
Document ID: INDENICA – D2.4.1
Deliverable Number: D2.4.1
Work Package: WP2
Type: Deliverable
Dissemination Level: PU
Status: final
Version: 1.0
Date: 2012-10-02
Author(s): SAP, SUH

Project Start Date: October 1
st
 2010, Duration: 36 months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

Domain-specific customization of service platforms can only be effective with
appropriate tool support. In this deliverable we will present the current state of the
INDENICA Variability Engineering tool, by illustrating its application as well as its
technical realization. Regarding the application, we will discuss an introductory
example showing the individual steps of customizing a service platform. Regarding
the technical realization we will discuss the architecture and its individual
components along with their realization status and, finally, the interaction and
integration with the work done in the other INDENICA work packages.

Variability Engineering Tool
(interim)

Version History

0.1 29. Jun 2012 initial version

0.2 03. Sep. 2012 running example added

0.3 18. Sep 2012 variability engineering tool design and initial relation to other
WPs added

0.4 01. Oct. 2012 final revision and corrections of complete document

1.0 02. Oct. 2012 final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents ... 3

Table of Figures .. 4

1 Introduction ... 5

2 Running Example ... 6

2.1 Defining a New Base Service Platform .. 6

2.1.1 Configuration Space Definition .. 7

2.1.2 Implementation Space Definition .. 9

2.2 Deriving a Domain-Specific Service Platform .. 12

2.2.1 Configuration of a Domain-Specific Service Platform 13

2.2.2 Instantiation of a Domain-Specific Service Platform 14

3 Variability Engineering Tool Design ... 15

3.1 Architecture ... 15

3.2 INDENICA Variability Modelling Language (IVML) .. 18

3.3 Reasoning support for IVML .. 19

3.3.1 Reasoner Selection... 20

3.3.2 Reasoner Implementation ... 23

3.3.2.1 Implementation Status ... 24

3.3.2.2 Initial Performance Results .. 26

3.4 Instantiation support for IVML .. 28

3.5 Support for Application Engineers .. 29

4 Integration with other WPs ... 31

5 Conclusion .. 33

References ... 34

INDENICA D2.4.1

 4

Table of Figures

Figure 1: The product line editor in EASy-Producer. ... 7

Figure 2: Default IVML file in EASy-Producer. ... 8

Figure 3: Variability model of the content-sharing application (snippet). 8

Figure 4: Example variability implementation using SAP’s Cocktail approach. 10

Figure 5: Defining an instantiator for artefact instantiation. 11

Figure 6: Selecting the copy-mechanism for artefact derivation. 12

Figure 7: New product line member derived from a product line. 13

Figure 8: Product configuration using the IVML configuration editor. 14

Figure 9: Architecture of the Variability Engineering Tool „EASy-Producer“ 16

INDENICA D2.4.1

 5

1 Introduction

The main focus of work package 2 within the INDENICA project is the customization
of service platforms. However, customization of software in general and of service
platforms in particular can only be effective with appropriate tool support. In this
deliverable we discuss the current state of the tool support designed and realized in
INDENICA. The work presented here is based on previous results and concepts
researched in work package 2, namely the classification of variability implementation
techniques (D2.2.1) and, in particular, the design of the INDENICA Variability
Modelling Language (IVML) in Deliverable D2.1.

In Section 2 we will present the variability engineering tool from a practical
perspective using an introductory example. This example will build on the service
platform example introduced in Deliverable D2.1 and will show how to use the tool
to derive a domain-specific service platform variant. For this purpose, we discuss all
steps needed to successfully define a service (base) platform as a product line
project, including variability modelling and implementation. Starting from these
artefacts, we will describe how to derive a domain-specific service platform including
its configuration, validation and instantiation.

Section 3 will focus on the technical aspects and the current state of the
implementation. First, we will describe the architecture of the variability engineering
tool in terms of its logical components and its overall extension capabilities. Then we
will discuss the realization status of the major components like the IVML object
model and the instantiation support. In particular, in Section 3.3 we will detail the
reasoning mechanism for IVML, i.e., the selection of the underlying reasoning
technology as well as the results of initial performance experiments.

In Section 4 we will discuss the status of the integration of the variability engineering
tool with the work done in the other work packages. This section will give an
overview on the integration with the INDENICA development tools (WP1, WP3), with
the runtime environment (WP4) as well as with the service platform case studies
(WP5).

Finally, in Section 5 we will review the overall status of the realization in WP2 and
conclude by describing further realization and optimization work to be done in the
third year of the project.

INDENICA D2.4.1

 6

2 Running Example

In this section, we will focus on the roles of a Platform Provider and a Platform
Variant Creator (see Deliverable D3.2) in order to illustrate the usage of EASy1-
Producer based on the running example introduced in Deliverable D2.1. We will
prototypically model and implement the variability of a content-sharing platform,
which allows the user to upload, annotate, release and share content of various
types. In Section 2.1, we will adopt the role of a Platform Provider and describe the
definition of a software product line from which multiple variants of the content-
sharing platform can be derived. This includes the definition of the variability model
using the INDENICA Variability Modelling Language (IVML) and the implementation
of these variabilities in source code. In Section 2.2, we will adopt the role of a
Platform Variant Creator and describe the derivation of a specific service platform
variant including the variant configuration and the instantiation of the corresponding
artefacts.

We will use the following font styles throughout this section to illustrate and
distinguish between actions, active tool elements, and added input:

 EASy-Producer (as well as Eclipse) provides multiple editors, wizards, etc. In
order to identify the active tool element currently in use, it will be
highlighted using bold font.

 All actions that will be performed will be highlighted using italics font.

 All input to EASy-Producer will be illustrated in Courier New.

2.1 Defining a New Base Service Platform

In this section, we will describe the process of defining the variability of a (base)
service platform (a software product line) using EASy-Producer from the perspective
of a Platform Provider. We will start with the creation of a new product line project
in EASy-Producer, define the configuration space in terms of an IVML variability
model, and implement the variabilities using a variability implementation technique.
The resulting base service platform (the product line project) will be the basis for the
derivation of different content-sharing platforms by a Platform Variant Creator.

The first step towards a product line definition in EASy-Producer is to define a new
product line project. For this purpose, start the Eclipse application with the already
installed EASy-Producer tool2. Start the New Project Wizard by opening File New
 Project. Expand the EASy-Producer category and select the entry New EASy-
Producer Project. This opens the Product Line Project Wizard that requires the
definition of a name for the new product line project. In our example, we will use
PL_Content_Sharing as the name of our prototypical product line. Enter the
name and click the Finish button. The product line project will be created and EASy-
Producer will automatically open the Product Line Editor as illustrated in Figure 1.

1 Engineering Adaptive Systems
2 Information regarding the installation of EASy-Producer can be found in the EASy-Producer User Guide:

http://projects.sse.uni-hildesheim.de/easy/docs/guide.pdf

http://projects.sse.uni-hildesheim.de/easy/docs/guide.pdf

INDENICA D2.4.1

 7

The Product Line Editor is the central editor in EASy-Producer as it provides the basic
information about a software product line (or a product) as well as the capabilities to
derive, configure, and instantiate a product using the different tabs shown in Figure
1. For this purpose, the configuration space (variability model) and the
implementation space (variability implementation) must be defined. We will
describe both definitions in detail in the next two subsections.

2.1.1 Configuration Space Definition

A variability model defines the valid configuration space of a specific software
product line. The variabilities are implemented in the artefacts. In EASy-Producer, we
use IVML for defining a variability model and, thus, the configuration space of the
content-sharing platform. This model will be the basis for configuring individual
service platforms in terms of defining valid value combinations for the configuration
space elements (the IVML decision variables).

In EASy-Producer, each product line project comes with its own IVML-file, which can
be opened and edited using the IVML-Editor. The IVML-file is located in the EASy-
folder of the project. The name of the file is composed of the name of the product
line and the version number (here initially “0”). In our example, double-click the file
PL_Content_Sharing_0 in order to open the IVML-Editor.

By default, each IVML-file has a mandatory project element and a mandatory version
number as shown in Figure 2. The project element is the top-level element of each
IVML file and identifies the configuration space of a certain software project
(product line or product). The version element defines the current state of evolution
of a project and, thus, identifies a specific (state of a) project. The default version is
“v0”.

Figure 1: The product line editor in EASy-Producer.

INDENICA D2.4.1

 8

We characterize the configuration space of the variant-enabled content-sharing base
platform by specifying the variability model in IVML. Figure 3 shows a snippet of the
variability model (cf. D2.1 for details). First, we define several enumerations that
represent the different content types, container types, etc., which an application
may support in general (lines 5-8). These enumerations are the basis for specifying
the type, for example, of a specific content (lines 10-12). The basic content
compound must be refined in order to represent the specific configuration options
for Video, 3D (ThreeD), and BLOB contents (lines 14-27). The other compounds are
modelled according to the running example (cf. D2.1 for details). As indicated in the
outline on the right side of Figure 3, the two types Application and
TargetPlatform include decision variables of the previously defined (compound)
types representing the complete set of configuration options for the content sharing
base platform. Thus, two variables (one of type Application and one of type
TargetPlatform) are defined as the main decision variables for configuring a
specific content-sharing platform variant. These variables will also be displayed in
the IVML Configuration Editor tab of the Product Line Editor. We will discuss this
editor in detail in the process of product configuration in Section 2.2.1.

Figure 3: Variability model of the content-sharing application (snippet).

Figure 2: Default IVML file in EASy-Producer.

INDENICA D2.4.1

 9

Finally, the variability model, and, thus, the configuration space of the content-
sharing application is defined. We will use this model in Section 2.2.1 for configuring
a specific content-sharing platform variant. However, in the next section we will first
discuss the implementation of the variabilities. This includes the relation of the
decision variables to the implementation in order to automatically instantiate
different platform variants.

2.1.2 Implementation Space Definition

The implementation space of a specific software product line represents all variable
artefacts that can be instantiated according to a specific configuration. The actual
implementation of these artefacts depends on the applied variability
implementation techniques. A variability implementation technique is a specific
approach to realize variability, e.g., using pre-processor directives, aspects, or any of
the other techniques described in Deliverable D2.2.1. In EASy-Producer different
variability implementation techniques can be applied and combined. However, each
variability implementation technique is realized by an individual instantiator, which
actually applies the variability implementation technique (we will discuss the
instantiators in detail in Section 3.4).

In the running example, we will use SAP’s Cocktail instantiator, which was specifically
developed for the SAP yard management use case. Cocktail is a variability
implementation technique, which supports specific requirements for agile software
development of cloud-based service platforms, e.g., to be executed in the SAP
Netweaver Cloud3. Basically, Cocktail can be applied to any programming language,
which supports meta-information in source code. In this example we will
demonstrate Cocktail for base platforms developed in Java and express meta-
information in terms of Java source code annotations. These annotations are used to
bind configuration space elements (decision variables given in terms of their
qualified names) to so-called variation points in the source code. A variation point is
a “hook” for variability decisions to be bound during the configuration process (cf.
Section 2.2.1). Figure 4 illustrates these annotations at attributes in the Platform
class of the running example, i.e., the actual value of the annotated attribute will
change according to the configuration at compile or runtime.

3 For detailed information regarding SAP Netweaver Cloud visit: http://scn.sap.com/community/developer-

center/cloud-platform

http://scn.sap.com/community/developer-center/cloud-platform
http://scn.sap.com/community/developer-center/cloud-platform

INDENICA D2.4.1

 10

The next step is to define the instantiator for instantiating the artefacts. Open the
Product Line Editor by right clicking on the product line project and select Edit
Productline in the context menu. Switch to the Instantiator View tab of the Product
Line Editor, which is illustrated in Figure 5. In our example, we will select
CocktailTransformer as the instantiator for the entire product line by selecting the
corresponding entry in the drop-down menu in the upper part of the Instantiator
View. Clicking the Add Instantiator button will add the Cocktail instantiator to the
product line project. Select the new (instantiator) entry in the list on the left side of
the view. This will display the currently selected artefacts that the Cocktail
instantiator will instantiate. Of course, at this point we have to select the artefacts by
checking the checkboxes for all files in the src folder. Please note that it is also
possible to define multiple instantiators, where each one may be in charge of a
subset of the product line artefacts, or define multiple instantiators for the same
files. The latter case is required if a single artefact is implemented using multiple,
different variability implementation techniques, i.e. to enable some variable parts to
be resolved at compile time first (for example, using pre-processer directives), while
other part can be resolved later at runtime (for example, using aspects). In such a
case, the Calculate files that will be instantiated multiple times button can be used to
identify files that will be instantiated by more than one instantiator.

Please note that this way of describing the instantiation process will be refined by
the Variability Implementation Language (VIL), which is currently under development
and its concepts will be discussed in Deliverable D2.2.2. We already introduced the
basic ideas of VIL in Deliverable D2.2.1.

Figure 4: Example variability implementation using SAP’s Cocktail approach.

INDENICA D2.4.1

 11

The last step is to define how the generic artefacts defined for the variant-enabled
base platform will be turned into artefacts of the instantiated domain-specific
platform. Currently, EASy-Producer offers two ways: 1) to instantiate the artefacts in
terms of their structure, i.e., by taking over existing namespaces, packages and class
/ file names; 2) to add additional namespaces for distinguishing the artefacts
combined from different product lines.

The creation of namespaces as part of deriving instantiated product line artefacts is
related to the concept of Multi-Software Product Lines (MSPL). In MSPL scenarios, a
product inherits the functionalities of more than one product line in terms of
including all artefacts of all (parent-) product lines with respect to the products
configuration. EASy-Producer provides MSPL capabilities and, thus, allows adding or
removing predecessors (i.e. additional parent-product lines) for a product line
project. A predecessor in EASy-Producer is a product line project from which the
derived project (product line or product) will inherit its functionalities. For example,
the application and the platform of the content-sharing application can be
implemented as two different product line projects. A product which integrates both
functionalities (like the audio content-sharing application of the running example)
can be derived from one of the product line projects, while the other product line
can be added by clicking the Add/remove predecessor button in the IVML
Configuration Editor tab. Clicking the Pull Configuration button in this tab will then
refresh the configuration options in terms of adding the new options from the new
predecessor to the editor. The configuration of all (integrated) configuration options

Figure 5: Defining an instantiator for artefact instantiation.

INDENICA D2.4.1

 12

will yield a new product, which combines the functionality of both predecessors
according to the configuration.

However, in our example, we will use the first (simple) mechanism relying on the
current artefact structure. Thus, switch to the Project Configuration Editor tab and
use the drop-down menu to select the Copy without package adaptation entry as
shown in Figure 6.

Finally, the implementation space is defined and an instantiator is assigned to
instantiate content-sharing application variants accordingly to a configuration. On
this basis, we will derive a new product from this product line in the next section.

2.2 Deriving a Domain-Specific Service Platform

In this section, we will describe the process of deriving a new domain-specific
platform from a software product line defined in EASy-Producer. We will adopt the
perspective of a Platform Variant Creator and start with the derivation of a new
product line member4 (in this case, the product project), configure the product based
on the variability model defined in Section 2.1.1, and instantiate the product line
artefacts accordingly. This will result in a specific content-sharing application variant
with the desired functionalities ready for use.

The first step towards an instantiated domain-specific platform is to derive a new
member from the previously defined base platform product line. For this purpose
open the Product Line Editor by right clicking on the product line project and select
Edit Productline in the context menu. In the ProjectConfiguration Editor tab click the
Derive new Product Line Member button, define a name for the new member, and
click the Ok button. In our running example, we will use Audio_Sharing_App as
the name of the new member. A new product line project will be created and the
corresponding Product Line Editor will open automatically as shown in Figure 7.

4 In EASy-Producer, we do not distinguish between a product line infrastructure and a final product. Both are

simply projects that may contain more or less variability (in case of a product none)

Figure 6: Selecting the copy-mechanism for artefact derivation.

INDENICA D2.4.1

 13

In the new product line member project, we will configure the desired functionalities
of our specific audio content-sharing platform. This configuration will be used to
finally instantiate the domain-specific platform. We will describe both steps in detail
in the next two sections.

2.2.1 Configuration of a Domain-Specific Service Platform

A product configuration (in this example the configuration of the domain-specific
service platform) is a set of configured elements. In IVML configured elements are
specified by assigning specific values to the elements in the configuration space, i.e.
the decision variables, the attributes, etc. The validity of a configuration is checked
against the constraints of the variability model using the built-in reasoning
mechanism. The valid product configuration provides the basis for the (automated)
instantiation of the corresponding product artefacts.

EASy-Producer provides two ways of configuring the elements of an IVML variability
model: either use the IVML Editor by double-clicking the IVML file of the derived
product line member (in our example the Audio_Sharing_App_0.ivml file) in
order to configure the elements of the imported project (the product line project)
manually, or use the IVML Configuration Editor tab of the Product Line Editor. In our
example, we will use the IVML Configuration Editor. This eases the configuration
task as it includes all configurable elements of the imported project and provides the
possible values for each of these elements automatically (we will discuss the
configuration editor in detail in Section 3.5). Figure 8 illustrates the IVML
Configuration Editor, including the configurable elements of our audio content-
sharing application.

Figure 7: New product line member derived from a product line.

INDENICA D2.4.1

 14

The next step is to check whether the configuration is valid. For this purpose, click on
the Validate Product button of the IVML Configuration Editor. This executes the
built-in IVML reasoning. If the product is valid, it is ready for instantiation. If it is not
valid, the configuration must be revised in order to guarantee that the resulting
product will work appropriately. In case of an invalid configuration, EASy-Producer
will issue a description of the configuration problem and propose a possible error
location in the current configuration. Please not that this kind of user support is still
under development and may not work appropriately in every situation in the current
release of EASy-Producer. However, we are working on this kind of support as part of
future releases to ensure scalability to large and complex configuration problems.

Finally, the product is configured and ready for instantiation.

2.2.2 Instantiation of a Domain-Specific Service Platform

Product instantiation describes the process of resolving the variability of product line
artefacts according to a product configuration. This process results in the product
artefacts that are mostly variation-free and ready to use. However, in some
situations it is desired to resolve some of the variabilities at a later point in time, for
example, at initialization time or runtime. In such a case, the instantiation process
will leave these variabilities as-is.

EASy-Producer provides a fully automated instantiation process, which is based on
the variability model, the current configuration and the selected instantiators. We
defined this information in the previous sections, such as the implementation space
and instantiator definition (cf. Section 2.1.2) and the product configuration (cf.
Section 2.2.1). This relies in turn on the configuration space definition (cf. Section
2.1.1). Thus, the only remaining activity is to click the Instantiate Product button in
the IVML Configuration Editor. This will yield the instantiated artefacts from the
product line project and insert them into the product project by resolving the
variabilities.

Figure 8: Product configuration using the IVML configuration editor.

INDENICA D2.4.1

 15

3 Variability Engineering Tool Design

In this section, we will discuss the design of the Variability engineering tool EASy-
Producer as well as the state of the realization of the main components. In Section
3.1, we will introduce the overall architecture of EASy-Producer. In the following
sections we will discuss particular components of the architecture in more detail: in
Section 3.2 the realization of the INDENICA Variability Modelling Language (IVML), in
Section 3.3 the reasoning support for IVML, in Section 3.4 the product instantiation
support, and in Section 3.5 the specific support for the application engineer via the
user interface.

3.1 Architecture

In this section, we describe the architecture of EASy-Producer. First, we will discuss
the main design principles and then the architecture in terms of individual (logical)
components. Finally, we will outline the realization and validation status of the
entire EASy-Producer tool.

The design of EASy-Producer follows three main design principles:

 Separation of functionality: The core of EASy-Producer consists of commonly
used functionality such as management of variability models or product line
projects. Specific functionality such as individual instantiation mechanisms or
even reasoners is separated from the core. These components extend the
core, i.e., they provide specific functionality, which is called by the core at
certain points during the execution.

 Separation of the user interface: Functional components such as the
variability instantiation mechanisms do not provide a user interface. This
facilitates the direct reuse of the functional components in headless product
build workflows or in the INDENICA runtime environment (WP4). However,
the user interface relies on the underlying functional components.

 Separation of the external tool integration: The components, which realize
the integration with other INDENICA tools rely on core functionality and use
specific functionality only through the core. The integration components are
separated into specific interfaces to be used by the external tools as well as
their actual implementation. Integrations shall be optional for the external
tool, i.e., it shall be able to work also without an installed version of EASy.
Thus, the integration in the external tool only becomes active when also their
counterpart in terms of EASy components is installed. However, in future
integration components may also contribute to the user interface and, thus,
would further be split into a user interface and a functional part as stated
above.

INDENICA D2.4.1

 16

Following these three principles, we designed the architecture of EASy-Producer as
illustrated in Figure 9. The architecture defines a number of components, each with
provided and required interfaces. Components, which have (partly) been taken over
from previous versions of EASy-Producer are marked below accordingly.

 EASy-Producer core: The functional core of the EASy-Producer tool consists
of five components:

o The IVML object model realizes an object-oriented representation of
IVML variability models. The object model provides classes, which
realize individual IVML concepts, a tree-based representation of IVML
constraints as well as model management functionality supporting
model imports and compositions.

o The reasoner core manages available reasoner components and
provides access to high-level reasoning functionality such as model
consistency checks, value propagation and constraint evaluation.
Multiple reasoners can be plugged into the reasoner core, which, in
turn, serves as a basis for selecting the most appropriate reasoner for
a given IVML model. Currently, two specific reasoners are realized as
depicted in Figure 9, but further ones are under realization or
planned.

o The instantiator core manages available variability implementation
techniques realized as individual instantiator components. The
current implementation of the instantiator core is based on the
previous version of EASy-Producer, while future versions of this
component will support the execution of a descriptive specification of
the production workflow in VIL (see D2.2.1, Section 5 for an initial
description; the detailed concepts will be presented in D2.2.2).

Figure 9: Architecture of the Variability Engineering tool „EASy-Producer“

INDENICA D2.4.1

 17

o The IVML core contains a parser as well as a semantic analyser for
IVML models and allows obtaining a (valid) IVML object model from
textual input. IVML core and IVML object model interact in particular
during model import and composition, i.e., the model management of
the IVML object model determines which models to load based on
IVML import statements and the IVML core creates the related object
models on demand. Further, persistency mechanisms provide access
to product line specific information such as predecessors in a
hierarchical multi-software product line.

o The EASy core realizes functionality for hierarchical product line
engineering on top of the components described above. The base
implementation of this component has been taken over from the
previous version of EASy-Producer and was adapted to the current
architecture as well as to the new concepts introduced by the IVML.

 Reasoners: A reasoner component realizes the translation of IVML concepts
to reasoner-specific concepts as well as the translation of reasoner results to
an IVML configuration. A reasoner component is an extension of the reasoner
core. Currently, we realized two reasoner integrations (see Section 3.3).

 Instantiators: A specific instantiation component realizes one or multiple
variability implementation techniques. Two generic instantiators, namely the
Velocity- and XVCL-instantiator have been taken over from the previous
version of EASy-Producer. INDENICA-specific instantiators have been realized
to support specific variability implementation techniques that were relevant
to the development technologies used by the different partners. The
previously mentioned SAP Cocktail instantiator (see Section 2.1.2) is one such
example; further ones will be realized / refined in the remainder of the
project (see Section 3.4).

 User interface: The user interface integrates EASy into the Eclipse IDE.
Currently, the user interface contributions of EASy consist of the syntax-
driven editor for IVML models (see Section 2.1.2), a table-based editor for
supporting the configuration tasks of an application engineer (see Sections
2.2.1 and 3.5) as well as several configuration dialogs. An editor for
simplifying the variability modelling with IVML is scheduled as future work.
Basically, the individual editors are optional. For example, one version of
EASy-Producer may rely just on the simple table-based editors, thus hiding
the advanced modelling concepts provided by IVML, while other versions
may also include the IVML editor. Further, the entire user interface is
optional to facilitate the application of EASy in headless settings such as build
mechanisms or the INDENICA runtime environment (WP4).

 Tool integrations: EASy-Producer integrates with other tools developed in
INDENICA (see also Section 4). For the integration with the other INDENICA
development time tools, EASy-Producer offers interfaces to the INDENICA
requirements engineering tool IRET (see also Deliverable D1.2.1), to the
architecture decision framework ADF (Deliverable D1.3.1) and to the view-
based modelling framework VBMF (Deliverables D3.1 and D3.3.1) as well as
to the WP4 monitoring and adaptation rule editors (Rule Editor integration
component). Certain integrations will also interact with the runtime

INDENICA D2.4.1

 18

environment. Some integration will be realized through artefact instantiation,
like deriving instantiated monitoring and adaptation rules, while others will
happen through connectors to instantiated systems (Cocktail integration
component). We will detail the integration with other WPs in Section 4.

All components described above have been realized as individual OSGi5 components
(bundles). We selected OSGi as it is the underlying technology for the Eclipse IDE and
serves as common platform for the INDENICA development time tools. The
extending components such as the reasoner integrations or the instantiators are
realized as OSGi declarative services5. While the user interface components of EASy
are Eclipse plug-ins, the remaining (functional) components are pure OSGi
components in order to make EASy available to headless build workflows as well as
for integration into the WP4 runtime environment. An Eclipse update site has been
set up6 which provides access to all realized components and facilitates user-friendly
installation into the Eclipse IDE.

The integrated EASy-Producer tool will be subject to an extensive regression test
suite in the future. However, the logical components are already tested individually,
while we validate the integrated installation of EASy components manually before
new versions are released to the EASy update site. Currently, we provide bi-weekly
releases of the EASy components. In addition to the implementation, we provide
documentation in terms of two life documents, a user guide7 and a developer guide8.

3.2 INDENICA Variability Modelling Language (IVML)

The INDENICA Variability Modelling Language (IVML) is a novel language for textual
variability modelling. IVML is explicitly based on the project requirements as
discussed in D2.1 and we found no other existing approach that would adequately
address this wealth of requirements. The approach was designed with the whole
breadth of requirements in mind that are relevant to variability in platform
customization and integration. In this section, we provide an overview of the current
state of the IVML implementation based on the concepts in D2.1 as well as its
validation.

We developed a faithful implementation of the IVML language concepts defined in
D2.1 as part of the realization of the WP2 variability engineering tool. However
minor (syntactical) inconsistencies in the language design have been detected and
corrected as part of the implementation work. We maintain a life document, the
IMVL language specification9, as documentation of the current state of the IVML
language, its concepts and its semantics. This document also contains a detailed
description of the IVML constraint language, the operations available in constraints
as well as the entire grammar of IVML.

5 http://www.osgi.org/Specifications/HomePage
6 EASy-Producer Update Site: http://projects.sse.uni-hildesheim.de/easy/
7 EASy-Producer User Guide: http://projects.sse.uni-hildesheim.de/easy/docs/guide.pdf
8 EASy-Producer Developers Guide: http://projects.sse.uni-hildesheim.de/easy/docs/devguide.pdf
9 IVML language specification: http://projects.sse.uni-hildesheim.de/easy/docs/ivml_spec.pdf

http://projects.sse.uni-hildesheim.de/easy/
http://projects.sse.uni-hildesheim.de/easy/docs/guide.pdf
http://projects.sse.uni-hildesheim.de/easy/docs/devguide.pdf
http://projects.sse.uni-hildesheim.de/easy/docs/ivml_spec.pdf

INDENICA D2.4.1

 19

We implemented IVML in terms of three EASy-components: the IVML core, the IVML
editor and the IVML object model. Large parts of the IVML core and the IVML editor
have been realized using the Xtext10 software development kit. Xtext is a popular
open-source technology for developing editors and language-related tools for textual
(domain-specific) languages for the Eclipse IDE. Based on a given grammar, Xtext
generates a parser as well as parts of the user interface such as a (customizable)
syntax-driven editor with syntax and problem highlighting, an interactive content
assist mechanism and a hierarchical outline. Xtext also supports the development of
the semantic analysis in terms of a customizable type system and (incremental)
semantic validation. However, we decided to realize the semantic analysis for IVML
manually in order to have explicit control over the functionality and to avoid non-
trivial incompatibilities with evolving versions of Xtext and to ease the realization of
headless versions of EASy-Producer such as the WP4 integration. We also realized
the IVML object model manually. Here, an option would have been to use the Ecore-
based abstract syntax representation generated by Xtext as a basis, but this would
imply a mix of syntactical representation on grammar level with language concepts.
The result of a successful semantic analysis of a valid IVML model is an instance of
the IVML object model, which is the basis for realizing higher-level functionality in
EASy. All concepts of IVML, as well as their semantics, have been realized at this
point. Further, we customized the generated IVML editor by an IVML-specific
outline. A supporting content-assist mechanism will also follow in one of the next
releases.

The IVML components, in particular the parser implementation, the semantic
analysis as well as the IVML object model are subject to an extensive regression test
suite. The IVML object model is validated by 97 unit test cases. Parser and semantic
analysis are validated by 53 test cases given in terms of individual IVML models,
which cover all IVML concepts. Further, we use the most current versions of the
variability models of the INDENICA partners as test cases.

3.3 Reasoning support for IVML

The IVML language provides highly expressive modelling elements and concepts for
the definition of variability models. Thus, checking whether a specific (product)
configuration is valid is a challenging task. In EASy-Producer, we use so-called
reasoners to perform the task of model and configuration checking and validation. A
reasoner is typically a third-party tool, which is designed to solve logical and
combinatorial problems, checking specific value combinations of related modelling
elements, etc. In this section, we will discuss the reasoning support for IVML. This
will include the description of the approach to select appropriate reasoners for IVML
as well as the current state of implementation of the selected reasoners.

While the issue was raised that some IVML models may yield undecidable logical and
combinatorial problems and, thus, may not be reasonable at all, we can exclude such
scenarios in the particular context of the INDENICA project. A running platform
needs to be fully defined in order to be executable at runtime and provide the

10 Xtext website: http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

INDENICA D2.4.1

 20

desired functionalities. At runtime, the expressions of the IVML language only have
to be evaluated based on a rule-driven mode: thus for each evaluation at least one
additional value is set with the total set of values being limited. With the maximum
number of the values being limited to at most several thousands (typically more in
the hundreds), we do not expect any performance issues (see initial experimental
results in Section 3.3.2). Further, for fully defined value sets, the problem
degenerates to checking ground instances, which is trivially decidable in our
language. We expect that in realistic scenarios fewer than 10% of the variable values
need to be deduced at runtime, leading to values of a few dozen variables. At
development time, we aim at providing reasoning capabilities for supporting the
application engineer by trying to set any implicitly defined values automatically. One
should note, however, that this is purely a comfort function. This will be done in a
way that ensures that also intermediate deductions are fully correct and that this
assistance functionality is non-blocking. This will avoid any negative effects from high
running times (these can also be expected to be highly unlikely for realistic situations
according to theoretical analysis from the area of product lines [4]).

3.3.1 Reasoner Selection

In order to find appropriate reasoners, we performed an extensive analysis of
existing solvers, model checkers, etc. We analysed 27 different tools in total.
However, we will only discuss those here, which we analysed in detail, as some of
the reasoners could be immediately excluded, e.g., due to incomplete or no
documentation, outdated releases, etc. The criteria for the detailed analysis were
derived from the concepts of the IVML language as we aimed at reducing effort on
implementing IVML reasoners by reusing existing capabilities and, if required, adapt
them to process IVML modelling elements correctly. We applied the following
categories of criteria:

 Type support: A reasoner must support at least all basic types of the IVML
language. This includes Boolean as well as non-Boolean types, such as Integer,
Real, and String. It shall also support enumerations, but this may also be
simulated by Integers. Further, advanced types like containers (set and
sequences) and compounds shall be supported. However, also compounds
may be simulated, if not supported directly, but this increases the translation
and development effort. Further, we do not specifically require the support
of derived types as they can be simulated in terms of basic types and
constraints.

 Constraint support: A reasoner must support different types of operators in
order to define constraints among IVML variables of the above types. This
includes logical and arithmetic operators as well as operators for set and
sequences, for example quantification operators. Arithmetic operators also
lead to the requirement of being able to compute derived values.

 Configuration support: In general, a reasoner shall support model
consistency checking. Further, it shall support (mechanisms to determine)
undefined values and value propagation (derivation), partial configuration
(this includes support for undefined values) as well as partial evaluation.

INDENICA D2.4.1

 21

These mechanisms are required to facilitate multi-staged configuration within
IVML and EASy-Producer.

 General: We also include some meta-criteria in order to select appropriate
reasoners for IVML and, in particular, for the INDENICA project. The
implementation of a reasoner shall be realized in Java (or at least provide a
Java native interface) for an easy integration with EASy-Producer and with
other tools developed in INDENICA. However, we would also select reasoners
of any other implementation, if they provide a better support than reasoners
implemented in Java. In case that a potential reasoner may also offer
extensibility capabilities (i.e., an API and a corresponding license agreement,
which allow extending the base capabilities), we will prefer such a reasoner
as this will ease the implementation of additional operations.

We included a large set of solvers, model checkers, etc. of different categories in our
analysis, namely Constraint Satisfaction Problem (CSP) solvers, Object Constraint
Language (OCL) reasoners, Description Logic (DL) solvers, Satisfiability Modulo
Theorem (SMT) provers, and rule engines. We opted primarily for the inclusion of
rule engines during our analysis as we realized that existing reasoners did not
properly support our requirements, while rule engines offer a vast set of capabilities
and functionalities required. Further, we excluded SAT-solvers as these solvers do
not support non-Boolean types and expressions. Table 1 summarizes the results of
our analysis.

In the category of CSP solvers, we analysed Gecode11, Choco12, and the OR-Tools13. In
general, these solvers provide good support for Boolean and Integer types. Thus,
these solvers also provide logical and arithmetic operators for defining constraints
among variables of these types. However, in these tools the definition of Integer
variables requires the definition of a fixed range of possible values, while in IVML
variables of this type are in general unbounded (if no constraint restricts the set of
possible values). Gecode and Choco also provide a real type, however, variables of
this type have to be bound to a fixed range of values as well. Further, most analysed
tools do not support basic types like strings and enumerations at all. More complex
types like containers are only supported by Gecode and Choco as bounded Integer
sets. Thus, operators for constraining such sets can only be applied to sets of type
Integer. Compounds are not supported at all. Regarding configuration support, these
solvers allow partial configuration, i.e., defining specific values for a subset of all
available variables, while undefined values will be derived, for example by evaluating
the constraints. However, this is of course limited to the supported types. In the
category of general criteria, all reasoners provide extensibility under the terms of
less restrictive licenses. However, as a result, we decided that CSP solvers would not
be the first choice for IVML reasoning as their type system as well as their constraint
system is too limited and will not be sufficient to translate all IVML elements and

11 Gecode website: http://www.gecode.org/
12 Choco website: http://www.emn.fr/z-info/choco-solver/
13 OR-Tools website: http://code.google.com/p/or-tools/

http://www.gecode.org/
http://www.emn.fr/z-info/choco-solver/
http://code.google.com/p/or-tools/

INDENICA D2.4.1

 22

concepts to their models. Further, the extension of such tools would also be limited
due to the core capabilities of these reasoners.

The OCL libraries EMF-OCL14 and Dresden OCL15 were promising candidates for IVML
reasoning as the IVML constraint language is based on OCL, i.e., the type system and
most operators are appropriate while default values as well as value assignments as
required for defining configurations need to be added. However, these tools only
perform pure model checking and cannot resolve dependencies and relations
between constraints and value definitions.

In the category of DL solvers, we analysed Pellet OWL 2 Reasoner16, Racer Pro17,
FaCT18, and HermiT19. While all of these tools are able to fulfil the requirements
drawn by the IVML type system, their constraint languages are rather limited [3]. In
general, these tools only support a subset of operators for set and sequences
provided by IVML. Further, these tools typically do not support value calculation and
require values (called facts) to check whether a model is valid. Thus, these tools do
not directly support partial configuration and evaluation. However, the most crucial
reason for excluding DL solvers was that most of these tools are only available under
proprietary licenses and, thus, cannot be freely used in the project and extended in
order to implement missing functionalities.

14 EMF-OCL website: http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
15 Dresden OLC website: http://www.dresden-ocl.org/index.php/DresdenOCL
16 Pellet website: http://clarkparsia.com/pellet/
17 Racer Pro website: http://www.racer-systems.com
18 FaCT website: http://www.cs.man.ac.uk/~horrocks/FaCT/
19 HermiT website: http://www.hermit-reasoner.com/

Criteria
CSP OCL DL SMT Rule engines

Gecode Choco OR-Tools EMF-OCL Dresden OCL Pellet Racer FaCT HermiT Alt-Ergo CVC3 Yices Z3 Jess Drools

Ty
p

e
 s

u
p

p
o

rt
 Boolean x x x x x x x x x x x x x x x

Non-Boolean o o o o o o o o o o o o o x x

Containers o o o x o x x x x o x o o x x

Compounds - - - x o x x x x - x o o x x

C
o

n
st

ra
in

t
su

p
p

o
rt

Logical operators x x x x x x x x x x x x x x x

Arithmetic
operators

x x x x x o o o o x x x x x x

Set and
sequence
operators

o o o - - o o o o o o o o x x

C
o

n
fi

gu
ra

ti
o

n
 s

u
p

p
o

rt

Undefined
values

o o - - - - - - - o o o o - -

Value
propagation

o o - - - - - - - o o o o - -

Partial
configuration

o o - - - - - - - x x x x - -

Partial
evaluation

- - - - - - - - - x x x x o o

G
en

e
ra

l

Implementation C++ Java C++ Java Java Lisp Java OCaml C/C++ Java Java

Extensibility x x x - - - - - x - - - x X x

Licensing MIT BSD
Apache
License

2.0
EPL EPL

p
ro

p
ri

et
ar

y

p
ro

p
ri

et
ar

y
GNU
GPL

GNU
GPL

CeCILL-C BSD

p
ro

p
ri

et
ar

y

p
ro

p
ri

et
ar

y

R
ea

se
ar

ch
: f

re
e

C
o

m
m

er
ci

al
:

p
ro

p
ri

et
ar

y

ASL 2.0

Table 1: Reasoners analysis results

(x = supported, o = partially supported - = unsupported)

http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
http://www.dresden-ocl.org/index.php/DresdenOCL
http://clarkparsia.com/pellet/
http://www.racer-systems.com/
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.hermit-reasoner.com/

INDENICA D2.4.1

 23

In the category of SMT solvers, we analysed Alt-Ergo20, CVC321, Yices22 and Z323. These
solvers also provide good support for the IVML type system, however, only some
(CVC3 and Z3) provide concepts similar to containers and compounds as required by
IVML. While these tools also provide the full set of required Boolean and arithmetic
operators (including value calculation), set and sequence operators are limited to a
subset of IVML container operations. Also these solvers require values (called
asserts) to check whether a model is valid, which also leads to unsupported partial
configuration and evaluation. Again, extending these tools in order to implement
these functionalities is not possible due to their implementation and licensing.
Although the basic reasoning capabilities of this category may serve as a good basis,
we excluded them initially due to the limited set of operators in combination with
the restricted opportunities for adding required operations.

The final category is rule engines. In this category, we analysed Drools24 and Jess25.
Both engines support the complete type system as well as the constraint system
(including value calculation) of the IVML language. These engines also support partial
evaluation based on asserted facts. However, undefined values as well as partial
configuration are not supported per se but can be implemented in terms of user-
defined functions. Further, both engines provide for extensibility of the existing set
of operations by user-defined functions and by functionality implemented as
(external) Java functions.

The result of our analysis of existing solvers, model checkers, etc. turned out that
rule engines are a solid basis for the IVML reasoning support. While these engines
also have certain disadvantages in terms of not supporting undefined values and
partial configurations, and value propagation, they provide the largest set of types
and operations for an easy translation between IVML concepts and the concepts of
the analysed engines. Further, their extensibility allows defining additional
functionality and, thus, simulating IVML concepts not supported in general. This will
reduce the effort for implementing these engines as IVML reasoners, which in turn
will offer the opportunity to develop additional concepts to eliminate the
disadvantages in the future, e.g., by realizing the missing functionality in terms of a
combination of reasoners.

3.3.2 Reasoner Implementation

Currently, reasoning for IVML models is being implemented in terms of two
alternative reasoner components, one using the rule engine Jess and another based
on JBoss Drools. The reasons for selecting rule engines were described in Section
3.3.1. In this section, we discuss why we realized two reasoning components, their
implementation status as well as initial performance experiments.

20 Alt-Ergo website: http://alt-ergo.lri.fr/
21 CVC3 website: http://www.cs.nyu.edu/acsys/cvc3/
22 Yices website: http://yices.csl.sri.com/
23 Z3 website: http://research.microsoft.com/en-us/um/redmond/projects/z3/
24 Drools website: http://www.jboss.org/drools/
25 Jess website: http://www.jessrules.com/

http://alt-ergo.lri.fr/
http://www.cs.nyu.edu/acsys/cvc3/
http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.jboss.org/drools/
http://www.jessrules.com/

INDENICA D2.4.1

 24

3.3.2.1 Implementation Status

Our initial implementation of the IVML reasoner was based on Jess rule engine. This
is attributed to the efficiency of Jess and wide applicability, as observed in [2, 5].
However, due to practical issues identified during the realization of the Jess
reasoning component (we will discuss these issues in detail below) we also realized
an alternative reasoning component based on Drools expert, an open-source
component provided by the JBoss project. Drools has also been adopted extensively
in knowledge-based expert systems, for example in [1, 6]. The Drools-based
implementation also solves some practical issues, e.g., relating to licensing as
identified with the Jess-based component.

We grouped the IVML concepts as well as the related constraint operations defined
in D2.1 into four priority levels in order to structure and focus the implementation.
We derived these priority levels from the usage of IVML concepts in the models we
obtained from our industrial partners. The priority levels are:

 Priority 1 (highest): Decision variable definitions for basic types (excluding
String) and compounds as well as constraints and constraint operations
involving these basic types and compounds.

 Priority 2: Decision variable definitions for strings, constraints on strings as
well as types derived from al basic types or compounds including related
constraints and constraint operations.

 Priority 3: Decision variable definitions for containers such as sets and
sequences as well as constraints and constraint operations on containers.

 Priority 4 (lowest): Advanced constraints containing ‘let expressions’ or ‘if-
then-else’.

Table 2 summarizes the implementation status of the reasoning components in
terms of the number of (partially) implemented or currently not implemented IVML

Priority Target No.

Implementation status

Jess Drools

Implemented
Partially

implemented
Not

implemented
Implemented

Partially
implemented

Not
implemented

1
Concepts 25 23 (92%) 1 (4%) 1 (4%) 23 (92%) 1 (4%) 1 (4%)

Operations 72 72 (100%) - 72 (100%) -

2
Concepts 2 1 (50 %) - 1 (50%) 1 (50 %) - 1 (50%)

Operations 9 9 (100%) - 9 (100%) -

3
Concepts 12 5 (42%) 6 (50%) 1 (8%) 5 (42%) 6 (50%) 1 (8%)

Operations 61 48 (79%) 13 (21%) 38 (62%) 23 (38%)

4
Concepts 6 - - 6 (100%) - - 6 (100%)

Operations 6 - 6 (100%) - 6 (100%)

Total:
Concepts 45 29 (64%) 7 (16%) 9 (20%) 29 (64%) 7 (16%) 9 (20%)

Operations 148 129 (87%) 19 (13%) 119 (80%) 29 (20%)

Table 2: Implementation status of the reasoning components.

INDENICA D2.4.1

 25

concepts and constraint operations for each priority level26. Table 2 shows that a
significant amount of implementation has been achieved for the concepts and
operations27 that are flagged with a high priority (1-3) and work is underway to
realize priority 4 concepts and operations. In summary, we classified the IVML
concepts into 45 constructs, of which 29 (64%) are realized completely, 7 (16%) are
realized partially, and 9 (20%) are currently not yet realized for both Jess and Drools.
Further, 129 (87%) operations are implemented for Jess while 119 (80%) are
implemented for Drools. In essence, the reasoning components currently realize 80%
of the functionality required by IVML.

The implemented concepts and operations are subjects to an extensive test suite,
which can be generically applied to arbitrary reasoner components, which
implement the interfaces provided by the reasoner core. Currently, this test suite
consists of 38 test cases in total, while a single test typically addresses multiple
similar operations, e.g., arithmetic operations are validated by a single test case.

Although the Jess component offers a good starting point to reason over IVML
variability models and configurations, it poses certain practical limitations. To
mitigate these limitations, we performed a detailed comparison of the concepts
provided by Jess and Drools. Based on this comparison and our experience made
during the development of the Jess component we were able to quickly provide an
alternative reasoning component based on Drools. The practical limitations of Jess as
well as the mitigations we developed based on Drools are discussed below.

 Side effects in Jess pattern matching may cause infinite loops: At the core,
the Jess rule engine is based on pattern matching over facts in memory. We
encountered a few scenarios where the rule engine runs into an endless loop.
To mitigate such problems, we developed a mechanism which terminates
Jess according to a given time constraint. Thus, in case of continuous loop
events, the termination of the reasoning process is controlled from outside
the actual reasoning engine. However, currently this will result in not having
any reasoning results, but EASy Producer will inform the user that such a loop
exists in the current model. In contrast, Drools comes with a mechanism,
which stops the immediate firing of the rule that modifies a certain variable
in the working memory, thus avoiding infinite loops.

 Restriction of the commercial use due to the Jess license: The vendors of the
Jess rule engine provide their implementation using a dual license model: for
academic research the use of Jess is free, while a commercial license must be
purchased for use in industry. Drools overcomes this limitation completely as
it is available based on the Apache Software License, which allows both
academic and commercial usage.

 Limitation over reasoning on multiple instances of a single compound type:
We identified that reasoning over constraints, which relate multiple instances

26 Please note that partial implementation is not applicable to operations; they are either completely

implemented or not implemented at all).
27 Please note that the total number of operations in the IVML specification for a given concept is different from

the number illustrated in Table 2. This is due to implementation reasons such as individual operation signatures
for overloaded operators.

INDENICA D2.4.1

 26

of a compound type, implies serious restrictions in Jess. Jess does not validate
such constraints because it evaluates individual rules based on the type of
the used elements rather than based on individual instances. However,
Drools does not impose such restrictions and, thus, supports reasoning on
multiple instances of a single compound type.

 No support for value propagation: Value propagation enables the inference
of values based on the restrictions implied by the constraints. For example,
multiple constraints may restrict the value range from Integer to exactly one
specific value. In particular, both reasoners only support reasoning over
variables that have been assigned with specific values. However, there is a
Drools extension called Drools Planner28, which offers planning-capabilities in
terms of optimization algorithms and construction heuristics. We are
currently investigating this opportunity to enable value propagation over
IVML projects.

 Validation of IVML-models: Jess and Drools do not support the validation of
pure IVML-models, i.e., checking whether at least one configuration can be
derived from an IVML model. This limitation is closely related to the
unsupported value propagation discussed previously. Thus, we expect the
Drools Planner tool to be a possible solution.

In summary, both reasoners provide good reasoning capabilities for IVML. The
implementation of the complete set of concepts and operations as well as the
solution to the open issues will be part of the realization efforts of year 3. While
some issues and limitations exist, Jess and Drools performed very well for each
configuration given so far in INDENICA. However, we will discuss the results of an
initial performance experiment in the next section.

3.3.2.2 Initial Performance Results

We performed an initial set of scalability tests in order to evaluate the performance
of both Jess and Drools. For this purpose, we automatically generated IVML models
of different complexity and with different numbers of elements:

 Number of elements: We started with 10 variables of Boolean and non-
Boolean types and 1 constraint while increasing these numbers

28 Drools Planner website: http://www.jboss.org/drools/drools-planner

Number of
Elements

Jess Drools

Vars. Constr.
Translation time Reasoning time Translation Time Parsing Time Reasoning Time

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Complexity Level 1

10 1 0.020 0.032 0.023 0.012 0.013 0.124 0.002 0.003 0.003 0.780 0.891 0.883 0.887 0.901 0.892

100 10 0.055 0.057 0.056 0.030 0.036 0.032 0.004 0.006 0.004 1.040 1.080 1.060 1.059 1.09 1.067

1000 100 0.039 0.418 0.046 0.320 0.339 0.329 0.051 0.056 0.053 4.080 4.230 4.120 4.120 4.270 4.160

Complexity Level 2

10 1 0.002 0.022 0.021 0.013 0.014 0.013 0.002 0.003 0.003 0.930 0.950 0.940 0.94 0.96 0.952

100 10 0.056 0.058 0.057 0.033 0.039 0.035 0.004 0.005 0.004 1.320 1.370 1.330 1.33 1.38 1.343

1000 100 0.402 0.450 0.413 0.433 0.450 0.440 0.059 0.063 0.060 7.020 7.270 7.170 7.080 7.330 7.230

Table 3: Reasoning performance (given in seconds).

http://www.jboss.org/drools/drools-planner

INDENICA D2.4.1

 27

simultaneously by a factor of 10. The largest IVML file contained 1000
variables and 100 constraints. We selected these numbers as the ratio of
variables and constraints typically is 10:1 in large-scale, real-world variability
models, i.e. as described in [7].

 Complexity Level: The complexity levels describe the complexity of the
generated constraints. Constraints of complexity level 1 will be simple
constraints, e.g., a and b (a and b being Boolean variables) or c > d (c and d
being Integer or real variables). Constraints of complexity level 2 will
concatenate three simple constraints by Boolean operators and negation.
Further, on complexity level 3, constraints may contain calculations.

We also defined two metrics for measuring reasoning time:

 Translation time: This is the time taken for translating the IVML object model
to the equivalent representation in the reasoner specific language. Currently,
the reasoner integration produces an intermediary representation (a
temporary file) and passes it to the reasoner for parsing it into the reasoner-
specific representation. However, future versions may avoid temporary files
e.g. using the Jess API or Drools knowledge providers.

 Reasoning time: For Jess, this is the time taken by the reasoner to parse the
intermediary representation and to calculate the reasoning result. For Drools,
we also explicitly show the parsing time, i.e., the part of the reasoning time,
which is consumed by parsing and creating the internal knowledge base.
However, Jess does parsing and reasoning in one step. Thus, we can only
provide the combined reasoning time.

We collected these measures by executing each generated IVML ten times for both
reasoners. For each execution both reasoners calculated the same results. The tests
were executed on a Macbook Pro running Mountain OS Mountain Lion. The
specifications of the machine are as follow: 2.9 GHz dual-core Intel Core i7, 8GB
1600MHz Memory. Table 3 summarizes the results in terms of the minimum (Min.),
maximum (Max.), and average (Avg.) execution times (given in seconds).

In summary, both reasoners performed well, while Jess performs on average better
than Drools when it comes to pure reasoning time irrespective of the complexity of
the model and the number of variables. For example, Jess takes an average time of
0.44 seconds for the complex models (1000 variables and 100 constraints), while
Drools takes 7.23 seconds for the same models. According to additional experiments
with Drools we found that 34% of that time is consumed by the creation of
temporary Java classes which represent the data in the working memory, 65% by
parsing the rules while just 0.06 seconds are consumed by actual rule processing.
Thus, Drools consumes nearly 99% of the reasoning time in the creation of the
knowledge base with facts in memory (parsing time in Table 3). However, we believe
that this performance issue of Drools can be resolved in the future, e.g., by directly
passing the values from the IVML model into the reasoning process, e.g., by using an
own knowledge provider.

INDENICA D2.4.1

 28

3.4 Instantiation support for IVML

An instantiator is an external and maybe third-party tool that resolves variability in
product line artefacts in its specific way. For example, the Velocity instantiator,
which is provided as a basic instantiator of EASy-Producer, resolves Velocity-specific
statements within Java code according to a specific configuration. This resolution
capability allows deriving individual domain-specific platforms based on the
configuration values. However, as IVML provides highly complex variability modelling
capabilities, the instantiation process has to be adapted in order to provide support
for all IVML elements relevant to the instantiation process. This includes binding
times, production processes, etc., as described in Deliverable D2.2.1. In this section,
we provide an overview on the current state of the instantiation support.

EASy-Producer provides two instantiators by default: the Velocity instantiator and
the XVCL instantiator. Velocity is based on the Velocity Template Language (VTL)29,
which uses references in terms of VTL variables to manipulate Java code. Thus, in
EASy-Producer the Velocity instantiator is implemented as a mapping and processing
unit that first maps IVML variable values to VTL variables by their names and then
processes the VTL statements according to these values. The XML-based Variant
Configuration Language (XVCL)30 instantiator is implemented similarly. However, this
instantiator maps values of IVML variables to XVCL variables and statements in XML
documents and processes them accordingly. Thus, we implemented the mapping
strategies between configurable IVML elements and the individual instantiator
languages for both instantiators.

Although SAP will also rely on the Velocity instantiator for generic deployment
descriptors, the scenarios in the INDENICA-project require additional instantiators
that process the generic artefacts in a technology-specific way. In the SAP yard
management, the Cocktail approach and more specifically the Lombok31 framework
is responsible for runtime configuration. Thus, we implemented a specific EASy-
instantiator, which supports the SAP build process. This instantiator maps IVML
decision values and binding times to Cocktail annotations. Then the instantiator
performs modifications of the compiled code (byte code) in order to enable compile
time and runtime variability, i.e., source files are not modified.

Three different types of artefacts will be instantiated in the SIE warehouse case,

 A Spring32 service configuration. The Spring configuration indicates the actual
services, service compositions and service specific parameters. Individual
parameter values and active services will be derived from the variability
model / configuration and turned into a Spring configuration by a specific
instantiator.

29 http://velocity.apache.org/engine/devel/user-guide.html#Velocity_Template_Language_VTL:_An_Introduction
30 http://xvcl.comp.nus.edu.sg/cms/
31 http://projectlombok.org/
32 http://www.springframework.net

INDENICA D2.4.1

 29

 The scripts for creating the warehouse database, which reflects the
warehouse topology as it is configured in the variability model. A specific
instantiator for this type of artefact will be realized.

 The configuration of the object-relational database mapper, which turns
entries in the database tables to instantiated objects and in turn, causes
appropriate adjustments of the user interface. The initial version of this
instantiator will derive the artefact from a generic (template) artefact while
an improved future version may be based on variation point specifications
and XML transformations.

The instantiator plug-ins can be developed independently from the core of EASy-
Producer. We provide a step-by-step developers guide33 that describes the required
implementation steps as well as the required configurations of Eclipse plug-in
projects in order to guarantee a successful integration with EASy-Producer.

The instantiation components will be subject to an extensive regression test suite in
the future. However, the implemented instantiators as described above, the
developers guide as well as the integration mechanism are currently used
successfully by the project partners.

Further, we will develop a new approach to the instantiation support as part of our
work in INDENICA as initially described in Deliverable D2.2.1. Similar to IVML, we will
design this approach in terms of a textual modelling language for the production
process, namely the Variability Implementation Language (VIL). VIL will provide a
simple, but expressive language for defining the build process of variable product
line artefacts regardless of the variability implementation technique in use. This
covers aspects like the definition and combination of build tasks as well as the
integration with IVML. The resulting VIL-specifications will be processed by a VIL-
engine, which resolves the variabilities according to the IVML configuration, such as
the decision variable values, the binding time, etc. We developed first concepts that
enable the definition of such VIL specifications. These concepts are currently tested
against real-world build-processes used by the project partners, e.g., exchanging
services at compile time and at runtime. However, these concepts and, thus, the
elements of VIL are still under development.

3.5 Support for Application Engineers

The elements and concepts of the IVML language provide Platform Providers with
high expressiveness and freedom in modelling the variability of a variant-enabled
base platform. However, this needs deep domain and modelling knowledge as
modelling a product line (of service platforms) may yield rather complex models. In
contrast, Platform Variant Creators (in general Application Engineers) need less
capability while configuring a valid domain-specific platform. Thus, we provide an
explicit configuration editor as part of EASy-Producer in order to ease the
configuration task. In this section, we will discuss our approach to support the
Platform Variant Creator. Further, we will provide an overview on the current state
of the implementation and validation.

33 http://projects.sse.uni-hildesheim.de/easy/docs/devguide.pdf

INDENICA D2.4.1

 30

The configuration editor in EASy-Producer is intended to be used by Platform Variant
Creators for simple product configuration task. While the IVML editor can also be
used for configuration, the configuration editor hides the underlying complexity of
IVML models. This is achieved by the following design decisions:

 The configuration editor displays all available (and visible34) decision variables
of the IVML model. This is different from the IVML-Editor, which does not
display any model element by default. Thus, using the IVML-Editor for
configuration requires domain knowledge about the available decision
variables and their individual configuration space.

 The configuration editor displays the values that can be assigned to a decision
variable of type Boolean, enumeration, and references. However, as the
number of possible values for decision variables of type Integer and Real are
in general infinite, the editor cannot provide complete configuration support
for such variables. Thus, configuration support for Integer and Real variables
is currently limited to displaying the decision variables. Further, compounds
and containers will be displayed in terms of collapsible hierarchies to ease
their configuration and reduce complexity

 The configuration editor displays nested elements, for example compound
variables, as hierarchical structures. This improves clarity and understanding
for related model elements as well as the impact of their configuration.

We also encountered some limitations with respect to providing good configuration
support. In case of decision variables of type Integer and Real, displaying all valid
values for assigning such variables is not possible due to the infinite configuration
space mentioned above. However, in case of restricting the number of possible
values by constraints (cf. value propagation in IVML reasoning), at least for Integer
variables such a support will be available in the future. Further, displaying nested
elements, such as compounds, in a hierarchical structure is limited in terms of a
limited number of hierarchy levels that can be displayed in an understandable way.
For example, if a nested compound element is in turn of type compound, etc., in
some situations the number of hierarchy levels will exceed the boundaries of the
configuration editor. Thus, configuring such complex hierarchies is difficult from a
user’s perspective. However, we are currently working on a suitable solution for
these problems.

The configuration editor is currently available as an initial prototype within EASy-
Producer. It is capable of editing decision values of the basic IVML types, such as
Boolean, Integer, Real, and String. Further, decision values of complex types like
compounds and containers can be edited.

34 In case of using configuration interfaces in IVML, only the decision variables of imported project interfaces are

visible and available for configuration (cf. Deliverable D2.1).

INDENICA D2.4.1

 31

4 Integration with other WPs

In this section, we will discuss how the work on the Variability Engineering Tool
integrates with the work done in the other WPs. In WP2, integration mainly happens
through defined software interfaces, instantiation of generic artefacts and reuse of
components. In this section, we will detail the already realized integrations as well as
future integration tasks. All work described in this section was originally done within
the INDENICA project.

For the integration with WP1, we offer specific integration components for IRET.
These components enable IRET to create a variability model based on the variability-
related information contained in IRENE goal models. However, as IRENE is a
requirements engineering methodology rather than a variability modelling approach,
the information captured in IRENE only leads to an initial variability model to be
completed later by the Platform Provider. Based on the variability information
captured in IRENE, the integration components for IRET provide functionality to:

 Create an IVML variability model.

 Add a decision variable to an IVML variability model. A decision variable is
specified as strings stating the name of the variable, the type and an optional
default value. Unknown types are converted to empty IVML compounds.

 Define constraints on the created decision variables using the IVML
constraint syntax. The syntactic and semantic validity of the constraints is
ensured with respect to the already defined decision variables and types.

In contrast to IRET models, which may serve as an input to variability modelling, the
selections to be made in the architecture decision support framework ADF may be
subject to variability. For example, the configuration of a high-performance service
based system may disable several design patterns in the architectural decision
support tool. Thus, the integration needs to provide:

 Read-only access to information in an existing variability model.

 Evaluation of presence conditions. A presence condition is an IVML
(constraint) expression which indicates whether optional or alternative parts
(here design decisions) shall be enabled or disabled as specified in a given
variability configuration.

Similar to the architecture decision support framework ADF, also certain parts of the
architecture created with the view-based modelling framework VMBF developed in
WP3 may be subject to variability. For example, as a consequence of disabling
several alternatives in the architectural decision framework, related elements shall
not be part of the architecture in VBMF. As both the architecture decision
framework and VMBF require similar integration functionality, we provide this in
terms of the UniVie integration, i.e., two components, one containing the interface
and one the EASy-based implementation.

Two specific types of integration are needed for the INDENICA runtime environment
developed in WP4, namely artefact-based and connector-based integration:

INDENICA D2.4.1

 32

 Several customization aspects of the runtime environment for a virtual
service platform will be described in terms of configuration artefacts, such as
monitoring and adaptation rules. Some configuration artefacts will be generic
in order to be reusable or adaptable, i.e., individual parts may be enabled or
disabled according to a given (runtime) variability configuration. The variable
parts in the generic artefacts will be annotated by selector expressions and
presence conditions and specific instantiation mechanisms for monitoring
and adaptation rules will be provided. Further, we developed a specific tool
integration component for the WP4 rule editors so that the Platform
Architect can be supported via content assist mechanisms showing available
IVML decision variables.

 The runtime environment will contain the following (headless) components
of the EASy architecture: IVML core, IVML model, instantiator core, the
specific instantiator (for rule instantiation at runtime), the reasoner core and
a specific reasoner integration. Due to the flexibility of the reasoner core, i.e.,
the ability of handling multiple reasoners, the INDENICA runtime
environment does not need to rely on a fixed reasoner. Here, we aim at
providing an optimized reasoner integration based on analyzing the open
variabilities in the partially instantiated variability model of the virtual service
platform.

Regarding the base platforms developed in WP5, specific instantiation mechanisms
have or will be realized. This includes

 An instantiator for the SAP yard management case. At runtime, the generic
SAP online configuration mechanism enables administrative users to change
open variabilities dynamically. This generic mechanism is also generated from
the information provided by the Cocktail instantiator to Cocktail / Lombok as
part of the SAP build process. However, the user input may provide an invalid
input to this configuration mechanism, i.e., a configuration which conflicts
with the constraints in the variability model. We support the necessary
validation in terms of a specific integration component which is structurally
similar to the WP1/WP3 integration but realizes a runtime connector to the
SAP cloud system and, including the related EASy components, fulfils the
specific requirements of the SAP server runtime environment.

 Three different types of artefacts will be instantiated in the SIE warehouse
case as already described in Section 3.4.

INDENICA D2.4.1

 33

5 Conclusion

In this deliverable, we characterized the state of realizing the INDENICA variability
engineering tool EASy-producer for customizing service platforms. We discussed the
practical application of the tool in terms of an introductory example, the architecture
and its logical components as well as their individual realization state and, finally, the
integration with the other WPs.

For most of the logical components of the INDENICA variability engineering tool we
already provide almost fully functional realizations. This is in particular the case for
the core components such as the IVML core, the IVML object model, and the
reasoning core as well as the integration components. Further, we implemented
various instantiation mechanisms as well as two distinct reasoner integrations. Both
reasoner integrations cover approximately 80% of the concepts defined in the
INDENICA Variability Modelling Language at already good performance.

In accordance with the work plan of the project, there is still significant work to be
done to complete the INDENICA variability modelling tool. As discussed in this
deliverable, this work consists of tasks such as completing and optimizing the
reasoning for IVML, refining the instantiation capabilities for the individual partners
and realizing those for the TEL remote maintenance case, providing headless
functionality for seamless integration with the WP4 runtime environment as well as
realizing improved support for the Platform Provider and Platform Variant Creator in
terms of simplifying modelling editors. Further, the instantiation core will be refined
and extended based on the concepts of the Variability Implementation Language
(VIL) to be presented in D2.2.1. VIL specifications will in particular support the
(headless) integration into the build and deployment processes used in service-based
systems and service platforms.

In summary, the realization work done in WP2 is in line with the work plan of the
INDENICA project and major steps for realizing the INDENICA variability engineering
tool have been successfully carried out. Optimizations of the existing components as
well as refining specific components such as the realization of VIL will be done in the
third year of the project.

INDENICA D2.4.1

 34

References

[1] L. Chittaro, R. Ranon, E. Carchietti, A. Zampa, E. Biasutti, L. Marco, and
A. Senerchia. A Knowledge-Based System to Support Emergency Medical
Services for Disabled Patients. In Proceedings of the 12th Conference on Artificial
Intelligence in Medicine (AIME '09), pages 176–180, 2009.

[2] K. K. L. Ho and M. Lu. Web-based expert system for class schedule planning
using JESS. In Proceedings of the 2005 IEEE International Conference on
Information Reuse and Integration (IRI '05), pages 166–171, 2005.

[3] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: the making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

[4] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT-based Analysis of Feature
Models is Easy. In Proceedings of the 13th International Conference on Software
Product Lines (SPLC 2009), pages 231–240, 2009.

[5] B. Mu, F. Xiao, and S. Yuan. A rule-based disease self-inspection and hospital
registration recommendation system. In Proceedings of the 3rd International
Conference on Software Engineering and Services Science (ICSESS '12), pages
212–215, 2012.

[6] M. O'Conner, H. Knublauch, T. Samson, and M. Musen. Writing Rules for the
Semantic Web Using SWRL and Jess, 2005. Workshop Protégé with rules,
Madrid, Spain.

[7] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Variability Model of
the Linux Kernel. In 4th International Workshop on Variability Modeling of
Software-intensive Systems (VaMoS 2010), 2010.

