
Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

In order to bring Virtual Service Platforms to the operational state, besides its pre-
configuration, additional deployment and runtime activities need to take place.

To ensure the proper execution of the VSP we advocate the use of several supporting
tools for deployment, monitoring and controlling whose design and implementation
is challenging for several reasons: (i) monitoring and adaptation tools have to take
into account heterogeneousness of underlying service platforms; (ii) different service
platforms use different mechanisms and communication schemes for monitoring (i.e.
events, JMX, SMNP) from which all needs to be covered by appropriate tools; (iii) it is
not trivial to define a standardized monitoring and adaptation interfaces for all
existing and future service platforms.

This deliverable shows the interim state of the tools proposed to address these
challenges and draws the next steps which will be fulfilled during next periods as the
project evolves.

Document ID: INDENICA – D4.2.1
Deliverable Number: D4.2.1
Work Package: WP4
Type: Deliverable
Dissemination Level: PU
Status: final
Version: 1.0
Date: 2012-04-23
Author(s): TEL

Project Start Date: October 1st2010, Duration: 36months

Tool Suite for Deployment, Monitoring & Controlling

of Virtual Service Platforms (Interim)

INDENICA D4.2.1

 2

Version
0.1 1. February 2012 initial version

0.2 23 February 2012 Structure and initial input

0.3 19 March 2012 Additional tools’ description

0.4 29 March 2012 Final version for the internal review

0.5 2 April 2012 Approve and release

1.0 23 April 2012 Final Version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents
1 Introduction... 6

2 Integration of the tool suite with supporting tools ... 7

2.1 Goal-based modelling Framework .. 7

2.2 Service Platform Infrastructure Repository and EASy-Producer 7

2.3 Monitoring rule editor ... 8

2.4 Adaptation rule editor.. 8

2.5 View-based Modelling Framework ... 9

2.5.1 Generation of monitoring rules based on SLA modelling 9

2.5.2 Generation of deployment descriptors ... 10

3 Tool suite for deployment of Virtual Service Platforms 11

3.1 Deployment Manager .. 11

3.2 Example of the Deployment Process .. 11

4 Tool suite for monitoring of Virtual Service Platforms 14

4.1 SPASS-meter .. 14

4.2 ECoWare .. 17

4.3 Monitoring engines .. 19

4.4 Domain-specific events .. 20

5 Tool suite for adaptation of Virtual Service Platforms 24

5.1 Adaptation Engines .. 24

5.2 Improvement of Monitoring and Adaptation ... 24

5.3 Adaptation of base platforms ... 27

6 Summary and future work ... 29

A Appendix 1: EcoWare Usage Guide .. 30

A.1 Installation and Setup .. 30

A.2 Example ... 32

B Appendix 2: SPASS-meter Quick Guide... 35

B.1 Installation ... 35

B.2 Setup ... 35

B.3 Example ... 36

C Appendix 3: Indenica Runtime Platform Demonstrator 38

C.1 Initial Eclipse Project Setup .. 38

C.2 Getting Project Dependencies .. 38

INDENICA D4.2.1

 4

C.2.1 Manual Installation of Dependencies ... 38

C.2.2 Use a preconfigured Virtual Machine with all Dependencies 39

C.3 Starting the Platform.. 39

C.3.1 Command Line ... 39

C.3.2 Eclipse .. 40

References .. 41

INDENICA D4.2.1

 5

Table of Figures

Figure 1: Monitoring Rule Editor showing exemplary monitoring rule 8

Figure 2: Adaptation Rule Editor showing exemplary adaptation rule 9

Figure 3: Architecture of SPASS-meter ... 15

Figure 4: Architecture of the ECoWare Framework. ... 18

Figure 5: Runtime Infrastructure Architecture: Monitoring Overview 19

Figure 6: Runtime Infrastructure Architecture: Adaptation Overview 24

Figure 7: The SOA Governance Vitality Method ... 25

INDENICA D4.2.1

 6

1 Introduction

The main purpose of the tool suite proposed as a part of this Work Package is to
bring the models, mechanisms and tools delivered by Work Packages 1-3 into their
operational state producing Virtual Service Platforms that will be deployable and
manageable at runtime.

Different tools make it possible to create scalable monitoring mechanisms that allow
generating a global overview of the VSP.

Tool suite also allows actors to cope with non-functional metrics of underlying
service platforms for different reasons, for example: (i) drilling down for root cause
of performance bottlenecks; (ii) estimation and evaluation of current and planned
adaptation policies; (iii) evaluation and reacting based on global view of the runtime
environment.

In the second section of the document we describe how we leverage tools provided
by different technical Work Packages to support the WP4 tool suite. In the third
section we describe the initial proof-of-concept deployment tool for instantiating
different heterogeneous service platforms together with their added-value
interfaces. Fourth section describes three tools that provide monitoring capabilities.
First two of them concentrate on non-functional parameters and are complementary
to each other providing general views of the VSP from platform and service points of
view. In the same section we also describe how the monitoring engines cooperate
with different service platform and what kind of mechanisms they do use. In the fifth
section we concentrate on the tools that support adaptation of service platforms
both on service level and on platform level. Adaptation described in this section also
entails certain changes in the monitoring engine execution; therefore we describe
the dynamism of this approach in Section 245.2. In the last section we provide a
summary of the current stage of the tool suite for Deployment, Monitoring &
Controlling of Virtual Service Platforms and give a view on the next steps regarding
further development.

INDENICA D4.2.1

 7

2 Integration of the tool suite with supporting tools

2.1 Goal-based modelling Framework
The elicitation of the requirements of the virtual platforms will be carried out
through IRET (INDENICA Requirements Elicitation Tool). IRET is the Eclipse-based
framework that supports IRENE (INDENICA Requirements ElicitatioN mEthod). IRENE
is a goal-based requirements elicitation approach that blends goals, adaptation
capabilities, and variability into a single coherent solution.

Functional and non-functional requirements are rendered through goals. Adaptation
capabilities, at requirements level, are specified through special-purpose goals called
adaptation goals, and variability is added in the form of textual comments entered
through particular forms. Different goal models (coming from different applications
or from the viewpoint of different stakeholders), or different views on the same
model can then be merged by means of simple syntactic tools that help the user
merge commonalities, highlight differences, and negotiate among the different
alternatives. Interested reader can refer to deliverable [D1.2.1] for a complete
presentation of the approach.

As for the tool, IRET is implemented on top of GMF/EMF and provides the user with
the usual modelling capabilities required to elicit and specify requirements. Users
can adopt an informal approach towards requirements, and thus associate simple
textual comments to the different elements, or a more detailed and formal view on
requirements, and thus also exploit the formal languages supplied by IRENE.

Produced models, that is, requirements specifications, can be used and handled in
two different ways. Since IRET is an Eclipse plug-in, based on EMF, each concept is
materialized in a specific object within the system and can be accessed through the
standard interfaces provided by Eclipse. In addition, models can also be serialized
into XML documents, and then be manipulated through the “well-known” tools.
These two options are also the two ways IRET, and its artefacts, can be integrated
into the complete INDENICA tool-suite.

2.2 Service Platform Infrastructure Repository and EASy-Producer
To support the creation and maintenance of VSPs, the Service Platform
Infrastructure Repository encapsulates design time, deployment time, as well as
runtime aspects of service platforms. When the deployment of a concrete service
platform instance happens, all variabilities with a binding time of at latest the
deployment time have been resolved. The variability resolution is done using the
EASy-Producer tools developed in WP2 in an interactive fashion either during
development, i.e. before deployment, or, for deployment time variabilities during
the deployment process. Thus, at deployment time a partially instantiated variability
model which only contains open variabilities to be resolved at runtime is available.
This partially instantiated model is used to populate the Service Platform
Infrastructure Repository of the service platform instance in order to guide the
monitoring and adaptation engines. The repository runtime component is deployed
with a service platform instance and contains information about the models used to

INDENICA D4.2.1

 8

generate and create the VSP instance, in addition to variability and deployment
configurations. Furthermore, monitoring and adaptation rules, created using the
accompanying ‘Adaptation rule editor’ and ‘Monitoring rule editor’ tools, are stored
in the repository for later use by the monitoring and adaptation engines respectively.
Moreover, monitoring data generated by the VSP instance is stored the runtime
repository for later analysis. The Service Platform Infrastructure Repository is
described in greater detail in Deliverable [D2.3.1].

2.3 Monitoring rule editor
The Monitoring Rule Editor is used to manage monitoring rules stored in the runtime
repository component.

Figure 1: Monitoring Rule Editor showing exemplary monitoring rule

Monitoring rules can either be generated from the VbMF or created manually, and
are used by the Monitoring Engines to efficiently and effectively gather runtime data
from the integrated service platforms as well as the VSP instance. The Monitoring
Rule Editor is described in greater detail in Deliverable [D2.3.1].

2.4 Adaptation rule editor
The Adaptation Rule Editor is used to manage adaptation rules stored in the runtime
repository component.

INDENICA D4.2.1

 9

Figure 2: Adaptation Rule Editor showing exemplary adaptation rule

Similar to monitoring rules, adaptation rules can either be generated from the VbMF
or created manually, and are used by the Adaptation Engines to effectively adapt the
VSP instance and integrated service platforms to changes in the environment in
order to always maintain the best possible performance, availability and/or
scalability according to business requirements. The Adaptation Rule Editor is
described in greater detail in Deliverable [D2.3.1].

2.5 View-based Modelling Framework
The integration of View-based Modelling Framework (VbMF) [D3.1] with the tool
suite presented in this document is to leverage VbMF views in order to (semi-)-
automatically generate rules for the monitoring component mentioned in Section 4
and deployment descriptions for the deployment component mentioned in Section
3.

2.5.1 Generation of monitoring rules based on SLA modelling
VSPs and service platforms will be monitored at runtime in order to track the health
of the system or to measure certain metrics. The view-based code generation tools
described in [D3.1] and the Runtime View are used to generate rules used by the
Monitoring Engine. In Section 5.5 of [D3.1], we presented in detail how VbMF views
and techniques can support to describe and generate event-based rules that can be
fed to some complex event processing framework such as Esper1 for monitoring
systems’ and services’ SLA properties such as availability, execution time, response
time, to name but a few. The main goal of the integration of VbMF and the
monitoring component is to implement a richer low-level view that refines the

1 http://esper.codehaus.org

INDENICA D4.2.1

 10

concepts of the aforementioned Runtime View and, based on this low-level view,
generates rules and directives in Esper for monitoring the events occurring in VSPs
and/or, partially, generates necessary code for monitoring VSP services.

2.5.2 Generation of deployment descriptors
VbMF Deployment View provides high-level concepts such as the artefacts to be
deployed and the nodes where the artefacts are hosted. The aforementioned
Deployment View will be refined down to support relevant deployment concepts for
the corresponding runtime environment where INDENICA VSPs are executed, which
is Apache Tuscany 1.x. In particular, artefacts to be deployed are SCA composites
each of which can comprise a number of service components (i.e., SCA components).
The SCA 1.0 specification [OSOA] allows an SCA Composite and related artefacts, for
instance, its implementation and its required interfaces and components, to be
grouped and deployed in a managed unit called contributions. A logical group of such
SCA contributions that forms an area of business functionality controlled by a single
organisation, for instance, whole of a business or a department within a business
[OSOA] can be deployed and managed in a larger unit called SCA domain. The main
goal of the integration of VbMF and the deployment component mentioned in
Section 3 is to implement a low-level deployment view that refines the
aforementioned high-level concepts and targets the deployment of SCA, and
especially Apache Tuscany. Based on the low-level deployment view, we can
generate SCA composite and contribution descriptions that assemble corresponding
components of the VSP under consideration and successfully deploy those for
executing in an SCA runtime (i.e., Apache Tuscany 1.x)

INDENICA D4.2.1

 11

3 Tool suite for deployment of Virtual Service Platforms

3.1 Deployment Manager
The virtual service platform has to be deployed in a runtime environment. The
deployment consists thereby of three major steps as described in Deliverable D4.1.
First, all artifacts have to be packaged into a deployable format. Second, these
artifacts have to be uploaded to a (remote) location, so they are available for use in
the runtime. The third and last step of deployment is the registration of the artifacts
in the runtime, so they are known, can be wired together and are available for other
services. For the deployment manager to work, several prerequisites have to be
fulfilled:

Maven. As build management tool, Maven is used. A typical VIP-Project will consist
of a multi-module maven project. Every module in this project describes a
contribution in the sense of SCA, consisting of artifacts, composite descriptions and
contribution metadata.

Tuscany. For INDENICA, the Tuscany SCA Java runtime will be used, implementing
the OSOA SCA specification 1.0. During the deployment process, information about a
running Tuscany instance has to be supplied, e.g. server address, user credentials
etc.

SCA Deployment Configuration. Information about every SCA composite has to be
supplied. Tuscany needs every composite to be run on a single Node (a Tuscany
runtime itself). These composites have to be registered at some Endpoint, so its
services are made available. This information is supplied as parameters in the maven
descriptor (pom.xml).

The deployment process is initiated with the command mvn indenica:deploy,
run at the parent project after the packaging phase. Every child project then will be
deployed as follows: The artifacts are uploaded to the Tuscany server and are started
in the same runtime. After uploading, the artifacts are scanned for contribution
metadata and all deployable composites are registered in the Tuscany domain. For
every composite, a node will also be registered and started. The address of the node
will thereby be determined by the SCA deployment configuration.

3.2 Example of the Deployment Process
The following example describes a sample warehouse application that offers several
services, implemented in java. The whole setup consists of two projects, the maven
parent project and a maven project for compiling and packaging the services. Details
about the Tuscany platform to which to deploy this application are provided in the
pom.xml of the parent project:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>sca.indenica</groupId>
 <artifactId>parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>

INDENICA D4.2.1

 12

 <name>parent</name>

 <modules>
 <module>../warehouse</module>
 </modules>

 <build>
 <plugins>
 <plugin>
 <groupId>com.sap.research</groupId>
 <artifactId>indenica-maven-plugin</artifactId>
 <version>1.0</version>
 <configuration>
 <tuscany>
 <server>127.0.0.1</server>
 <mgmtPort>9990</mgmtPort>
 </tuscany>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

The domain server as well as the port of the management interface has to be
described in the configuration part of the indenica-maven-plugin (in the parent
project). This implicitly configures the Tuscany target for every child module of this
maven build.

As described earlier, every composite will run in a separate node. The configuration
of this node will be expressed in the pom.xml of every child module. The following
section of the pom.xml of the warehouse module configures the endpoints for the
services:
<plugin>
 <groupId>com.sap.research</groupId>
 <artifactId>indenica-maven-plugin</artifactId>
 <version>1.0</version>
 <configuration>
 <scaNode>
 <ports>
 <catalogs>8101</catalogs>
 <currency>8102</currency>
 </ports>
 </scaNode>
 </configuration>
 </plugin>

The described services must correspond to the defined names for each composite.
This configuration is only necessary, if composites exist. The SCA composite
descriptions have to reside in the root of the archive to be deployed. A typical
packaged Indenica SCA project structure looks like the following example:
warehouse.jar
├ catalogs.composite
├ currency.composite
├ warehouse.html
│

INDENICA D4.2.1

 13

├───META-INF
│ ├ MANIFEST.MF
│ └ sca-contribution.xml or sca-contribution-generated.xml
│
└───services
 ├ Cart.class
 ├ Catalog.class
 ├ Item.class
 ├ Order.class
 ├ ShoppingCartImpl.class
 ├ Total.class
 ├ Warehouse.class
 │
 └───currency
 ├ CurrencyConverter.class
 └ CurrencyConverterImpl.class

Important for the deployment process are the bold files. The deployment manager
will process each of these files to gain enough information for the deployment
activity.

Running the mvn indenica:deploy command results in the deployment of the
two composites catalogs and currency to the nodes with the endpoints
127.0.0.1:8101 rsp. 127.0.0.1:8102.

To undeploy the composites, run the mvn indenica:undeploy command on
the parent project.

INDENICA D4.2.1

 14

4 Tool suite for monitoring of Virtual Service Platforms

4.1 SPASS-meter
SPASS-meter2 is a flexible resource monitoring framework which enables observing
the resource consumption of individual parts of a software system at runtime. In
INDENICA, SPASS-meter will monitor the resource consumption of individual
services, in particular those which are configured and adapted at runtime. SPASS-
meter complements the INDENICA runtime environment and enables the adaptation
manager to choose among alternative available services based on their actual
resource consumption. In contrast, typical resource monitoring systems provide
either large amounts of detailed information which is not related to individual
services (e.g. InsECT [CO04], J-RAF2 [BH04] or OpenCore [JI12]) or which is
aggregated on system level (e.g. JMX [O08]) representing summarized effects of all
running services. In this section, we will give an overview of SPASS-meter, its
workflow, its configuration, the supported resources, its architecture and its planned
integration into the INDENICA runtime environment.

Monitoring resource consumption with SPASS-meter happens according to the
following workflow: SPASS-meter needs to be configured for a specific system under
monitoring (SUM, in INDENICA a service platform instance) in order to gather
information on the services of interest. Based on that configuration, the SUM is then
prepared for monitoring prior to or at runtime. At runtime of the SUM the SPASS-
meter framework collects information on basic resource consumptions, e.g. the
allocation of a portion of memory, and aggregates the information as previously
configured. The obtained information may be summarized at the end of the SUM
(post mortem analysis) or passed to subsequent processing, e.g. to the INDENICA
monitoring and adaptation engines.

Observing low-level information from a SUM typically implies a certain overhead as
additional functionality must be executed to obtain, collect, aggregate and even
analyze the low-level information. In order to focus on relevant information and, as a
side effect, to reduce the monitoring overhead, SPASS-meter allows specifying the
monitoring scope. The monitoring scope specification defines what is measured at
which level of detail, i.e. which resources are observed for which services. A service
is specified based on its service interface, i.e. the classes and methods used from
outside to access the service. SPASS-meter further allows specifying whether
dependent functionality of a service should be accounted for that service. For a
specific SUM, the monitoring scope can either be specified as source code
annotations or as an XML configuration file.

2 SPASS is the acronym for Simplifying the Development of Adaptive Software Systems and SPASS-meter is one of

the foundational building bricks of our approach in this field. In German, the term “Spass” means “fun” and
points to the tons of fun the developers had and will have while realizing the approach and its tooling.

INDENICA D4.2.1

 15

SPASS-meter supports the following resource types:

· Execution time, i.e. the amount of time consumed by the CPU for executing a
service. For an entire service, the execution time is measured as (threaded)
CPU time. In contrast, response time measures the system time consumed by
executing one (or more) individual operations provided by a service.

· Memory consumption in terms of memory allocation or memory usage.
Memory allocation refers to the total amount of memory requested by a
service. In contrast, the memory usage of a service is the amount of allocated
but yet not freed memory.

· File transfer - the number of bytes read from or written to files including
administrative overhead.

· Network transfer is the number of bytes read from or written to a network
interface including administrative overhead.

Dependent on the monitoring scope specification, SPASS-meter is also capable of
obtaining and monitoring the related resource consumption of the entire SUM or the
underlying operating system process, e.g. to break down the process load to
individual services.

The monitoring scope specification, i.e. the configuration of relevant services and
resources to be monitored is an important mechanism to achieve flexibility and to
balance monitoring overhead. We will discuss further mechanisms such as preparing
the SUM for monitoring prior to or at runtime along with the architecture of SPASS-
meter. As depicted in Figure 3, SPASS-meter consists of a SUM-specific part (which
depends on the runtime environment and the type of SUM) and a generic part which
can be reused for different types of SUM. We will start off with the SUM-specific
part.

· Runtime environment: The runtime environment provides mechanisms to
execute the SUM. For a Java SUM, the runtime environment is a virtual
machine (VM), e.g. the Java Virtual Machine (JVM) running a service
platform. For a native SUM the runtime environment is the operating system.

Probe collection layer

Data aggregation layer

Data presentation layer

Post-mortem summary
JMX WildCAT

Instrumentation layer

JVM

Native
data

gatherer

Java
SUM

INDENICA monitoring provider

Non-Java SUM
Instrumenter

Agent

Runtime env.SU
M

 sp
ec

ifi
c

ge
ne

ric

Figure 3: Architecture of SPASS-meter

INDENICA D4.2.1

 16

In order to access information from the operating system such as process
load in a uniform way, SPASS-meter uses a cross-platform low-overhead
native library developed by SUH (named “Native data gatherer” in Figure 3).
The embedding of that native library itself can be configured so that existing
data from the runtime environment, e.g. via JMX can directly be used. In this
deliverable we focus on Java SUMs (support for non-Java SUMs is currently
being developed).

· Instrumentation layer: This layer prepares the SUM for monitoring, i.e. for
inserting calls into the SUM which notify the SPASS-meter framework about
basic resource consumptions. The insertion of the notification calls may
happen dynamically during runtime, statically before runtime or in mixed
fashion. In the static case, the instrumentation layer is triggered as an
external tool for a given set of classes. In the dynamic case, the JVM informs
the so called instrumentation agent about classes being loaded and, in turn,
the agent triggers the instrumentation. In SPASS-meter, instrumentation
actions are realized in the instrumentation layer as abstract strategies while
concrete instrumentation is performed by a pluggable instrumentation library
(named “Instrumenter” in Figure 3).

The result of applying the SUM specific part of SPASS-meter is an instrumented SUM
which is prepared to inform the generic part of the SPASS-meter framework about
resource consumption. Now we discuss the layers of the generic part:

· Probe collection layer: This layer receives the notifications about basic
resource consumptions from the instrumented SUM and synchronizes the
processing of subsequent layers. This layer provides a platform-independent
interface so that non-Java SUMs can be supported in a uniform way.

· Data aggregation layer: In this layer the individual resource consumptions are
aggregated as defined in the monitoring scope specification, i.e. the actual
resource consumption for individual services is determined. This layer also
provides support for dynamic software product lines, e.g. resource
consumption is assigned to individual configurations of enabled variabilities.

· Data presentation layer: Finally, the collected data is presented for external
further processing. SPASS-meter provides interfaces for obtaining periodic
runtime events or post-mortem summaries. Several plugins implementing the
interfaces are already realized such as a JMX integration, an integration with
WildCAT [OW2C10] or a textual post mortem summary.

The integration into the INDENICA runtime platform exploits the flexibility and
openness of SPASS-meter. As stated above, SPASS-meter will provide runtime
resource consumption information on the variabilities of service platform instances,
particularly for alternative variabilities.

· The monitoring scope specification is generated as an XML file from the
partially instantiated variability model, i.e. from the runtime variabilities. As
described in Deliverable D4.1, the scope configuration is derived as one
preparation step of the deployment process based on the instantiated

INDENICA D4.2.1

 17

variability model (WP 2) which is stored in the Service Platform Infrastructure
Repository (see also Section 2.2).

· The service implementation is prepared for monitoring based on the
generated monitoring scope specification. This happens as part of the
deployment process described in Deliverable D4.1. SPASS-meter is applied in
static instrumentation mode and deployed with the service platform instance
and may run in mixed instrumentation mode if required, e.g. due dynamically
loaded or structurally reconfigured services.

· SPASS-meter is integrated as part of the monitoring interface in the service
platform instance. Therefore, as a specific plug-in on the SPASS-meter data
presentation layer produces periodic INDENICA specific monitoring events
realized. An alternative to be explored is the tight integration into the
EcoWare/Siena P/S bus (see Section 4.2) which may allow reducing the
communication load between service platform instance and the INDENICA
runtime environment.

The core concepts of SPASS-meter have been designed and realized prior to
INDENICA. Within INDENICA, SPASS-meter was extended, adapted and optimized for
use and integration into the INDENICA runtime environment. Currently, SPASS-meter
is available for Java SUMs and equipped with an initial event-based INDENICA
monitoring interface integration. Monitoring of non-Java SUMs is under
development.

In this section we described the SPASS-meter monitoring approach, its configuration
using a monitoring scope specification, the supported resources, its capabilities, its
architecture as well as its integration into the INDENICA runtime environment. In
particular, a focused monitoring scope definition obtained from the INDENICA
variability model and running SPASS-meter in static (or even mixed) mode will
balance deep insights into service resource consumptions, flexibility and monitoring
overhead.

The documentation about usage, installation and setup of the SPASS-meter is
available as Appendix 2: SPASS-meter Quick Guide to this document.

4.2 ECoWare
ECoWare, which stands for Event Correlation Middleware, is a distributed data
aggregation and persistency tool. In INDENICA ECoWare is used to provide means to
reason on a complex service-based system, by aggregating raw data collected from
its multiple layers. It allows us to correlate behaviours being seen in the Service
Platform Environment with behaviours being seen at the underlying virtual resources
layer.

A typical ECoWare deployment (see Figure 4) consists of four different types of
components: (i) the execution environments for which we want to collect run-time
data (together with appropriate probes), (ii) a series of processors for providing the
actual data aggregations, (iii) a persistency database, and (iv) the ECoWare
Dashboard for visualizing the aggregated data. The components collaborate through
a Siena Publish and Subscribe (P/S) event bus for which ECoWare defines a

INDENICA D4.2.1

 18

normalized event format. In order to manage the normalized format and to
collaborate properly, each component is required to implement appropriate
SienaInputAdapters and SienaOutputAdapters.

Siena Input
Adapter

Siena Output
Adapter

QoS Processor

Siena P/S Bus

Siena Input
Adapter

Siena Output
Adapter

Aggregator

Siena Input
Adapter

Siena Output
Adapter

Analyzer

MYSQL
Persistency

Siena Input
Adapter

Siena Output
Adapter

Siena Input
Adapter

Siena Input
Adapter

EcoWare
Dashboard

E
C

oW
are

Siena Output
Adapter

Service
Platform

Environment

Probe

Siena Output
Adapter

Virtualized
Resources

Probe

Figure 4: Architecture of the ECoWare Framework.

The execution environments can be of any kind. In Figure 4 we are probing the
Service Platform Environment, as well as the underlying virtualized resources on
which it is run. This allows us to aggregate information coming from both, with the
goal of incrementally constructing comprehensive knowledge of the running system
along its multiple layers.

Data processing is provided by three different kinds of processors QoS Processors,
Aggregators, and Analyzers. These processors subscribe to events on the P/S bus,
execute their internal logic, and publish their results back to the bus. This allows
them to be strung together to obtain the aggregated information we desire. Thanks
to this loose coupling ECoWare can be considered very extensible. In the future we
will investigate a stronger integration with the other monitoring tools produced in
the context of the Indenica project.

QoS Processors and Aggregators are built using Esper, a component for complex
event processing activities. Esper components execute queries defined using an
Event Processing Language (EPL). EPL is an SQL-like language for developing event
conditions, correlations, and aggregations. The difference between SQL and EPL is
that, instead of running queries against stored data, Esper stores queries and runs
data through them. The execution model is thus continuous rather than limited to
the exact moment at which the query is submitted. Analyzers are built using a simple
assertion analyzer inspired by our previous work on WSCoL [WSCoL]. WSCoL was
developed for the definition of functional monitoring of BPEL processes, and has
been modified to receive data that are not in XML form.

INDENICA D4.2.1

 19

The ECoWare dashboard is a Java Desktop application that system managers can use
to visualize data collected through ECoWare. It supports both live charting, and
online and offline violation drill-down analysis. Online and offline drill-down analysis
allows managers to choose a violation, and visualize the multiple data collections
that were triggered by that event. Violations, as well as the correlated data are
collected on-demand from ECoWare's persistency database, where they are
automatically collected every time an aggregator is triggered. Like for certain
security cameras, we currently store data for 24 hours, and periodically cleanse the
data that are no longer needed.

4.3 Monitoring engines
The INDENICA infrastructure provides an extensible platform monitoring framework
employing novel concepts for organizing and layering monitoring concerns to allow
for efficient distribution of software components to reduce communication
overhead. Furthermore, sophisticated processing methods, such as data ageing,
allow for the effective usage of historical system health data while keeping
transmission and storage overhead minimal.

Figure 5: Runtime Infrastructure Architecture: Monitoring Overview

The monitoring infrastructure is instantiated according to configuration directives
deployed to the repository (cf. Section 2.2) by creating all necessary monitoring
engines and establishing connections to the integrated service platforms.
Additionally, connections between monitoring engines and according adaptation
engines (cf. Section 5.2) are set up.

INDENICA D4.2.1

 20

4.4 Domain-specific events
Events monitored in the VSP come from different service platforms. In order to allow
efficient monitoring of events the necessary unification of these events has to be
done. INDENICA proposes an extensible event model to which all underlying
platforms need to be compliant with to catch all messages. The team identified three
major points of unification.

First is the format that is used to define messages, the second is the internal
structure of these messages and third is the type of messaging technique that is used
to gather events. Events that are sent by the underlying service platforms may be
written in different formats such as JSON [JSON], XML [XML], key-value list, etc. and
several mechanisms can be used to get them, f.e. publish-subscribe, polling,
streaming, etc.

The first Use Case example that we use is the Remote Maintenance System which
uses XML-based events which are directly sent to the monitoring engine using
publish-subscribe queuing mechanism. These events are compliant to the following
XML Schema:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Event" type="EventType" />

 <xs:complexType name="EventType">

 <xs:sequence>

 <xs:element name="EventName" type="xs:string" />

 <xs:element name="callerSIPId" type="xs:string" minOccurs="0"/>

 <xs:element name="callParameters" type="xs:string"
minOccurs="0"/>

 <xs:element name="sessionId" type="xs:string" minOccurs="0"/>

 <xs:element name="responseMsgId" type="xs:int" minOccurs="0"/>

 <xs:element name="errorMsgId" type="xs:int" minOccurs="0"/>

 <xs:element name="message" type="xs:string" minOccurs="0"/>

 <xs:element name="userName" type="xs:string" minOccurs="0"/>

 <xs:element name="userPasswd" type="xs:string" minOccurs="0"/>

 <xs:element name="userGroup" type="xs:string" minOccurs="0"/>

 <xs:element name="statusId" type="xs:int" minOccurs="0"/>

 <xs:element name="userParameters" type="xs:string"
minOccurs="0"/>

 <xs:element name="newUserId" type="xs:string" minOccurs="0"/>

 <xs:element name="userSipId" type="xs:string" minOccurs="0"/>

 <xs:element name="Response" type="ResponseMsg" minOccurs="0"/>

 <xs:element name="User" type="UserData" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

INDENICA D4.2.1

 21

 <xs:complexType name="ResponseMsg">

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="responseMsgId" type="xs:int" minOccurs="0"/>

 <xs:element name="errorMsgId" type="xs:int" minOccurs="0"/>

 <xs:element name="message" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="UserData">

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="userId" type="xs:string" minOccurs="0"/>

 <xs:element name="userName" type="xs:string" minOccurs="0"/>

 <xs:element name="userPasswd" type="xs:string" minOccurs="0"/>

 <xs:element name="userGroup" type="xs:string" minOccurs="0"/>

 <xs:element name="statusId" type="xs:int" minOccurs="0"/>

 <xs:element name="userParameters" type="xs:string"
minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

This XML schema corresponds to events generated by Remote Maintenance
subsystem during its functional operations. It consists of main Event element with
several optional parameters and two complex elements with information about
corresponding users (i.e. call recipients) and responses corresponding to complex
request (i.e. adding several users to call session).

The second subsystem that was used to derive a common event model was Yard
Management Subsystem, which is sending events formatted based on JSON.
Gathering events from this subsystem requires polling to the REST-based endpoint,
which in result sends events that were not previously fetched.

The Format of events is a simple 4 attribute JSON structure:
{
"id" :"<id>",
"triggered":<timestamp>,
"type":"<string>",
"data":{<object>}
}

The description of types and inner structure of the data element can be found in the
Table 1 and Table 2.

The target unified event model used by INDENICA will be derived from base service
platforms. After that each of base platforms will need to be tailored to comply with
the model and the communication mechanisms used in the monitoring engine.

INDENICA D4.2.1

 22

These unified models will base a monitoring interface, which will be developed in the
second half of the project.

 type description data

Trailer

TruckCheckIn checkin of truck at checkpoint appData
TruckCheckOut checkout of truck at checkpoint appData
TruckDelayed A truck reports a delay appData
TruckRescheduling tresheduling due to delays of trucks or delays at dock appData

Jockey

TaskScheduled a task was created for a jockey taskData
TaskReserved a jockey reserved a task taskData
TaskFinished a task was finished by a jockey taskData
TrailerRelocation additional event on finished trailer reloc. taskData

Errors

MisdirectedTrailer if a trailer finds itself at a wrong dock
trailerId,
appData

scheduling collision collision in schedule due to delays
appData1,
appData2

NoAppointmentFound if no appointment could be found for a req. Appointmentdate appData
NoFreeWaitingbay if no waiting bay could be found for a check-in-truck appData

Table 1: Internal structure of JSON-based event of Yard Management Subsystem

appData appointmentId, start, end, dock, truckId
taskData timestamp, taskType, trailerId, jockeyId, origin, destination

Table 2: Inner structure of data elements of Yard Management Subsystem event model

The third system was the warehouse system which contains two subsystems, the
warehouse management system and the conveyor control subsystem. Both
subsystems add events to message queues.

The warehouse management system supports events related to transportation units
and events related to orders. Events are sent as text based key value pairs.

Order related events

MessageType : OrderCreated | PickingStarted | OrderFinished

OrderId : <alphanumerical identifier>

Transport unit related events
MessageType : TransportUnitCreated | TransportUnitStored

TransportUnitId : <alphanumerical identifier>

The Conveyor control system supports events related to conveyors and events
related to stacker cranes:

Conveyor related events:

MessageType : ConveyorTransportStarted

INDENICA D4.2.1

 23

TransportUnitId : <alphanumerical identifier>

MessageType : ConveyorTransportFinished

TransportUnitId : <alphanumerical identifier>

TransportUnitLocation : <alphanumerical identifier>

Stacker crane related events
MessageType : StackerCraneStartedPickingUp

CraneId : <alphanumerical identifier>

TransportUnitId : <alphanumerical identifier>

MessageType : StackerCranePickedUp

CraneId : <alphanumerical identifier>

TransportUnitId : <alphanumerical identifier>

MessageType : StackerCranePickedUp

CraneId : <alphanumerical identifier>

TransportUnitId : <alphanumerical identifier>

TransportUnitLocation : <alphanumerical identifier>

INDENICA D4.2.1

 24

5 Tool suite for adaptation of Virtual Service Platforms

5.1 Adaptation Engines
In concert with the monitoring infrastructure, INDENICA provides an extensible,
layered platform adaptation framework, geared towards efficient and effective
control of service platforms, minimizing communication overhead while maintaining
high flexibility and allowing for complex management structures.

Figure 6: Runtime Infrastructure Architecture: Adaptation Overview

The adaptation infrastructure is instantiated according to configuration directives
deployed to the repository (cf. Section 2.2) by creating all necessary adaptation
engines and establishing connections to the integrated service platforms. As
mentioned in Section 4.3, connections between adaptation engines and according
monitoring engines are set up.

5.2 Improvement of Monitoring and Adaptation

While adaptation in the above described chapter is an automated process that works
within limits given by the platform architecture, functionality and variability, there
will always be monitoring results that trigger actions in the direction of platform
evolution and improvement of the measurement definitions behind the monitoring
and adaptation rules.

INDENICA D4.2.1

 25

In the first case the analysis of monitoring results identifies the need of changing the
platform, implementing and deployment of a new release. For this purpose, the
INDENICA Governance (see [D3.2]) defines two processes:

· A change and error management process for controlling changes at the
platform during the development and operation phase

· A platform portfolio process for controlling strategic planning and
coordinated development of platforms, services and applications.

Here we want to have a closer look on the improvement of measurements,
monitoring rules and adaptation rules.

The improvement cycle of the SOA Governance Framework of The Open Group is
called SAO Governance Vitality Method (see [SGF 2009] page 32). It aims at
improving the overall governance system containing policies, processes, guidelines
and standards, roles and responsibility allocation.

Figure 7: The SOA Governance Vitality Method

This model with its four phases can also be applied to the continuous improvement
of measurements, monitoring and adaptation.

The triggering situations for such improvement can be:

· A monitoring rule does not create events at all.

· A monitoring rule continuously creates events.

· Service Level Agreements are not met without prior warning.

· Applications run into failure without prior warning.

· Adaptation event does not lead to changes in service platform instance

· Adaptation event lead to unwanted changes in service platform instance

· Monitoring of events consumes too much of computational power

All these situations need through analysis; the reasons can be classified as follows:

· The platform architecture or implementation does not allow meeting the goals.

INDENICA D4.2.1

 26

In this case a change request must be submitted to the Change Control Board (see
definition in [D3.2] chapter 5.2.5). The problem can only be solved by changing the
platform architecture, changing selected services, or adding new services.

· The adaptation rule does not solve the issue behind the triggering monitoring
event.

· The monitoring rule does not meet its goals because

o the threshold value is wrong / inappropriate

o data for monitoring is not available

o configuration of monitoring in service platform instance is wrong

o mapping or translation of platform monitoring events to INDENICA event
model fails

o errors in the configuration of monitoring engines prevents from efficient
monitoring of events

In these cases the improvement cycle for monitoring and adaptation rules is
triggered.

In analogy to the Change Control Board, also a here a group of experts has to be
named and empowered to perform the improvement cycle. Members of such a
Board should be:

· The Platform Architect

· The Platform Variant Creator

· The Platform Integrator

· The Application Developer

· The Platform Operator

The improvement cycle phases are defined in analogy to the SGVM.

Phase: Plan

In this phase deviations and triggering situations are identified and analysed. The
decision to submit a change request or to handle the issue within the measurement
improvement cycle is taken.

Following the urgency evaluations a prioritized list of changes to measurements,
monitoring rules and adaptation rules is maintained and an implementation plan is
defined.

All work is performed jointly by the above listed group of experts.

Phase: Define

In this phase the identified needs for improvement are implemented in new,
changed or dropped measurement definitions.

INDENICA D4.2.1

 27

The measurement definitions are discussed and agreed upon by the group of experts

Phase: Implement

New or changed monitoring and adaptation rules are implemented using the
respective tools like monitoring rule editor and adaptation rule editor. The
implementation and maintenance of rules should be under responsibility the
Platform Integrator.

The new or changed rules are deployed to the monitoring and the adaptation
engine.

Phase Monitor

The running platform is monitored based on new / changed rules, events are created
the trigger adaptation rules.

The Platform Operator is responsible for this phase, for reporting deviations and
failures to the group of experts. Here the improvement cycle starts again.

5.3 Adaptation of base platforms

As described in Section Error! Reference source not found., the adaptation will be
managed by decentralized adaptation engine. However in order to allow one tool to
cope with different types of communication mechanisms for firing adaptations, a
unification of these mechanisms should be in the scope of Work Package 4.

With regards to the adaptation interface we have decided to follow similar path as
we do with the monitoring interfaces, which is the unification of the models and
implementation of several communication mechanisms, i.e. HTTP-Service Calls,
direct messaging via queues, SOAP, etc.

The work on derivation of standardized adaptation interface is scheduled for the
second half of the project, that’s why in this section we describe tailored adaptation
interfaces for each separate service platform we use in INDENICA.

In the Warehouse Management System the adaptation service will be provided as
SOAP-based Web Service. The service will be able to launch two different types of
storage strategies – FastGoodsIn and OptimizedStorage depending on the situation
in the warehouse.

In the Yard Management System the adaptations are more complex and include
providing an ‘expected result’ as a feedback, which in the future will help us to
create self-adapted sub-system, which does not only fire some adaptation actions,
but also reacts, as the adaptation does not result with expected outcome.

The adaptation strategy in Yard Management System has been depicted in Table 3.

The adaptation of the Remote Maintenance System is based on the tailoring of the
base platform – Mobicents, and is described in the D5.2 [D5.2] in the section 4.3.3.

INDENICA D4.2.1

 28

Monitored
Subject Rules adaptationAction Expected Result

O
ccupancy rate of

Docks
Parking
areas

Whole
yard if dock.load == 100% and

waitingBay.load >= 80%,
notification to operator

decrease of
occupancy

Trucks

Waiting
time

if a truck waitingtime is
over 4h, reschedule it
with higher priority over
newer trucks

post on
/adpt/prioritizeTruck with
truckId=x

this and other trucks
will be rescheduled

Time on
yard

if timeonyard ==high,
waitingtime ==high and
dock.load == medium,
change algorithm to
dynReschedulingAlgo

post on /adpt/algo with
scheduling=dyn|static

major and dynamic
reschedulings
reducing waiting time
of trucks

Jockeys

Idle time if avg idle time null/high,
decrease/increase jockey
count

post on /adpt/jockey
with action=dec|inc

idle time is improved
(other jockeys are
intended to work in
the warehouse
instead)

Error rate scheduling
collision

if a collision takes place,
resolve it with dynamic
algorithm

post on /adpt/reschedule
with
appId=x&scheduling=dyn

O
ther

if a dock is disabled,
reschedule all appoints to
different docks

post on /adpt/dock/{id}
with
state=disabled|enabled

rescheduling
in/excluding this dock

Table 3: Adaptation strategy for Yard Management System

INDENICA D4.2.1

 29

6 Summary and future work

As one can see, there are several different tools that are currently under
development and/or tailored to the INDENICA Tool Suite for Deployment,
Monitoring and Controlling of Virtual Service Platforms. Currently the work is
focused on development of single tools, but as the project continues, there will be
more concentration on integration of these tools within a single framework.

The conceptual and development work is also in line with the activities of Use Case
Work Package (WP 5), which helped to get additional requirements and allow
bringing monitoring and adaptation interfaces to existence.

Passing behind the half-way of the project, there are already some visible results like
the simulation of the Tool Suite and supporting monitoring tools, that can be used to
disseminate the project in front of the public as well as identifying the new
possibilities for the industrial partners, their customers and other entities.

The future work of WP4 includes finishing ongoing development activities as well as
starting the ones that have not started yet. There are several action points that are
taken into the general work plan for the next six month:

· Using IRENE methodology to elicit adaptation (and monitoring) rules from
generated requirement models

· Continue iterative approach using VbMF modelling to automate derivation
monitoring and adaptation rules for the runtime environment

· Integration of monitoring tools and monitoring interface with live service
platforms

· Testing of monitoring tools in emulated Virtual Service Platforms
environment

· Create implementation of SOA Governance Vitality Method for INDENICA
VSP

· Improve monitoring engines with self-adaptive capabilities (Adaptive
Monitoring)

· Finalize the development of monitoring and adaptation interfaces

INDENICA D4.2.1

 30

A Appendix 1: EcoWare Usage Guide

A.1 Installation and Setup
The installation of EcoWare requires the installation of the Siena event bus, the SCA
and Infrastructure sensors, the EcoWare core system, the EcoWare Persistency
service, and the EcoWare Dashboard.
The installation of EcoWare requires the installation of the Siena event bus, the SCA
and Infrastructure sensors, the EcoWare core system, the EcoWare Persistency
service, and the EcoWare Dashboard.

Siena Event Bus

The Siena Event bus can be installed to any host. From now on we will refer to the
host as SIENA_HOST. The administrator needs to download Siena version 1.5.5. TO
run Siena it is sufficient to go to the Siena folder and run:
java siena.StartServer -port SIENA_PORT -log LOG_FILENAME
This will run Siena on a specific port and log all its activities to a specific log file.

Infrastructure Sensors

The Infrastructure Sensors are based on collectd and run on Linux machines, which
can be downloaded from http://collectd.org/. The installation of collectd requires
that the JAVA_HOME environment variable be appropriately set. Then the
administrator should move to the collectd folder and launch:

> configure
> make
> make install

At this point the installation is complete and the administrator should proceed to
configure the tool, which can be done editing the /opt/collectd/etc/collectd.conf file.

LoadPlugin java

Next, the administrator should uncomment the Java plugin configuration and
complete it so that it is as below:

<Plugin "java">
 JVMArg "-verbose:jni"
 JVMArg "-Djava.class.path =
 /opt/collectd/share/collectd/java/infrastructureSensor.jar"
 LoadPlugin "sender.DataSensor"
 <Plugin "sender.DataSensor">
 # To be parsed by the plugin
 </Plugin>
</Plugin>

At this point the Administrator should take the project named InfrastructureSensor
and export the infrastructureSensor.jar. This can be done directly from Eclipse and

INDENICA D4.2.1

 31

the jar should contain the folders sender, META-INF, org, and siena. Once the jar has
been created it should be copied to /opt/collectd/share/collectd/java/.

Next the Administrator should take the file config.xml from the InfrastructureSensor
project and copy it /opt/collectd/var/lib/collectd. The config file should be edited to
point to the Siena Event Bus. The file should be as follows:

<infrastructure>
 <sienaServer>tcp:SIENA_HOST:SIENA_PORT</sienaServer>
 <vm>
 <eventName>InfrastructureSnapshot</eventName>
 <sendingPeriod>period</sendingPeriod>
 <publicationID>infrastructure_ID</publicationID>
 <host>HOST_NAME</host>
 <plugin>
 <memory>true</memory>
 <cpu>true</cpu>
 <interface>true</interface>
 ...
 </plugin>
 </vm>
</infrastructure>

From here the administrator can change the period with which new host snapshots
are created (sendingPeriod), the id with which the events are published to the Siena
event bus, the name of the HOST being sensed (HOST_NAME), and the infrastructure
dimensions we want the snapshot to contain (memory, cpu, interface, etc.)

At this point the setup is complete and the administrator can start collectd, which
will commence sending events to the event bus. This can be done using the following
instruction:

> /opt/collectd/sbin/collectd -f

The -f option means that collectd will run in the foreground and log its activities to
the console.
SCA Sensors
SCA Sensors are activated as monitoring intents within the Frascati runtime
environment. The administrator needs to download the monitoring intent project,
configure it with the Siena event bus details, create the appropriate jar, and add it to
the Frascati runtime. This automatically makes SCA sensing available to all the SCA
composites that are deployed to Frascati. Configuration is achieved in line 13 of the
MonitoringHandlerImpl class file, where the administrator must pass
“tcp:SIENA_HOST:SIENA_PORT” to the SienaOutputAdapter constructor.
The administrator can activate the SCA sensor on any SCA Service or Reference by
placing the SCA “requires” attribute to “MonitoringIntent” in the Service or
Reference’s definition in the composite file. The Monitoring Intent will automatically
send events to the Siena Event Bus.

INDENICA D4.2.1

 32

EcoWare Core

The EcoWare core is a Java application that can be run directly from within Eclipse
using the class Starter.Java. The Starter reads an EcoWare config file called
“config.xml”. This file attaches EcoWare data processors to the EventBus so that the
appropriate KPIs can be calculated, and inter-level correlations achieved. A simple
example of a config.xml file will be shown in the next subsection. A complete
presentation of the configuration syntax is provided with the source code.

EcoWare Persistency

EcoWare persistency is a Java application that can be run directly from within Eclipse
using the class Starter.Java. The Starter reads a config file called “config.xml”. This
file binds a primary data source with a set of secondary ones. Every time a new
datum is published to the event bus by the primary data source, the persistency tool
associates new data collected for each secondary data source. A simple example of a
config file will be shown in the next subsection. A complete presentation of the
configuration syntax is provided with the source code.

EcoWare Dashboard

The EcoWare Dashboard is a Java application that can be run directly from within
Eclipse using the class Starter.Java. The Starter reads a config file called “config.xml”.
This file subscribes a set of charting panels to data published by various event
sources for live viewing and configures other panels for accessing data that has been
persisted to the EcoWare persistency tool. A simple example of a config file will be
shown in the next subsection. A complete presentation of the configuration syntax is
provided with the source code.

A.2 Example
EcoWare Core
In this example we are using EcoWare to correlate the average response time of a
SCA service or reference call with an infrastructural snapshot. The SCA service or
reference is identified by the id it uses to publish its request and response events to
the event bus. The result of the average response time calculation is published using
the avgrt_ID. The interval unit and value identify the amount of past time that should
be considered when calculating the average response time, and the output unit and
value identify how much time passes between two subsequent outputs. The
correlation is defined in the XML’s aggregator node. The aggregation takes two
events, a primary one and a secondary one. The primary one is the average response
time identified by the avgrt_ID. The secondary one is the infrastructure snapshot
identified by the infrastructure_ID. The result of the aggregation is published to the
bus using id aggregated_ID. Every time a new primary event is seen on the bus, the
aggregation correlates all the secondary events that were seen in a past temporal
window defined by the “collection” node.

INDENICA D4.2.1

 33

<ecoware>
 <sienaServer>tcp:SIENA_HOST:SIENA_PORT</sienaServer>
 <KPI>
 <name>AvgResponseTime</name>
 <subscriptID>SCA_publish_ID</subscriptID>
 <publicationID>avgrt_ID</publicationID>
 <computation>
 <intervalUnit></intervalUnit>
 <intervalValue></intervalValue>
 <outputUnit></outputUnit>
 <outputValue></outputValue>
 </computation>
 </KPI>
 <aggregator>
 <subscriptID1>avgrt_ID</subscriptID1>
 <subscriptID2>infrastructure_ID</subscriptID2>
 <publicationID>aggregated_ID</publicationID>
 <primaryEventName>AvgResponseTime</primaryEventName>
 <secondaryEventName>InfrastructureSnapshot</secondaryEventName>
 <collection>
 <intervalUnit></intervalUnit>
 <intervalValue></intervalValue>
 </collection>
 </aggregator>
</ecoware>

EcoWare Persistency

In this simple example we persist the average response time and the infrastructural
data for future use. The configuration contains the same information from the above
example, except the collected data are no longer re-published together to the event
bus but persisted to the persistency database.

<persist>
 <sienaServer>tcp:SIENA_HOST:SIENA_PORT</sienaServer>
 <aggregate>
 <KPI>
 <subscriptID>avgrt_ID</subscriptID>
 <kpiName>AvgResponseTime</kpiName>
 </KPI>
 <secondary>
 <subscriptID>infrastructure_ID</subscriptID>
 <secondaryEventName>
 InfrastructureSnapshot
 </secondaryEventName>
 <collection>
 <intervalUnit></intervalUnit>
 <intervalValue></intervalValue>
 </collection>
 </secondary>
 </aggregate>
</ persist >

INDENICA D4.2.1

 34

EcoWare Dashboard

In this simple example we create a view of the average response time and of its
aggregated infrastructure data. Since each infrastructure snapshot contains multiple
dimensions (CPU, memory, etc.) we need to identify which of these information we
want to show

<dashboard>
 <sienaServer>tcp:SIENA_HOST:SIENA_PORT</sienaServer>
 <aggregate>
 <frameTitle>Average Response Time and correlated data</frameTitle>
 <SubscriptID>avgrt_ID</SubscriptID>
 <Name>AvgerageResponseTime</Name>
 <ValueAttribute>value</ValueAttribute>
 <Cutoff>cutoffValue</Cutoff>
 <ChartTitle>Average Response Time</ChartTitle>
 <secondaryEvent>
 <subscriptID>infrastructure_ID</subscriptID>
 <name>InfrastructureSnapshot</name>
 <valueAttribute>cpu_0_cpu_user.value</valueAttribute>

<valueCutoff>cutoffValue</valueCutoff>
<collection>

 <intervalUnit></intervalUnit>
 <intervalValue></intervalValue>
 </collection>
 <chartTitle>User CPU</chartTitle>
 </secondaryEvent>
 </aggregate>
</dashboard>

In this case we are creating a panel that shows the average response time with the
corresponding user cpu usage. Each new average response time is associated with
the past cpu snapshots collected within the collection range defined in the
“collection” node. The configuration also has cutoff values that can be shown on the
value plots as horizontal lines. This makes it easier for the administrator to establish
when the values being plotted are reaching noticeable amounts. Finally, it also
contains some extra information regarding the titles of the various data that are to
be shown.

INDENICA D4.2.1

 35

B Appendix 2: SPASS-meter Quick Guide

This is a brief introduction into the usage of the SPASS-meter instrumentation
framework. As the support for monitoring non-Java SUMs is currently under
development, we will discuss here exclusively the installation, the setup and an
example for Java SUMs.

B.1 Installation
SPASS-meter is packaged into a set of Java archives (JAR) for Windows and Linux
operating systems as they differ in the included native data gatherer library.
Depending on the instrumentation mode, the JARs are linked to the SUM in different
ways:

· Static instrumentation: The SPASS-meter-ant.jar contains the
instrumentation layer, the static instrumentation tool, and the integration
into the build process. Currently, a simple ANT task for build-process
integration is provided. For runtime, the SPASS-meter-static.jar
includes the probe collection layer, the data aggregation layer, the data
presentation layer as well as prepackaged extensions to such as the
implementation of the INDENICA monitoring interface for integration with
the INDENICA runtime environment. The SPASS-meter-static.jar
needs to be included into the class path of the SUM.

· Dynamic or mixed-mode instrumentation: The SPASS-meter-ia.jar
contains the instrumentation layer and the Java instrumentation agent. Due
to technical reasons, the Java instrumentation agent loads dynamically two
further JARs, one for boot time and one for runtime. The SPASS-meter-
boot.jar contains annotations and interfaces which need to be present at
boot time of the SUM in order to resolve dependencies inserted into the SUM
or (dynamically) into the Java library. The SPASS-meter-rt.jar contains
the upper layers for processing notification calls as well as the analysis
extensions similar to SPASS-meter-static.jar described above.

If the SPASS-meter monitoring scope specification is given in terms of source code
annotations, the SPASS-meter-annotations.jar needs to be included into
the class path at development time.

In order to install SPASS-meter the JARs mentioned above just need to be copied into
one directory (lib directory). The specific JARs are specified as JVM parameters,
either the java agent parameter or the class path parameter. In the dynamic case,
the location of JARs which are loaded at runtime is inferred based on the already
specified JARs.

B.2 Setup
For applying SPASS-meter to a SUM, the monitoring framework needs to be
configured. The configuration is twofold: a global configuration which determines
the basic operation mode and defaults as well as the monitoring scope specification.
The global configuration is given as part of the JVM or tool parameters, respectively.

INDENICA D4.2.1

 36

The monitoring scope can either be specified using source code annotations, e.g. in
handcrafted or generated code, or as an XML file. The monitoring scope defines the
monitoring groups, i.e. the relevant classes (and methods if required) as well as the
individual resources to be monitored. Depending on the specified analysis
extensions, the results of monitoring may be a summary file, live events etc.

In INDENICA, the XML monitoring scope specification will be generated from the
variability model (runtime variabilities) and further input taken from the monitoring
requirements or specification (WP2/WP3). As output, monitoring events will be sent
over the monitoring interface event mechanism to the INDENICA runtime
environment. Required parameters for the event mechanism will be taken from the
deployment specification.

B.3 Example
The example below illustrates the generic application of SPASS-meter to Mobicents
JAIN SLEE [MJSLEE]. As the Mobicents source code shall not be modified for
monitoring its services, the following XML monitoring scope specification defines
that

· Monitoring starts with the startup of the Mobicents SLEE container
· All resources supported by SPASS-meter except for memory usage

(memAccounting mode CREATION) are accounted for all dynamically
started Mobicent services (implementing javax.slee.Sbb)

· Monitoring stops at the end of the Mobicents SLEE container.

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://sse.uni-hildesheim.de/instrumentation"

 memAccounting="CREATION">

 <namespace name="" typeOf="javax.slee.Sbb"/>

 <namespace name="org">

 <namespace name="mobicents">

 <namespace name="slee">

 <namespace name="container">

 <module name="SleeContainer">

 <behavior signature="initSlee()">

 <startSystem/>

 </behavior>

 <behavior signature="shutdownSlee()">

 <endSystem/>

 </behavior>

 </module>

INDENICA D4.2.1

 37

 </namespace>

 </namespace>

 </namespace>

 </namespace>

</configuration>

For dynamic instrumentation the Java agent is given as a JVM parameter. Below, the
Java agent is packaged in spass-meter-ia.jar, the monitoring scope is given in
the mobicents.xml file and regular update events are issued each 2000 ms.

-javaagent:instrumenter\spass-meter-

ia.jar=xmlconfig=mobicents.xml,

 outInterval=2000

The static instrumentation of Mobicents is illustrated below in terms of a simple ANT
task (fragment). The static instrumentation tool takes two directories with JAR files
as input, produces instrumented jar files as output and considers the specified
options currently specified in the same format as for dynamic instrumentation
shown above.

<spassInstrumenter

 classpathref="classpath"

 in=”lib/*.jar, server/default/deploy/mobicents-slee/lib/*.jar”

 out="instrumented"

 params="xmlconfig=mobicents.xml,outInterval=2000” />

INDENICA D4.2.1

 38

C Appendix 3: Indenica Runtime Platform Demonstrator

This section presents a guide on the steps necessary to set up the INDENICA runtime
platform in Eclipse, as well as a standalone application.

C.1 Initial Eclipse Project Setup
Getting the project up and running in Eclipse for the first time involves the following
steps:

• Don’t worry about errors due to missing build.properties or due to an
unbound classpath variable (e.g. M2_REPO), as they should be fixed by
maven automatically.

• Set your default installed JRE to your JDK (required for maven)

• Install a maven integration, e.g. m2eclipse

• Run maven on the project in order to populate the maven repository

• Refresh your project. Additionally, it might be needed to

◦ create an empty build.properties file

◦ modify your eclipse.ini to point your -vm to the JDK-VM to get rid
of a tools:jar:1.5.0 error

C.2 Getting Project Dependencies
The runtime platform uses MongoDB and RabbitMQ for data storage and messaging.
These components must be running in order for the platform to work.

You can either install these requirements on your development machines or use a
prepared virtual instance.

C.2.1 Manual Installation of Dependencies
For installation of MongoDB and RabbitMQ, please refer to the respective project
web sites. After installing and starting the components, you will need to adjust the
platform environment configuration to point to your local instances.

NOTE: At the moment, this information is scattered throughout several files. Future
refactoring and cleanup will improve this situation. Using the preconfigured virtual
machine described below should be an easier way to get the necessary
dependencies running.

Currently, environment configuration is stored in the following files in
src/main/resources/

• src/main/resources/META-INF/sca-deployables/*.composite: The
*.composite files contain information about how to instantiate runtime
instances. The RepositoryComponent section contains a reference to the
MongoDB instance. Adjust the dbAddress property accordingly.

INDENICA D4.2.1

 39

• src/main/resources/files2DB/properties/*.properties: The *.properties files
contain configuration information for the initial data population module. The
eventRepositoryAddr property should point to the RabbitMQ instance. Adjust
this property accordingly.

C.2.2 Use a preconfigured Virtual Machine with all Dependencies
The current default configuration assumes that there are active RabbitMQ and
MongoDB instances running on host 192.168.56.101.

These requirements can be easily fulfilled by perusing vagrant and a virtual machine
provided by TUV. The steps necessary to start the virtual machine are:

• Install vagrant (see http://vagrantup.com/)
gem install vagrant

• Add the indenica_support_dependencies base box:
vagrant box add indenica_support_dependencies \
 http://db.tt/qQcjgPzp

• Initialize the machine:
mkdir support_components && cd support_components
vagrant init indenica_support_dependencies

You only have to perform these steps once. After the initial setup, the configured
virtual machine can be started using:
vagrant up

After a few minutes, the virtual machine should be running, the network settings
applied and the environment ready to go.

The virtual machine can be stopped using:
vagrant halt

The machine can be started again using vagrant up. For further information, please
refer to the Vagrant Documentation.

C.3 Starting the Platform

C.3.1 Command Line
When you have the dependencies running, you need to deploy the platform
configuration data before running the simulation:

mvn exec:java -Dexec.mainClass="indenica.deployment.utils.Populator"

With all prerequisites deployed, the Warehouse simulation can be started using:
mvn exec:java -Dexec.mainClass="indenica.deployment.Launcher" \

 -Dexec.arguments="UseCaseWP4Runtime"

This will start the demo you saw at the Munich meeting.

INDENICA D4.2.1

 40

C.3.2 Eclipse
To start the simulation from within Eclipse, run the
indenica.deployment.usecase.UseCaseLauncher class as a Java Application.

To stop the runtime instance, hit return in the console.

INDENICA D4.2.1

 41

References

[BH04] W. Binder and J. Hulaas. A Portable CPU-Management Framework for Java.
IEEE Internet Computing, 8:74–83, September 2004.

[CO04] A. Chawla and A. Orso. A generic instrumentation framework for collecting
dynamic information. SIGSOFT Softw. Eng. Notes, 29:1–4, September 2004.

[SGF 2009] The Open Group: The Open Group SOA Governance Framework; Draft
Technical Standard, 2009. www.opengroup.org/projects/soa-governance.

[D1.2.1] INDENICA Deliverable D1.2.1 - Requirements Engineering Framework,
Language and Tools for Service Platforms (Interim), 2011-10-31

[D2.3.1] INDENICA Deliverable D2.3.1 - Service Platform Infrastructure Repository
Concept & Realization (Interim), 2012-01-31

[D3.1] INDENICA Deliverable D3.1 – View-based Design Time and Runtime
Architecture for Tailoring VSPs, 2011-10-18

[D3.2] INDENICA Deliverable D3.2 - Architecture for Role-Based Governance of
Virtual Service Platforms, 2012-01-31

[D5.2] INDENICA Deliverable D5.2 - Report on Concepts for Tailoring and Extending
Service Platforms, not yet published

[JI12] JXInsight/OpenCore, 2012, jinspired.com/.

[JSON] Internet Engineering Task Force, RFC 4627, 2006,
http://www.ietf.org/rfc/rfc4627.txt

[MJSLEE] Mobicents JAIN SLEE, Red Hat Middleware LLC, 2008,
http://www.mobicents.org/slee/intro.html

[OSOA] Open SOA (2007). Service Component Architecture (SCA) Specifications
V1.00. http://www.osoa.org

[O08] Oracle, Java Management Extensions (JMX) Technology, 2008,
www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

[OW2C10] OW2 Consortium, WildCAT, 2010, wildcat.ow2.org/

[WSCoL] L. Baresi, S. Guinea, “Self-supervising BPEL Processes,” IEEE Transactions on
Software Engineering

[XML] W3C, Extensible Markup Language, 2008, http://www.w3.org/TR/REC-xml/

