
Document ID: INDENICA – D5.3.1
Deliverable Number: D5.3.1
Work Package: 5
Type: Deliverable
Dissemination Level: PU
Status: final
Version: 1.0
Date: 2012-09-30
Author(s): SIE, SAP, NDL

Project Start Date: October 1st 2010, Duration: 36 months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document describes the implemention of a family of service platforms as
outlined in the case studies of the project. This includes the integration among
those platforms.

Implementation of a Family of
Service Platforms and
Applications (Interim)

Version History
1.0 30. Sep 2012 Final Version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents .. 3

1 Introduction... 4

2 Integration Scenarios ... 5

2.1 Check In .. 5

2.2 Error Handling ... 6

2.3 Unloading .. 7

2.4 Check Out .. 8

3 Warehouse Management System .. 9

3.1 Overall Architecture .. 9

3.2 Used Technologies .. 11

3.3 Available Services .. 11

4 Yard Management System ... 13

4.1 Overall Architecture .. 13

4.2 Used Technologies .. 15

4.3 Available Services .. 16

5 Technical Integration ... 18

5.1 Overview ... 18

5.2 Architectural Design and Implementation ... 19

5.3 Deployment and Enactment .. 21

6 Outlook.. 24

Table of Figures ... 25

INDENICA D5.3.1

4

1 Introduction

This document describes the current state of the implementation of the service
platform from the partners SAP and Siemens. As outlined in previous documents,
SAP is responsible for a Yard Management Platform while Siemens provides the
counterpart, which is a Warehouse Management Platform.

The document is structured as follows:

The first section illustrates the integration scenario for both platforms. This
forms the background for the technical implementation of the platforms
itself as well as the integration among them (Virtual Service Platform, VSP).

The next two sections provide details on the technical implementation of the
two base platforms (YMS and WMS).

The integration is shortly outlined in the following section.

INDENICA D5.3.1

5

2 Integration Scenarios

The integration of the Yard Management System (YMS) and the Warehouse
Management System (WMS) is done in a scenario taken from the real world: There is
a warehouse with a yard attached. In the yard trucks are managed, meaning they are
checked in and out. Additional, yard jockeys, which handle processes in the yard
itself, need to be managed. The warehouse takes care of loading, unloading and
storing the goods from the trailers. More detailed information can be found in D5.1.

For illustration purpose the “unloading an error condition” process will be explained
in detail. In this scenario a truck arrives at an appointed time and date, the truck
arrives and the warehouse is busy, trailer is taken to a free waiting bay, when the
warehouse is free again the trailer is brought to the dock, unloaded, taken from the
dock and checks out again. The whole process can be split into four main processes:
check in, error handling, unloading, check out. These will be described in more detail
in the following.

Some excerpts of the process’ sequence diagram are used. Following abbreviations
are used in the description:

ERP: Enterprise Resource Planning system, no actual part of the scenario but
necessary for modelling a real world process. The system provides data on trailer’s
goods.

VSP: The Virtual Service Platform.

OP: Operator panel, an application on top of the VSP with which a person supervises
and, if necessary, manages the whole process.

YUI/WUI: YMS/WMS user interface for the users of the systems, e.g. drivers and
jockeys.

2.1 Check In
The check in-phase (see Figure 1) handles newly arrived trucks as shown in Figure 1.
The first step is to create a new appointment, which informs the YMS that at some
specific time a truck will arrive at the yard for unloading. Information provided is
time and date of arrival, the driver driving the truck, the ID of the order and the
expected loading-time. This is done manually by the operator.

As soon as the truck arrives at the Yard the “truckArrived” event is sent
(automatically or by the gatekeeper) and the YMS informs the VSP that a truck
(including its booking/order ID) has arrived. The VSP asks the ERP for necessary
actions for the booking, which in this case is just “unloading”. Then it checks,
whether the WMS is able to handle the order. However, the WMS denies this for
some reason.

The YMS then creates a new jockey task, so one of the free yard jockeys can take
care of fetching the trailer and getting it to a free waiting bay. The jockey picks the
task and notifies the YMS when it is done.

INDENICA D5.3.1

6

Figure 1 Check In Process

2.2 Error Handling
When an error occurs (see Figure 2), as happened upon check in, the operator, some
person supervising the system, has to manually resolve the problem. In this case the
operator checks repeatedly for the WMS to be ready and when it finally is, he
manually notifies the VSP, that the trailer can now be sent to the dock.

The VSP will inform the YMS, that the trailer can now be brought to the dock, for
which the YMS creates a new jockey task. After a jockey has picked the task and
marked it as done, the YMS notifies the VSP that unloading can be started.

INDENICA D5.3.1

7

Figure 2 Error Handling Process

2.3 Unloading
When being notified that unloading of the track can be started, the VSP creates a
new unloading order (see Figure 3). Processing of the unloading order is performed
by the operator using the graphical user interface of the WMS – in the sequence
diagram called WUI. First, the operator gets an empty box and inserts one or several
from the truck unloaded products into it. Then he triggers registration of this box in
the system using WUI. Next, the operator triggers storage request of the registered
box into a suitable location in the warehouse. These two steps are done in a loop, till
all products from the unloading order are processed. In the end, the operator uses
the WUI to let the WMS know that the unloading was finished. The WMS in its turn
informs the VSP that the unloading order has been successfully processed.

Figure 3 Unloading Process

INDENICA D5.3.1

8

2.4 Check Out
After unloading is finished (see Figure 4) the VSP informs the operator that the error
is resolved and everything is back to normal again. At the same time it notifies the
YMS that the trailer can be fetched from the dock and the YMS creates a new jockey
task for fetching the trailer from the dock. A jockey picks the task and marks it as
finished as soon as he is done.

The ultimate step is the driver leaving the yard along with the trailer. This event is
fired automatically or by the gatekeeper and confirms that the truck has left.

Figure 4 Check Out Process

INDENICA D5.3.1

9

3 Warehouse Management System

This section includes a description of Warehouse Management System (WMS) its
services, technologies and implementation details. And it describes integration with
the virtual service platform of INDENICA.

3.1 Overall Architecture
WMS deals with storage pick up and flow of products in a warehouse. To achieve
this, the system contains of tree main components: Warehouse Management System
(WMS Core), Conveyor Control System (CCS) and Simulation (See Figure 5)

Figure 5 Warehouse Management System (WMS) Architecture

WMS Core is a top level system. It contains of several services. For example
StorageBinSearch service searches for a suitable location for storing a box with
products in the warehouse. The WMS services complete different mostly simple
tasks and can be invoked separately or in a composite way to complete more
complicated tasks. These services can be accessed by the operator of the system
using the Warehouse User Interface (WUI, see Figure 6). Information about what
products is in the warehouse and in which location is stored in a database.

INDENICA D5.3.1

10

Figure 6 Warehouse User Interface (WUI)

CCS is serving as lower level transportation system. It is an abstraction layer to
motors, conveyors and vertical lift modules and is in charge of transport jobs within
the warehouse.

Simulation acts as the low level hardware system and visualizes the warehouse and
stored products. It is implemented as a web site and contains of two components:
SimSite (See Figure 7) as the actual simulation site and the hosting SimServer.

Figure 7 Simulation Site (SimSite)

INDENICA D5.3.1

11

3.2 Used Technologies
WMS is currently realized as a solution in Visual Studio 2008 using .Net Framework 4.
More specific, WMS and CCS Services are implemented in C# using Windows
Communication Foundation API (WCF).

WCF Services are configured via Spring.NET dependency injection. So that internally
requested service instances are retrieved dynamically from the Spring Container.
Communication between CCS and Simulation is realized asynchronously via
ActiveQM (.Net Message Service API - JMS for .NET). Communication between
Simulation Site and Simulation Server is based on HTML5 WebSocket which enables
bi-directional, full-duplex channels over a single TCP connection. Therefore the
prerequisite for running simulation is WebSocket capable browser.

Communication with the external INDENICA virtual service platform is also managed
using ActiveMQ. Currently there are two queues to handle it: one queue for
incoming calls and one queue for outgoing calls.

The Warehouse User Interface (WUI) is a Windows Form, invoking WMS services via
Spring.NET dependency injection.

WMS manipulates objects (boxes, materials, orders, etc.). Their mapping to
relational database in the MS SQL Server is done using ADO.NET Entity Framework
(EF)

3.3 Available Services
The Warehouse Management System provides several services to accomplish
warehouse tasks, for example creating a new box, inserting materials in the box,
searching for the next free bin location, etc. One service can offer several methods.
These services/methods are .NET WCF services and are internally accessed using
WCF Spring Container.

The table Table 1 gives an overview of existing domain-specific services in the
Warehouse Management System and a short description of them.

Service, Method Name Description

Material Mgt Service
bool CreateBox(string boxId);

Creates a new box

Material Mgt Service
bool CreateMaterial(string materialNumber, string name,
string description);

Creates a new material with the given name
and description

Material Mgt Service
bool InsertMaterial(string boxId, string content, int
quantity);

Inserts the given amount of material to the
box

Material Mgt Service
bool CreateLocation(string locId, string typeId, string
rackId, bool reserved);

Creates a new reserved or unreserved
location

Material Mgt Service
bool CreateTransportentry(string boxId, string binId);

Creates a new transport entry

Material Mgt Service
bool DeleteTransportentry(string boxId);

Deletes the transportentry

INDENICA D5.3.1

12

Material Mgt Service
bool ReserveBin(string binId);

Reserves the bin

Material Mgt Service
bool UnReserveBin(string binId);

Unreserves the bin

Material Mgt Service
bool SetLocation(string boxId, string binId);

Sets location of the box to the binId

Material Mgt Service
bool Ready(bool unloading, int numberOfBoxes, bool
toBeCleaned);

Checks if WMS can store the given number
of boxes

Material Mgt Service
void Finished(bool toBeCleaned);

Informs the VSP that unloading was finished
and if the track has to be cleaned or not

GoodsIn Service
bool RegisterBox(string boxId, string materialNumber, int
amount);

Creates a new box and insertes the given
amount of the material into this box

StorageBinSearch Service
string SearchNextFreeBin();

Gets the id of the next free storage bin

TransportPlanning Service
void StoreBox(string boxId);

Initiate storing of the given box in the next
free bin in

Routing Service
string GetNextDestination(string boxId, string binId);

Gets the id of the next destination

Routing Service
string GetNextTransportMedium(string boxId);

Gets the id of the next transport medium

GeneralTransport Service
void InitiateTransport(string boxId, string binId);

Initiate the transport of the given box to the
given bin

CCS Service
void Move(string boxId, string transportMedium, string
startLocId, string entLocId);

Moves the box using the given transport
medium from the start location to the
endlocation

Table 1 Domain-specific services in WMS

INDENICA D5.3.1

13

4 Yard Management System

The following sections should present an overview of the yard management from a
more technical point of view. Aspects of architecture and used technologies will be
highlighted as well as used techniques for achieving integration with the virtual
service platform of INDENICA.

4.1 Overall Architecture
The yard management system is a web application that is intended to run in a cloud-
based environment, e.g. SAP NetWeaver Cloud. It is developed using standard
techniques of web application development and resembles therefore a client-server-
based architecture.

The server part runs in an OSGi-Environment and was designed to be modular to
serve separation of concerns and thus improve flexibility and maintainability. The
high level architecture is shown in Figure 8. It consists of multiple components that
provide different services. Some of these bundles are optional and can be switched
off, if not needed.

The most basic component is the DB component providing fundamental facilities to
access and alter domain-specific data in the database. It contains all business data
objects and makes them available for other bundles as well as basic services to find,
persist, change or delete data from the connected data base.

Figure 8 Architecture of Yard Management Server

Dockdoor
Scheduling

Ht
tp

-In
te

rf
ac

e

Jockey
Scheduling

Yard
Management

Mobile
Services

DB Services

Cl
ie

nt

INDENICA D5.3.1

14

The Dockdoor-Scheduling component provides the inherent functionality of a yard
management system. It coordinates the scheduling of appointments, drivers and
docks. New appointments (an estimated time of arrival for a driver) are added,
arriving drivers are assigned to free docks or waiting areas in case of no available
dock. Appointments can be rescheduled in case of a delay or speedup e.g. in the
loading process.

The Jockey-Scheduling component is in charge of coordinating the jockeys in the
yard. Jockeys move full or empty trucks around the area, manoeuvre trucks in
(un)loading position or complete similar tasks. These tasks are scheduled via this
component. Different scheduling algorithms exist, e.g. location-based scheduling,
where tasks are scheduled based on their location and the current locations of the
jockeys.

The Yard Management component plays the role of a controller among all other
components and orchestrates the higher-level business processes of a yard
management system. It schedules actions based on events that are feed into the
system e.g. an arriving truck. It creates jockey tasks for newly checked-in trailers to
be brought to a waiting bay or similar.

Finally, the Mobile component contains services which are specific for mobile
devices. It manages the communication from and to mobile devices using the Comet
web application model1. This allows specific jockeys to be notified on newly created
tasks.

Every component publishes its own set of services that can be consumed over Http
by a client, be it the management interface, a mobile client or the INDENICA virtual
service platform.

On the client side, there exist three user interfaces, depending on the user. An
interface for the yard operator (Figure 9) is provided that can be used to manage and
oversee the activities on the yard. Second, two interfaces (Figure 10), one for the
drivers and one for the jockeys, exists that are designed for usage on mobile devices.

Figure 9 Yard Management Interface

1 http://en.wikipedia.org/wiki/Comet_(programming)

INDENICA D5.3.1

15

Figure 10 Driver Interface (l), Jockey Interface (r)

4.2 Used Technologies
The current use case application runs on SAP NetWeaver Cloud which uses an OSGi-
based JavaEE6 application server. Every component in the yard management system
is therefore an OSGi-bundle. The Spring web-framework is used internally for wiring
and Http request handling. As no UI-rendering happens on server-side, the data will
be transferred to the clients in JSON- or XML-format.

Additionally, other communication channels exist. Platform-internal events like an
arriving truck or similar are propagated via JMS 2 in XML-format, so that
asynchronous, decoupled communication with the INDENICA virtual service platform
is possible. The use case application uses ActiveMQ as a JMS implementation.

Mobile devices connect to the yard management service using the Comet pattern.
More specifically they use the Cometd framework, an implementation of this
pattern. This enables push-messages from the server to connected clients.

The client code is written in JavaScript. The management interface uses the SapUi5
library3, an HTML5-conform library for creating rich internet applications.

Both mobile interfaces utilises the jQuery Mobile4 library to generate a UI for mobile
devices

2 Java Message Service (http://de.wikipedia.org/wiki/Java_Message_Service)
3 http://www.spyvee.com/SAPHTML5_DemoKit/
4 http://jquerymobile.com/

INDENICA D5.3.1

16

4.3 Available Services
The Yard Management Service (YMS) publishes several services for communication
with other components such as the VSP or external user interfaces. Currently all of
these are REST services allowing access from anywhere. Detailed service description
including input and output format can be found in the UML Documentation.

The following table (
Table 2) gives an overview of all existing domain-specific services in the yard
management system and a short description of them.

Service URL Description

/dds/loadingFinished Notify YMS that loading of a specific trailer is done

/dds/unloadingFinished Notify YMS that unloading of a specific trailer is done

/dds/freeAppointment Provides timeslots for new appointments with the
given parameters (duration, time and date)

/dds/delayAppointment Notify YMS that appointment will delay, returns new
appointment date and time

/dds/preponeAppointment Notify YMS that appointment can start earlier,
returns new appointment date and time

/dds/dockAppointments Send or get appointment to/from dock door
scheduler (DDS)

/yms/actionDescription Gives description to YMS about action required for a
specific trailer (booking)

/yms/truckArrived Notify YMS that the truck (with a trailer) has arrived

/yms/truckLeft Notify YMS that the truck (driver) has left

/jockey/jockeyTasks Send or retrieve jockey tasks to/from jockey service

Table 2 Domain-specific Services

Additionally, there also exist services that provide meta-information or exist for
debugging purposes. These services are explained in Table 3.

Service URL Description

/db/schema Provides the XSD schema for the database entities

/db/dummy Clears and initialises the Database with test data

/dds/wadl Provides the WADL schema of the DDS REST services

/jockey/wadl Provides the WADL schema of the jockey REST
services

/yms/wadl Provides the WADL schema of the yms REST services

/yms/jms HTTP tunnel for the JMS broker

/mobile/cometd Interface for the CometD Service

INDENICA D5.3.1

17

Table 3 Technical Services

INDENICA D5.3.1

18

5 Technical Integration

As discussed in Section 2 the scenario for integration was taken from the real world
and the process has already been explained. The technical integration includes
several different communication mechanisms and techniques.

5.1 Overview
In Figure 11, we present an overview of the aforementioned INDENICA integration
scenario. This is the accumulated result of an iterative analysis, design and
development process. The starting point is the deliverable D5.1 where we describe
the INDENICA case studies in which different domain service platforms need to be
integrated. After that, several interviews are conducted with the domain experts
from industrial partners in order to distil important high-level and platform- and
technology-specific information. The outcomes are related requirements, variability,
architectural decisions, and the list of services provided by the platforms along with
the underlying technologies.

Figure 11 Overview of the INDENICA integration scenario

INDENICA D5.3.1

19

5.2 Architectural Design and Implementation
Based on the requirements described using the IRET tool (developed by PDM, see
D1.2.2), the platform variability captured using the EASy-Producer (developed by
SUH, see D2.2.1 and D2.4.1), and the architectural design decisions captured by the
ADvISE tool (developed by UNIVIE, will be reported in D1.3.2), we use the service
component view model provided by the VbMF tool suite (reported in D3.1 and
D3.3.1) to model the high-level architecture of the integrated VSP (i.e., the green box
in Figure 11). The high-level architecture of the VSP described using VbMF—as
shown in Figure 12—is independent from the underlying runtime and
communication technologies.

The major advantage of introducing the integrated VSP in the integration scenario is
that to seal the application built on top (e.g., in this case, the Warehouse Operator
Application) from the complexity of the underlying technologies of various service
platforms and provide unified development interfaces via the OperatorFacade
component. It also helps to avoid platform vendor lock-in because the substitutions
of any underlying service platforms by the others that provides similar or more
functions mainly affect and require changes in the VSP. Thus, the application built on
top still works as far as the interfaces of the façade remain stable. We note that the
necessary changes in the VSP in case the service platforms are altered mostly
happen in the corresponding adapters and proxies, for instance, the YMSProxy,
WMSProxy, ERPAdapter, YMSNotificationGateway, and WMSNotificationGateway.
Indeed, during the course of the VSP design and development we experienced a
major refactoring in the VSP when, due to some technical updates, the YMS and
WMS platforms offered JMS communications instead of Web services. Fortunately,
we only need to annotate the previous Web service-based “proxy” components as
“JMS” proxy components in the high-level view model and leverage the templates
described in VbMF to generate the corresponding skeletons and interfaces for
communicating via JMS. The orchestration and integration logics developed in other
unrelated components as well as the Warehouse Operator Application remain
unchanged.

INDENICA D5.3.1

20

Figure 12 High-level modeling of the integrated VSP using VbMF Tool Suite

Once the high-level service component view is modeled, we can carry out formal
validations using the OCL-like languages supported by VbMF (see §3.3 in D3.3.1).
Then, we use VbMF’s Mapping DSL (see §3.2 in D3.3.1) to refine the high-level view
model to the low-level counterpart, which is specific for the Apache Tuscany SCA
technology that we exemplify to deploy and run the VSP. The low-level view model is
shown in Figure 13.

Figure 13 Low-level modeling of the integrated VSP for SCA 1.x using VbMF Tool Suite

We note that the components are refined with more specific details and grouped
into “composites” that are the notion of component container in SCA. In addition,
we use the SCA DSL (or so-called Generator DSL) in order to enrich the refined low-
level view models with further details such as the interface descriptions of the SCA
components in Web service or Java, the implementation libraries, the concrete

INDENICA D5.3.1

21

binding addresses, hosts, and ports, etc. (see §3.4 in D3.3.1). Based on the
specification in the low-level view model (plus the Deployment view model
presented in the subsequent section), the implementation and configuration of the
VSP will be generated automatically (see §3.4 in D3.3.1).

In Figure 14, we show the generated Java code of the VSP components described
above. Besides, SCA composite configurations and bindings are also generated.
VbMF tool suite utilizes the separation of generated and non-generated code in
order to keep a clean separation between the generated code and the particular
orchestration and integration code written by the developers. That is, the developers
mainly program the “-impl” parts shown in Figure 14 that actually implement the
generated interfaces. These “-impl” parts will be untouched in the future iterations
unless the developers explicitly command the code generators to override the
existing code.

Figure 14 Schematic view of the generated VSP implementation

5.3 Deployment and Enactment
After describing and enriching the low-level view model of the VSP, we must define
the deployment of the VSP into the Apache Tuscany Runtime. This can be done using
the Deployment view model of VbMF Tool suite as shown in Figure 15. Essentially,
for better load balancing and distribution, we decide to deploy each SCA composite
described in the low-level view model in Figure 13 into a “virtual” node of the
Apache Tuscany Runtime. One or multiple nodes can be hosted and executed in an
Apache Tuscany logic domain that can correspond to an individual or a group of

INDENICA D5.3.1

22

physical system. In our testing and demonstration environment, we host and run all
four nodes in the same Apache Tuscany domain in a single PC.

Figure 15 Modeling the deployment of the integrated VSP into Apache Tuscany Runtime

The actual deployment of the VSP into a remote Apache Tuscany Runtime is
performed by a Maven-based deployment tool developed by SAP as part of the
Deployment component of the INDENICA Runtime provided in WP4 (see §3 in
D4.2.1).

In Figure 16 we present the final deployment and execution of the INDENICA
integration scenario that we demonstrated at the Second Year Review Meeting in
Munich, Germany. We summarize the main aspects as following:

Warehouse Operator: this is a standalone application running in a Java VM. The
communication between Warehouse Operator and the VSP is done via Web
service invocations. The VSP provide a unified façade interface to the
applications built on top via the OperatorFacade component.
Integration (composite): this is an SCA composite that is responsible for
orchestrating the functionality provided by the underlying service platforms
through the corresponding gateway, adapter, and proxy components and
providing the façade interface to the application built on top. This composite is
running inside an Apache Tuscany Runtime.
ERP (composite): this is an SCA composite that provides the adapter between
the VSP and the ERP service platform. This composite is running inside an Apache
Tuscany Runtime.
WMS (composite): this is another SCA composite that provides the adapter
between the VSP and the WMS service platform. This composite is running inside
an Apache Tuscany Runtime.
YMS (composite): this is an SCA composite that provides the adapter between
the VSP and the YMS service platform. This composite is running inside an
Apache Tuscany Runtime.
WMS (Platform and UI): The WMS platform and UI are developed and running
under Microsoft .NET framework and AppFabric in Windows and provides
services via the Windows Communication Framework (WCF). The service

INDENICA D5.3.1

23

invocations between VSP and WMS through the WMSProxy and
WMSNotificationGateway are wrapped in JMS message exchanges.
YMS (Platform and UI): The YMS platform is extracted from SAP real systems and
running inside an SAP NetWeaver Cloud Platform. The communications between
the VSP and YMS are performed via the YMSProxy by using RESTful service
invocations and via YMSNotificationGateway by using JMS message exchange
wrapping. The YMS UI is a Web-based application that can be accessible from
anywhere via the Web browser. We illustrated in the review meeting that the
truck drivers could easily access services provided by the YMS via the YMS UI
using smartphones or tablets in order to make appointments for loading or
unloading and to monitor the schedule and progress.

Figure 16 The actual deployment of the INDENICA integration scenario

INDENICA D5.3.1

24

6 Outlook

In Year 3 of the INDENICA project a third technical platform will be integrated into
the overall scenario. In addition to that integrated variability models will be created.
Also the support for monitoring will be improved and runtime adaption will be
implemented, respectively.

INDENICA D5.3.1

25

Table of Figures

Figure 1 Check In Process .. 6

Figure 2 Error Handling Process ... 7

Figure 3 Unloading Process .. 7

Figure 4 Check Out Process ... 8

Figure 5 Warehouse Management System (WMS) Architecture 9

Figure 6 Warehouse User Interface (WUI) ... 10

Figure 7 Simulation Site (SimSite) .. 10

Figure 8 Architecture of Yard Management Server .. 13

Figure 9 Yard Management Interface .. 14

Figure 10 Driver Interface (l), Jockey Interface (r) .. 15

Figure 11 Overview of the INDENICA integration scenario 18

Figure 12 High-level modeling of the integrated VSP using VbMF Tool Suite............ 20

Figure 13 Low-level modeling of the integrated VSP for SCA 1.x using VbMF Tool
Suite .. 20

Figure 14 Schematic view of the generated VSP implementation 21

Figure 15 Modeling the deployment of the integrated VSP into Apache Tuscany
Runtime .. 22

Figure 16 The actual deployment of the INDENICA integration scenario 23

