
Document ID: INDENICA – D5.3.2
Deliverable Number: D5.3.2
Work Package: 5
Type: Deliverable
Dissemination Level: PU
Status: final
Version: 1.0
Date: 2013-09-30
Author(s): SIE, SAP, NDL

Project Start Date: October 1st2010, Duration: 36months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document describes the implementation of a family of service platforms
as outlined in the case studies of the project. This includes the integration
among those platforms.

Implementation of a Family of
Service Platforms and

Applications (Final)

Version History
0.1

0.2

1.0

5 Sep 2013

26 Sep 2013

11. Oct 2013

Document Structure

Draft Version

Final Version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents .. 3

1 Introduction... 4

2 Integration Scenarios ... 5

2.1 Check In .. 5

2.2 Error Handling ... 6

2.3 Unloading .. 7

2.4 Check Out .. 8

3 Warehouse Management System .. 9

3.1 Overall Architecture .. 9

3.2 Used Technologies .. 11

3.3 Available Services .. 11

4 Yard Management System ... 13

4.1 Overall Architecture .. 13

4.2 Used Technologies .. 15

4.3 Available Services .. 16

4.4 Variability Management .. 17

5 Remote Maintenance System .. 20

5.1 Overall Architecture .. 20

5.2 Used Technologies .. 21

5.3 Available Services .. 22

5.4 Installation Process ... 26

5.5 Real Time Communication ... 27

6 Technical Integration ... 30

6.1 Overview ... 30

6.2 Architectural Design and Implementation ... 31

6.3 Deployment and Enactment .. 35

7 Summary ... 38

Table of Figures ... 39

INDENICA D5.3.2

4

1 Introduction

This document describes the implementation of the service platform from the
partners SAP, Siemens and NextDayLab (NDL). As outlined in previous documents,
SAP is responsible for a Yard Management Platform, Siemens provides the
Warehouse Management Platform and NDL provides Remote Maintenance Platform.

The document is structured as follows:

The first section illustrates the integration scenario for both platforms. This
forms the background for the technical implementation of the platforms
itself as well as the integration among them (Virtual Service Platform, VSP).

The next two sections provide details on the technical implementation of the
two base platforms (YMS, WMS and RMS).

The integration is shortly outlined in the following section.

INDENICA D5.3.2

5

2 Integration Scenarios

The integration of the Yard Management System (YMS), the Warehouse
Management System (WMS) and the Remote Maintenance System (RMS) is done in
a scenario taken from the real world: There is a warehouse with a yard attached. In
the yard trucks are managed, meaning they are checked in and out. Additional, yard
jockeys, who handle processes in the yard itself, need to be managed. Responsibility
of the RMS is to provide the voice and video connectivity between the components
systems. The warehouse takes care of loading, unloading and storing the goods from
the trailers. More detailed information can be found in D5.1.

For illustration purpose the “unloading an error condition” process will be explained
in detail. In this scenario a truck arrives at an appointed time and date, the truck
arrives and the call between truck driver and security guard is established, the
warehouse is busy, call between the system operator and the WMS support team is
made and text notification is sent to the driver, trailer is taken to a free waiting bay,
when the warehouse is free again the trailer is brought to the dock, unloaded, taken
from the dock and checks out again. The whole process can be split into four main
processes: check in, error handling, unloading, check out. These will be described in
more detail in the following.

Some excerpts of the process’ sequence diagram are used. Following abbreviations
are used in the description:

ERP: Enterprise Resource Planning system, no actual part of the scenario but
necessary for modelling a real world process. The system provides data on trailer’s
goods.

VSP: The Virtual Service Platform.

OP: Operator panel, an application on top of the VSP with which a person supervises
and, if necessary, manages the whole process.

YUI/WUI: YMS/WMS user interface for the users of the systems, e.g. drivers and
jockeys.

2.1 Check In
The check in-phase (see Figure 1) handles newly arrived trucks as shown in Figure 1.
The first step is to create a new appointment, which informs the YMS that at some
specific time a truck will arrive at the yard for unloading. Information provided is
time and date of arrival, the driver driving the truck, the ID of the order and the
expected loading-time. This is done manually by the operator.

As soon as the truck arrives at the Yard the “truckArrived” event is sent
(automatically or by the gatekeeper) and the YMS informs the VSP that a truck
(including its booking/order ID) has arrived. The VSP automatically establishes the
call between the truck driver and the security guard in order to ensure his or her
identity. Next, the VSP asks the ERP for necessary actions for the booking, which in

INDENICA D5.3.2

6

this case is just “unloading”. Then it checks, whether the WMS is able to handle the
order. However, the WMS denies this for some reason.

After receiving the “no!” answer from the WMS, the VSP creates the phone call
between the system operator and the WMS support team to force them to negotiate
the approximate time when the WMS will become ready. The YMS then creates a
new jockey task, so one of the free yard jockeys can take care of fetching the trailer
and getting it to a free waiting bay. The jockey picks the task and notifies the YMS
when it is done.

Figure 1Check-in Process

2.2 Error Handling
When an error occurs (see Figure 2), as happened upon check in, the operator, some
person supervising the system, has to manually resolve the problem. In this case the
operator is to be informed by the WMS support team when the approached problem
could be approximately resolved and after that the RMS is dispatched by the VSP to
notify the truck driver.

The VSP will inform the YMS, that the trailer can now be brought to the dock, for
which the YMS creates a new jockey task. After a jockey has picked the task and
marked it as done, the YMS notifies the VSP that unloading can be started.

INDENICA D5.3.2

7

Figure 2 Error Handling Process

2.3 Unloading
When being notified that unloading of the track can be started, the VSP connects the
truck driver to the camera at the unloading bay and creates a new unloading order
(see Figure 3). Thanks to the camera connection during the unloading process the
truck driver is continuously informed about the unloading progress, so he/she can be
ready to take the truck right at the moment when the unloading ends. Processing of
the unloading order is performed by the operator using the graphical user interface
of the WMS – in the sequence diagram called WUI. First, the operator gets an empty
box and inserts one or several from the truck unloaded products into it. Then he
triggers registration of this box in the system using WUI. Next, the operator triggers
storage request of the registered box into a suitable location in the warehouse.
These two steps are done in a loop, till all products from the unloading order are
processed. In the end, the operator uses the WUI to let the WMS know that the
unloading was finished. The WMS in its turn informs the VSP that the unloading
order has been successfully processed.

INDENICA D5.3.2

8

Figure 3 Unloading Process

2.4 Check Out
After unloading is finished (see Figure 4) the VSP establishes again the call between
truck driver and the security guard and informs the operator that the error is
resolved and everything is back to normal again. At the same time it notifies the YMS
that the trailer can be fetched from the dock and the YMS creates a new jockey task
for fetching the trailer from the dock. A jockey picks the task and marks it as finished
as soon as he is done.

The ultimate step is the driver leaving the yard along with the trailer. This event is
fired automatically or by the gatekeeper and confirms that the truck has left.

Figure 4 Check-Out Process

INDENICA D5.3.2

9

3 Warehouse Management System

This section includes a description of Warehouse Management System (WMS) its
services, technologies and implementation details. And it describes integration with
the virtual service platform of INDENICA.

3.1 Overall Architecture
WMS deals with storage pick up and flow of products in a warehouse. To achieve
this, the system contains of tree main components: Warehouse Management System
(WMS Core), Conveyor Control System (CCS) and Simulation (see Figure 5)

Figure 5 Warehouse Management System (WMS) Architecture

WMS Core is a top level system. It contains of several services. For example
StorageBinSearch service searches for a suitable location for storing a box with
products in the warehouse. The WMS services complete different mostly simple
tasks and can be invoked separately or in a composite way to complete more
complicated tasks. These services can be accessed by the operator of the system
using the Warehouse User Interface (WUI, see Figure 6). Information about what
products is in the warehouse and in which location is stored in a database.

INDENICA D5.3.2

10

Figure 6 Warehouse User Interface (WUI)

CCS is serving as lower level transportation system. It is an abstraction layer to
motors, conveyors and vertical lift modules and is in charge of transport jobs within
the warehouse.

Simulation acts as the low level hardware system and visualizes the warehouse and
stored products. It is implemented as a web site and contains of two components:
SimSite (See Figure 7) as the actual simulation site and the hosting SimServer.

Figure 7 Warehouse Simulation Site (SimSite)

INDENICA D5.3.2

11

3.2 Used Technologies
WMS is currently realized as a solution in Visual Studio 2008 using .Net Framework
4.More specific, WMS and CCS Services are implemented in C# using Windows
Communication Foundation API (WCF).

WCF Services are configured via Spring.NET dependency injection. So that internally
requested service instances are retrieved dynamically from the Spring Container.
Communication between CCS and Simulation is realized asynchronously via
ActiveQM (.Net Message Service API -JMS for .NET). Communication between
Simulation Site and Simulation Server is based on HTML5 WebSocket which enables
bi-directional, full-duplex channels over a single TCP connection. Therefore the
prerequisite for running simulation is WebSocket capable browser.

Communication with the external INDENICA virtual service platform is also managed
using ActiveMQ. Currently there are two queues to handle it: one queue for
incoming calls and one queue for outgoing calls.

The Warehouse User Interface (WUI) is a Windows Form, invoking WMS services via
Spring.NET dependency injection.

WMS manipulates objects (boxes, materials, orders, etc.). Their mapping to
relational database in the MS SQL Server is done using ADO.NET Entity Framework.

3.3 Available Services
The Warehouse Management System provides several services to accomplish
warehouse tasks, for example creating a new box, inserting materials in the box,
searching for the next free bin location, etc. One service can offer several methods.
These services/methods are .NET WCF services and are internally accessed using
WCF Spring Container.

The Table 1gives an overview of existing domain-specific services in the Warehouse
Management System and a short description of them.

Service, Method Name Description

Material Mgt Service
bool CreateBox(string boxId) / bool DeleteBox(string boxId)

Creates / deletes a box

Material Mgt Service
bool CreateMaterial(string materialNumber, string name,
string description)

Creates a new material with the given name
and description

Material Mgt Service
bool InsertMaterial(string boxId, string content, int
quantity)

Inserts the given amount of material to the
box

Material Mgt Service
bool CreateLocation(string locId, string typeId, string
rackId, bool reserved) / bool DeleteLocation(string locId)

Creates / deletes a location

Material Mgt Service
bool CreateTransportentry(string boxId, string binId) / bool
DeleteTransportentry(string boxId)

Creates / deletes a transport entry

Material Mgt Service
bool ReserveBin(string binId) / UnReserveBin(string binId)

Reserves / unreserves a bin

INDENICA D5.3.2

12

Material Mgt Service
bool SetLocation(string boxId, string binId)

Sets location of the box to the binId

Material Mgt Service
bool ReadyForUnloading(string orderId, string dockId, int
numberOfBoxes, bool toBeCleaned)

Checks if WMS can store the given number
of boxes of the order (unloading the truck)

Material Mgt Service
bool ReadyForLloading(string orderId, string dockId,
Dictionary<string, int> list)

Checks if WMS can load the list of the goods
in the order on the truck at the certain dock
(loading the truck)

Order Mgt Service
bool CreateOrder(string orderId, string dockId, bool
isUnloading, bool toBeCleaned, Dictionary<string, int> list)
/ bool DeleteOrder(string orderId)

Creates / deletes an unloading or loading
order

Order Mgt Service
bool ReserveOrder(string orderId) / bool
UnReserveOrder(string ordered)

Reserves / unreserves the order

Order Mgt Service
bool ProcessOrder(string orderId)

Sets the order status to inProcess and stars
processing the order

Picking Service
bool StartNextPick(string orderId)

Finds the next pick of the order with type
loading and with the status inProcess and
retrieves the box for loading

Picking Service
bool EndLastPick(string orderId)

Finds the pick which was started and
finishes it (either deletes the box if it’s
empty or stores the box back to WMS)

Material Mgt Service
void Finished(bool orderId)

Informs the VSP that order processing was
finished and deletes the finished order

GoodsIn Service
bool RegisterBox(string boxId, string materialNumber, int
amount)

Creates a new box and inserts the given
amount of the material into this box

StorageBinSearch Service
string SearchNextFreeBin()

Gets the id of the next free storage bin

TransportPlanning Service
void StoreBox(string boxId)

Initiate storing of the given box in the next
free bin

Routing Service
string GetNextDestination(string boxId, string binId)

Gets the id of the next destination

Routing Service
string GetNextTransportMedium(string boxId)

Gets the id of the next transport medium

GeneralTransport Service
void InitiateTransport(string boxId, string binId)

Initiate the transport of the given box to the
given bin

CCS Service
void Move(string boxId, string transportMedium, string
startLocId, string entLocId)

Moves the box using the given transport
medium from the start location to the end
location

Table 1 Domain-specific services in WMS

INDENICA D5.3.2

13

4 Yard Management System

The following sections should present an overview of the yard management from a
more technical point of view. Aspects of architecture and used technologies will be
highlighted as well as used techniques for achieving integration with the virtual
service platform of INDENICA.

4.1 Overall Architecture
The yard management system is a web application that is intended to run in a cloud-
based environment, e.g. SAP NetWeaverCloud. It is developed using standard
techniques of web application development and resembles therefore a client-server-
based architecture.

The server part runs in an OSGi-Environment and was designed to be modular to
serve separation of concerns and thus improve flexibility and maintainability. The
high level architecture is shown in Figure 8. It consists of multiple components that
provide different services. Some of these bundles are optional and can be switched
off, if not needed.

The most basic component is the DBcomponent providing fundamental facilities to
access and alter domain-specific data in the database. It contains all business data
objects and makes them available for other bundles as well as basic services to find,
persist, change or delete data from the connected data base.

Figure 8 Architecture of Yard Management Server

Dockdoor
Scheduling

Ht
tp

-In
te

rf
ac

e

Jockey
Scheduling

Yard
Management

Mobile
Services

DB Services

Cl
ie

nt

INDENICA D5.3.2

14

The Dockdoor-Scheduling component provides the inherent functionality of a yard
management system. It coordinates the scheduling of appointments, drivers and
docks. New appointments (an estimated time of arrival for a driver) are added,
arriving drivers are assigned to free docks or waiting areas in case of no available
dock. Appointments can be rescheduled in case of a delay or speedup e.g. in the
loading process.

The Jockey-Scheduling component is in charge of coordinating the jockeys in the
yard. Jockeys move full or empty trucks around the area, manoeuvre trucks in
(un)loading position or complete similar tasks. These tasks are scheduled via this
component. Different scheduling algorithms exist, e.g. location-based scheduling,
where tasks are scheduled based on their location and the current locations of the
jockeys.

The Yard Management component plays the role of a controller among all other
components and orchestrates the higher-level business processes of a yard
management system. It schedules actions based on events that are feed into the
system e.g. an arriving truck. It creates jockey tasks for newly checked-in trailers to
be brought to a waiting bay or similar.

Finally, the Mobile component contains services, which are specific for mobile
devices. It manages the communication from and to mobile devices using the Comet
web application model1. This allows specific jockeys to be notified on newly created
tasks.

Every component publishes its own set of services that can be consumed over Http
by a client, be it the management interface, a mobile client or the INDENICA virtual
service platform.

On the client side, there exist three user interfaces, depending on the user. An
interface for the yard operator (Figure 9) is provided that can be used to manage and
oversee the activities on the yard. Second, two interfaces (Figure 10), one for the
drivers and one for the jockeys, exists that are designed for usage on mobile devices.

Figure 9 Yard Management Interface

1http://en.wikipedia.org/wiki/Comet_(programming)

INDENICA D5.3.2

15

Figure 10 Driver Interface (l), Jockey Interface (r)

4.2 Used Technologies
The current use case application runs on SAP NetWeaverCloud, which uses an OSGi-
based JavaEE6 application server. Every component in the yard management system
is therefore an OSGi-bundle. The Spring web-framework is used internally for wiring
and Http request handling. As no UI-rendering happens on server-side, the data will
be transferred to the clients in JSON- or XML-format.

Additionally, other communication channels exist. Platform-internal events like an
arriving truck or similar are propagated via JMS 2 in XML-format, so that
asynchronous, decoupled communication with the INDENICA virtual service platform
is possible. The use case application uses ActiveMQ as a JMS implementation.

Mobile devices connect to the yard management service using the Comet pattern.
More specifically they use the Cometd framework, an implementation of this
pattern. This enables push-messages from the server to connected clients.

The client code is written in JavaScript. The management interface uses the SapUi5
library3, an HTML5-conform library for creating rich Internet applications.

Both mobile interfaces utilises the jQuery Mobile4 library to generate a UI for mobile
devices

2Java Message Service (http://de.wikipedia.org/wiki/Java_Message_Service)
3http://www.spyvee.com/SAPHTML5_DemoKit/
4http://jquerymobile.com/

INDENICA D5.3.2

16

4.3 Available Services
The Yard Management Service (YMS) publishes several services for communication
with other components such as the VSP or external user interfaces. Currently all of
these are REST services allowing access from anywhere. Detailed service description
including input and output format can be found in the UML Documentation.

The following table (Table 2) gives an overview of all existing domain-specific
services in the yard management system and a short description of them.

Service URL Description

/dds/loadingFinished Notify YMS that loading of a specific trailer is done

/dds/unloadingFinished Notify YMS that unloading of a specific trailer is done

/dds/freeAppointment Provides timeslots for new appointments with the
given parameters (duration, time and date)

/dds/delayAppointment Notify YMS that appointment will delay, returns new
appointment date and time

/dds/preponeAppointment Notify YMS that appointment can start earlier,
returns new appointment date and time

/dds/dockAppointments Send or get appointment to/fromdock door
scheduler (DDS)

/yms/actionDescription Gives description to YMS about action required for a
specific trailer (booking)

/yms/truckArrived Notify YMS that the truck (with a trailer) has arrived

/yms/truckLeft Notify YMS that the truck (driver) has left

/jockey/jockeyTasks Send or retrieve jockey tasks to/from jockey service

Table 2 Domain-specific Services

Additionally, there also exist services that provide meta-information or exist for
debugging purposes. These services are explained in Table 3.

Service URL Description

/db/schema Provides the XSD schema for the database entities

/db/dummy Clears and initialises the Database with test data

/dds/wadl Provides the WADL schema of the DDS REST services

/jockey/wadl Provides the WADL schema of the jockey REST
services

/yms/wadl Provides the WADL schema of the yms REST services

/yms/jms HTTP tunnel for the JMS broker

/mobile/cometd Interface for the CometD Service

Table 3 Technical Services

INDENICA D5.3.2

17

4.4 Variability Management
Besides the actual YMS, there are technologies and services, which enable variability
management. As mentioned in D6.4.4 Cocktail was used to handle runtime variability
of YMS for server side (Java) as well as client side (JavaScript). To achieve this, the
cocktail variability runtime has to be deployed along with the rest of the YMS, which
results in more services to be use.

Service URL Description

/cocktail/resolutions Service endpoint to manage variability (variation
points)

/cocktail Web interface used for easy variability management

Table 4 Variability Management

To allow users or administrators an easy configuration of variability the Web
Interface of Cocktail is also deployed. It allows quick management of variation points
at runtime and is also useful for seeing the current setup of the YMS. In Figure 11 the
Cocktail Web Interface for the Dock Door Scheduling Service (DDS) is shown.

Figure 11 Variability Management Web Interface of DDS

With the help of the Variability management services and the web interface it is
possible to modify the application at run time. As a proof of concept several basic
variation and configuration points have been added to show the capabilities of the
variability management. Below, in Table 5, a list of variation points (configurable
elements) and their description can be found.

INDENICA D5.3.2

18

Variation Point Description

DDS.schedulingType Either “fitting” or “next”. Fitting tries to optimise the
Dock-usage, so that as few idle-times as possible
occur while minimising the number of used docks.
Next just uses the next time available, even if it
means, that there’s a idle time of only 30 minutes in-
between, which is improbable to be filled by another
appointment, as most are longer.

DDS.useExtendedDockTypes Disables or Enables the use of special docks. Special
docks can, for instance, have a “cooling” function for
food or specific measures for hazardous materials.

DDS.useMobile Indicates whether Jockeys use mobile devices or
fixed devices at the locations. Mobile devices allow
dynamic assignment of Jockeys according to their
position. (i.e. the operator knows which jockey is
closest to the first location of a given task and thus
assign the task to this jockey)

DDS.trainsEnabled If true the operator can see trains and railroads on
the Yard and coordinate them. Usually not something
to be changed at runtime, but still worth making
variable to run the same application on different
Yards independent of their needs.

DDS.shipsEnabled Ship-support, see trainsEnabled.

Jockey.useGps If this is set to true the locations will be treated using
their GPS-coordinates.

Jockey.showGpsText Only allowed with useGps true. Depending on this
setting Locations on WebUI are displayed as GPS
coordinates or the actual names. (e.g. Dock2 instead
of X: 3.2 / Y 5.1)

Jockey.showGpsMap Only allowed with useGps true. If set to true the
Map shows the locations of the Jockeys on the map.

Jockey.gpsMapIsSatellite Only allowed with useGps true. Determines whether
the WebUI should show a satellite map of the Yard or
a normal map with only streets and buildings in it.

Table 5 Variation Points

Some of the variation points have constraints such as useGps, which has to be set to
true in order to enable showGpsText, showGpsMap or gpsMapIsSatellite. The
selection of variation points was made to show the impact variability management
can have on an application. It is in question whether all of the chosen variation

INDENICA D5.3.2

19

points make sense in this use case. However, some are merely added as a proof of
concept (train and ship support) and not to add real value or logic to the YMS.

Having listed the variation points it is important to mention, how they are used and
processed. There are application logic only variation points, such as schedulingType.
Others are hybrid and influence application logic as well as user interfaces or
interaction, such as useMobile, useExtendedDockTypes or useGps. Of course there
are variation points solely influencing user interfaces and displayed information as
well. Examples are showGpsText” and gpsMapIsSatellite.

This variety of the variation points implies the necessity of having server side
variation management, in the Java code, and client side variation management, the
JavaScript code in the browser. How Cocktails solves these issues is described in
D6.4.4.

INDENICA D5.3.2

20

5 Remote Maintenance System

This section presents an overview of the Remote Maintenance System. Its objective
is to describe the RMS Platform from the technical point of view with focus on
system architecture, technologies used by the platform and web services it provides.

Figure 12 Architecture of Remote Maintenance System

5.1 Overall Architecture
The RMS system is divided into two distinct parts. The first one is the core RMS
system and the latter is platform’s pluggable web interface. The core part of the
system is composed of Sip Servlets, Http Server and Monitoring. The Database
component is optional, but it is highly recommended to be used, otherwise the
platform will lack persistence capabilities.

Web Interface

RMS Platform exposes to the client a simple and coherent SOAP-based web
interface, achieving at the same time the programming language agnostic design.
Applications that can exploit the RMS web interface may be written in any language
that supports SOAP based web services. Interface itself is functionally divided into
three different service subsets, which are: call, supervision and adaptation services.
Behind the web interface is hidden thin translator layer which converts the incoming
SOAP data into JSON based lightweight messages.

rabbitMQ

QS Driver Monitor

Http Servlet Sip Servlets

DB

W
eb

In
te

rf
ac

e

core subsystem

INDENICA D5.3.2

21

Http Servlets

Http Servlets are used as a communication adapter between asynchronous sip
servlets and front-end web interface. This component was implemented using
standard javax.servlet.http package. Main module responsibility is to provide the
synchronous access to the asynchronous sip servlets. Communication points
between sip and http are obtained using ConvergedHttpSession interface.

Sip Servlets

The core logic of the RMS platform is implemented by the Sip Servlets component.
Whole sip messaging is sent and processed by that part of the system. This
component is composed of distinct classes each implementing the logic responsible
for processing different sip messages. Sip related data that is received by the
platform is sent to the application router according to the:
INVITE=("rms-indenica-core", "DAR\:From", "TERMINATING", "",
"NO_ROUTE", "0")
MESSAGE=("rms-indenica-core", "DAR\:From", "TERMINATING", "",
"NO_ROUTE", "0")
REGISTER=("rms-indenica-core", "DAR\:From", "TERMINATING", "",
"NO_ROUTE", "0")
OPTIONS=("rms-indenica-core", "DAR\:From", "TERMINATING", "",
"NO_ROUTE", "0")

Such solution allows easy substitution of older components by new ones without
additional redeployments; therefore all required applications can be deployed once
and used only when necessary.

Monitor

Monitor module is responsible for collecting various system characteristics, such as:
used memory, CPU usage or storage related information. Monitoring data are
collected using hyperic sigar which is platform agnostic library, written in Java.

5.2 Used Technologies
This section describes the main components of the RMS Platform, discussing some of
their implementation details, used technologies and justifying the conceived
approach with market impacts. The RMS Platform has been completely written in
Java EE (version 6) in order to achieve high OS interoperability.

Core subsystem

Remote Maintenance System is based on the Mobicents platform, which is built on
top of Red Hat’s web server – JBoss version 7.1.,both of which are consecutive open
source implementation of the JSR-289 specification (namely SIP Servlets v. 1.1) and
JSR-316 (Java Enterprise Edition v. 1.6).

Mobicents Sip Servlets provides access to SIP protocol features via servlet’s
mechanisms without going into details of SIP protocol stack. Functionalities built on
top of the MSS are combined with other web applications through the http

INDENICA D5.3.2

22

converged context, thus enabling faster and easier development of the SIP-based
software solutions.

JBoss Application Server is, a robust and efficient web application server which
supports distributed server systems, hot deployments, load balancing and many
others. Nevertheless, the complex internals of JBoss AS do not affect the speed and
effectiveness of the applications running on top of it due to the lightweight thread
and memory management. Furthermore, using not proprietary and freely available
software solutions has considerably positive impact on the growth potential of the
small companies with the special attention to various IT industry start-ups.

Database

To increase interoperability even further the platform itself is not dependent on any
specific database system. Instead of which the Hibernate framework is used to allow
easy, almost pluggable (with a little or no additional configuration) database system
interchange. Being not bounded to any specific database vendor has the main
advantage of allowing the platform deployment in both: corporate environment,
where proprietary solutions are expected to be used, as well as in the small
company’s backbone networks, which are very often exploiting free and open source
solutions in order to minimise the overall costs of the running system. Undertaken
approach seems to have considerable impact on substantial improvements in the
market competitiveness of subjects involved in using and developing the RMS
Platform.

5.3 Available Services
Services provided by the Remote Maintenance System are divided into two distinct
parts, namely functional services and adaptation services. The former include call
and supervision services, which cover various system functionalities, e.g. call and text
message management, user registration, notification, etc. The adaptation services
are used mainly for adapting the platform behaviour to the constantly changing
network environment.

Figure 13 Communication with RMS

All services are available through the SOAP web interface which results in a
programming language agnostic interface design, i.e. the client can be written in any
programming language that supports SOAP communications with WSDL-defined web
services.

Client RMS

SO
AP

in
te

rf
ac

e/
tr

an
sla

to
r

SOAP JSON

INDENICA D5.3.2

23

<xs:complexType name="updateCameraInformation">
<xs:sequence>
<xs:element minOccurs="0"name="adminId"type="xs:string"/>
<xs:element minOccurs="0"name="cameraSipId"type="xs:string"/>
<xs:element minOccurs="0"name="cameraIpAddress"type="xs:string"/>
<xs:element name="xPosition"type="xs:double"/>
<xs:element name="yPosition"type="xs:double"/>
<xs:element name="horizontalAngle"type="xs:double"/>
<xs:element name="verticalAngle"type="xs:double"/>
<xs:element name="zoom"type="xs:double"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateCameraInformationResponse">
<xs:sequence>
<xs:element
minOccurs="0"name="return"type="tns:updateCameraInformationRESP"/>
</xs:sequence>
</xs:complexType>

Communication to and from the platform is realised by the SOAP protocol; messages
are parsed to the XML then wrapped in the SOAP envelope and next they are sent
through the network. Despite the outside platform communication is realised by
SOAP, the whole inner platform communication (inside the RMS) is done by using
the JSON lightweight data format.

Call Service,web methods Description

initiateVoiceAndVideoSession(adminId,
userSipId, [receiverSipIds], callParameters)

Creates voice and video session between
two endpoints

initiateVoiceSession(adminId, userSipId,
[receiverSipIds], callParameters)

Creates voice only session between two
endpoints

terminateSession(adminId, userSipId,
sessionId)

Ends the ongoing session

unregisterUser(adminId, userSipId) Unregisters the user from the service
platform

registerNewUser(adminId, userSipId, userIp,
userName, userPassword, userGroup,
userStatusId, userParameters)

Registers the user to the service platform

updateUserInformation(adminId, userSipId,
userIp, userName, userPassword, userGroup,
userStatusId, userParameters)

Updates information of the previously
registered user

changeUserStatus(adminId, userSipId,
userStatusId)

Changes user’s status

getUserStatus(adminId, userSipId) Receives user’s status

getUserList(adminId) Receives list of users

getActiveSessionIds(adminId) Receives list of open sessions

Table 6 Technical Services – call management

INDENICA D5.3.2

24

One type of usage environments of services that implements the call service
interface are various communication systems, which are to be used in order to
provide reliable communication within the networks that must be separated from
the Internet, e.g. corporate intranets, military or government intelligence
facilities, etc. Another use case can be providing the voice and video services for
immediate calls in case of some unexpected circumstances in facilities for public use
(e.g. in case loosing luggage at the airport, the fast call to the authorised persons can
advance the luggage recovery).

Supervision Service, web methods Description

connectToCameraWithVoiceAndVideo(adminId,
userSipId, cameraSipId, callParameters)

Connects the user endpoint to the
camera endpoint with voice and video
capabilities

connectToCameraWithVideoOnly(adminId,
userSipId, cameraSipId, callParameters)

Connects the user endpoint to the
camera endpoint with voice only
capabilities

changeCodecOrResolution(adminId, sessionId,
callParameters)

Changes used codec and resolution.
(Will terminate the session first)

registerCamera(adminId, cameraSipId,
cameraIpAddress, xPosition, yPosition,
verticalAngle, horizontalAngle, zoom)

Registers the camera to the service
platform

updateCameraInformation(adminId,
cameraSipId, cameraIpAddress, xPosition,
yPosition, verticalAngle, horizontalAngle, zoom)

Updates information of the previously
registered camera

unregisterCamera(adminId, cameraSipId) Unregisters camera from the service
platform

getCamera(adminId, cameraSipId) Receives camera related information

getCameraList(adminId) Receives list of registered cameras

sendTextMessageToUser(adminId, textMessage,
targetUserSipId)

Sends text message to the specific
user

sendTextMessageToUserGroup(adminId,
textMessage, [targetUserSipIds])

Sends text message to the specific
user group

sendTextMessageToAllRegisteredUsers(adminId,
textMessage)

Sends text message to all registered
users

sendTextAlertWithVideo(adminId, textMessage,
targetUserSipId, videoSourceSipId)

Sends text alert and establishes
required video connection

Table 7 Technical Services - supervision

Main purpose of the supervision services is to provide unified interface to managing
camera system, alarms and security staff. Obtaining camera information (such as
position, vision angle or zoom) can be used to manage and control the complex
camera systems easily and efficiently. Along with

INDENICA D5.3.2

25

Adaptation Service, web methods Description

setTextMessageHistoryPermission(adminId,
enabled)

Enables/disables text message history

getTextMessageHistoryPermission(adminId) Retrieves enable/disable state of text
message history permission

setDirectVoiceAndVideoSessionInitiationPer
mission(adminId, enabled)

Enables/disables direct voice and video
calls

getDirectVoiceAndVideoSessionInitiationPer
mission(adminId)

Retrieves enable/disable state of direct
voice and video calls permission

setRemoteVoiceAndVideoSessionInitiationPe
rmission(adminId, enabled)

Enables/disables remote voice and video
calls

getRemoteVoiceAndVideoSessionInitiationP
ermission(adminId)

Retrieves enable/disable state of remote
voice and video calls permission

setDirectVoiceSessionInitiationPermission(ad
minId, enabled)

Enables/disables direct voice calls

getDirectVoiceSessionInitiationPermission(a
dminId)

Retrieves enable/disable state of direct
voice calls permission

setRemoteVoiceSessionInitiationPermission(
adminId, enabled)

Enables/disables remote voice calls

getRemoteVoiceSessionInitiationPermission(
adminId)

Retrieves enable/disable state of remote
voice calls permission

setDirectVideoSessionInitiationPermission(a
dminId, enabled)

Enables/disables direct voice calls

getDirectVideoSessionInitiationPermission(a
dminId)

Retrieves enable/disable state of direct
voice calls permission

setRemoteVideoSessionInitiationPermission(
adminId, enabled)

Enables/disables remote video calls

getRemoteVideoSessionInitiationPermission
(adminId)

Retrieves enable/disable state of remote
video calls permission

setDirectTextMessageSessionPermission(ad
minId, enabled)

Enables/disables direct text messaging

getDirectTextMessageSessionPermission
(adminId)

Retrieves enable/disable state of direct
text messaging permission

setRemoteTextMessageSessionPermission(a
dminId, enabled)

Enables/disables remote text messaging

getRemoteTextMessageSessionPermission(a
dminId)

Retrieves enable/disable state of remote
text messaging permission

setMachineMonitoringPermission(adminId, Enables/disables machine monitoring

INDENICA D5.3.2

26

enabled)

getMachineMonitoringPermission(adminId) Retrieves enable/disable state of
machine monitoring permission

terminateSessionsInitiatedDirectly(adminId) Terminates all remotely instantiated calls

terminateSessionsInitiatedRemotely(adminId
)

Terminate all directly instantiated calls

terminateSessionsByPercent(adminId,
percent)

Terminates specific percent of ongoing
calls

Table 8RMS Adaptation services

Adaptation is realised by an on/off mechanism, which is used to enabling (disabling)
various platform functionalities. To decrease complexity of the sip servlets, the
adaptation functionality was built on top of the servlets as a filtering layer, allowing
at the same time better separation of concerns. Adaptation of the platform is to be
used when it is under a heavy load. In such scenario a various actions c

5.4 Installation Process
The whole installation process is automated in order to accelerate the configuration
of the platform. Installation scripts are written in Maven, so the installing process
looks very similar in Linux and Windows platforms.

Installation and configuration

Complete installation and configuration process can be performed just by invoking in
the top code directory the following command:
mvn clean post-clean
-Djboss.server.ip=your.jboss.ip.address
-Drabbitmq.server.ip=rabbits.mq.ip.address
-Dcomponents.directory=/path/to/install/rms/platform
-Dserver.name=rms.platorm
-Dserver.domain=indenica.nextdaylab.com

It assures that all needed software will be downloaded (decent Internet connection
and preinstalled Maven are required) and installed on the running machine.
Installation directory can be chosen as well as some basic networking configuration
in order to allow initial pre-configuration of the platform on different than the target
machine.

Starting the platform

The platform can be started just by running the following command (on Linux):
cd /path/to/install/rms/platform/hsqldb.../hsqldb
java –cp lib/hsqldb.jar org.hsqldb.Server
cd /path/to/install/rms/platform/mss.../bin
standalone.sh –c standalone-sip.xml

On Windows double clicking on the main.bat script in the directory where the
platform has been installed.

INDENICA D5.3.2

27

First run

When the platform is started the first time it is just bare Mobicents Sip Servlets
platform preconfigured to serve as the Remote Maintenance System. To complete
installation all required web application has to be compiled and deployed on the
running platform. In order to achieve that the platform must be started first and
then the following command must be invoked (in the top directory which contains
the code):
cd rms-indenica
mvn clean jboss-as:deploy
-Djboss-as.username=admin
-Djboss-as.password=zylia
-Djboss.server.ip=your.jboss.ip.address

After that, the RMS platform is ready to work.

Testing

To be sure that the platform is installed correctly the set of tests is prepared. Tests
can be started by invoking in the directory where the RMS code is placed:
cd rms-indenica/soap-interface-test
mvn test -Djboss.server.ip=your.jboss.ip.address

5.5 Real Time Communication
RMS Platform allows real time video and voice communication between SIP phones.
This subsection explains the steps needed to configure a softphone client to work
with the RMS Platform. For that particular purpose the Linphone freely available
client is used.

After installation the Linphone client has to be configured. Example configuration
consists of the steps, which are shown below.

Step 1

First start the client and go to the Options -> Preferences menu (Figure 14).

Figure 14 Linphone client menu

INDENICA D5.3.2

28

Step 2

Next ensure that the network settings are similar to those shown in Figure 15.

Figure 15 Network settings

Step 3

Then go to the Manage SIP Accounts tab and add new account. Fill the newly opened
window (Figure 16) in following way.

Figure 16 SIP account configuration

INDENICA D5.3.2

29

Please to be sure that the Register box is selected, to ensure automatic registration
on the RMS Platform. Ensure that the SIP Proxy address and Route contains a valid IP
address of machine on which the RMS Platform is running. Default port number
should be 5080 unless it was changed during the installation or configuration process
of the RMS Platform.

Step 4

After that, just click OK and the newly configured user should be registered by the
RMS Platform.

Figure 17 Properly configured new SIP account

If SIP account has been properly configured, the light at the right bottom corner of
the program (Figure 17) should be green. Otherwise, its colour and shape will
indicate origin of problem.

After configuring the client on another machine the connection can be easily
established by calling the one client from the other.

INDENICA D5.3.2

30

6 Technical Integration

As discussed in the previous sections, the scenario for integration was taken from
the real world and the process has already been explained. The technical integration,
which results a virtual service platform, includes several different communication
mechanisms and techniques.

The interim version of the virtual service platform comprises the integration of two
service-based platforms, which are Yard Management System (YMS) and Warehouse
Management System (WMS). In the final version, the virtual service platform will
encapsulate a complete integration of three service-based platforms including the
aforementioned platforms and a Remote Management System (RMS) provided by
NDL.

6.1 Overview
In Figure 18, we present an overview of the INDENICA integration scenario. This is
the accumulated result of an iterative analysis, design and development process. The
starting point is the deliverable D5.1 where we describe the INDENICA case studies in
which different domain service platforms need to be integrated. After that, several
interviews are conducted with the domain experts from industrial partners in order
to distil important high-level and platform- and technology-specific information. The
outcomes are related requirements, variability, architectural decisions, and the list of
services provided by the platforms along with the underlying technologies.

As we mentioned before, the interim version of the integration scenario embraces
two service-based platforms, YMS and WMS, whilst the final version also include the
third platform, the RMS. The final version is an incremental modelling and
development based on the interim version.

INDENICA D5.3.2

31

Figure 18 Overview of the INDENICA integration scenario

6.2 Architectural Design and Implementation

6.2.1 High-level view-based modelling
The requirements are described using the IRET tool (developed by PDM, see D1.2.2),
the platform variability are captured using the EASy-Producer (developed by SUH, c.f.
D2.2.1, D2.2.2, D2.4.1, and D2.4.2), and the architectural design decisions are
captured by the ADvISE tool (developed by UNIVIE, c.f. D1.3.2).

ADvISE can help to generate a high-level Service Component View, which is useful for
a greenfield scenario. Nevertheless, we can reuse the high-level Service Component
View developed in the interim version and modify it according to the new variability
and architectural decisions that occur due to the integration of the third platform
RMS.

The Service Component View is created or modified by using the INDENICA view-
based Tool Suite (c.f. D3.1, D3.3.1, D3.3.2). It models the high-level architecture of
the integrated VSP (i.e., the green box in Figure 18). Therefore, the high-level
architecture of the VSP described using INDENICA Tool Suite—as shown in Figure
19—is mainly used by software architects and/or domain experts and independent
from the underlying runtime and communication technologies.

The major advantage of introducing the integrated VSP in the integration scenario is
that to seal the application built on top (e.g., in this case, the Warehouse Operator
Application) from the complexity of the underlying technologies of various service
platforms and provide unified development interfaces via the OperatorFacade
component. It also helps to avoid platform vendor lock-in because the substitutions

INDENICA D5.3.2

32

of any underlying service platforms by the others that provides similar or more
functions mainly affect and require changes in the VSP. Thus, the application built on
top still works as far as the interfaces of the façade remain stable. We note that the
necessary changes in the VSP in case the service platforms are altered mostly
happen in the corresponding adapters and proxies, for instance, the YMSProxy,
WMSProxy, ERPAdapter, YMSNotificationGateway, WMSNotificationGateway, and
RMSProxy.

Indeed, during the course of the interim VSP design and development, we
experienced a major refactoring in the VSP when, due to some technical updates,
the YMS and WMS platforms offered JMS communications instead of Web services.

Fortunately, we do not have to change the Service Component View but only need to
change the Mapping DSL (c.f. D3.3.2) to annotate the previous «Web service» proxy
components as «JMS» proxy components in the high-level view model and leverage
the templates described in INDENICA Tool Suite to generate the corresponding
skeletons and interfaces for communicating via JMS. The orchestration and
integration logics developed in other unrelated components as well as the
Warehouse Operator Application remain unchanged.

However, in the final version, due to the addition of the third platform, RMS, we
need to change the high-level Service Component View accordingly. This can be
simply achieved by added a new component, namely, RMSProxy, for representing
the interaction with the RMS platform via a proxy as shown in Figure 1914.

Figure 19 High-level modeling of the integrated VSP using INDENICA Tool Suite

INDENICA D5.3.2

33

6.2.2 Low-level view-based modelling and code generation
Once the high-level service component view is modelled, we can carry out formal
validations using the OCL-like languages supported by INDENICA Tool Suite (see §3.3
in D3.3.1) or using the live constraint checking and validation (see §3.7 in D3.3.2).

Then, we use the Mapping DSL (see §3.5 and §5.2 in D3.3.2) to define a refinement
of the high-level view model to the low-level Service Component View for SCA, which
is specific for the Apache Tuscany SCA technology that we use to deploy and run the
VSP. The low-level view model is shown in Figure 20.

Figure 20 Low-level modelling of the integrated VSP for SCA using INDENICA Tool Suite

We note that the components are refined with more specific details and grouped
into “composites”, which are the notion of component containers in SCA.

We also note that, we do not have to directly change the low-level Service
Component View comparing to the interim version because the modifications of the
Mapping DSL are enough to produce a corresponding low-level view.

Furthermore, we use the Generator DSL in order to enrich the refined low-level view
models with further details such as the interface descriptions of the SCA components
in Web service or Java, the implementation libraries, the concrete binding addresses,
hosts, and ports, etc. (see §3.8 and §5.4 in D3.3.2).

The deployment strategy for the VSP is described using the Deployment View
provided by the INDENICA Tool Suite. We show in Figure 21 the deployment strategy
of the VSP.

INDENICA D5.3.2

34

Figure 21 Modeling the deployment of the integrated VSP into Apache Tuscany Runtime

Based on the specification in the low-level Service Component View, the Deployment
view, and the Generator DSL presented above, the implementation and
configuration of the VSP will be generated automatically (see §3.8, §3.9, §5.5, §5.6 in
D3.3.2).

In Figure 22, we show the generated Java code of the VSP components described
above. SCA configurations such as SCA composite descriptions, bindings, and
deployments are also generated.

INDENICA Tool Suite utilizes the separation of generated and non-generated code in
order to keep a clean separation between the generated code and the particular
orchestration and integration code written by the developers. That is, the developers
mainly program the “-impl” parts shown in Figure 22 that actually implement the
generated interfaces. These “-impl” parts will be untouched in the future iterations
unless the developers explicitly command the code generators to override the
existing code.

INDENICA D5.3.2

35

Figure 22 Overview of the generated VSP implementation

6.3 Deployment and Enactment
Essentially, for better load balancing and distribution, we decide to deploy each SCA
composite described in the low-level view model in Figure 20 into a “virtual” node of
the Apache Tuscany Runtime. One or multiple nodes can be hosted and executed in
an Apache Tuscany logic domain that can correspond to an individual or a group of
physical system. In our testing and demonstration environment, we host and run all
four nodes in the same Apache Tuscany domain in a single PC.

The actual deployment of the VSP into a remote Apache Tuscany Runtime is
performed by a Maven-based deployment tool developed by SAP as part of the
Deployment component of the INDENICA Runtime provided in WP4 (see §3 in
D4.2.1).

In Figure 24 we present the final deployment and execution of the INDENICA
integration scenario that we demonstrated at the Second Year Review Meeting in
Munich, Germany. We summarize the main aspects as following:

Warehouse Operator: this is a standalone application running in a Java VM. The
communication between Warehouse Operator and the VSP is done via Web
service invocations. The VSP provide a unified façade interface to the
applications built on top via the OperatorFacade component.
Integration (composite): this is an SCA composite that is responsible for
orchestrating the functionality provided by the underlying service platforms
through the corresponding gateway, adapter, and proxy components and

INDENICA D5.3.2

36

providing the façade interface to the application built on top. This composite is
running inside an Apache Tuscany Runtime.
ERP (composite): this is an SCA composite that provides the adapter between
the VSP and the ERP service platform. This composite is running inside an Apache
Tuscany Runtime.
WMS (composite): this is another SCA composite that provides the adapters for
interacting between the VSP and the WMS service platform. This composite is
running inside an Apache Tuscany Runtime.
YMS (composite): this is an SCA composite that provides the adapters for
interacting between the VSP and the YMS service platform. This composite is
running inside an Apache Tuscany Runtime.
RMS (composite): this is an SCA composite that provides the proxies for
interacting between the VSP and the RMS service platform. This composite is also
running inside an Apache Tuscany Runtime.
WMS(Platform and UI): The WMS platform and UI are developed and running
under Microsoft .NET framework and AppFabric in Windows and provides
services via the Windows Communication Framework (WCF). The service
invocations between VSP and WMS through the WMSProxy and
WMSNotificationGateway are wrapped in JMS message exchanges.
YMS (Platform and UI): The YMS platform is extracted from SAP real systems and
running inside an SAP NetWeaver Cloud Platform. The communications between
the VSP and YMS are performed via the YMSProxy by using RESTful service
invocations and via YMSNotificationGateway by using JMS message exchange
wrapping. The YMS UI is a Web-based application that can be accessible from
anywhere via the Web browser. We illustrated in the review meeting that the
truck drivers could easily access services provided by the YMS via the YMS UI
using smartphones or tablets in order to make appointments for loading or
unloading and to monitor the schedule and progress.

INDENICA D5.3.2

37

Figure 23 Schematic view of the deployment strategy of the VSP at runtime

Figure 24 The actual deployment of the INDENICA integration scenario

INDENICA D5.3.2

38

7 Summary

In the third Year of INDENICA the third platform (RMS) has been integrated and
evaluated in the overall scenario. Significant amount of integration work was
enhanced by automatically generated code based on modelling in INDENICIA Tool
Suite. Additional monitoring and adaptation capabilities have been implemented and
used to govern the VSP at runtime.

Implemented service platforms and their capabilities have been presented including
the sequence diagrams presenting the actual flow of information between the
subsystems during scenario execution.

INDENICA D5.3.2

39

Table of Figures

Figure 1Check-in Process ... 6

Figure 2 Error Handling Process ... 7

Figure 3 Unloading Process .. 8

Figure 4 Check-Out Process ... 8

Figure 5 Warehouse Management System (WMS) Architecture 9

Figure 6 Warehouse User Interface (WUI) ... 10

Figure 7 Warehouse Simulation Site (SimSite) ... 10

Figure 8 Architecture of Yard Management Server .. 13

Figure 9 Yard Management Interface .. 14

Figure 10 Driver Interface (l), Jockey Interface (r) .. 15

Figure 11 Variability Management Web Interface of DDS .. 17

Figure 11 Architecture of Remote Maintenance System .. 20

Figure 12 Communication with RMS .. 22

Figure 13 Linphone client menu .. 27

Figure 14 Network settings .. 28

Figure 15 SIP account configuration... 28

Figure 16 Properly configured new SIP account ... 29

Figure 17 Overview of the INDENICA integration scenario 31

Figure 18 High-level modeling of the integrated VSP using INDENICA Tool Suite 32

Figure 19 Low-level modelling of the integrated VSP for SCA using INDENICA Tool
Suite .. 33

Figure 20 Modeling the deployment of the integrated VSP into Apache Tuscany
Runtime .. 34

Figure 21 Overview of the generated VSP implementation 35

Figure 22 Schematic view of the deployment strategy of the VSP at runtime 37

Figure 23 The actual deployment of the INDENICA integration scenario 37

