
ly, a considerable amount of work on semantic-based approaches for service compo-
sitions and business processes have been reported by Petrie et al. in [325].

Languages and models on higher levels of abstraction (such as UML, or BPMN) were
analyzed by other researchers who found that these models, in addition to being
easier to write and interpret, can also be used to express the most important flow
patterns [152]. These languages are therefore a natural choice for researchers aim-
ing at bridging the gap between business workflows and models on the one hand,
and technical service compositions on the other. The approach of specifying compo-
sitions on business model level is called Business Driven Development (BDD) [153],
following the MDD naming.

UML has been used as a language to model Web service compositions by Skogan et
al. [154]. They propose a method that utilizes UML Activity models to define compo-
sitions, and an MDA-based approach to generate executable code in varying compo-
sition languages. They have produced an initial prototype that supports the genera-
tion of both WS-BPEL and WorkSCo executable code. Their method endorses a com-
plete round-trip model: existing WSDL specifications are refactored into UML mod-
els, which in turn are arranged to create new service compositions; these composi-
tions can then be transformed into executable code (either WS-BPEL or WorkSCo),
and deployed on a workflow engine. They use UML as an integration platform, which
is independent of the actual execution environment. The actual transformation of
high-level UML models to workflow code can be handled using XSLT transformations;
this is possible since both WS-BPEL and WorkSCo are represented using XML.

The approach of Skogan et al. has later been extended to also consider semantic
Web service composition and QoS attributes [155]. The main advantage of this ex-
tension is the increased support for run-time discovery of services and run-time ser-
vice binding: in [154] the service bindings (the partner links in WS-BPEL notion) are
defined at design-time, while [155] considers abstract bindings to specific semanti-
cally defined functionality; concrete services implementing this abstract functionality
are discovered at run-time using semantic discovery and matchmaking technologies.
Additionally, services are ranked based on QoS properties, i.e., if more than one ser-
vice instance is discovered during run-time, the one exhibiting the best QoS proper-
ties is selected. Unfortunately, the work is based on a set of assumptions (e.g., the
existence of a semantic matchmaking and service discovery entity) that are not ful-
filled today.

Koehler et al. have presented an approach that is more clearly aligned to the OMG
MDA [156] and BDD as early as 2003. Their work covers the transformation of busi-
ness models (represented in ADF and UML) to technology-level WS-BPEL code. In
contrast to other approaches, their work considers not only top-down transfor-
mations from high-level models to code, but also considers the bottom-up re-
engineering of existing WS-BPEL compositions into business processes. Business
models are first transformed to process graphs, which are in turn refined to flow
graphs; these subflows can then be compiled to solution components using plat-

INDENICA D1.1

 44

form-specific transformations (synthesis). In the reverse direction (bottom-up), solu-
tion components are combined to create flow graphs, which are again merged to
process graphs, and finally the business model can be restored. Later, the same au-
thors have refined their ideas in [157], detailing how graph-based process models
can be transformed into executable code using graph transformation and compiler
theory.

Ouyang et al. use a different language, OMGs BPMN, to represent business models
[158]. They argue that BPMN is (even though the language is relatively young) more
common in the business world than the more software-centric UML. Additionally,
BPMN is well supported by business analyst tools. However, the authors state that
the transformation from BPMN to BPEL is complex since BPMN is (as a graph-
oriented language) fundamentally different than the block-oriented WS-BPEL. How-
ever, they argue that their approach still is complete, fully automated and produces
WS-BPEL code that is comprehensible for humans.

A model-driven service composition approach based on composition rules is intro-
duced in Orriens et al. [159]. The composition rules are expressed in OCL (the Object
Constraint Language), and are used to model constraints on possible compositions.
Examples of such rules are activity.function = "FlightTicketBook-
ing" (i.e., the function of the activity always has to be "FlightTicketBooking") or
activity.input -> notEmpty() (i.e., there always has to be an input mes-
sage for this activity). Generally, they distinguish between structural rules (structur-
ing activities with the composition), data rules (rules that relate messages to each
other), behavioural rules (rules that guard the integrity of the composition, and pre-
conditions, postconditions and invariants of activities), resource rules (rules that
guide the usage of resources) and exception rules (rules that specify the behaviour of
the composition in exceptional cases). When all necessary rules that apply for a
composition are specified, an automated dynamic service composition engine is used
to create a composition that satisfies the rules specified by the model. However, this
approach naturally implies that the composition has to be fully specified using busi-
ness rules.

INDENICA D1.1

 45

5 Adaptation and governance

5.1 Variability at implementation level
The variability that is modelled must also be implemented. Therefore variability im-
plementation has received significant attention over the years [160, 161]. We will
first introduce general variability implementation techniques and the corresponding
concept of binding times; then we will concentrate on runtime variation and Dynam-
ic Software Product Lines (DSPL), which we expect to play a crucial role in the con-
text of the INDENICA project as they also address variation for service platforms.

For the realization of variability, there exist several techniques. These techniques can
be categorized according to the realization of variation before, during, or after com-
pilation, so called binding time. The choice of binding time is independent of variabil-
ity modelling [39].

Most work focused on development-time system composition (for example, there
are some professional tools [314, 315]). Aspect-oriented programming and model-
based development have also been used as a basis for variability implementation
[162]. Few approaches, however, have addressed run-time composition (e.g., web-
service technology), and even less work has addressed the problem of transparently
moving the resolution of variability between development time and runtime. Nota-
ble exceptions include the works by van der Hoek or Schmid [163, 164]. These ap-
proaches can also be used to exchange different variability implementation technol-
ogies.

Today, a product in a product line must adapt to its environment, cope with unfore-
seeable resource constraints and interact with other systems for which its designer
could not have adjusted it at development time. It is impossible to foresee all func-
tionality or variability a software product line might require at runtime.

Designing for runtime variation gets especially important when independent soft-
ware systems or components are newly coupled at runtime, as it frequently occurs
with services in service-oriented computing. Service platforms like INDENICA provide
flexibility at runtime as they support applications in dynamically exchanging service
implementations. Thus, product line based approaches to runtime variation like Dy-
namic Service Product Lines [165, 166] are of particular interest here. They give more
room to monitoring the current situation and planning appropriate adaption than in
the traditional SPL approach. Also some other work on adaptive systems explicitly
relies on product-line engineering, such as [167] and [168].

5.2 Adaptation frameworks
Adaptation of service-based systems has been a more than active research topic for
the last years. Many groups and individuals have proposed different approaches to-
wards adaptation of service-based systems, which are considering adaptation on a
variety of levels.

INDENICA D1.1

 46

5.2.1 Types of adaptation

Figure 9: Taxonomy of Adaptation

Figure 9 summarizes different types of adaptation in service-based systems. Primari-
ly, one can distinguish between adaptation of (atomic) Web services and service
compositions. The former is in fact not very different to adaptation of any other
software artefact, hence little research specific to this task has been carried out. One
of the few examples is [169], which proposes an aspect-based approach to adapting
service interfaces. The latter, adaptation of Composite Services, can again be divided
into two separate classes of adaptation: service rebinding and structural adaptation.

Historically, service rebinding is the more traditional (one can also say ‘older’) type of
adaptation. Specifically, service rebinding without interface mediation (that is, re-
binding of services with identical WSDL interfaces) can be seen as state-of-the-art by
now. Research approaches that consider rebinding-style adaptations include PAWS
[170], WS-Binder [171], MASC [172], VieDAME [173] and VRESCo [174]. These ap-
proaches, as well as many others not explicitly named here, share the common char-
acteristic that they add something on top of just exchanging one service endpoint for
another (which is in fact already supported by the WS-BPEL specification itself
through the dynamic partner link facilities). For instance, VRESCo and VieDAME have
a strong focus on selecting the ‘best’ service for rebinding based on known Quality of
Service information. Furthermore, VRESCo can mediate between services that pro-
vide the same functionality using different technical interfaces. Similar facilities are
also provided by WS-Binder. In MASC, the adaptation process is guided by a powerful
policy-based decision making component. PAWS goes one step further, and utilizes
rebinding for self-healing and automated failure recovery (but does not cover media-
tion of different service interfaces). [175] discusses the problems arising from the
requirement of runtime adaptation and present the solution of a seamless replace-
ment of the service implementation at execution time in a service-oriented compo-
nent model. This approach was based on CoRBA (Component Based Runtime Adapt-
able) and used dynamic Aspect-oriented Programming (d-AOP) to provide adaptation
without interference of the application execution and the service availability.

In recent times, more research interest has been directed towards structural adapta-
tion of service compositions. Structural adaptation is different from rebinding in that
not only the base services of the composition are changed, but the structure of the
composition itself is adapted. This can include, but is not limited to, adding activities
such as service invocations, removing activities, changing branching or looping condi-

INDENICA D1.1

 47

tions, or refactoring parts of the composition into a new sub-composition. A more
comprehensive view of possible patterns of structural adaptation has been present-
ed in [176]. One relatively simple approach to structural adaptation is parameteriza-
tion [177]. More complex structural adaptations, specifically adaptations that have
not been predefined at composition design time, have proven to be quite hard to
model and implement. One approach that has been adopted by various different
groups is the notion of adaptation based on the concept of aspect orientation. Prob-
ably the first prototype going in this direction was AO4BPEL [178]. However,
AO4PBEL is not strongly focused on the runtime adaptation of compositions, but
more on modelling compositions in an aspect-oriented way. [172] proposes a novel
service composition Framework called AdaptiveBPEL. The framework enabled ser-
vice composition for dynamic change in order to provide a greater degree of configu-
rability and dynamic adaptation of Web Services. In this approach authors presented
adaptation process that was policy-driven in order to provide dynamic and client-
specific customization of Web Services. AdaptiveBPEL is closely related to the MASC
system presented above. Another example of Aspect-Oriented approach was pre-
sented in [179] which focuses on adaptation of composite Web Services in response
to changes in non-functional requirements. A later approach dubbed BPEL’n’Aspects
[180] was more geared towards runtime adaptation (and also improved on some
other limitations of AO4BPEL). Finally, the PREvent framework (initially presented in
[181]) also includes means for structural adaptation based on the aspect-oriented
paradigm [182]. Unlike the approaches mentioned before this work is strongly
geared towards adaptation for preventing violations of service level agreements.

5.2.2 Further challenges in adaptation frameworks
On a more strategical level, [183] propose and evaluated an application-transparent
adaptation strategy for SOA-based systems. The formal adaptation model derived
from a suite of metrics enabled focusing on efficiency in terms of performance,
memory, network, and processor utilization by adapting to the changes in the envi-
ronment. [184] surveys representative software adaptation methods and proposed
four types of service variability: workflow, composition, interface and logic. In the
same paper authors proposed a framework for Service adaptation based on adapta-
tion patterns. As shown in the paper, the framework is capable of greatly increasing
of usability and applicability of the adapted services. Adaptation of Web Service
Composition using Expiration Times was presented in [185]. The measurements of
the impact of expected QoS changes in the Service parameters were used to make
an optimal adaptation decision. This approach focused on the efficiency of the adap-
tation that is implied when using dynamic process models that was incurring the
least cost possible. Another approach that leveraged Aspect-oriented programming
was introduced in [186] where the main focus was on the scope in which Web ser-
vice adaptation is required. Authors proposed to discuss adaptation in the scope of
context, device and customer (service customization) with a single methodology –
WS-Adaptation. In this approach authors facilitated model-driven approach and
showed the need to provide server-side adaptation in opposite to client-side pre-
sented in the most research papers.

INDENICA D1.1

 48

Very valuable work in the area of service monitoring and adaptation has been done
in the EU FP7-funded project ENTHRONE. [187] describes the part of this project that
was mainly focused on providing end-to-end Quality of Service (QoS) guarantees in
multi-domain environments. The project presented a service monitoring system that
provided monitoring information to service providers. The aims were to provide
quantified QoS-based services, to enable dynamic adaptation, and to network opera-
tors for making provisioning decisions and allowing dynamic resource allocation for
optimizing the usage of network resources.

In the context of adaptation, one important aspect is mediation among incompatible
services. In [188] authors propose an adaptation machine that sits between pairs of
services and manipulates the exchanged messages according to a repository of map-
ping rules. The paper formulates an operational semantics for the adaptation ma-
chine, including algorithms to compute rule firing sequences and criteria for detect-
ing deadlocks and information loss. The adaptation machine acts as an adapter be-
tween incompatible services: it selects and chains mapping rules to resolve mis-
matches as they arise. The same problem was addressed in [189] where authors pre-
sent a service behavioural adaptation approach that is based on dependency graph.
The problem of behavioural adaptation is divided into three sub-problems: service
description (as a foundation of adaptation), service mismatch definition and adaptor
construction process. The approach assumes detection of all possible mismatches
and generation of different adaptors correspondingly. [190] presents an approach
that leverages Enterprise Service Bus (ESB) mediation features to provide dynamic
adaptation capabilities within the service infrastructure layer. The two key motiva-
tions for such an approach were the ability to respond to dynamic business require-
ments of service provider and the need to fulfil QoS requirements specified in Ser-
vice Level Agreements (SLA). In order to realize self-adaptive behaviour authors pro-
posed that system is equipped with control loops that collect relevant information,
from the system and its environment, and act accordingly to pre-defined adaptation
strategies. The work described in this paper was a part of the S-CUBE network –
funded by EU FP7. [191] is another paper from the adaptation area that was funded
by S-CUBE project. Authors propose an adaptation strategy framework to support
the design of Service Based Applications (SBAs) that targets the adaptation require-
ments raised by context changes. Context in the adaptation activities is described in
a model.

Applying adaptation strategies that are usually applied as a set of patterns and poli-
cies also needs to take care of dynamism of configuration as a whole. The paper
[192] describes the concept of software adaptation patterns that are described in
terms of a three-layer architecture for self-management. A software adaptation pat-
tern defines how a set of components that make up an architecture pattern dynami-
cally cooperate to change the software configuration to a new configuration. In this
approach, adaptation connectors are introduced to encapsulate adaptation state
machine models so that the adaptation patterns can be more reusable. The adapta-
tion patterns presented in this paper are part of the Self-Architecting Software Sys-
tems (SASSY) model-driven framework for runtime self-architecting and rearchitect-
ing of distributed service-oriented software systems.

INDENICA D1.1

 49

5.3 Service platform governance
Before concentrating on the governance of service platforms, we can start with a
general definition. Wiktionary11 says that governance is:

 The process, or the power, of governing
 The specific system by which a political system is ruled
 The group of people who make up an administrative body
 The state of being governed
 Accountability for consistent, cohesive policies, processes and decision rights

ITIL12 gives a more specific definition with IT relevance: “Ensuring that Policies and
Strategy are actually implemented, and that required processes are correctly fol-
lowed. Governance includes defining Roles and responsibilities, measuring and re-
porting, and taking actions to resolve any issues identified.”

[193] adds the aspect of decision making and the community aspect: “Governance is
the process of making correct and appropriate decisions on behalf of the stakehold-
ers of those decisions or choices […] Governance is ensuring that behaviour con-
forms to norms, expectations and guidelines set forth by the community or elected
leadership of a community.”

5.3.1 Corporate governance
Corporate governance13 is the set of processes, customs, policies, laws, and institu-
tions affecting the way a corporation (or company) is directed, administered or con-
trolled. Corporate governance also includes the relationships among the many
stakeholders involved and the goals for which the corporation is governed. The prin-
cipal stakeholders are the shareholders, the board of directors, employees, custom-
ers, creditors, suppliers, and the community at large.

In [193] the definition of Corporate Governance is directly and only related to pro-
cesses: Corporate Governance is the process of ensuring the best interests of a com-
pany’s or organization’s stakeholders are met through all corporate decisions, from
strategy through execution; engagement of critical stakeholders in key decisions of
an organization.

5.3.2 IT governance
IT Governance14 is a subset discipline of Corporate Governance focused on infor-
mation technology (IT) systems and their performance and risk management. The
rising interest in IT governance is partly due to compliance initiatives, for instance
Sarbanes-Oxley in the USA and Basel II in Europe, as well as the acknowledgement
that IT projects can easily get out of control and profoundly affect the performance
of an organization.

11 http://en.wiktionary.org/wiki/governance
12 http://www.itil.org/en/glossar/glossarkomplett.php?filter=G
13 http://en.wikipedia.org/wiki/Corporate_governance
14 http://en.wikipedia.org/wiki/IT_governance

INDENICA D1.1

 50

For IT Governance reference models and standards are in place or being developed,
namely ITIL, COBIT and ISO20000:

ITIL (Information Technology Infrastructure Library) describes a systematic, profes-
sional procedure for the management of IT services. The library emphatically puts
the emphasis on the importance of meeting the corporate requirements from the
commercial aspect. IT service management under ITIL is geared purely towards cus-
tomer benefit and efficiency. Achieving the business objectives whilst simultaneously
meeting internal and external requirements is fundamental to ensuring a company’s
medium and long-term success.

The COBIT framework is aimed primarily at compliance and security and, as such,
ensures the IT governance for the operation of the IT services. This best practice
framework supports the control of all IT-processes and is primarily geared towards
auditing and ensuring compliance. The synergy between the two approaches (ITIL
and COBIT) lies in the fact that the more formal control objectives of COBIT are being
aligned with the ITIL framework which is orientated towards suitability and flexibility
and these must be fulfilled in a way that can be defined.

ISO 20000: The two frameworks (ITIL and COBIT) will continue to develop and in-
creasingly converge, with the bridge for this being created by the international ISO
20000 standard. Based on ITIL the two organizations itSMF and BSI (British Standard
Institute) have developed this clearly measurable standard and therefore created the
opportunity for certification of the conformity, effectiveness and efficiency of the
individual IT service management control objectives.

5.3.3 SOA governance
Wikipedia15 gives a vey generic definition: “Service-Oriented Architecture (SOA) gov-
ernance is a concept used for activities related to exercising control over services in
an SOA. SOA governance can be seen as a subset of IT governance which itself is a
subset of Corporate governance. [...] SOA requires a number of IT support processes
as well as organizational processes that will also involve the business leaders. […]
based on standards and includes policies, contracts and service level agreements.”

[193] is more focusing on the stakeholders and their involvement: “SOA governance
is the ability to ensure that all of the independent (SOA) efforts (whether in the de-
sign, development, deployment, or operations of a service) come together to meet
enterprise requirements. SOA governance is the process of ensuring all business and
IT stakeholders’ interests are served by the planning, funding, and execution of an
enterprise SOA initiative”.

And [193] again highlights the importance of decisions: “SOA governance is the defi-
nition, implementation and ongoing execution of an SOA stakeholder decision model
and accountability framework that ensures an organization is pursuing an appropri-
ate SOA strategy aligned with business goals, and is executing that strategy in ac-
cordance with guidelines and constraints defined by a body of SOA principles and
policies.”

15 http://en.wikipedia.org/wiki/SOA_Governance

INDENICA D1.1

 51

[194] goes one step further and makes a distinction between design-time and
runtime governance: “SOA governance provides a set of policies, rules, and en-
forcement mechanisms for developing, using, and evolving service-oriented systems,
and for analysis of the business value of those systems. SOA governance includes
policies, procedures, roles, and responsibilities for design-time and runtime govern-
ance.

 Design-time governance includes elements such as rules for strategic identifica-
tion, development and deployment of services; reuse; and legacy system migra-
tion. It also enforces consistency in use of standards, SOA infrastructure, and
processes.

 Runtime governance develops and enforces rules to ensure that services are exe-
cuted only in ways that are legal and that important runtime data is logged. From
a life-cycle point of view, design-time governance applies to early activities such
as planning, architecture, design, and deployment. Runtime governance applies
to deployment and management of service-oriented systems.”

The runtime governance definition directly leads to “compliance” which will be dis-
cussed below.

5.3.4 SOA governance reference models

In parallel to the development of SOA and the pervasion of SOA in enterprises, SOA
Governance has developed. It is frequently seen as a sub-discipline of IT Governance
(see definitions). A scientific approach to SOA Governance came up only recently.

Some contributors try to set up a SOA Governance model based on existing stand-
ards: For instance [195] take a holistic approach to cover all aspects of governance
based on the OASIS SOA Reference model [196].

[197] tries to create a reference model based on COBIT. In fact they also rely on ITIL
when it comes to defining the structure of their model. While referring to COBIT
their focus is very much oriented towards evaluation and improvement processes.
[198] also sketches a governance model, but take a dedicated regard to web service
technologies and their implications in the context.

SOA.com16 is a commercial tool provider, but their definition of integrated SOA gov-
ernance also gives a well-defined structure similar to a reference model. It “… en-
sures the applicability, integrity and usability of a wide range of assets through all
their lifecycle stages from asset identification through deprecation. The full lifecycle
is split into planning governance, lifecycle governance, and operational governance,
with a crosscutting policy governance theme.

 Planning Governance includes identification, analysis and modeling of candidate
services, policies, profiles, processes and information. An effective planning gov-
ernance tool manages an organization’s SOA portfolio: It enables examining ex-
isting and planned applications and determines which capabilities should be ex-

16 http://www.soa.com/solutions/integrated_soa_governance/

INDENICA D1.1

 52

posed as services and where applications would benefit from consuming shared
services.

 Development Governance marshals an asset through the typical design through
deprecation phases of its lifecycle. It typically includes a workflow mechanism to
approve migration, policy compliance validation, and a clear separation (logically,
physically, or both) between lifecycle stages. Development Governance is the
realm that most registry vendors have moved towards.

 Operational Governance controls the runtime aspects of SOA. It typically in-
cludes service monitoring, security and management with a runtime policy sys-
tem. Most Web Services Management vendors now position themselves as
providing operation governance solutions.

 Policy Governance defines and manages policies, associates them with various
assets, and validates and reports on policy compliance. “

The most comprehensive description of a SOA Governance Reference Model is given
in [193]. This book describes in detail all the implications for strategy (Figure 10)
building down to enabling technologies and tools. It also has a strong organizational
focus and is designed to help industrial and public companies to transform its classi-
cal IT to a SOA-based IT in a structured way.

For runtime governance monitoring it defines requirements and implementation
guidelines, but it does not select any technical solution components nor does it de-
fine an architecture.

Figure 10: SOA Governance Reference Model by Marks

Common to all above-mentioned approaches is the fact that they do not go into de-
tails when it comes to the question of monitoring service performance and service
level agreements. [198] proposes a SOA based governance model to handle non-
functional requirements. They define SOA governance objectives and then derive
requirements for a SOA governance model that again consists of an operational
model, an object model and a management model.

INDENICA D1.1

 53

5.3.5 SOA governance frameworks
The more we come down from Reference Models to Frameworks the fuzzier become
the terms. On one side the initiative of The Open Group to standardize terms, struc-
ture and procedures in SOA Governance is called framework [199].

Niemann et al. [200] summarize the current research on SOA Governance (Figure 11)
and suggest a generic structure for a SOA Governance Framework. They give an
overview on existing frameworks – from literature and from industrial product offer-
ings. It shows that none of the approaches cover all aspects of SOA Governance.

In their further work they structure the elements of a SOA Governance Model: 1) the
SOA goals, 2) SOA as enterprise architecture, and 3) the control cycle. What they do
not yet take into account is the SOA Governance Framework developed by The Open
Group [199]. This takes a very ambitious and industry-driven approach and is head-
ing for standardizing a model. It is published as a draft specification but as of today it
is not a standard yet. This is a shared work of a vendor-neutral and technology-
neutral consortium and is currently a draft for a standard made available for com-
ment. Even though it might change during the review process it is worth having a
closer look here.

Figure 11: Overview on SOA Governance Frameworks, [200]

This framework consists of a SOA Governance Reference Model (SGRM) and a SOA
Governance Vitality Method (SGVM). The SGRM defines a comprehensive structure
containing guiding principles (policies), governing processes, governed processes,
artefacts, roles and responsibilities and technology. The vitality method is a guide-

INDENICA D1.1

 54

line for tailoring the model and for introducing SOA governance in an organization. It
sticks to the well-known improvement cycle Plan – Define – Implement – Monitor.

5.3.6 Governance compliance and runtime monitoring
All above listed Governance Models and Frameworks listed above refer to compli-
ance as a strong need of business and organizations. In the SOA Governance Frame-
work by The Open Group compliance is seen as one of the three SOA governing pro-
cesses [199]. But it does not go beyond the suggestion to insert checkpoints in the
defined SOA processes.

The FP7 funded project COMPAS did a deep diving here and defined a compliance-
driven architecture for services. An introduction is given in [201]. Their definition of
compliance governance is "Compliance governance refers to the overall manage-
ment approach for controlling the state of compliance in the entire organization and,
in general, consists of: (1) selecting the sources to be compliant with and designing
corresponding compliance requirements; (2) (re-)designing business processes com-
pliant with the selected requirements; (3) monitoring compliance of processes dur-
ing their execution; (4) informing interested parties (managers, auditors) on the cur-
rent state of compliance; (5) taking specific actions or changing the processes in cas-
es of (predicted or happened) non-compliance".

The COMPAS compliance-driven governance architecture describes the components,
events and messages that allow monitoring the business process execution at run-
time, tracing compliance violations for later root cause analysis, collecting relevant
data for reasoning and displaying the compliance status and KPIs on the compliance
governance dashboard.

What is left open for further research is the definition of Key Compliance Indicators,
the mechanisms for reacting on non-compliance and the roles involved in decision
making. In the scope of INDENICA this becomes even more complex due to the virtu-
alization of platforms and varying compliance requirements in the different technical
platform domains.

5.3.7 SOA governance tool suites
In addition to the theoretical frameworks numerous IT infrastructure and tool pro-
viders collect their SOA related products and services and call this offer also “SOA
Governance Framework”. The aim of this section is to give a short overview on tools
and frameworks that support SOA governance adoption within enterprises. The
overview is not a comprehensive market study but rather a listing of main suppliers
and their main features. Evaluation of capabilities and suitability for virtualized ser-
vice platforms will be subject to further work. A good overview is given in [194].

Soa.com's Integrated SOA Governance17 promotes the core SOA governance best
practices of:

17 http://www.soa.com/solutions/integrated_soa_governance/

INDENICA D1.1

 55

 Governance Automation - lifecycle management workflow to implement building
permit process, integrated provisioning and lifecycle management, and inter-
departmental contract management and negotiation

 Uniform Policy Management - uniform lifecycle and policy governance across
existing platform investments

 Meta-data Federation - seamless, heterogeneous SOA Governance, security and
management integration with no requirement to introduce additional platforms
to support the required architecture

 Service Virtualization - performance and reliability, standards support for gov-
ernance automation (UDDIv3, WS-MEX), standards-based closed-loop govern-
ance system

 Trust and Management Mediation - Interoperability across disparate partners
and platforms, trust enablement and trust mediation complementing threat pre-
vention systems

 Continuous Compliance and Validation - consistent policy implementation and
enforcement across all stages of the lifecycle, preserving the fidelity of the gov-
ernance models, structures and mechanisms

 Change Impact Mitigation - provides change management and impact analysis
processes integrated with the governance workflow to ensure that changes to
services or other assets don’t cause major outages

 Consumer Contract Provisioning - provides offer, request, negotiation and ap-
proval workflows for service access, capacity, SLA and policy contracts

SOA.com offers governance tools for all leading SOA platforms: Microsoft (BizTalk),
SAP (Net Weaver), IBM (WebSphere), Oracle (SOA Suite) and RedHat (JBoss). The
SoA.com product suite consists of SOA Software’s Portfolio Manager™, Repository
Manager™, Policy Manager™, and Service Manager™ and forms a comprehensive
Integrated SOA Governance Automation solution, with SOLA™ providing a governa-
ble Mainframe SOA platform.

Petals Master is an open source SOA Governance solution18 that comprises a registry
repository, the organization management tools including people and role manage-
ment, and integrates with the service runtime environment (Petals ESB).

Software AG: According to a Gartner survey Software AG is raked as No 1 in suppli-
ers for SOA governance technologies. The Software AG technology platform for SOA
Governance provides tools from development-time lifecycle management to run-
time service access mediation, monitoring, and management. The flagship product is
called CentraSite™19 and its main features are:

 Metadata Registry & Repository provides a unified registry and repository, a
central, platform-independent store for defining and describing assets, and a
catalogue of services, processes and related assets, such as XML schemas and
business rules.

18 http://petalsmaster.ow2.org/index.html
19 http://www.softwareag.com/corporate/products/wm/soagovernance/centrasite/overview/default.asp

INDENICA D1.1

 56

 Active Lifecycles tracks and guide the evolution of every service and process as-
set, from conception through retirement.

 Active Policies for automated lifecycle processes. An Active Policy defines a se-
ries of actions that are associated with an event, such as the addition, modifica-
tion or lifecycle status change of an asset. When the event occurs, CentraSite ex-
ecutes the actions prescribed in the policy.

 Development-time policies support automated enforcement of policies along an
asset’s lifecycle at major governance checkpoints, such as funding approval, ar-
chitecture and design reviews and operational readiness reviews as well as pre-
loaded development-time policies, including metadata validation, WS-I compli-
ance, approval workflow, permission provisioning, notifications e.g. are available

 Run-time policies: CentraSite also provides a powerful roster of policies that can
be enforced when services are invoked at run-time to ensure correct and author-
ized use of services. Run-time policies include consumer authorization, message-
level encryption and signatures and schema validation. Run-time policies are
managed in CentraSite and enforced using webMethods Mediator.

 Smart policy provisioning: Once a policy is defined and approved, it is automati-
cally applied to all assets that meet a specific criterion (defined with the policy).

 Custom policies: In addition to using CentraSite’s pre-built policy templates, you
can write custom policies in Java or Groovy scripting language. Those custom pol-
icies will have full access to all metadata available in CentraSite.

 Relationship Tracking manages the complex interdependencies among services,
processes and IT applications using CentraSite's relationship tracking capabilities.
Importantly, CentraSite also captures the relationships of services and processes
with the people and organizations that built, operate and maintain them. Cen-
traSite identifies and tracks many relationships automatically as services and
processes are created, deployed and used. As needed, project teams can easily
add new relationship definitions.

 webMethods Mediator is a service intermediary that enforces the run-time poli-
cies created in CentraSite. Mediator also virtualizes shared services, making it
easy to change SOA. Combined with CentraSite, Mediator provides end-to-end
governance of all services from development to run-time.

IBM has published its SOA governance position in a Redbook [202]. It also defines
SOA Governance lifecycle that consist of four phases: Plan, Define, Enable and
Measure. For governance policies IBM uses a policy lifecycle model containing the
phases “Author”, “Transform”, “Enforce” and “Monitor”. At the tool support side
Tivoli Security Policy Manager and WebSphere DataPower SOA Appliance solutions
push or pull artefacts so that policies associated with services can be interrogated at
run time for compliance.

The Oracle SOA Governance Suite consists of four parts: Oracle Enterprise Reposito-
ry, Oracle Service Registry, Oracle Enterprise Manager 11g and the Oracle Web Ser-
vices Manager. The Web Service Manager a solution for policy management and
security of service infrastructure. It provides visibility and control of the policies
through a centralized administration interface offered by Oracle Enterprise Manager.

INDENICA D1.1

 57

5.4 Deployment technologies
Software deployment can informally be defined as “all the activities that make a
software system available for use “ [203]. In particular there are the following groups
of activities related to a typical deployment process (as described in [203]):

 Release – packaging of the software for the purpose of the deployment process
 Install – is the transfer of the software to a remote node and the associated con-

figuration activities
 Activate – starting up the installed software
 Deactivate – stopping the running software
 Update – a special case of installation when a new version replaces the old one
 Adapt – modifying a software system that has previously been installed
 Deinstall – removing the software from a remote node
 Derelease – the end of a system life cycle when the system is withdrawn and de-

velopment is stopped

Deployment activities can also be identified in most current software systems. [204]
present another overview of stages of the deployment process, from the perspective
of component-based applications. According to their work the process of deploy-
ment and configuration of component-based applications consists of the following
steps:

 the mapping of the application’s topology in terms of interconnected component
instances onto the runtime environment’s network of computing nodes,

 the installation of component implementations,
 the creation of component instances and
 the set-up of connections as well as the configuration of component properties.

Initially, service deployment technologies were based on manually edited scripts or
configuration files, however this approach is error prone in case of complex modern
systems. [205, 206] classify existing approaches to deployment into the following
categories:

 Manual – simple to modify (just a change in natural language description of the
process), good for simple systems which rarely change.

 Script-based – modifications carried out in configuration files, good for simple
systems which can with frequent changes.

 Language-based – modifications through changes in a declarative language, good
for complex systems with frequent changes.

Model-based - modifications through changes in models and policies, good for com-
plex systems with frequent changes, better than language based due to better ex-
pressivity easier, maintenance and reuse possibilities.

An interesting measure proposed by [206] for the comparison of deployment solu-
tions is Quality of Manageability (QoM), which can be described via quantitative
measures such as: number of lines of code written for deployment; number of steps
involved to deploy; lines of code to express configuration changes; time to develop,
deploy, and make a change. QoM can also be described qualitatively by: ability to
automate the management process, including adaptability to changes (e.g., failures,

INDENICA D1.1

 58

load); robustness, expressed in terms of misconfigurations; expressiveness of man-
agement (e.g., ability to express constraints, dependencies, and models); barrier to
first use of the deployment tool.

The deployment process largely depends on the environment used for hosting the
running software, however typical systems used for development of distributed ap-
plications (such as CORBA [207], Enterprise Java Beans and Microsoft .NET) did not
offer much support for automated deployment. To facilitate the deployment process
of distributed applications, various middleware solutions such as [208, 209, 210]
have been developed. The purpose of these solutions was to support the develop-
ment and deployment process of distributed applications; however neither of them
delivers a fully automated deployment environment.

The need for an automated deployment process becomes especially evident in case
of large component based systems, and especially in case of Model Driven Architec-
tures [211]. An initial solution has been proposed to the problem of deployment in
the “Deployment and Configuration of Component-based Distributed Applications
Specification” [212], but some researchers find this approach to be not sufficient. For
example [213] proposes a generic architecture for a deployment framework capable
of handling most of existing component technologies with an additional assumption
that this environment should not force any changes to these underlying technolo-
gies.

In the area of web services automated deployment is perceived not as a mechanism
for facilitating the development process, but rather as means to ensure better
runtime qualities of the services. For example, an automated deployment mecha-
nism can be used to redeploy a running web service to additional machines as re-
quired in order to provide dynamic scalability of the system [214], or in other words
to support a desired level of offered QoS. In prior works related to distributed sys-
tems the concept of an automated redeployment mechanism was used to protect
the system from network link failures [215].

 [203] identifies the following challenging issues of a deployment process: Change
Management for Installed and Running Systems, Dependencies among Components,
Coordination, Large-Scale Content delivery, Managing heterogeneous platforms,
Deployment Process Changeability, Integration with the Internet, Security: Privacy,
Authentication, and Integrity. During the 13 years that have elapsed since this publi-
cation, researchers have managed to resolve most of these issues. However the dy-
namic evolution of software development technologies has introduced additional
challenges for the deployment process.

One such problem is the predictability of the deployment process, which is especially
important in the area of real-time distributed and embedded systems. In some cases,
deployment order inversion can occur, causing software with lower priority (low-
criticality operational string) to be deployed before software with high priority (high-
criticality operational string) [216], which could affect the QoS of such a system.

Another problem arises from the existence of multiple component technologies that
could be used together to deliver a single system. The deployment environment

INDENICA D1.1

 59

must be flexible enough to support these various systems, and in particular (as stat-
ed in [210]) it should:

 Provide unification (ability to support multiple component technologies)
 Support deploying of heterogeneous applications
 Be driven by models

Ideally, deployment concerns should be separated from the underlying component
technology. [204] compare three different approaches to component deployment
and configuration: ITU-eODL, UML 2.0 and the Deployment and Configuration Speci-
fication of the OMG [217]. Each of these three approaches provides a solution for
the deployment process, however the authors conclude that each of them focuses
on different aspects of the process, and in the end do not provide an indication of
which of these could be used as a basis for building a generic deployment solution.

In the remaining part of this section we will survey existing deployment technologies.

J2EE is an environment where deployment is a strongly integrated part of the devel-
opment process. The deployment process is described by deployment descriptors,
which “describe the contents of deployment units and configure components and
applications to their environment. They also externalize the relationships between
components, so those relationships can be managed without writing or changing
program code” [Java 2002]. J2EE defines [218] five types of deployment descriptors:
EJB deployment descriptors, Web deployment descriptors, Application and applica-
tion client deployment descriptors, Resource adapter deployment descriptors for
Java Connectors. The J2EE standard for application deployment is packaging them
into WAR files, where the web.xml file configures various aspects of the application
configuration.

The J2EE environment has a growing collection of frameworks and tools that facili-
tate application development, some of which are geared toward providing deploy-
ment support. These include: Ant20 scripts that can automate multiple tasks includ-
ing deployment, the CARGO21 library which can be used to deploy applications to
containers from ant or maven builds or the PLAY22 framework that can easily handle
deployment of applications into most popular application servers.

J2EE capabilities for development of wide area networks can be enhanced by apply-
ing additional platforms such as SNAP – Structured overlay Networks Application
platform [219]. The idea behind SNAP is to deploy web applications on structured
P2P networks for scalability. Among services offered by SNAP to application devel-
opers, the following are related to the issue of deployment: adaptation (realized as
an automated process of preparing applications for deployment), deployment (the
process of uploading a web application into the SNAP platform, secured with the use
of administrator signatures), application location (SNAP tracks the location of each
application in the P2P networks and redirects requests accordingly), activation on

20 http://ant.apache.org/
21 http://cargo.codehaus.org/
22 http://www.playframework.org/

INDENICA D1.1

 60

demand (services can be deployed and started upon requests from users if they are
not running on any other machine).

Similarly multiple techniques exist for the deployment of web services. For example
the Apache Axis23 engine provides the following methods to deploy a web service:

 JWS Files – a Java source file copied to the server will be automatically compiled,
and the methods offered by the class will be automatically associated with SOAP
messages

 Using Web Service Deployment Descriptors (WSSD) - the WSSD file is capable
fully configuring a deployed web service (e.g. by defining handlers for requests).

However the development of Apache Axis has been discontinued as it is replaced by
Axis224. One particular feature of Axis 2 is the so called ‘hot deployment’ which
makes it possible to deploy a new service while the whole system is running. Similar-
ly a ‘hot update’ offered by Axis 2 makes it possible to make changes to a web ser-
vice without the necessity of restarting the system. The deployment of services into
Axis2 is simply a matter of preparing a proper XML file that describes the web ser-
vice, creating an appropriate package which includes the XML file, and copying that
package to the Axis2 engine repository.

An interesting approach to web service deployment is the Automated Deployment
Planner [220] for compositions of web services. This planner tool uses the Reo [221]
coordination model, where Reo is used to carry out web service composition. The
task of the planner tool is to generate a specification of a deployment plan based on
available web-services specification and Reo circuits. The deployment plan specifies
the target destination (resource) to which each web service should be deployed.
Such deployment planning can be viewed as an optimization problem, and the au-
thors propose to use a graph-based approach to obtain optimal planning results.

23 http://ws.apache.org/axis
24 http://axis.apache.org/axis2/java/core/

INDENICA D1.1

 61

6 Monitoring

6.1 Quality of Service
In order to be able to monitor and adapt Services to the changes in a dynamic envi-
ronment there is a need to specify requirements that will need to be fulfilled. The
description of the requirements should be both understandable by human users
(business intelligence expert) and machines (parsing, transformation). What needs to
be monitored are functional and non-functional characteristics of the system which
describe not only what and how the SOA-based system is performing but also in
what conditions and on what performance level. The Quality of Service (QoS) of ad-
vanced communication services and applications needs to be defined precisely and
also it is necessary to verify that QoS statements hold. For both purposes some
means of QoS languages and models are required [222].

QoS is a generic term that describes different aspects of the systems and provides a
way to measure, qualitatively, how a system is providing its expected services. When
dealing with systems based on Information Technologies (IT), the QoS perceived by
their users is a function of the QoS of all the building blocks of that system: network
QoS, systems QoS, application QoS, etc. All these types of QoS are interrelated and
depend on each other [223].

QoS management is critical for distributed service-oriented architectures because
different clients often have different QoS requirements and each server must serve
many concurrent clients with limited resources and ever-changing business rules
[224].

[225] specifies QoS as a combination of metrics and policies. QoS metrics are used to
specify performance parameters, security requirements and the relative importance
of the work in the system. We define three types of QoS performance parameters:
Timeliness, Precision, and Accuracy. QoS policies capture application-specific policies
that govern how the resource manager treats an application: Examples of such poli-
cies are management policies and the levels of service. The translation between the
two delay parameters is fairly simple; the translation between the two jitter parame-
ters is not. A QoS based system should be able to dynamically adjust the amount of
work performed (e.g., by using hierarchical encoding of video data, or resizing the
video frame). This would allow the system to make trade-offs between the various
QoS parameters, when sufficient resources are not available. [226] has been among
the first to recognize the need for an integrated approach to resource management.
They presented an integrated framework that deals with end-to-end application QoS
requirements. The notion of flow is introduced as an important abstraction within
the framework. On the other hand the notion of QoS on different abstraction levels
had to be taken into consideration. [227] proposed using multi-level QoS models as a
support for QoS specification in Multimedia Applications. It introduced QoS session
profile which was later used for negotiation translation (QoS mapping) with a use of
stream descriptor. Each of the descriptors corresponds to a media (e.g. H261 video),
a set of media (e.g. MPEG2 audio&video system transport), or a media component

INDENICA D1.1

 62

(e.g. hierarchical MPEG2 video Base Layer) and will result into an independent con-
nection in the network.

In 1998 [228] presented a general Quality of Service Modelling Language (QML) in
which it was possible to define multi-category QoS Specifications for components in
distributed objects systems. QoS specification in QML facilitates the static decompo-
sition of a software system into components with precisely specified QoS boundaries
and facilitates dynamic QoS functions such as negotiations, monitoring and adapta-
tion.

[229] proposed the object model QoSPath for specifying QoS in an adaptive QoS sys-
tem. The model is aimed at letting application programs specify their QoS prefer-
ences to the system. Adaptive QoS Systems are attractive for multimedia services
that are accessed via the Internet or mobile computers. An important feature of an
adaptive QoS system is that it allows application programs to specify the QoS level
desired, and the system to set the level according to the resources available. With an
adaptive QoS system, the user should specify not only the target QoS, but also a QoS
range to minimize the quality degradation resulting from resource shortages. A dif-
ferent approach was presented by [230] which focused on addressing QoS provision-
ing issues that are: specification, establishment and feedback. In the paper, authors
applied a user-provider model to match at the interface level the needed QoS by
user entities to the QoS capabilities offered by the provider. The model presented
was based on the ISO QoS Framework [231].

In 2002 [232] presented a conceptual object model for specifying Quality of Service
(QoS) that forms a basis for a UML profile for QoS. The conceptual model is based on
CQML, a lexical language for QoS specification. The main goal of this work was to
contribute to the OMG UML Profile Standard. The UML profile presented does not
propose any graphical notation. Authors claimed that one of the most reasonable
possibilities is to define QoS characteristics as tags that can be exploited in tagged
values on the relevant modelling elements

Opposite to most approaches where QoS is handled in a discrete way, [233] intro-
duced fuzzy-control approach for quality of service (QoS) adaptation, needed in dis-
tributed multimedia applications. The proposed approach uses a rule-based model
that is used in the quality degree function, which allows mapping various application
QoS parameters into a uniform metric, called quality degree, representing user’s
preference. For the same type of multimedia systems [234] proposed to use the Uni-
fied Modeling Language (UML) for QoS specification. The reason behind this ap-
proach was to provide an open, distributed processing reference model and focus on
the computational viewpoint. To specify the QoS aspects of computational objects in
UML, authors used a real-time logic called QL. The purpose of this UML-based model
was to act as a template via which specific distributed system designs could be con-
structed. In the same year [235] presented the first standard initiative in order to
provide a platform independent modelling approach for component-based system
design.

QoS involves a multitude of properties beyond the application-specific aspects, in-
cluding performance characteristics, availability, responsiveness, dependability, se-
curity, and adaptivity. In general, QoS specifications [236]:

INDENICA D1.1

 63

 should allow for descriptions of quantitative QoS parameters (for example, jitter,
delay, and bandwidth) and qualitative QoS parameters, such as central pro-
cessing unit (CPU) scheduling policy and error recovery mechanisms, as well as
adaptation rules;

 must be declarative in nature—that is, to specify only what is required but not
how the requirement should be implemented; and

 need to be accompanied by a compilation process that maps the QoS specifica-
tion to underlying system mechanisms and policies.

In 2004 [236] evaluated QoS specification languages according to the five criteria:

 Expressiveness: A good QoS specification must be capable of specifying a wide
variety of services, their required resources, and corresponding adaptation rules.

 Declarativity: A QoS specification should be declarative in nature, so that applica-
tions need not cope with complex resource management mechanisms for ensur-
ing QoS guarantees.

 Independence: Specifications should be developed independently from the func-
tional code for readability and ease of development and maintenance purposes.
Independence also lets developers associate a single application, at the user’s
request, with different QoS specifications.

 Extensibility: This criterion lets developers evaluate how easy a language can be
extended for specifying new QoS dimensions, such as security, availability, and
responsiveness.

 Reusability: Reusability is important when QoS specifications become large, be-
cause a new specification might just be an existing one with only minor refine-
ments. Ideally, a QoS language, like other programming languages, should have
reusable features. One condition necessary to help achieve reusability

The result of the evaluation is shown in the table:

In 2004 two related approaches for developing QoS-aware Component-based appli-
cations using MDA were presented. First, one of them was presented in [237]. The
authors presented an approach for end-to-end QoS requirements modelling based
on UML. The model was presented as a starting point to derive platform-specific QoS
requirements that might be applied and instrumented on clients, middleware, oper-
ator’s performance management systems, service interfaces and server-side compo-
nent infrastructure. The second one described in [223] introduced the Extended
MDA modelling framework where different QoS-related UML profiles are used to
model QoS requirements, QoS monitoring mechanisms and instrumentation mecha-
nisms. It was based on a generative modelling technique to evolve from platform-
independent models to platform-specific models, in which functional and non-

INDENICA D1.1

 64

functional (QoS) contracts of component-based applications are jointly specified. The
modelling has been transformed into different Enterprise Java Beans (EJB) compo-
nents whose QoS can be monitored using a management system based on JMX (Java
Management eXtensions) – Java based technology.

[238] presented a solution that was to provide a model that was generic enough for
reuse across multiple domains in SOA based systems. The approach was named
QoSOnt and presented a QoS Ontology for Service-Centric Systems. Authors realized
that systems based on SOA have much in common with component-based systems.
Moreover they took care of the business side of QoS management describing that in
the situation where a service marketplace exists, customers, making the judgment of
service quality a key issue, will trade quality against cost. To have confidence in ser-
vices, clients will require service monitoring, service negotiation, and the formation
of legally binding documents (which could take the form of service level agreements
or service usage contracts). In its simplest form an ontology is simply a taxonomy of
domain terms. However, taxonomies are of little use in machine reasoning. The term
ontology also implies the modelling of domain rules. It is these that provide an extra
level of machine “understanding”.

 Another approach that takes into account the business side of QoS management
was presented in [224]. Authors stated that business rules often change from time to
time so that businesses can adapt to the dynamic and competitive environment.
They also claimed that a traditional constrained optimization approach is difficult to
apply here, since system configuration and resource environment are dynamic, while
accurate and complete models of different types of resources and their interactions
with the environment are very difficult to build. They proposed an XML-based policy-
based approach for specifying and enforcing QoS management in the distributed
SOA. In this case a policy is a decision tree that can be described by a set of rules (not
vice versa), but the tree imposes an explicit structure on these rules. This hierarchical
structure of rules can be used, according to the divide-and-conquer philosophy, to
mimic human’s natural process of hierarchical decision-making. In the conclusion
authors described that a generic policy language is designed for both admission con-
trol and resource management. Based on a decision tree, the language can be easily
understood by policy administrators and efficiently implemented with simple compi-
lation techniques.

The paper that introduces a specific framework for QoS management model is [239].
Authors present a QoS model specific for multimedia systems that supports dynamic
adaptation by defining active architectural components to verify whether the system
QoS parameters are in agreement with the application requirements. The model
explores the concept of QoS ranges which parameters are defined as range of values.
If any situation is detected in which the QoS negotiated is not in accordance, an ad-
aptation process is initiated, observing the requirements established in the applica-
tion description.

There is another interesting approach for QoS Specification based on ontologies that
is described in [240]. The paper proposes a semantic approach to providing QoS pa-
rameter transparency in network service negotiations. Similar approaches in the
network systems and Web Services areas are considered, and a new model is pro-

INDENICA D1.1

 65

posed. The proposal tries not only to be more general, but also allows the compari-
son of specifications in the context of ontology inference. The ontology proposed
acts as a base for a semantic-based approach for network service negotiation.

6.2 Service Level Agreement
QoS experienced by end-users results directly from the QoS offered by multiple ser-
vice providers. Very often one service provider relies directly on another, and there-
fore the QoS of services offered by the first provider depends to some extent on the
QoS of services offered by the other provider. A so-called Service Level Agreement
(SLA) is a method for a service consumer to specify the desired level of QoS for a
service he is paying for. An SLA is often a part of the contract between the service
consumer and provider, and “it specifies the responsibilities of each party and the
level of the service” [241].

According to the SLA model adapted by the SLAng language [242], SLAs can be classi-
fied into two main groups: inter-service (to specify QoS level offered by services) and
intra-service (related to QoS of software components). Additionally SLAs can be clas-
sified into vertical and horizontal. Vertical SLAs relate to cases when a service pro-
vides infrastructure support for a client, while horizontal SLAs relate to cases when
services work at the same level. Each of these two groups can be further divided into
three types of SLAs as follows:

Vertical:

 Hosting (between service provider and host)
 Persistence (between a host and storage service provider)
 Communication (between application or host and Internet service providers).

Horizontal:

 ASP (between an application or service and ASP)
 Container (between container providers)
 Networking (between network providers)

This example shows that an SLA does not necessarily have to mean a contract be-
tween two parties, however the most typical usage for an SLA is in fact to specify an
agreement between a service provider and a service consumer. Once an SLA is estab-
lished between two parties, they both are bound by the rules set in that document.
In particular, the service provider is expected to provide QoS parameters better than
certain thresholds specified in the SLA. A violation of these thresholds, i.e. the deg-
radation of the offered QoS, is usually associated with penalties such as for example
a reduction in the service fee payable by the consumer. Therefore it becomes a ne-
cessity to accurately monitor QoS parameters of the offered service in order to de-
tect SLA violations.

There are a number of purposes for monitoring QoS. First, the service consumer can
use the monitoring data to detect violations of the SLA (and claim financial benefits).
Second, the service provider can use monitoring data to prevent SLA violations from
taking place (by adapting offered services to changing conditions). Third, so called
‘intra-service’ QoS control [242] can take place between components of running ser-

INDENICA D1.1

 66

vices in order to perform runtime reconfiguration of software parameters when re-
quired to meet the desired QoS output level.

From the point of view of a service provider meeting the QoS conditions specified in
an SLA is often a matter of optimization [243]. Lowering the level of QoS can often
lead to a decrease in costs, while at the same time the SLA requires the QoS to be
kept above a specified threshold. Based on available monitoring data the service
provider performs adaptation of offered services to meet the QoS-demands of asso-
ciated SLAs. The simplest approach to adaptation is to use collected monitoring data
to improve the system design and implementation in order to deploy a new version
of the service in the future. This approach however does not prevent SLA violations
as it is in general carried out ‘post-factum’. A more advanced solution capable of
preventing SLA violations before they take place is automated service adaptation
carried out during runtime. An important feature of such automated adaptation is
the capability of the system to predict the occurrence of SLA violations [244]. Limit-
ing the number of occurring violations through dynamic adaptation is referred to as
SLA protection [243].

The requirements for the target QoS level specified in SLAs are called Service Level
Objectives (SLO). In other words SLOs are “rules which specify the quality of service
as numerical target values (plus associated penalties)” [244]. Each SLA defines a
number of SLA metrics, which are then used to monitor the fulfilment of defined
SLOs. For typical network-based services an SLO could be a statement that “the ser-
vice provider must ensure that the system is available for at least 99% of the re-
quests for each calendar day” [245]. This SLO relates to service availability, which is
described through the ‘daily percentage of handled requests’ metric. The choice of
metrics used when specifying SLOs is critical for a precise interpretation of the SLA,
which in turn is a prerequisite for detecting SLA violations.

Figure 12: hardware performance metrics as shown in [246].

A multidimensional categorization of SLA metrics for IT services has been proposed
in [246]. The categories used to classify the metrics are: the service objects consid-
ered by the metric, ITIL processes in which the objects are involved, and the measur-
ability of the metric. The identified service objects are: hardware, software, network,
storage, service desk, and for each such object the authors list a number of typical
metrics (as for example in Figure 12). Examples of listed ITIL processes include con-
figuration management, problem management or incident management. Perhaps

INDENICA D1.1

 67

the most important issue when choosing a metric for the SLA is the possibility for
automated measurements of the metric during runtime monitoring.

A common pitfall of typical SLAs is that they are not formalized, but written in a plain
text format. Without a formalized model for an SLA automated monitoring will not
be possible. A formal SLA representation needs to be able to specify SLA metrics and
the desired levels for these attributes (in [243] these are called Key Performance
Indicators). Each metric should additionally be associated with a formally defined
penalty so that an automated SLA violation monitoring system will be able to per-
form autonomous decisions regarding system adaptation. A number of formalized
approaches to SLA specification can be found in the literature, and we will briefly
describe them in the following part of this section.

IBM has proposed the Web Service Level Agreement (WSLA) framework [247,248]
provides formalized tools and methodologies for defining and monitoring SLAs. The
framework is oriented towards Web Services, but it can be applied to other inter-
domain management scenarios as well. The framework utilizes an XML Schema-
based language that makes it possible for service consumers and providers to unam-
biguously define variable SLAs. The WSLA language specification [249] specifies three
sections for a typical SLA structure: parties (to identify all contractual parties), ser-
vice description (specifies the characteristics of the service and its observable pa-
rameters and metrics), and obligations (defines service level objectives and action
guarantees). The structure of the WSLA language is easily extensible and can be en-
hanced with domain or technology specific elements.

The Web Service Offerings Language (WSOL) [250] is an XML language based on an
XML Schema, which is compatible with the WSDL standard. In terms of WSOL a web
service offering is an SLA between Web Services) [251]. The main use of WSOL is to
define multiple classes of a single web service through parameters such as functional
constraints, some QoS constraints, simple access rights, price, and relationships with
other service offerings of the same Web Service. Using the WSOL description of a
web service enables selection of a more appropriate Web Service and service offer-
ing for particular circumstances.

The Rule-based Service Level Agreement (RBSLA) [252] language is a declarative lan-
guage based on RuleML. The RBSLA language has been developed explicitly to pro-
vide means for specifying SLAs in a machine-readable syntax. Rules written in the
RBSLA language are also formulated using the XML syntax, however they can be
“translated into an underlying logical system and executed by a rule engine” [252].
The advantage of RBSLA language over other solutions is that it is based on an under-
lying logic system that allows the rule engine to make use of reasoning. Also, when
RBSLA rules are translated into a logic program multiple simplifications can be ap-
plied to optimize the resulting code.

“The objective of the WS-Agreement specification [253] is to define a language and a
protocol for advertising the capabilities of service providers and creating agreements
based on creational offers, and for monitoring agreement compliance at runtime”.
The specified approach in itself is supposed to be general to allow multiple usage
scenarios. The basic concept is that the service provider and consumer exchange
messages according to a predefined protocol, in order to establish at runtime rules

INDENICA D1.1

 68

regarding their usage of the service. The agreement is represented as an XML docu-
ment that consists of the following top-level elements: Agreement, AgreementId,
Name, Term, AgreementContext. The WS-Agreement specification defines further
the allowed nested tags for each of these elements.

The Web Service Modeling Ontology (WSMO) [254] provides a framework and a lan-
guage for describing multiple aspects of web services. The basic elements of WSMO
are: ontologies (which provide required terminology), web service descriptions (re-
lated to the functional and behavioural aspects), goals (users desires), mediators (to
automatically handle interoperability issues). WSMO as in itself is not focused nor
designed for specifying SLAs, however it has been extended [255] with the ability of
modelling QoS characteristics of services, which could be used for constructing SLAs.
The interesting feature of WSMO is that it uses an ontology and therefore provides a
very high level of semantics to the descriptions of web services.

The SLAng language [242, 256, 257, 258] has been developed for formally describing
SLAs for the purpose of their monitoring. The main features of the SLAng language is
that it defines the SLA vocabulary, its structure is derived from industrial require-
ments and the meaning of SLAng is defined with reference to a model of service us-
age. The SLAng language is specified using UML (as a meta-model), the syntax of
SLAng is defined through an XML schema, while the constraints defined in SLAs are
expressed using the Object Constraint Language (OCL). The semantics behind OCL is
important as it reduces the ambiguity when interpreting the meaning of an SLA. SLAs
are modelled as a sequence of actions, where each action has some associated
events (i.e. an action can give rise to any number of associated events). SLAng can
be used to construct systems with reliable QoS characteristics, and can also be used
as basis for implementing violation monitoring.

An interesting approach [259], much different from all of the presented above, is
based on using performance trees for SLA metric specification. Performance trees
were developed for the graphical specification of complex performance queries. A
performance tree query is represented as a tree structure where nodes can be either
operations or values. The authors of this work have developed an alternative query
building mechanism called Natural Language Query Builder. These tools can be used
to provide an easy to use way to specify SLA metrics. The same tools can later be
used to monitor compliance of a system with the SLA.

6.3 Runtime monitoring
Systems based on SOA assumes loose coupling of services, which are accessible over
the network so they can be easily reused to develop new applications. Examples of
such systems are Web services, which can be seen as functional building blocks ac-
cessible over standard Internet protocols independent of platforms and program-
ming languages. With the time, systems based on SOA are getting more and more
complex and thus they become more prone to errors. Even if the given service is
fault-free during testing phase, there is no guarantee that it will work properly dur-
ing run-time. Moreover, the content of the services can be modified by its provider
without prior notification; hence unaware user of the service may see these changes
as an error.

INDENICA D1.1

 69

In order to provide a control over such complex systems, runtime monitoring is re-
quired. A proper runtime monitoring needs to measure different system parameters
or available resources based on two activities [260]:

 Detection of the prior unknown properties of the system - it is done by collecting
information about the given system, creating a proper model of such system, and
designing parameters of such model.

 Verification of the defined properties of the system – it is done by comparing the
actual state of the system with the assumptions about the system at the given
time. For example, it checks if the system fulfils the restrictions defined by QoS
policies.

Several approaches of run-time monitoring were described in the literature. Howev-
er, from the architecture point of view different aspects should be taking into ac-
count, such as features being monitored or the monitoring model that is used. Im-
plementation of the monitoring architecture should also focus on the communica-
tions mechanisms, protocols and session management. In [261] authors propose to
classify existing approaches of monitors with respect to the design of monitoring
architecture into 2 logical groups:

 Heavy – weight monitor - a single monitor supports the monitoring of different
aspects of a Web service.

 Light - weight monitor - a single monitor supports the monitoring of one aspect
of a Web service

Based on this classification, authors proposed a theoretical framework for run-time
verification of conversational Web services, which aims to provide a holistic monitor-
ing framework enabling the integration of different verification tools. As a result, an
extensible architecture has been proposed, which supports the integration with the
existing service-oriented architectures and allows the use of different monitoring
approaches for message interception and session handling. Moreover, message in-
terception approaches have been classified as:

 handler-based: a handler is attached to the monitored service,
 wrapper-based: the monitored service is wrapped within another service,
 proxy-based: an intermediate node acts as a network proxy.

Another example of the business process monitoring classification from the architec-
ture point of view can be divided in two groups [262]: Server side and Client side
monitoring.

Server side monitoring is very accurate because it monitors service's parameters of
interests during service operation, such as QoS attributes. The drawback of this
technique is that it requires access to the current implementation of the service,
which is not always available for outsiders. One example of such monitoring is pre-
sented in [263], which is used for developing adaptive service-based software sys-
tems (ASBS). The main idea is to develop a performance model through a series of
controlled experiments, and then to design QoS monitoring and adaptation modules
based on the obtained performance models. The developed modules are the part of
the service implementation. The Windows Communication Foundation (WCF) is an-
other platform that allows monitoring service's performance by incorporating in the

INDENICA D1.1

 70

implementation of the service Performance Counters (WPC) (that can be checked at
the run-time) [262, 264]

Client side monitoring is independent of service implementation but it does not al-
ways have access to the actual values of service's parameters as compared to server-
side monitoring. Usually, it sends probe requests to the monitored service and based
on received answers the values of the monitored parameters are estimated (some-
times inaccurately). Another problem of this technique is the overhead introduced
by frequent probing. However, there are attempts to reduce this overhead (for ex-
ample, by using Time Series Forecasting (TSF) [265]). One of the examples of client
side monitoring is a policy-driven distributed framework for monitoring quality of
web services [266]. The proposed monitor is user-centric, loosely coupled with ser-
vice providers, and is integrated with QoS registry Q-Peer. Instead of sending probe
requests, it observes the interaction messages in SOAP format, and calculates QoS
metrics based on the information included in captured messages.

Runtime monitoring of business processes can be treated as a dynamic analysis of
runtime events. Such events can be analyzed:

 online – during the execution of the application, or
 offline - after the execution has been terminated.

This way monitoring process is able to assess the quality of specific application. The
main advantage of offline techniques is the possibility to examine the particular sys-
tem in different ways using tools, which cannot be used during runtime. However, an
offline technique requires storing large amount of collected data, which could be
hard to manage and analyze. On the other hand, online techniques collect only the
small amount of predefined system properties. This gives the ability for prompt reac-
tion on interested events as well as detection of critical situation.

Depending on the types of the monitored properties, runtime monitoring of web
services can be assigned into 2 groups:

 Global monitoring properties – analysis of orchestrated obligations [267, 268,
269, 270, 271];

 Local monitoring properties – events of single service;

Runtime monitoring is also used to measure different system parameters or availa-
ble resources. In [272] the authors proposed to use runtime monitoring of conversa-
tions between services or business processes as a means of checking behavioural
correctness of the entire Web service system. They identify a subset of UML 2.0 Se-
quence Diagrams as a property specification language and show that it is sufficiently
expressive for capturing safety and liveness properties. The semantic of proposed
subset of sequence diagrams have been transformed into automata to enable con-
formance checking of finite execution traces against the specification.

As an alternative, online runtime monitoring presented in [267] is performed by a
framework capable of automatically associating business rules with relevant pro-
cesses involved in a user request. This framework plans and monitors the execution
of the request against services underlying these processes. For this purpose, XSAL
assertion language has been proposed. Such language express business rules in the

INDENICA D1.1

 71

form of assertions over business processes. However, such monitoring technique is
restricted to local properties – events of a single service.

There are also other approaches that deal with monitoring of the assertions over
service enabled business processes. One of them is WS-Policy framework [273],
which provides a general-purpose model for describing a broad range of service re-
quirements, preferences, and capabilities. Another example is RuleML [274], tech-
nique for expressing business rules over semantically annotated service.

In [268, 269, 270] proposed monitoring technique are used to check service pre- and
post-conditions associated to external service invocations. Specifically, [268] pre-
sents approach for monitoring the execution of composed Web services. In this ap-
proach, dynamic compositions are represented as BPEL processes, which can be
monitored at run-time to check whether individual services comply with their con-
tracts. Authors presented two approaches: one based on late-binding and re ection
and the other based on a standard assertion system. Extension of this idea was pre-
sented in [269] where runtime monitoring was extended to support dynamic moni-
toring of WS-BPEL. In [270] the authors proposed runtime monitoring technique
based on model driven solution.

In the work [275, 276, 277] offline monitoring techniques are presented, which are
able to handle global and local properties. The proposed framework uses BPEL4WS
language for a service composition process description, assumes systems composed
of web-services, and uses event calculus to specify the properties to be monitored.

The main classifications and its examples of run-time monitoring approaches have
been described. However, several other approaches of monitoring framework of
web services have been proposed in the literature, such as: validation of predefined
interaction constraints using finite state automata [271], handlers to intercept mes-
sages and measure the responsiveness of a service [278], UML 2.0 Sequence Dia-
grams as a property specification language [272], monitoring by employing workflow
graphs as the underlying specification language, for generating monitors that are
exposed as Web services [279], data collection, including message interception for
monitoring [280], event-based monitoring of process metrics across participants in a
choreography [281].

In the INDENICA project we will focus on the definition of the generic architecture of
monitoring event model. Such model should be able to all event from any existing
service platforms. Moreover, we will investigate the possibility to develop monitor-
ing engine detailed enough to create rules for triggering adaptation actions. There-
fore, we would like to provide an event hierarchy, which serves as the main classifier
for concrete events. Proposed hierarchy of monitoring event model will be evaluated
in the real world scenario.

6.4 Infrastructure for runtime supervision
In general, runtime supervision has been mainly addressed from an architectural
point of view. This means that adaptation is applied by simply changing the architec-
ture of the system. Since traditional architecture-level approaches do not allow to
change the adaptation policy at runtime, new research propose to use live models
that inject adaptation strategies only when necessary, without hardcoding all adap-

INDENICA D1.1

 72

tations at design-time. Finally other approaches focus their attention on service
compositions, providing an infrastructure for monitoring and/or adapting composi-
tions at runtime.

In the INDENICA project we will look for other flexible ways to provide runtime vali-
dation platform. One of the solutions that will be evaluated is a middleware which
exploits Publish/Subscribe techniques to distribute information. For this purpose we
will test and check different kind of event processing components such as ESPER.
Moreover, the monitoring efficiency of choosen components will be evaluated. Im-
plemented middleware will also provide pipe and filter architecture to easily connect
services and dynamically process its data. The proposed monitoring architecture will
also contain collections of probes which acquire required data. Such mechanism will
be based on the push/pull middleware as well as periodically checking of data.

6.4.1 Architecture level self-adaptation
Traditionally, adaptation has been addressed at the architectural level, since this
point of view allows the developer to shift the focus away from lines-of-code to
coarse-grained components and their overall interconnection structure. Further-
more, as an abstract model, architecture can provide a global perspective of the sys-
tem and expose important system-level behaviours and properties. These approach-
es can adopt either internal self-adaptation mechanisms [282] or external mecha-
nisms [283] in a closed control loop.

Oreizy et al. [282] support software evolution by maintaining the architectural model
of the system that is used as a basis for change. Adaptations are performed on the
architecture and allowed changes comprehend adding/removing components and
structural reconfiguration, i.e., recombining existing functionality to modify overall
system behaviour. Changes to be performed are represented internally through an
imperative language. It is also possible to enforce a particular policy that, for exam-
ple, preserve specific component connectors or satisfies a set of invariants to pre-
serve the integrity of the system. Conversely, Garlan et al. [283] propose an external
framework, Rainbow, to monitor and adapt the system behaviour at runtime in a
closed control loop. The infrastructure of Rainbow provides probes/gauges for data
collection, and resource discovery mechanisms and effector mechanisms to carry out
the actual system modifications. Probes collect basic system properties, while gauges
aggregate the information coming from the probes to update the properties de-
scribed in the architecture model. Obviously Rainbow keeps a translation repository
to maintain the mapping between the runtime data and the properties of the archi-
tecture model. Furthermore, the concept of architectural style is enriched with a
notion of adaptation style that is composed of operators and strategies. The former
determine a set of style-specific actions that can be performed on a system element
to alter its configuration. While the latter specify the adaptation that can be applied
to move the system away from an undesirable state. This approach works under the
assumption that any target system has access hooks for monitoring and adaptation,
and a set of probes is always available to provide information about system proper-
ties.

INDENICA D1.1

 73

The main problem is that these approaches do not provide an explicit support for the
evolution of the system. In particular, they constrain the set of possible adaptations
that can be performed without allowing one to change the adaptation policies as
long as the system evolves. Flurey et al. [284] adopt models to specify the architec-
tural variants of the systems that can be applied on the base system architecture. At
runtime a valid application configuration is generated by composing the base and
the variant model, depending on a set of adaptation rules and the current context of
the executing system. The main limitation of this approach is that it is only able to
handle foreseen adaptations: architectural variants are statically defined for a specif-
ic set of adaptation rules, a context and a predefined base architecture of the sys-
tem. At runtime it is not possible to introduce new variants or different adaptation
rules as the system evolves.

Other approaches propose goal-oriented middleware [285, 286] that are inspired
from the three-layer layer framework already proposed by Kramer and Magee [287].
Sykes et al. [285] developed a framework that includes a component layer that is
concerned with near real-time reactive behaviours, the change management layer
that is concerned with the composition and sequencing of those behaviours, and the
goal management layer that provides a system controller that prescribes the behav-
iour required to the system to satisfy its given functional goals. The authors focus on
the middle layer that generates valid configurations with respect to the behavioural
capabilities prescribed by the goal layer. It also checks which of the valid configura-
tions conform to any structural constraint provided by the user (e.g., whether the
configuration conforms to an architectural style). Finally, this layer takes into ac-
count a set of non-functional properties to make the best choice among configura-
tions. However, one of the main drawbacks of this approach is that even if the sys-
tem behaviour can change over time, the policy adopted by the goal layer cannot
evolve.

PLASMA [286] is a three-layered framework that allows to automatically modifying
the current system architecture in case it is inadequate to achieve a specific system
goal. To this aim, PLASMA adopts application and adaptation domain models. The
former captures the possible states of application components and the actions that
these components can perform. The latter represents a set of architectural configu-
rations (states) and actions that can be performed by the system to move from a
state to another one. The input provided is the problem description (the initial archi-
tectural configuration and a goal), the description of the available components, ex-
pressed in ADL, and the components implementation. From the ADL model the ap-
plication domain model describes a plan to achieve the goal specified as input. Then
the target architecture topology required to run that plan is generated. The target
architecture and the current architecture topology represent respectively the initial
and target state of the adaptation problem and the necessary reconfiguration ac-
tions to move from the current state to the target one can be generated automati-
cally. This approach has the main advantage to support the automatic generation of
architectural-level adaptations, but it does not consider non-functional requirements
in the selection of a suitable adaptation.

INDENICA D1.1

 74

6.4.2 Runtime supervision of service compositions
This section describes some approaches that support the runtime supervision (moni-
toring and recovery) of service compositions. Supervision techniques mainly differ in
the requirements they deem important: a monitoring approach can be more or less
intrusive, more timely in discovering anomalies, or more tailored towards the analy-
sis of functional properties instead. For example, we can mention Dynamo [288] and
ALBERT [289]. Dynamo is a synchronous and assertion-based monitoring approach. It
stops a process every time it interacts with a partner service, and checks any pre- or
post-condition, expressed in a custom language (WSCoL). Despite Dynamo is very
intrusive (it uses AOP [290] technology), it is very good at discovering anomalous
behaviours as soon as they occur. On the other hand, ALBERT [289] is an asynchro-
nous approach that verifies a set of temporal properties. In this case, all the asser-
tions are checked in a separate thread, while the process is only stopped to collect
the run-time data needed to check them. ALBERT is much less intrusive, but can cap-
ture anomalies only when the process had already proceeded beyond the point in
which they were generated.

It is clear that both approaches have strong advantages, but also evident weakness-
es. The same considerations can be argued for other approaches [275, 173]. Mahbub
and Spanoudakis [275] propose a framework for the run-time validation of behav-
ioural assumptions that are expressed in terms of event calculus. The approach re-
quires that designers reason at a low level of abstraction, since they need to config-
ure probes for system events, and express the properties they want to check. The
approach is very unintrusive, and produces post-mortem results. It is suitable in situ-
ations when the designer is interested in keeping a low profile, and in fixing only fu-
ture iterations of a process. Amongst other unintrusive approaches we consider
VieDAME [173], where process-internal state is inferred in an unblocking way, by
analyzing the incoming and outgoing messages the process exchanges with partner
services. It accumulates data as the process instances are run, aggregating previous
data to calculate QoS values such as response time, accuracy, or availability. Despite
the intrusiveness is minimized, the approach does not consider external data coming
from the environment. Furthermore, VieDAME concentrates on a fixed set of non-
functional properties, without allowing the designer to define its own complex prop-
erties. Instead, we argue that flexibility is a key aspect and monitoring approach
must support the validation of any kind of requirements, depending on the stake-
holder’s personal needs.

A lot of attention has also been given on assessing SLAs (Service Level Agreements).
An SLA defines a contract between a set of customers and providers on particular
QoS properties. The contract also devises a set of penalties that may be paid by one
of the contractors if he/she violates any guarantee term. Keller and Ludwig [291]
propose a framework to define and monitor SLAs, focusing on QoS properties such
as performance and costs. In this case, measurements are performed by probing
client invocations or retrieving metrics from internal resources. Sahai et al. [292]
describe an automated and distributed SLA monitoring engine. The monitor acquires
data from instrumented processes and —by analyzing the execution of activities and
message passing— verifies the SLAs. Finally, Skene et al. [257] propose the SLAng
language for SLAs, described using meta-modelling techniques derived from the

INDENICA D1.1

 75

MDA toolset. All these approaches allow monitoring the properties defined on the
negotiated contract, which are overall QoS properties that must be satisfied by the
entire process (e.g., the overall cost, the overall response time, etc.). For this reason,
these approaches neglect environmental properties that must be satisfied by the
context. Conversely, our approach considers a set of requirements defined only at
the service user side, i.e., at the BPEL process side. We aim at monitoring a wider set
of properties, like functional and non-functional requirements or domain assump-
tions. In particular, we are convinced that monitoring context data is fundamental,
since context variability can be one of the main reasons to perform adaptation.

Other works [293] propose a middleware to support the fault-tolerant execution of
services based on standard WS-policies [294] (e.g., provisioning policy, clients re-
quirements). The same authors also provide a language [295] to specify policies in
terms of general goal assertions. This way, a policy can define the source of the mon-
itoring data (both process and context data), the modality of the monitoring (syn-
chronous or asynchronous), a set of supervision parameters, and the actual proper-
ties that must be satisfied.

Although these approaches offer several advantages, none of them has been able to
provide a one-stop solution. Although each is particularly effective in its own sub-
domain, none provides a holistic solution that easily accommodates the very differ-
ent needs of the clients —in terms of qualities of interest and required analyses.
Starting from this assumption Comuzzi and Spanoudakis [296] propose a hierarchical
framework to monitor properties at different layers of the service-based system such
as service composition (the workflow), service invocation and execution (i.e., the set
of resources on which each single service executes). It integrates different kinds of
monitors designed to assess properties at different layers of a service-based system.
Different monitors and event captors may be plugged in the proposed architecture
as long as they are able to perform monitoring using events and the monitoring ca-
pabilities of the workflow and local services. This approach [297] also requires the
assessment of the monitorability of an SLA, and the dynamic set-up of monitoring
resources for checking an SLA. This work represents a big advance towards the inte-
gration of different monitoring components, but the integration of different recovery
techniques has been still neglected.

Recovery of service compositions has received, in general, less attention from the
research community. We are still far from having adequate solutions for issues such
as dynamic instance/class re-configuration or process rollback (techniques already
present in classical database, workflow, and web-based systems).

The run-time recovery of BPEL processes has been tackled by Dynamo [288], which
provides a suitable language (WS-ReL) that offers a set of pre-defined atomic recov-
ery actions, and constructs for combining them to build more complex recovery
strategies. All atomic actions have process instance validity, meaning no recovery is
performed on the process definition itself. The library of possible actions provides
means to perform service and partnerlink substitution (even when the new service
has a different interface), notifications (via email), calls to process event handlers, as
well as simple rollbacks. Most approaches do not go beyond dynamic rebinding in
BPEL processes, and most adopt proxy-based solutions. This is the case of Ardagna et

INDENICA D1.1

 76

al. [170], who propose the PAWS (Processes and Adaptive Web Services) framework,
and Colombo et al. [298], who propose SCENE. Moser et al. [173], on the other hand,
provide dynamic substitution using an AOP-based extension of ActiveBPEL.

INDENICA D1.1

 77

7 Conclusions

This document offered a wide summary of the main technologies, approaches and
results available in the domain of service-based systems. Even if the main interest of
INDENICA is in the concept of platform as a service, the report addresses the global
domain of services and service-centric systems to provide the consortium with a
common background, frame the solutions developed in the project, and also identify
significant gaps and challenges that must be addressed to tackle the integration of
service platforms.

To conclude there are different challenges a service platform and its design in the
context of Software Product Line Engineering (SPLE) need to address. Here is a list of
challenges without claiming to be complete:

 A design process is required that combines SOA-based design methods (such as
IBM’s SOMA or the ISE Methodology) with design of Software Product Lines.

 Requirements for service platforms must be suitably elicited and represented. A
platform can be seen as the union of “all” the applications that could be imple-
mented on top of it, but requirements at platform level, along with the identifi-
cation of the variability that must be embedded in the platform, require special-
purpose solutions.

 Adaptation is another key issue. It is a crosscutting concern, and it must be ad-
dressed from the very beginning. Adaptation must be modelled explicitly, it must
be embedded in the platform at runtime, and it must be suitably probed to keep
it under control.

 Semantic Service Descriptions are required that also contain “meta information”
helpful for (semi-)automatic integration of SOA-based core assets into concrete
but varying application contexts. Explanation: The service platform shall support
easy integration of industrial protocols such as OPC/UA or BACnet. This is neces-
sary to integrate lower layers of the automation pyramid. To ease the implemen-
tation of appropriate adaptation technologies such as SCA might be helpful. In
addition, MDSD approaches could be leveraged. The same holds for industrial da-
ta and document formats that need to be integrated into a SOA platform. As an
example we could consider a service that should have the same interface but dif-
ferent possible implementations, thus integrating into different embedded envi-
ronments.

 The Service platform must support (health) monitoring and further crosscutting
concerns that are essential for operation in industrial contexts. There must be a
way to separate such crosscutting concerns and introduce them systematically
into the platform. The results of the AMPLE Project25 and THESEUS TEXO should
be leveraged here.

 Configuration aspects, versioning aspects, and documentation aspects need to be
supported by the service platform design to enable easy application develop-
ment. Thus, best practices how to design and build the platform respective of

25 http://www.ample-project.net/

INDENICA D1.1

 78

these issues and how to provide an appropriate production plan need to be in-
vestigated.

These challenges are currently being addressed at the ERP layer, but the aforemen-
tioned existing approaches also need to be adapted to the lower (i.e. industrial) lay-
ers of the TIA Pyramid.

INDENICA D1.1

 79

8 References

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Compu-
ting: State of the Art and Research Challenges. Computer, 40(11):38–45, 2007.

[2] M.P. Papazoglou, Web Services: Principles and Technology, Prentice Hall, 2007.

[3] T. Erl; SOA Design Patterns; Prentice Hall; 2009

[4] World Wide Web Consortium. Web Services Activity. http://www.w3.org/2002/ws/

[5] The OSGi Alliance. OSGi Service Platform, Release 3. IOS Press, 2003

[6] P. Bellavista, A. Corradi, and C. Stefanelli. Mobile agent middleware for mobile compu-
ting, Computer, vol.34, no.3, pp.73-81, Mar 2001

[7] D. Zhang, X. Hang Wang, K. Hackbarth. OSGi based service infrastructure for context
aware automotive telematics, 59th IEEE Vehicular Technology Conference, pp. 2957-
2961 Vol.5, 2004

[8] E. Kaasinen. User needs for location-aware mobile services. Personal and Ubiquitous
Computing 7(1), pp. 70-79, Springer, 2003.

[9] Organization for the Advancement of Structured Information Standards. Devices Pro-
file for Web Services (DPWS). http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

[10] H. Bohn, A. Bobek, and F. Golatowski. SIRENA - Service Infrastructure for Real-time
Embedded Networked Devices: A service oriented framework for different domains.
International Conference on Networking, International Conference on Systems and In-
ternational Conference on Mobile Communications and Learning Technologies, 2006.

[11] Organization for the Advancement of Structured Information Standards. UDDI Version
3.0.2. http://uddi.org/pubs/uddi_v3.htm, 2004.

[12] Organization for the Advancement of Structured Information Standards. Electronic
Business using eXtensible Markup Language. http://www.ebxml.org, 2006.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Invocation and Mediation in VRESCo. In IEEE Transactions on Ser-
vices Computing (TSC), 2010

[14] International Business Machines Corporation (IBM). WebSphere Service Registry and
Repository. http://www.ibm.com/software/integration/wsrr/, 2002.

[15] N. Kavantzas, “Web Services Choreography Description Language 1.0,” editor’s draft,
3 Apr. 2004, W3C; http://lists.w3.org/Archives/Public/www-archive/2004Apr/att-
0004/cdl_v1-editors-apr03-2004-pdf.

[16] D. Scheibli, “Analysis of the State of the Art and Definition of Requirements”, Deliver-
able D1.1 from 4Caast, available from http://4caast.morfeo-
project.org/documentation

[17] Open SOA Consortium:
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

[18] David Chappell; Introducing SCA; 2007;
http://www.davidchappell.com/articles/introducing_sca.pdf

INDENICA D1.1

 80

[19] P. C. Clements, L. Northrop. Software Product Lines. Practices and Patterns. SEI Series
in Software Engineering. Addison-Wesley, November 2005.

[20] F. J van der Linden, E. Rommes, K. Schmid. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering, Springer, 2007.

[21] K. Schmid. Scoping Software Product Lines – An Analysis of an Emerging Technology,
Proceedings of the First Software Product Line Conference (SPLC’1), Kluwer, pp. 513-
532, 2000.

[22] L. Chen, M. A. Babar, N. Ali. Variability management in software product lines: A sys-
tematic review, In Proceedings of the 13th International Conference on Software
Product Lines (SPLC), pp. 81 – 90, 2009.

[23] S. Robak. Feature Modeling Notations for System Families, International workshop on
Software Variability Management (SVM), pp. 58 – 62, 2003.

[24] M. Sinnema, S. Deelstra. Classifying variability modeling techniques, Information and
Software Technology, Vol. 49, pp. 717 – 739, 2007.

[25] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-oriented domain analy-
sis (FODA) feasibility study, CMU/SEI-90-TR-21, SEI, CMU, Tech. Rep., 1990.

[26] K. Czarnecki, U. W. Eisenecker, Generative Programming – Methods, Tools, and Appli-
cations, Addison Wesley, 2000.

[27] K. Schmid, R. Rabiser, and P. Grünbacher, A Comparison of Decision Modeling Ap-
proaches in Product Lines, in Proceedings of the Fifth International Workshop on Vari-
ability Modelling of Software-intensive Systems (VAMOS’11), pp. 119 – 126, 2011.

[28] Y. Bontemps, P. Heymans, P.-Y. Schobbens, J.-C. Trigaux. Semantics of FODA Feature
Diagrams. The Third Software Product Line Conference (SPLC04); Software Variability
Management for Product Derivation - Towards Tool Support, 2004.

[29] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux. Feature Diagrams: A Survey and a Formal
Semantics. Requirements Engineering, 14th IEEE International Conference, 2006.

[30] A. Classen, A. Hubaux, and P. Heymans, A formal semantics for multi-level staged con-
figuration, in Proceedings of the Third International Workshop on Variability Model-
ling of Software-intensive Systems (VAMOS’09), 2009.

[31] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh. FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures, Annals of Software Engineer-
ing, Vol. 5, pp. 143 – 168, 1998.

[32] M. Griss, J. Favaro, M. dl Alessandro. Integrating Feature Modeling with the RSEB. In
Proceedings of the Fifth International Conference on Software Reuse, pp. 76 – 85,
1998.

[33] M. Riebisch, K. Böllert, D. Streitferdt, I. Philippow. Extending Feature Diagrams with
UML Multiplicities, Proceedings of the Sixth Conference on Integrated Design and Pro-
cess Technology (IDPT 2002), 2002.

[34] P. van den Broek, I. Galvão, J. Noppen. Merging Feature Models, Proceedings of the
First International Workshop on Formal Methods in Software Product Line Engineering
(FMSPLE 2010) at (SPLC 2010), pp. 83 – 90, 2010.

[35] Reuse-Driven Software Processes Guidebook, Version 02.00.03, Software Productivity
Consortium Services Corporation, Technical Report SPC-92019-CMC, November 1993.

INDENICA D1.1

 81

[36] K. Schmid, I. John. A Customizable Approach to Full Lifecycle Variability Management,
Science of Computer Programming, Vol. 53, No. 3, pp. 259-284, 2004.

[37] H. Gomaa. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley, 2004.

[38] S. Azevedo, R. J. Machado, A. Bragança, H. Ribeiro. The UML «extend» Relationship as
Support for Software Variability, Proceedings of 14th International Software Product
Line Conference (SPLC 2010), pp. 471 – 475, 2010.

[39] K. Pohl, G. Böckle, F. van der Linden. Software Product Line Engineering Foundations,
Principles, and Techniques, Springer, 2005.

[40] Y. Gil, S. Kremer-Davidson, I. Maman. Sans Constraints? Feature Diagrams vs. Feature
Models, Proceedings of 14th International Software Product Line Conference (SPLC
2010), pp. 271 – 285, 2010.

[41] A. S. Karata , H. O uztüzün, A. Do ru. Mapping Extended Feature Models to Con-
straint Logic Programming over Finite Domains, Proceedings of 14th International
Software Product Line Conference (SPLC 2010), pp. 286 – 299, 2010.

[42] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling Applica-
tions with Patterns, Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.

[43] T. Stahl and M. Völter. Model-Driven Software Development: Technology, Engineer-
ing, Man- agement. Wiley, 2006.

[44] A. Brown. An Introduction to Model Driven Architecture - Part I: MDA and today’s
systems. http://www.ibm.com/developerworks/rational/library/3100.html, Feb. 17
2004.

[45] S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: Model-driven
development. IEEE Software, 20(5):14–18, 2003.

[46] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL frameworks. In
OOPSLA ’06: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 602–616, New York, NY,
USA, 2006. ACM.

[47] OMG. Model-Driven Architecture. http://www.omg.org/mda, 2003.

[48] OMG. Meta Object Facility (MOF TM) 2.0. http://www.omg.org/spec/MOF/2.0/HTML,
Jan. 2006.

[49] OMG. Unified Modelling Language (UML) 2.0. http://www.omg.org/spec/UML/2.0,
July 2005.

[50] OMG. Object Constraint Language (OCL) 2.0. http://www.omg.org/spec/OCL/2.0, May
2006.

[51] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated Bibli-
ography. http://homepages.cwi.nl/~arie/papers/dslbib, Mar. 1998. (accessed
2009/02/18).

[52] L. A. Walton. Software Design For Reliability and Reuse.
http://www.spatial.maine.edu/ ~lisa.walton/dsl.html, 1996.

[53] D. S. Wile and J. C. Ramming. Guest Editorial: Introduction to the Special Section “Do-
main-Specific Languages (DSL)”. IEEE Trans. Software Eng., 25(3):289–290, 1999.

INDENICA D1.1

 82

[54] U. Zdun. Concepts for Model-Driven Design and Evolution of Domain-Specific Lan-
guages. In International Workshop on Software Factories - OOPSLA 2005. Software
Factories, 2005.

[55] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing. John
Wiley & Sons, Inc., New York, NY, USA, 2002.

[56] Klaus Pohl: Requirements Engineering. Fundamentals, Principles, and Techniques.
Springer, Berlin, 2010; ISBN 978-3-642-12577-5

[57] Karl E. Wiegers: Software Requirements 2003. Microsoft Press, Redmond, Washing-
ton, 98052-6399

[58] J. Schmied, P.-R. Wentzel, M. Gerdom, U. Hehn: Mit CMMI Prozesse verbessern!
(Umsetzungsstrategien am Beispiel Requirements Engineering). dpunkt-Verlag 2008; ISBN
978-3-89864-538-6

[59] I. Sommerville, P. Sawyer: Requirements Engineering: A good practice guide; John
Wiley & Sons 1997; ISBN: 0 471 97444 7

[60] D. T. Ross and K. E. Schoman. Structured Analysis for Require- ments Definition. IEEE
Transactions on Software Engineering, 3(1):6–15, 1977.

[61] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and Using Nonfunc-
tional Requirements: A Process- Oriented Approach. IEEE Transactions on Software
Engineering, 18(6):488–497, 1992.

[62] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal- Directed Require-
ments Acquisition. Science of Computer Programming, 20(1-2): 3–50, 1993.

[63] Axel Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In
Proceedings of the 5th International Symposium on Requirements Engineering, pages
249–263. IEEE Computer Society, 2001.

[64] Alistair Sutcliffe. Scenario-Based Requirements Engineering. In Proceedings of the 11th
International Conference on Requirements Engineering, pages 320–329. IEEE Com-
puter Society, 2003.

[65] Eric Yu. Towards Modelling and Reasoning Support for Early- Phase Requirements
Engineering. In Proceedings of the 3rd Inter- national Symposium on Requirements
Engineering, pages 226–235. IEEE Computer Society, 1997.

[66] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and Paolo
Traverso. Specifying and analyzing early requirements in Tropos. RE, 9(2):132–150,
2004.

[67] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Specifications. John Wiley, 2009.

[68] Ariel Fuxman, John Mylopoulos, Marco Pistore, and Paolo Traverso. Model Checking
Early Requirements Specifications in Tropos. In 5th International Symposium on Re-
quirements Engi- neering, pages 174–181. IEEE Computer Society, 2001.

[69] Fabiano Dalpiaz, Raian Ali, Yudistira Asnar, Volha Bryl, and Paolo Giorgini. Applying
Tropos to Socio-Technical System Design and Runtime Configuration. In Proceedings
of the Workshop on Evolution of Agent Development: Methodologies, Tools, Plat-
forms and Languages, pages 101–107. Seneca Edizioni, 2008.

[70] Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and John Mylopoulos. On Goal-
based Variability Acquisition and Analysis. In Proceedings of the 14th International

INDENICA D1.1

 83

Requirements Engineering Conference, pages 76–85. IEEE Computer Society, 2006.

[71] Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John Mylopoulos. Requirements-
Driven Design of Autonomic Application Software. In Proceedings of the 16th Confer-
ence of the Centre for Advanced Studies on Collaborative Research, pages 80–94. IBM,
2006.

[72] Betty Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-
dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Se-
rugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vin- cen-
zo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela
Mirandola, Hausi Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli,
Danny Weyns, and Jon Whittle. Software Engineering for Self-Adaptive Systems: A Re-
search Roadmap. In Betty Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, and
Jeff Magee, editors, Software Engi- neering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 1–26. Springer Berlin / Heidelberg, 2009.

[73] Daniel M. Berry, Betty H. C. Cheng, and Jia Zhang. The four levels of requirements en-
gineering for and in dynamic adaptive systems. In Proceedings of the 11th Interna-
tional Workshop on Requirements Engineering Foundation for Software Quality, 2005.

[74] Heather J. Goldsby, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Danny
Hughes. Goal-Based Modeling of Dynamically Adaptive System Requirements. In Proc.
of the 15th Int. Workshop on Engineering of Computer-Based Systems, pages 36–45,
2008.

[75] Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying Monitoring and Switch-
ing Problems in Context. In Proceedings of the 15th International Requirements Engi-
neering Conference, pages 211–220, 2007.

[76] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopou- los. High variability de-
sign for software agents: Extending tropos. ACM Transactions on Autonomous and
Adaptive Systems, 2(4):16, 2007.

[77] Raian Ali, Fabio Dalpiaz, and Paolo Giorgini. Modeling and Analizing Variability for Mo-
bile Information System. In Proceedings of the 20th International conference on Ad-
vanced Information Sys- tems Engineering, pages 575–578. Lecture Notes in Computer
Science, 2008.

[78] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Modeling Framework for Self-
Contextualizable Software. In Proceedings of the 14th International Conference on
Exploring Modeling Methods in Systems Analysis and Design, pages 326–338. Spring-
er, 2009.

[79] Nauman A. Qureshi and Anna Perini. Engineering Adaptive Requirements. In Proceed-
ings of the 4th International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, pages 126–131. ACM, 2009.

[80] Alexei Lapouchnian and John Mylopoulos. Modeling Domain Variability in Require-
ments Engineering with Contexts. In Proceedings of the 28th International Conference
on Conceptual Modeling, pages 115–130. Springer-Verlag, 2009.

[81] Betty H. C. Cheng, Peter Sawyer, Nelly Bencomo, and Jon Whittle. A Goal-Based Mod-
eling Approach to Develop Requirements of an Adaptive System with Environmental
Uncertainty. In Proc. of the 12th Int. Conf. on Model Driven Engineering Languages
and Systems, pages 468–483, 2009.

INDENICA D1.1

 84

[82] Mirko Morandini, Loris Penserini, and Anna Perini. Towards goal- oriented develop-
ment of self-adaptive systems. In Proceedings of the 3rd International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pages 9–16. ACM,
2008.

[83] Diana Lau and John Mylopoulos. Designing Web Services with Tropos. In Proceedings
of the 2nd International Conference on Web Services, pages 306–313. IEEE Computer
Society, 2004.

[84] Amy Lo and Eric Yu. From Business Models to Service-Oriented Design. In Proceedings
of the 26th International Conference on Conceptual Modeling, pages 87–101. Spring-
er-Verlag, 2007.

[85] Alexei Lapouchnian, Yijun Yu, and John Mylopoulos. Requirements-driven design and
configuration management of business processes. In Proceedings of the 5th Interna-
tional Conference on Business Process Management, pages 246–261. Springer-Verlag,
2007.

[86] Project Management Institute. A Guide to the Project Management Body of
Knowledge (PMBOK Guide), 2000 Edition, Chapter 5: Project Scope Management. Pro-
ject Management Institute, Four Campus Boulevard, Newtown Square, PA 19073-
3299, USA, 2000.

[87] K. Schmid. Scoping Software Product Lines – An Analysis of an Emerging Technology,
Proceedings of the First Software Product Line Conference (SPLC’1), Kluwer, pp. 513-
532, 2000.

[88] I. John, M. Eisenbarth, A Decade of Scoping – A Survey, In Proceedings of the 13th
International Conference on Software Product Lines (SPLC), pp. 31 – 40, 2009.

[89] P. C. Clements. On the Importance of Product Line Scope. Software Product-Family
Engineering, LNCS 2290, pp 102-111, 2002.

[90] A. Helferich, K. Schmid, G. Herzwurm. Product Management for Software Product
Lines – An Overview, In: K. Kang, S. Park, V. Sugumaran (Eds.), Applied Software Prod-
uct-Line Engineering, Auerbach Publications, 2009

[91] M. Khurum, T. Gorschek, K. Pettersson. Systematic Review of Solutions Proposed for
Product Line Economics. Proceedings of the 12th International Software Product Line
Conference (SPLC’08), pp.277-284, 2008.

[92] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, K . Schmid. A Cost Model for Soft-
ware Product Lines, Fifth International Workshop on Product Family Engineering (PFE-
5), Siena, Italy, November 4-6, 2003.

[93] P. C. Clements, J. D. McGregor, S. G. Cohen. The Structured Intuitive Model for Prod-
uct Line Economics (SIMPLE) (CMU/SEI-2005-TR-003), 2003.

[94] K. Schmid. A Comprehensive Product Line Scoping Approach and Its Validation. Inter-
national Conference on Software Engineering (ICSE’24), IEEE Computer Society, pp.
593-603, 2002.

[95] K. Villela, J. Dörr, I. John. Evaluation of a Method for Proactively Managing the Evolv-
ing Scope of a Software Product Line. 16th International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ 2010), pp. 113-127,
2010.

[96] Patricia Collins Cornwell. HP domain analysis: Producing useful models for reusable
software. Hewlett-Packard Journal, 47(4), August 1996.

INDENICA D1.1

 85

[97] Jean-Marc DeBaud and Klaus Schmid. A practical comparison of major domain analysis
approaches — towards a customizable domain analysis framework. In The 10th Inter-
national Conference on Software Engineering & Knowledge Engineering, SEKE ‘98,
pages 128–131, 1998.

[98] C. Salinesi, R. Mazo, D. Diaz, O. Djebbi. Using Integer Constraint Solving in Reuse Based
Requirements Engineering. Proceedings of the 18th International Requirements Engi-
neering Conference (RE’2010), pp. 243-251, 2010.

[99] Prasanna Padmanabhan, Robyn Lutz. Tool-supported verification of product line re-
quirements, Automated Software Engineering Journal, Volume 12, Number 4, 447-
465, Springer, 2005

[100] K. Lauenroth, K. Pohl. "Dynamic Consistency Checking of Domain Requirements in
Product Line Engineering," Proceedings of the 16th International Requirements Engi-
neering Conference (RE '08)., pp.193-202, 2008.

[101] Günter Halmans, Klaus Pohl, Communicating the Variability of a Software-Product
Family to Customers. Software and System Modeling, Vol. 2, No. 1, pp. 15-36, 2003

[102] A. Monzon. A Practical Approach to Requirements Reuse in Product Families of On-
Board Systems, Proceedings of the 16th International Requirements Engineering Con-
ference (RE '08)., pp.223-228, 2008.

[103] O. Djebbi, C. Salinesi, D. Diaz. Deriving Product Line Requirements: the RED-PL Guid-
ance Approach, Proceedings of the 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), pp. 494-501, 2007.

[104] Sebastian Adam, Joerg Doerr, Michael Ehresmann, Pascal Wenzel; Incorporating SPL
Knowledge into a Requirements Process for Information Systems – An Architecture-
driven Tailoring Approach. First International Workshop on Product Line Require-
ments Engineering and Quality (PLREQ'10).

[105] A. Classen, A. Hubaux, P. Heymans. Analysis of Feature Configuration Workflows, Pro-
ceedings of the 17th International Requirements Engineering Conference (RE '09)., pp.
381-382, 2009.

[106] K. Schmid, H. Eichelberger, A Requirements-Based Taxonomy of Software Product Line
Evolution, Electronic Communications of the EASST, Vol. 8, 2008.

[107] Klaus Schmid: Planning Software Reuse: A Disciplined Product Line Scoping Approach
for Software Product Lines. PhD Thesis, University of Kaiserslautern, 2002.

[108] Böckle et al.: Software Produktlinien: Methoden, Einführung, Praxis, dpunkt-Verlag
2004; ISBN 3-89864-257-7.

[109] I. John, J. Knodel, T. Lehner, D. Muthig: A Practical Guide to Product Line Scoping, 10th
International Software Product Line Conference (SPLC'06), IEEE 2006

[110] R. Kreuter, C. Lescher, A. Schreiber, C. Schwanninger, Applying a Cost Model for Prod-
uct Lines: Experience Report, In Proceedings of the 12th International Software Prod-
uct Lines Conference (SPLC'08), Second Volume, 2008.

[111] N.M. Josuttis; SOA in Practice; O’Reilly Publications, 2007.

[112] J. Davis; Open Source SOA; Mannings Publications 2009

[113] D. Chapell; Enterprise Service Bus; O ‘Reilly, 2004

INDENICA D1.1

 86

[114] Brian Jimerson, Building a SOA Practice from the Ground Up,
http://www.oracle.com/technetwork/articles/soa/jimerson-soa-suite-case-study-
239318.html

[115] Jörg Bartholdt, Bernd Franke, Christa Schwanninger, Michael Stal; Combining Product
Line Engineering and Service Oriented Architecture in Health Care Infrastructure Sys-
tems: Experience Report, Proceedings of SPLC 2008; p.115-121; 2008

[116] Olaf Zimmermann, An Architectural Decision Modeling Framework for Service Oriented
Architecture Design, Ph.D. Thesis, University of Stuttgart, 2009

[117] Cardoso, J. and Voigt, K. and Winkler, M.; Service engineering for the internet of ser-
vices; Enterprise Information Systems, pp. 15-27, Springer, 2009

[118] A. G. J. Jansen and J. Bosch. Software architecture as a set of architectural design de-
cisions. In: Proceedings of the 5th Working IEE/IFP Conference on Software Architec-
ture, WICSA, 2005.

[119] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann, and N. Schuster. Reusable archi-
tectural decision models for enterprise application development. In S. Overhage and
C. Szyperski, editors, Quality of Software Architecture (QoSA) 2007, Lecture Notes in
Computer Science, Boston, USA, July 2007. Springer-Verlag Berlin Heidelberg.

[120] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining pattern languages
and architectural decision models in a comprehensive and comprehensible design
method. In Working IEEE/IFIP Conference on Software Architecture (WICSA) 2008,
Vancouver, BC, Canada, February 2008.

[121] J. Tyree and A. Ackerman. Architecture decisions: Demystifying architecture. IEEE
Software, 22(19–27), 2005.

[122] M. Ali Babar and P. Lago. Design decisions and design rationale in software architec-
ture. Journal of Systems and Software 82(8): 1195-1197, 2009

[123] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, options, and criteria: Ele-
ments of design space analysis. Human-Computer Interaction, 6(3–4):201–250, 1991.

[124] P. Kruchten, P. Lago, and H. Vliet. Building up and reasoning about architectural
knowledge. In C. Hofmeister, editor, QoSA 2006 (Vol. LNCS 4214), pages 43–58, 2006.

[125] . Falessi, M. Becker, and G. Cantone. Design decicion rationale: Experiences and steps
towards a more systematic approach. SIG-SOFT Software Eng. Notes 31 – Workshop
on Sharing and Reusing Architectural Knowledge, 31(5), 2006.

[126] P. Kruchten, R. Capilla, and J. C. Duenas. The decision view’s role in software architec-
ture practice. IEEE Software, 26:36–42, 2009.

[127] P. Kruchten, "The 4+1 View Model of Architecture," IEEE Software, vol. 12, no. 6 , pp.
45–50, 1995.

[128] D. Schmidt and F. Buschmann. Patterns, frameworks, and middleware: Their synergis-
tic relationships. In 25th International Conference on Software Engineering, pages
694–704, May 2003.

[129] F. Buschmann, K. Henney, D. C. Schmidt. Pattern Oriented Software Architecture Vol-
ume 5: On Patterns and Pattern Languages, Wiley, 2007.

[130] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusa-
ble Object-Oriented Software. Addison-Wesley, 1994.

[131] N. Harrison, P. Avgeriou, and U. Zdun. Using Patterns to Capture Architectural Deci-
sions. IEEE Software, pages 38-45, IEEE, July/Aug., 2007.

INDENICA D1.1

 87

[132] L. Bass, M. Klein, F. Bachmann. Quality Attribute Design Primitives and the Attribute
Driven Design Method, Proceedings of the 4th International Workshop on Product
Family Engineering (PFE-4), 2002.

[133] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach, Addison-Wesley, 2000.

[134] M. Matinlassi. Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. Proceedings of the 26th International Confer-
ence on Software Engineering (ICSE 2004), pp. 127 – 136, 2004.

[135] P. America, H. Obbink, J. Muller, R. van Ommering. COPA: A Component-Oriented
Platform Architecting Method for Families of Software Intensive Electronic Products,
Proceedings of the First Conference on Software Product Line Engineering (SPLC
2000), 2000.

[136] D. Weiss, C. Lai, R. Tau. Software product-line engineering: a family-based software
development process, Addison-Wesley, 1999.

[137] C. Atkinson, J. Bayer, C. Bunser, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Peach, J. Wust, J. Zettel. Component-based product line engineering with UML, Addi-
son-Wesley, 2002.

[138] M. Matinlassi, E. Niemelä, L. Dobrica. Quality-driven architecture design and quality
analysis method, A revolutionary initiation approach to a product line architecture,
VTT Technical Research Centre of Finland, Espoo, 2002.

[139] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,T. Widen, J.-M. DeBaud.
PuLSE: A Methodology to Develop Software Product Lines, Proceedings of the Fifth
ACM SIGSOFT Symposium on Software Reusability (SSR’99), pp. 122–131, 1999.

[140] P. Knauber, D. Muthig, K. Schmid, T.Widen. Applying Product Line Concepts in Small
and Medium-Sized Companies, IEEE SOFTWARE, Vol. 17, pp. 88 – 95, 2000.

[141] P. Heymans, J. C. Trigaux. Software Product Line: State of the art. Technical report for
PLENTY project, Institut d’Informatique FUNDP, Namur, 2003.

[142] J. Mendling and C. Simon. Business Process Design by View Integration. In Business
Process Management Workshops, volume 4103 of LNCS, pages 55–64. Springer, 2006.

[143] R. Davis. Business Process Modelling with ARIS: a Practical Guide. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

[144] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In
Business Process Management, pages 82–97, 2004.

[145] B. Axenath, E. Kindler, and V. Rubin. An Open and Formalism Independent Meta-
Model for Business Processes. In Proc. of the Workshop on Business Process Refer-
ence Models, pages 45–59, 2005.

[146] B. Axenath, E. Kindler, and V. Rubin. AMFIBIA: A Meta-Model for the Integration of
Business Process Modelling Aspects. International Journal of Business Process Integra-
tion and Management, 2(2):120–131, 2007.

[147] ISO/IEC 10746-3 Open Distributed Processing – Reference Model: Architecture.
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020697_ISO_IEC_10746-
3_1996(E).zip, Sept. 1996.

[148] R. J. Mayer, C. P. Menzel, M. K. Painter, P. S. de Witte, T. Blinn, and B. Perakath. Inte-
grated DEF-inition for Process Description Capture Method Report.
http://www.idef.com/pdf/Idef3_fn.pdf, Sept. 1995.

INDENICA D1.1

 88

[149] H. Tran, T. Holmes, U. Zdun, and S. Dustdar. Modeling Process-Driven SOAs - a View-
Based Approach. In J. Cardoso and W. van der Aalst, editors. Handbook of Research on
Business Process Modeling, IGI Global, Hershey, USA, 2009.

[150] H. Tran, U. Zdun, and S. Dustdar. VbTrace: Using View-based and Model-driven Devel-
opment to Support Traceability in Process-driven SOAs. Software & System Modeling,
Springer, 2009.

[151] R. Hamadi and B. Benatallah, “A petri net-based model for web ser- vice composition,”
in ADC ’03: Proceedings of the 14th Australasian database conference. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003, pp. 191–200.

[152] M. Dumas and A. H. M. ter Hofstede, “Uml activity diagrams as a workflow specifica-
tion language,” in UML01: Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools. London, UK:
Springer-Verlag, 2001, pp. 76–90.

[153] T. Mitra, “Business-driven development,” http://www-
128.ibm.com/developerworks/webservices/library/ws-bdd/index.html, 2005.

[154] D. Skogan, R. Gronmo, and I. Solheim, “Web service composition in uml,” in EDOC ’04:
Proceedings of the Enterprise Distributed Object Computing Conference, Eighth IEEE
International. Washington, DC, USA: IEEE Computer Society, 2004, pp. 47–57.

[155] R. Gronmo and M. C. Jaeger, “Model-driven semantic web service com- position,” in
APSEC ’05: Proceedings of the 12th Asia-Pacific Software Engineering Conference.
Washington, DC, USA: IEEE Computer So- ciety, 2005, pp. 79–86.

[156] J. Koehler, R. Hauser, R. Hauser, S. Kapoor, F. Y. Wu, and S. Ku- maran, “A model-
driven transformation method,” in EDOC ’03: Pro- ceedings of the 7th International
Conference on Enterprise Distributed Object Computing. Washington, DC, USA: IEEE
Computer Society, 2003, p. 186.

[157] R. Hauser and J. Koehler, “Compiling process graphs into executable code,” in GPCE,
2004, pp. 317–336.

[158] C. Ouyang, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede, “Translating bpmn
to bpel,” BPM Center Report, Tech. Rep. BPM- 06-02, 2006.

[159] B. Orriens, J. Yang, and M. P. Papazoglou, “Model driven service com- position,” in
ICSOC: Proceedings of the International Conference on Service-Oriented Computing,
2003.

[160] D. Muthig, T. Patzke, Generic Implementation of Product Line Components, In Revised
Papers from the International Conference NetObjectDays on Objects, Components,
Architectures, Services, and Applications for a Networked World, pp. 313 – 329, 2002.

[161] J. van Gurp, J. Savolainen, Service Grid Variability Realization, Proceedings of 10th
International Software Product Line Conference (SPLC 2006), 85 – 94, 2006.

[162] M. Völter, I. Groher. Product Line Implementation using Aspect-Oriented and Model-
Driven Software Development, Proceedings of 11th International Software Product
Line Conference (SPLC 2007), 233-242, 2007.

[163] A. van der Hoek. Design-time product line architectures for any-time variability. Sci-
ence of Computer Programming, 53(30):285-304, 2004.

[164] K. Schmid, H. Eichelberger. Model-Based Implementation of Meta-Variability Con-
structs: A Case Study using Aspects, Second International Workshop on Variability
Modeling of Software-Intensive Systems, ICB-Research Report No. 22, ISSN 1860-
2770, pp. 63-71, 2008.

INDENICA D1.1

 89

[165] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid. Dynamic Software Product Lines. IEEE
Computer, Vol. 41, No. 4, pp. 93 – 95, 2008.

[166] V. Buregio, E. Almeida, S. Meira. Characterizing Dynamic Software Product Lines – A
Preliminary Mapping Study, Proceedings of the 4th International Workshop on Dy-
namic Software Product Lines (DSPL 2010) at (SPLC 2010), pp. 53 – 60, 2010.

[167] J. Lee and K. Kang. A feature-oriented approach to developing dynamically reconfigu-
rable products in product line engineering. In SPLC '06: Proceedings of the 10th Inter-
national on Software Product Line Conference, pages 131–140, 2006.

[168] I. Montero, J. Peña, and A. Ruiz-Cortés. Towards visualisation and analysis of runtime
variability in execution time of business information systems based on product line. In
Proceedings of the Second International Workshop on Variability Modelling of Soft-
ware-intensive Systems (VAMOS'08), 2008. ICB-Research Report No. 22.

[169] W Kongdenfha, R Saint-Paul, B Benatallah. An aspect-oriented framework for service
adaptation. In Proceedings of the International Conference on Service-Oriented Com-
puting (ICSOC), 2006

[170] D. Ardagna, M. Comuzzi, E. Mussi. Paws: A framework for executing adaptive web-
service processes. In IEEE Internet Computing vol. 24 no. 6, 2007.

[171] M. Di Penta, R. Esposito, M. Villani. WS Binder: a framework to enable dynamic bind-
ing of composite web services. In SOSE’06: Proceedings of the 2006 International
Workshop on Service-Oriented Software Engineering, 2006.

[172] A. Erradi, P. Maheshwari, V. Tosic. Policy-driven middleware for self-adaptation of
web services compositions. In Middleware’06: Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, 2006.

[173] O. Moser, F. Rosenberg, S. Dustdar. Non-intrusive monitoring and service adaptation
for WS-BPEL. In WWW’08: Proceedings of the World Wide Web Conference, 2008

[174] A. Michlmayr, F. Rosenberg, P. Leitner, S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Invocation and Mediation in VRESCo. In IEEE Transactions on Ser-
vices Computing (TSC), 2010.

[175 F. Irmert, T. Fischer, K. Meyer-Wegener. Runtime Adaptation in a Service-Oriented
Component Model. SEAMS '08, In proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, 2008.

[176] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support fea-
tures – Enhancing flexibility in process-aware information systems. In Data &
Knowledge Engineering, 2008

[177] D. Karastoyanova, F. Leymann, and J. Nitzsche. Parameterized BPEL Processes: Con-
cepts and Implementation. In Proceedings of the 4th International Conference on
Business Process Management (BPM), 2006

[178] A. Charfi and M. Mezini. Aspect-Oriented Web Service Composition with AO4BPEL. In
Proceedings of the European Conference on Web Services (ECOWS), 2004

[179] N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, R. Ramkumar. Run-Time Adaptation of
Non-functional Properties of Composite Web Services Using Aspect-Oriented Pro-
gramming, ICSOC '07, in proceedings of the 5th international conference on Service-
Oriented Computing, 2007.

INDENICA D1.1

 90

[180] D. Karastoyanova, and F. Leymann. BPEL'n'Aspects: Adapting Service Orchestration
Logic. In Proceedings of the 2009 International Conference on Web Services (ICWS),
2009.

[181] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. Monitoring, Prediction and
Prevention of SLA Violations in Composite Services, In Proceedings of the International
Conference on Web Services (ICWS), 2009.

[182] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer, S. Dustdar, and F. Leymann.
Preventing SLA Violations in Service Compositions Using Aspect-Based Fragment Sub-
stitution. In Proccedings of the International Conference on Service-Oriented Compu-
ting (ICSOC), 2009.

[183] P. Rossi, Z. Tari. Software Adaptation for Service-Oriented Systems. MW4SOC '06, in
proceedings of the 1st workshop on Middleware for Service Oriented Computing,
2006.

[184] S. H. Chang, H. J. La, S. D. Kim. A Comprehensive Approach to Service Adaptation. SO-
CA '07, In proceedings of the IEEE International Conference on Service-Oriented Com-
puting and Applications, 2007.

[185] J. Harney, P. Doshi. Speeding up Adaptation of Web Service Compositions Using Expi-
ration Times. WWW '07, In proceedings of the 16th international conference on World
Wide Web, 2007.

[186] G. Ortiz, A. García de Prado. Web Service Adaptation. ICIW '10, In proceedings of the
2010 Fifth International Conference on Internet and Web Applications and Services,
2010.

[187] M. Sidibé, A. Mehaoua. Service Monitoring System for Dynamic Service Adaptation in
Multi-domain and Heterogeneous Networks. WIAMIS '08, In proceedings of the 2008
Ninth International Workshop on Image Analysis for Multimedia Interactive Services,
2008.

[188] K. Wang, M. Dumas, C. Ouyang, J. Vayssière. The Service Adaptation Machine .ECOWS
'08, In proceedings of the 2008 Sixth European Conference on Web Services, 2008

[189] B. Wu, S. Deng, J. Wu, Y. Li, L. Kuang, J. Yin. Service Behavioral Adaptation based on
Dependency Graph. APSCC '08, In proceedings of the 2008 IEEE Asia-Pacific Services
Computing Conference, 2008

[190] L. González, R. Ruggia. Towards Dynamic Adaptation within an ESB-based Service In-
frastructure Layer. MONA '10, In proceedings of the 3rd International Workshop on
Monitoring, Adaptation and Beyond, 2010.

[191] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. di Nitto, V. Mazza. A context-driven
adaptation process for service-based applications. PESOS '10, In proceedings of the
2nd International Workshop on Principles of Engineering Service-Oriented Systems,
2010.

[192] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menascé. Software Adaptation Pat-
terns for Service-Oriented Architectures. SAC '10, In proceedings of the 2010 ACM
Symposium on Applied Computing, 2010.

[193] E.A. Marks: Service Oriented Architecture Governance for the Service Driven Enter-
prise. Wiley, Hoboken NJ, 2008.

INDENICA D1.1

 91

[194] Soumya Simanta et al.: A Scenario-Based Technique for Developing SOA Technical
Governance. TECHNICAL NOTE CMU/SEI-2009-TN-009, Carnegie Mellon University,
Pittsburgh, 2009.

[195] Jan Berhardt, Detlef Seese: A Conceptual Framework for the Governance of Service-
Oriented Architectures, in: Service-Oriented Computing – ICSOC 2008 Workshops, Lec-
ture Notes in Computer Science, 2009, Volume 5472/2009, 327-338

[196] Reference Model for Service Oriented Architecture 1.0, OASIS 2005-2006, download
from http://docs.oasis-open.org/soa-rm/v1.0/

[197] Fazilat Hojaji, Mohammad Reza Ayatollahzadeh Shirazi: AUT SOA Governance: A New
SOA Governance Framework Based on COBIT, 2010 3rd International Conference on
Computer Science and Information Technology(2010) vol. 8 p. 403 - 408

[198] de Leusse, P.; Dimitrakos, T.; Brossard, D.: A Governance Model for SOA, 2009 IEEE
International Conference on Web Services (2009) vol. p.1020 – 1027

[199] The Open Group: SOA Governance Framework, Draft Technical Standard, 2009,
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno
=c093

[200] Niemann, Miede, Johannsen, Repp, Steinmetz: Structuring SOA Governance. Interna-
tional Journal on IT/Business Alignment and Governance, 1(1), 58-75, January-March
2010

[201] A. Birukou, V. D'Andrea, F. Leymann, J. Serafinski, P. Silveira, S. Strauch, M. Tluczek: An
Integrated Solution for Runtime Compliance Governance in SOA. Proceedings of the
8th International Conference on Service-Oriented Computing (ICSOC10), USA, 2010.

[202] Service Lifecycle Governance with IBM WebSphere Service Registry and Repository,
Advanced Lifecycle Edition, Armonk NY, September 2009.

[203] Carzaniga, A., Fuggetta, A., Hall, R.S., van der Hoek, A., Heimbigner, D., Wolf, A. L.: A
Characterization Framework for Software Deployment Technologies, TR CU-CS-857-
98, University of Colorado, April 1998

[204] Hofman, A. and Neubauer, B. (2005) "Deployment and Configuration of Distributed
Systems", System Analysis and Modeling, Lecture Notes in Computer Science, Vol.
3319, pp. 1-16.

[205] Vanish Talwar, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and Gueyoung
Jung. 2005. Approaches for Service Deployment. IEEE Internet Computing 9, 2 (March
2005), 70-80. DOI=10.1109/MIC.2005.32 http://dx.doi.org/10.1109/MIC.2005.32

[206] Vanish Talwar, Qinyi Wu, Calton Pu, Wenchang Yan, Gueyoung Jung, and Dejan Mi-
lojicic. 2005. Comparison of Approaches to Service Deployment. In Proceedings of the
25th IEEE International Conference on Distributed Computing Systems (ICDCS '05). IEEE
Computer Society, Washington, DC, USA, 543-552.

[207] [OMG 2004] Object Management Group: Common Object Request Broker Architec-
ture: Core Specification, 2004

[208] Fahringer T., Jugravu A. JavaSymphony: A New Programming Paradigm to Control and
to Synchronize Locality, Parallelism, and Load Balancing for Parallel and Distributed
Computing. Concurrency and Computation: Practice and Experience 2002; 17,7-
8:1005-1025

INDENICA D1.1

 92

[209] Tilevich E., Smaragdakis Y. J-Orchestra: Automatic Java Application Partitioning. In:
Proc. European Conference on Object-Oriented Programming (ECOOP), Malaga, 2002.

[210] Kirby, G. N. C., Walker, S. M., Norcross, S. J., Dearle, A., & Eisenbach, S. (2005). A
Methodology for Developing and Deploying Distributed Applications. 3rd International
Working Conference on Component Deployment CD2005 (Vol. 3798, pp. 37-51).
Springer.

[211] Object Management Group: Model Driven Architecture (MDA), OMG document
ormsc/01-07-01, July 2001

[212] Object Management Group: Deployment & Configuration of Component-based Dis-
tributed Applications Specification, OMG document ptc/04-05-14, May 2004

[213] Hnetynka, P., "A model-driven environment for component deployment," Software
Engineering Research, Management and Applications, 2005. Third ACIS International
Conference on , vol., no., pp. 6- 13, 11-13 Aug. 2005 doi: 10.1109/SERA.2005.12

[214] Ang Tan Fong, Ling Teck Chaw, Phang Keat Keong, and Por Lip Yee. 2009. Automatic
Web Services Deployment. In Proceedings of the 2009 WRI World Congress on Com-
puter Science and Information Engineering - Volume 07 (CSIE '09), Vol. 7. IEEE Com-
puter Society, Washington, DC, USA, 315-319.

[215] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A Decentralized Redeploy-
ment Algorithm for Improving the Availability of Distributed Systems. In Proc. of the
3rd Int. Working Conference on Component Deployment (CD 2005), Grenoble, France,
Nov. 2005.

[216] Gan Deng, Douglas C. Schmidt, and Aniruddha Gokhale. 2008. CaDAnCE: A Criticality-
Aware Deployment and Configuration Engine. In Proceedings of the 2008 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing (ISORC '08). IEEE
Computer Society, Washington, DC, USA, 317-321. DOI=10.1109/ISORC.2008.58
http://dx.doi.org/10.1109/ISORC.2008.58

[217] Object Management Group: Deployment and Configuration of Component-based Dis-
tributed Applications Specification. OMG document formal/06-04-02, April 2006

[218] Inderjeet Singh, Beth Stearns, Mark Johnson, and the Enterprise Team. Designing En-
terprise Applications with the J2EETM Platform, Second Edition, J2EE BluePrints 2002.

[219] Carles Pairot Gavalda, Pedro Garcia Lopez, and Ruben Mondejar Andreu. 2007. De-
ploying Wide-Area Applications Is a Snap. IEEE Internet Computing 11, 2 (March 2007),
72-79. DOI=10.1109/MIC.2007.31 http://dx.doi.org/10.1109/MIC.2007.31

[220] A. Heydarnoori, F. Mavaddat, F. Arbab. Towards an Automated Deployment Planner
for Composition of Web Services as Software Components. Electronic Notes in Theo-
retical Computer Science (ENTCS), 160, pp. 239-253. 2006.

[221] Arbab, F. “Reo: A Channel-based Coordination Model for Component Composition,”
Mathematical Structures in Computer Science, 14, 3 (June 2004), 329-366.

[222] J. de Meer, A. Rennoch, J. Burmeister. CASCON '93: Proceedings of the 1993 confer-
ence of the Centre for Advanced Studies on Collaborative research: software engi-
neering - Volume 1, 1993

[223] R. Pignaton, V. Villagra, J. I. Asensio, J. J. Berrocal. Developing QoS-aware Component-
Based Applications Using MDA Principles. In proceedings: EDOC '04 Proceedings of the
Enterprise Distributed Object Computing Conference, Eighth IEEE International, 2004

INDENICA D1.1

 93

[224] C. Wang, G. Wang, A. Chen, H. Wang, Y. Pierce, C. Fung, S. Uczekaj. A Policy-Based
Approach for QoS Specification and Enforcement in Distributed Service-Oriented Ar-
chitecture. SCC '05: Proceedings of the 2005 IEEE International Conference on Services
Computing - Volume 01, 2005

[225] Sabata, B., Chatterjee, S.; Davis, M.; Sydir, J.J.; Lawrence, T.F. Taxonomy for QoS
specifications. Object-Oriented Real-Time Dependable Systems, 1997. Proceedings.,
Third International Workshop on, 1997

[226] A. Campbell, C. Aurrecoechea and L. Hauw. A Review of QoS Architectures. Proceed-
ings of the 4th IFIP International workshop on Quality of Service (IWQS ‘96), Paris,
March, 1996

[227] A. Marefat. Dynamic Management of Multimedia Applications and Multilevel QOS
Specification. In proceedings: IEEE International Conference on Multimedia Computing
and Systems '97. 1997

 [228] S. Frølund, J. Koistinen. Quality of services specification in distributed object systems
design. COOTS'98: Proceedings of the 4th conference on USENIX Conference on Ob-
ject-Oriented Technologies and Systems - Volume 4, 1998

[229] Y. Matsui, S. Kihara, A. Mitsuzawa, S. Moriai, H. Tokuda. An Extensible Object Model
for QoS Specification in Adaptive QoS Systems. ISORC '99: Proceedings of the 2nd IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, 1999

[230] I. Widya, R. E. Stap, L. J. Teunissen, B. F. Hopman. On the End-User QoS-Awareness of
a Distributed Service Environment. PROMS 2001: Proceedings of the 6th International
Conference on Protocols for Multimedia Systems, 2001

[231] ISO/IEC JTC1/SC21 N13236, “Information Technology – Quality of Service – Frame-
work”, Geneva, 1997

[232] Jan Øyvind Aagedal and Earl F. Ecklund. Modelling QoS: Towards a UML Profile. Lec-
ture Notes in Computer Science, Volume 2460/2002, 65-75, DOI: 10.1007/3-540-
45800-X_22, 2002

[233] C. Koliver, K. Nahrstedt, J.-M. Farines, J. da Silva Fraga and S. Aparecida Sandri. Specifi-
cation, Mapping and Control for QoS Adaptation. Real-Time Systems archive Volume
23 Issue 1/2, July-September 2002

[234] B. Bordbar, J. Derrick, G. Waters. Using UML to specify QoS constraints in ODP. Jour-
nal: Computer Networks: The International Journal of Computer and Telecommunica-
tions Networking, 2002

[235] Object Management Group. UML Profile for Enterprise Distributed Object Computing
(EDOC) Specification OMG Document: ptc/02-02-05. (2002).

[236] J. Jin, K. Nahrstedt. QoS specification languages for distributed multimedia applica-
tions: a survey and taxonomy. Journal IEEE MultiMedia Volume 11 Issue 3, July 2004

[237] M.A. de Miguel, M.T. Higuera. Runtime management of quality specification for QoS-
aware components. In proceedings 30th Euromicro Conference, 2004

[238] G. Dobson, R. Lock, I. Sommerville. QoSOnt: a QoS ontology for service-centric sys-
tems. In proceeding: EUROMICRO '05 Proceedings of the 31st EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, 2005

[239] A. Lopes, F. Amaro, G. Elias, G. Lemos, M. F. Magalhaes. QoS Specification and Man-
agement in a Middleware for Distributed Multimedia Systems. AINA '06: Proceedings

INDENICA D1.1

 94

of the 20th International Conference on Advanced Information Networking and Appli-
cations - Volume 1, 2006.

[240] A. C. Prudêncio, M. L. Sheibel, R. Willrich, S. Tazi, G. Sancho. Application and Network
QoS Mapping Using an Ontology-based Approach. In proceedings: CTRQ'10 Proceed-
ings of the 2010 Third International Conference on Communication Theory, Reliability,
and Quality of Service, 2010.

[241] Diana Berberova and Boyan Bontchev. 2009. Design of service level agreements for
software services. In Proceedings of the International Conference on Computer Sys-
tems and Technologies and Workshop for PhD Students in Computing (CompSysTech
'09), Boris Rachev and Angel Smrikarov (Eds.). ACM, New York, NY, USA, , Article 26 , 6
pages.

[242] James Skene, D. Davide Lamanna, and Wolfgang Emmerich. 2004. Precise Service Lev-
el Agreements. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE '04). IEEE Computer Society, Washington, DC, USA, 179-188.

[243] Alessio Gambi, Giovanni Toffetti, and Mauro Pezzè. 2010. Protecting SLAs with surro-
gate models. In Proceedings of the 2nd International Workshop on Principles of Engi-
neering Service-Oriented Systems (PESOS '10). ACM, New York, NY, USA, 71-77.

[244] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. 2010.
Monitoring, Prediction and Prevention of SLA Violations in Composite Services. In Pro-
ceedings of the 2010 IEEE International Conference on Web Services (ICWS '10). IEEE
Computer Society, Washington, DC, USA, 369-376.

[245] Vinod Muthusamy, Hans-Arno Jacobsen, Tony Chau, Allen Chan, and Phil Coulthard.
2009. SLA-driven business process management in SOA. In Proceedings of the 2009
Conference of the Center for Advanced Studies on Collaborative Research (CASCON
'09), Patrick Martin, Anatol W. Kark, and Darlene Stewart (Eds.). ACM, New York, NY,
USA, 86-100.

[246] Paschke, A., Schnappinger-Gerull, E.. A Categorization Scheme for SLA Metrics. Multi-
Conference Information Systems (MKWI). 2006. Passau, Germany.

[247] Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R., A Service Level Agreement Lan-
guage for Dynamic Electronic Services, Journal of Electronic Commerce Research, Vol-
ume 3, Issue 1&2, Kluwer Academic Publishers, March, 2003

[248] Keller, A., Ludwig, H., The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services, Journal of Network and Systems Management, Special
Issue on E-Business Management, Volume 11, Number 1, Plenum Publishing Corpora-
tion, March, 2003

[249] H. Ludwig, A. Keller, A. Dan, R. Franck, and R.P. King, Web Service Level Agreement
(WSLA) Language Specification, IBM Corporation, July 2002

[250] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. 2002. WSOL - Web Service Offerings
Language. In Revised Papers from the International Workshop on Web Services, E-
Business, and the Semantic Web (CAiSE '02/ WES '02). Springer-Verlag, London, UK,
UK, 57-67.

[251] Tosic, V., Pagurek, B., Esfandiari, B., Patel, K., Ma, W.: Web Service Offerings Language
(WSOL) and Web Service Composition Management (WSCM). In Proc. of the OOWS'02
(Object-Oriented Web Services) workshop at OOPSLA 2002 (Seattle, USA, Nov. 2002)

INDENICA D1.1

 95

[252] Adrian Paschke. 2005. RBSLA A declarative Rule-based Service Level Agreement Lan-
guage based on RuleML. In Proceedings of the International Conference on Computa-
tional Intelligence for Modelling, Control and Automation and International Confer-
ence on Intelligent Agents, Web Technologies and Internet Commerce Vol-2 (CIMCA-
IAWTIC'06) - Volume 02 (CIMCA '05), Vol. 2. IEEE Computer Society, Washington, DC,
USA, 308-314.

[253] Web Services Agreement Specification (WS-Agreement). Specification from the Open
Grid Forum (OGF). http://www.ogf.org/documents/GFD.107.pdf

[254] W3C. Web Service Modeling Ontology (WSMO). W3C Member Submission 3 June
2005.

[255] Ioan Toma, Douglas Foxvog, and Michael C. Jaeger. 2006. Modeling QoS characteris-
tics in WSMO. In Proceedings of the 1st workshop on Middleware for Service Oriented
Computing (MW4SOC 2006) (MW4SOC '06). ACM, New York, NY, USA, 42-47.

[256] [Lamanna et al. 2003] D. Davide Lamanna, James Skene, and Wolfgang Emmerich.
2003. SLAng: A Language for Defining Service Level Agreements. In Proceedings of the
The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS
'03). IEEE Computer Society, Washington, DC, USA, 100-110.

[257] Franco Raimondi, James Skene, and Wolfgang Emmerich. 2008. Efficient online moni-
toring of web-service SLAs. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering (SIGSOFT '08/FSE-16). ACM, New
York, NY, USA, 170-180.

[258] James Skene, Allan Skene, Jason Crampton, and Wolfgang Emmerich. 2007. The mon-
itorability of service-level agreements for application-service provision. In Proceedings
of the 6th international workshop on Software and performance (WOSP '07). ACM,
New York, NY, USA, 3-14.

[259] N. J. Dingle and W. J. Knottenbelt and L. Wang. Service Level Agreement Specification
Compliance Prediction and Monitoring with Performance Trees, ESM08.

[260] Torvald Riegel. A generalized approach to runtime monitoring for real-time systems.
Master’s thesis, Technische Universität Dresden, 2005.

[261] K. Bratanis, D. Dranidis, and A.J.H. Simons. An extensible architecture for run-time
monitoring of conversational web services. In Proceedings of the 3rd International
Workshop on Monitoring, Adaptation and Beyond, pages 9–16. ACM, 2010.

[262] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. Comprehensive QoS monitor-
ing of Web services and event-based SLA violation detection. In Proceedings of the 4th
International Workshop on Middleware for Service Oriented Computing, pages 1–6.
ACM, 2009.

[263] SS Yau, N. Ye, H. Sarjoughian, and D. Huang. Developing Service-Based Software Sys-
tems with QoS Monitoring and Adaptation. In Future Trends of Distributed Computing
Systems, 2008. FTDCS’08. 12th IEEE International Workshop on, pages 74–80. IEEE,
2008.

[264] Microsoft MSDN. Wcf performance counters. http://msdn.microsoft.com/en-
us/library/ms735098.aspx.

[265] H. Zadeh and M.A. Seyyedi. Qos monitoring for web services by Time Series Forecast-
ing. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE Interna-
tional Conference on, volume 5, pages 659–663. IEEE, 2010.

INDENICA D1.1

 96

[266] L. Fei, Y. Fangchun, S. Kai, and S. Sen. A policy-driven distributed framework for moni-
toring quality of web services. In Web Services, 2008. ICWS’08. IEEE International Con-
ference on, pages 708–715. IEEE, 2008.

[267] A. Lazovik, M. Aiello, and M. Papazoglou. Associating assertions with business pro-
cesses and monitoring their execution. In Proceedings of the 2nd international confer-
ence on Service oriented computing, pages 94–104. ACM, 2004.

[268] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In Proceed-
ings of the 2nd international conference on Service oriented computing, pages 193–
202. ACM, 2004.

[269] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. Service-
Oriented Computing-ICSOC 2005, pages 269–282, 2005.

[270] M. Lohmann, L. Mariani, and R. Heckel. A model-driven approach to discovery, testing
and monitoring of web services. Test and Analysis of Web Services, pages 173–204,
2007.

[271] Z. Li, Y. Jin, and J. Han. A runtime monitoring and validation framework for web service
interactions. In Software Engineering Conference, 2006. Australian, pages 10–79. IEEE,
2006.

[272] J. Simmonds, Yuan Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and
J. Waterhouse. Runtime monitoring of web service conversations. IEEE Transactions
on Services Computing, 2(3):223–244, 2009.

[273] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,
C. Kaler, D. Langworthy, A. Malhotra, et al. Web services policy framework (ws-policy).
Version, 1(2):2003–2006, 2006.

[274] B.N. Grosof. Representing e-commerce rules via situated courteous logic programs in
ruleml* 1. Electronic Commerce Research and Applications, 3(1):2–20, 2004.

[275] Khaled Mahbub and George Spanoudakis. A framework for requirents monitoring of
service based systems. In Proceedings of the 2nd international conference on Service
oriented computing, ICSOC ’04, pages 84–93, New York, NY, USA, 2004. ACM.

[276] K. Mahbub and G. Spanoudakis. Run-time monitoring of requirements for systems
composed of web-services: initial implementation and evaluation experience. In Web
Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on, pages
257 – 265 vol.1, 2005.

[277] W.M.P. Aalst and M. Pesic. Specifying and monitoring service flows: Making web ser-
vices process-aware. Test and Analysis of Web Services, pages 11–55, 2007.

[278] F.H. Zulkernine, P. Martin, and K. Wilson. A Middleware Solution to Monitoring Com-
posite Web Services-based Processes. In 2008 IEEE Congress on Services Part II, pages
149–156. IEEE, 2008.

[279] M. Alodib and B. Bordbar. A model-based approach to Fault diagnosis in Service ori-
ented Architectures. In Web Services, 2009. ECOWS’09. Seventh IEEE European Con-
ference on, pages 129–138. IEEE, 2009.

[280] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis. Comprehensive Monitoring of BPEL
Processes. Internet Computing, IEEE, 14(3):50–57, 2010.

INDENICA D1.1

 97

[281] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, and D. Zwink. Cross-
organizational process monitoring based on service choreographies. In Proceedings of
the 2010 ACM Symposium on Applied Computing, pages 2485–2490. ACM, 2010.

[282] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-Based
Runtime Software Evolution. In Proceedings of the 20th International Conference on
Software Engineering, pages 177–186. IEEE Computer Society, 1998.

[283] David Garlan, Shang-Weng Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
IEEE Computer, 37(10):46–54, 2004.

[284] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and Jean-Marc Jézéquel.
Modeling and Validating Dynamic Adaptation. In Proceedings of the 5th International
Workshop Models@runtime, pages 97–108. Springer-Verlag, 2008.

[285] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Exploiting non-functional
preferences in architectural adaptation for self-managed systems. In Proceedings of
the 25th Symposium on Applied Computing, pages 431–438. ACM, 2010.

[286] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic. PLASMA: A
Plan-based Layered Architecture for Soft- ware Model-driven Adaptation. In Proceed-
ings of the 25th Inter- national Conference on Automated Software Engineering, page
to appear. ACM, 2010.

[287] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In
Proc. of Future of Software Engineering, pages 259–268, 2007.

[288] Luciano Baresi and Sam Guinea. Self-supervising BPEL Processes. IEEE Trans. on Soft-
ware Engineering, 2011.

[289] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi, Sam Guinea, and Paola. Spoletini.
Validation of Web Service Compositions. IET Software, 1(6):219–232, 2007.

[290] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Pro-
ceedings of the 11th Euro- pean Conference on Object-Oriented Programming, pages
220–242. Springer, 1997.

[291] Alexander Keller and Heiko Ludwig. Defining and Monitoring Service-Level Agree-
ments for Dynamic e-Business. In Proceedings of the 16th USENIX conference on Sys-
tem administration, pages 189–204. USENIX Association, 2002.

[292] Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad P. A. van Moorsel, and Fabio Casati.
Automated SLA Monitoring for Web Services. In Proceedings of the 13th International
Workshop on Distributed Systems: Operations and Management, pages 28–41.
Springer-Verlag, 2002.

[293] Abdelkarim Erradi, Piyush Maheshwari, and Vladimir Tosic. WS-Policy based Monitor-
ing of Composite Web Services. In Proceed- ings of the 5th European Conference on
Web Services, pages 99– 108. IEEE Computer Society, 2007.

[294] W3C. Web Services Policy 1.2. http://www.w3.org/Submission/ WS-Policy/.
[295] Vladimir Tosic, Abdelkarim Erradi, and Piyush Maheshwari. WS- Policy4MASC - A WS-

Policy Extension Used in the MASC Middleware. In Proceedings of the 5th European
Conference on Web Services, pages 458–465. IEEE Computer Society, 2007.

[296] Marco Comuzzi and George Spanoudakis. A Framework for Hierarchical and Recursive
Monitoring of Service Based Systems. In Proceedings of the 4th International Confer-

INDENICA D1.1

 98

ence on Internet and Web Applications and Services, pages 383–388. IEEE Computer
Society, 2009.

[297] Marco Comuzzi and George Spanoudakis. Dynamic set-up of Monitoring Infrastruc-
tures for Service Based Systems. In Proceedings of the 25th Symposium on Applied
Computing, pages 2414–2421. ACM, 2010.

[298] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. Scene: A service compo-
sition execution environment supporting dynamic changes disciplined through rules.
In Proceedings of the 4th International Conference on Service Oriented Computing,
pages 191–202, 2006.

[299] H. Kett, K. Voigt, G. Scheithauer, J. Cardoso. Service engineering in business ecosys-
tems; Proceedings of the XVIII. International RESER Conference, pp. 25-26; 2008

[300] H. Kett, G. Scheithauer, N. WEINER, A. WEISBECKER. Integrated Service Engineering
(ISE) for Service Ecosystems: An Interdisciplinary Methodology for the Internet of Ser-
vices; Proceedings of the eChallenges e-2009 Conference ; 2009

[301] J. A. Zachman. A Framework for Information Systems Architecture; IBM Systems Jour-
nal, pp. 276-292; 1987

[302] M. Voelter, E. Visser. Product Line Engineering using Domain-Specific Languages; In
Proceedings of the 13th International Software Product Line Conference; 2009

[303] S. D. Kim, H. G. Min, J. S. Her, S. H. Chang. DREAM: A Practical Product Line Engineering
Using Model Driven Architecture. In Proceedings of the Third International Conference
on Information Technology and Applications (ICITA'05) Volume 2 - Volume 02; 2005

[304] A. Rummler, B. Grammel, C. Pohl. Improving traceability in model-driven development
of business applications; Traceability Workshop (ECMDA-TW); 2007

[305] MDPLE. 3rd International Workshop on Model-Driven Product Line Engineering, Brim-
ingham, 6th June 2011. http://sites.lero.ie/mdple2011/.

[306] K. Czarnecki, S. Helsen, and U.Eisenecker. Staged configuration through specialization
and multi-level configuration of feature models. In Software Process: Improvement
and Practice, volume 10, opages 143-169, 2005.

[307] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake. Multi-dimensional variability
modeling. In 5th International Workshop on Variability Modelling of Software-
intensive Systems, pages 11–20, 2011.

[308] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, F. van der Linden. Hierarchical Variability
Modeling for Software Architectures. In Proceedings Software Product Line Confer-
ence (SPLC 2011), 2011.

[309] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala Component
Model for Consumer Electronics Software. IEEE Computer, pp 78 – 85, 2000.

[310] R. van Ommering. Software Reuse in Product Populations. IEEE Transactions on
Software Engineering, vol. 31, pp 537 – 550, 2005.

[311] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer. Delta Modeling for Software Architec-
tures. Modellbasierte Entwicklung Eingebetteter Systeme (MBEES), 2011.

[312] J. Pérez, J. Díaz, C. Costa-Soria, and J. Garbajosa. Plastic Partial Components: A Solu-
tion to Support Variability in Architectural Components. Joint Working IEEE/IFIP Con-
ference on Software Architecture 2009 & European Conference on Software Architec-
ture 2009 (WICSA 2009), pp. 221 – 230, 2009.

INDENICA D1.1

 99

[313] M. Matinlassi, E. Niemelä, L. Dobrica. Quality-driven architecture design and quality
analysis method, A revolutionary initiation approach to a product line architecture,
VTT Technical Research Centre of Finland, Espoo, 2002.

[314] www.biglever.com, visited October 2009.

[315] www.pure-systems.com, visited October 2009.

[316] K. Schmid, R. Rabiser, P. Grünbacher. A Comparison of Decision Modeling Approaches
in Product Lines. 5th International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS 2011), pp. 119 – 126, 2011

[317] D. Dhungana, T. Neumayer, P. Grünbacher, R. Rabiser. Supporting evolution of prod-
uct line architectures with variability model fragments. Proceedings of the Seventh
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008), pp. 327 – 330,
2008.

[318] D. Dhungana, P. Grünbacher, R. Rabiser, T. Neumayer. Structuring the modeling space
and supporting evolution in software product line engineering. Journal of Systems
and Software, pp. 1108 – 1122, 2010.

[319] M. Rosenmüller and N. Siegmund. Automating the configuration of multi software
product lines. In Proc. of the Fourth International Workshop on Variability Modelling
of Software-intensive Systems (VAMOS'10), pp 123–130, 2010.

[320] S. El-sharkawy, C. Kröher, and K. Schmid. Supporting heterogeneous compositional
multi software product lines. MAPLE/SCALE in the Proceedings of the 15th Interna-
tional Software Product Line Conference (SPLC‘11), Vol. 2, 2011.

[321] S. El-sharkawy, C. Kröher, and K. Schmid. Support for complex product line population.
In the Proceedings of the 15th International Software Product Line Conference
(SPLC’11), Vol. 2, 2011.

[322] P. van den Hamer, F. van der Linden, A. Saunders, and H. te Sligte. An integral hierar-
chy and diversity model for describing product family architectures. In theProceedings
of the Second International ESPRIT ARES Workshop on Development and Evolution of
Software Architectures for Product Families, 1998.

[323] Tiziana Margaria, Daniel Meyer, Christian Kubczak, Malte Isberner, and Bernhard Stef-
fen. 2009. Synthesizing Semantic Web Service Compositions with jMosel and Golog. In
Proceedings of the 8th International Semantic Web Conference (ISWC '09), Abraham
Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Mot-
ta, and Krishnaprasad Thirunarayan (Eds.). Springer-Verlag, Berlin, Heidelberg, 392-
407.

[324] Stefan Naujokat, Anna-Lena Lamprecht, Bernhard Steffen, "Tailoring Process Synthesis
to Domain Characteristics," Engineering of Complex Computer Systems, IEEE Interna-
tional Conference on, pp. 167-175, 2011 16th IEEE International Conference on Engi-
neering of Complex Computer Systems, 2011.

[325] Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M. Semantic Web Services Challenge,
Springer, 2009.

