
Engineering Virtual Domain

Specific Targeted Research Project: FP7

Creating domain-specific service platforms requires the capability of (automatically)

customizing and configuring service platforms according to the specific needs of a

domain. In this deliverable we address

used in INDENICA to realize

We discuss the generic tool support provided by the

tool and, in particular, how the generic support is turned into specific variability

implementation techniques for the three INDENICA case studies.

learned from our practical work and turn the gained experience into a set of general

concepts for variability implementation techniques

Variability Implementation Language (VIL) that provides the concepts

application of the INDENICA variability engineering concepts and support

general uptake into industrial practice.

Document ID:
Deliverable Number:
Work Package:
Type:
Dissemination Level:
Status:
Version:
Date:
Author(s):

Project Start Date: October

Variability Implementation Techniques

for Platforms and

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

specific service platforms requires the capability of (automatically)

customizing and configuring service platforms according to the specific needs of a

domain. In this deliverable we address the variability implementation techniques

used in INDENICA to realize this demand.

We discuss the generic tool support provided by the developed variability engineering

tool and, in particular, how the generic support is turned into specific variability

plementation techniques for the three INDENICA case studies. We identify lessons

learned from our practical work and turn the gained experience into a set of general

concepts for variability implementation techniques. The development of the

lementation Language (VIL) that provides the concepts

application of the INDENICA variability engineering concepts and support

general uptake into industrial practice.

 INDENICA – D2.2.2
 D2.2.2.

 WP2
 Deliverable

 PU
 final
 1.0
 2013-03-31
 SUH, SAP, SIE, TEL

October 1st2010, Duration: 36months

Variability Implementation Techniques

for Platforms and Services (Final

Specific Service

5 / 257483

specific service platforms requires the capability of (automatically)

customizing and configuring service platforms according to the specific needs of a

the variability implementation techniques

variability engineering

tool and, in particular, how the generic support is turned into specific variability

We identify lessons

learned from our practical work and turn the gained experience into a set of general

. The development of the

lementation Language (VIL) that provides the concepts eases the

application of the INDENICA variability engineering concepts and supports their

Variability Implementation Techniques

Final)

Version History

0.1 15. January 2013 initial version

0.2 10. February 2013 Basic structure and contents

0.3 4. March 2013 Revision of the current state section

0.6 20. March 2013 Initial description of VIL

0.8 10. April 2013 Revision of the VIL

0.9 26. April 2013 Application of VIL to INDENICA case studies

1.0 30. April 2013 Final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction ... 6

2 Requirements for Variability Instantiation .. 7

3 Variability Instantiation in INDENICA ... 10

3.1 Production Strategies Support ... 10

3.1.1 EASy-Producer Architecture .. 11

3.1.2 Instantiator Configuration ... 12

3.1.3 Hierarchical Product Line Support ... 14

3.1.4 Software Ecosystems Support ... 16

3.2 INDENICA Case Studies .. 17

3.2.1 Yard Management System ... 18

3.2.2 Warehouse Management System ... 22

3.2.3 Remote Management System ... 37

3.2.4 Additional Case Studies .. 43

3.3 Summary .. 44

4 Variability Implementation Language .. 46

4.1 VIL Artefact Model ... 46

4.2 VIL Template Language .. 48

4.3 VIL Workflow Language ... 50

4.4 Application to INDENICA Case Studies ... 53

4.4.1 Yard Management System ... 53

4.4.2 Warehouse Management System ... 53

4.4.3 Remote Maintenance System .. 57

4.5 Summary .. 59

5 Conclusion .. 61

References ... 62

Table of Figures

Figure 1: Overview of the EASy-Producer architecture (parts not directly relevant to

instantiator-management are greyed out). ... 10

Figure 2: Detailed architecture of the EASy-Producer instantiator core and

instantiator components. .. 11

Figure 3: Instantiator View without any configured instantiators. 13

Figure 4: Selection of an Instantiator. ... 14

Figure 5: Configuration of files and folders, which shall be instantiated by the

currently selected instantiator. ... 14

Figure 6: Example of a hierarchical product line. .. 15

Figure 7: Inherited production strategy of example Figure 6. 15

Figure 8: Composition of three software product lines to develop an integrated

solution. ... 16

Figure 9: Production strategies of the software ecosystem shown in Figure 8. 17

Figure 10: Hierarchical software ecosystem. ... 17

Figure 11: Algorithmic description of the Cocktail instantiator. 20

Figure 12: Fragment from the YMS variability model. .. 20

Figure 13: Fragment from a YMS configuration. ... 21

Figure 14: Annotated source code fragment from the YMS case study. 21

Figure 15: Cocktail output for compile time variability. .. 21

Figure 16: Cocktail output for runtime variability. .. 22

Figure 17: Algorithmic description of the WMS Spring configuration instantiator. 25

Figure 18: Fragment from the WMS variability model related to the Spring

instantiator. .. 26

Figure 19: Fragment from a WMS configuration related to the Spring instantiator. . 27

Figure 20: Fragment from a generic Spring configuration in the WMS case. 27

Figure 21: Instantiated fragment from the WMS Spring configuration shown in Figure

20. .. 28

Figure 22: Database Schema Instantiator for the WMS case study. 29

Figure 23: Fragment from the WMS variability model related to the database

configuration. ... 30

Figure 24: Fragment from a WMS configuration related to the database

configuration. ... 30

Figure 25: Fragment from the WMS database creation SQL script. 30

Figure 26: Instantiated fragment from Figure 25. ... 31

Figure 27: Instantiator for the object-relational mapping in the WMS case study. 32

INDENICA D2.2.2

 5

Figure 28: Fragment of the generic database mapper configuration in the WMS case.

 .. 33

Figure 29: Instantiated database mapper script. ... 34

Figure 30: Database content instantiator for the WMS use case. 35

Figure 31: Fragment from the WMS variability model related to the WMS topology.

 .. 36

Figure 32: Fragment from a WMS configuration related to the WMS topology. 36

Figure 33: Generated database content initialization script reflecting the configured

WMS topology. .. 36

Figure 34: Algorithmic description of the RMS service configuration instantiator. 39

Figure 35: Fragment from the compile-time part of the RMS variability model......... 39

Figure 36: Fragment from the RMS configuration file. .. 40

Figure 37: Instantiated service configuration file in the RMS case study. 41

Figure 38: Algorithmic description of the RMS rules instantiator. 42

Figure 39: Instantiated runtime rules from the RMS variability model. 42

Figure 40: VIL artefact model including default artefacts ... 47

Figure 41: VIL generation template for Cocktail configuration files 49

Figure 42: Fragment from the YMS production strategy ... 51

Figure 43: Fragment from an ANT build file integrating the VIL workflow 53

Figure 44: VIL generation template for Spring configuration files. 54

Figure 45: VIL generation template for database schemas. .. 54

Figure 46: VIL generation template for OR-mapper configuration files. 55

Figure 47: VIL generation template for database content initialization scripts 56

Figure 48: Fragment from the WMS production strategy ... 57

Figure 49: VIL generation template for RMS configuration files. 58

Figure 50: Fragment from the VIL workflow for the RMS case study 59

INDENICA D2.2.2

 6

1 Introduction

The main focus of work package 2 within the INDENICA project is the customization

of service platforms. As part of this effort, this deliverable addresses the realization

of the customization in terms of variability implementation techniques, in particular

those which are currently applied in the INDENICA case studies. This work is of

course related to the modelling of variability, which is addressed in Deliverable D2.1

[10] in terms of the INDENICA Variability Modelling Language (IVML) and Deliverable

D2.4.1 [15] on the realization of the variability engineering tool.

In this deliverable, the main focus is on the specific variability implementation

techniques which are actually applied in the INDENICA case studies and their support

by the INDENICA variability engineering tool. Based on our practical experience in

realizing the variability implementation technique, we will summarize lessons

learned and introduce a set of more general concepts, which we identified. Creating

a language based on these concepts eases the future application and the general

uptake of the INDENICA variability implementation techniques as well as their tool

support.

In Section 2, we summarize the requirements for variability implementation in

INDENICA. We provide this section as an introduction to variability implementation,

to the specific needs in INDENICA, and, in particular, as a link to D2.2.1 where the

requirements have already been collected. In contrast to D2.2.1, we detail here the

individual requirements from an implementation perspective which will serve as a

basis for our discussion of the tool support, the actual implementation in the case

studies and as well for future conceptual improvements.

In Section 3, we will discuss the current state of the variability instantiation in

INDENICA. First, we will focus on the technical framework provided by the INDENICA

variability engineering tool in terms of the architecture of the related components,

their application as well as the specific support for hierarchical product lines and

software ecosystems. Then, we will discuss the specific strategies realized for the

three INDENICA case studies, their realization in terms of algorithmic descriptions as

well as illustrating examples. In addition, we will provide an outlook on additional

case studies for variability implementation we performed in INDENICA as well as in

related projects. Finally, we will conclude this section with a summary of the lessons

learned as well as improvements for the current state of variability instantiation.

Overall, the practical work on variability implementation techniques in INDENICA

fulfils the general requirements in Section 2. However, the current state can be

summarized as a Java-based implementation, which needs specific implementation

work for each case study. Thus, in Section 4, we will take up the experiences we

made in Section 3 and propose a more generalized framework of concepts for

variability implementation. This framework will ease the realization of specific

variability implementations and enable a wider uptake in future.

INDENICA D2.2.2

 7

2 Requirements for Variability Instantiation

In this section, we provide an overview of the requirements for variability

implementation. Basically, this section follows the structure of the original discussion

on requirements in D2.2.1 (general capabilities, customizing service platforms,

domain-specific platforms, quality requirements, binding times) but highlights the

individual requirements for this deliverable in the context of the INDENICA case

studies.

RQ1. Support for handling variability implementation elements: As identified in

[11, 6] the INDENICA variability instantiation approach must support

• Optional variability: An implementation element may or may not be

part of a platform under certain circumstances. One example is the

(enabled or disabled) support for mobile clients in the Yard

Management (YMS) Platform demonstrated in the review meeting.

• Alternative variability: The decision for a variability allows choosing

one out of several alternatives, such as the communication protocols

in the YMS platform [13, p. 33] or the connectivity mechanism in the

YMS base platform [13, p. 32].

• Multiple selection: Multiple options exist and arbitrary subsets can be

selected. This requires on an implementation level that also the

integration / combination of these parts is addressed or is possible.

This is in particular relevant for instantiating the Warehouse

Management System (WMS) topology, such as the configuration of

individual racks [10] or the details about various bins used in a specific

warehouse [13, p. 21].

• Parameterization: Variation is communicated through a parameter,

respectively a value. Variability implementation must support that this

value can be referenced in the correct syntax. Examples for such

variation in INDENICA is the low-level modification of service

configurations, e.g., to realize the service variability in the YMS

platform [13, p. 33], the pre-deployment service variability in the

Remote Maintenance System (RMS) [13, p. 26] or the specific

strategies in the WMS [13, p. 21].

• Multiplicity: Repetition of implementation in case that a variability

cannot be directly mapped to a parameter, but rather some

implementation element must be repeated. This form is, for example,

needed to derive initialization scripts for the WMS databases, i.e.,

multiple data sets derived out of one generic data set describing

similar parts of the WMS topology [15].

• Grouping: The above operations might be applied to whole groups of

elements, such as combining Parameterization and Multiplicity in the

case of the WMS database initialization.

• Extension: Support the possibility to define that something in the

implementation will be augmented by a specific implementation, but

it is currently not possible to exactly say what this implementation

INDENICA D2.2.2

 8

might do. One example is to derive optimized implementations of

WMS components based on the configured topology in the WMS

variability model [10] or instantiated workflows based on a generic

workflow artefact and related variability configuration.

Some implementation elements given in this requirement need further

information from the specific application context such as the integration /

combination in case of multiple selection. This will be addressed below when

describing variability instantiation using the concept of production strategies.

RQ2. Support for artefact-specific instantiation: Variability instantiation that

supports the customization of service platforms must to take into account

the various levels of the service platform model introduced in D2.2.1. In

particular, the instantiation must support variability in service composition

and processes, in domain-specific services, in service and platform

deployment and in the technical platform services. This implies that an

instantiation must be able to bind variability in different types of artefacts

and to cope with possible dependencies among the individual mechanisms

used to realize the instantiation. The individual mechanisms may be generic,

reusable and configurable (such as a generic template language) or domain-

or even platform-specific. We already faced the importance of this

differentiation in the INDENICA use cases. On the one hand, the

instantiation mechanisms for service configurations in the WMS and RMS

case are rather similar, but differ in details [15]. In this case, a reusable

instantiation mechanism would be beneficial. On the other hand, the SAP

Cocktail approach [11, 15] for the cloud-based YMS is an example for a

platform-specific instantiation mechanism.

RQ3. Support for partial instantiation: Domain-specific platforms introduce

specific needs to variability modelling and instantiation as discussed in

D2.2.1. One need is the introduction of domain-specific concepts, which can

be easily handled in the variability model as demonstrated in D2.1 for the

three INDENICA use cases. As there is no fixed granularity of what a domain

is, respectively, any domain may have sub-domains, it is reasonable that

platforms can also be initially customized to a broad domain and

successively to a more narrowly defined domain. This can be realized by

successive (multi-step) and partial instantiation (not only for executable

platforms but also for partially configured platforms). Partial instantiation

enables pre-configuring the INDENICA base platforms for certain (sub-

)domains prior to the integration into a virtual service platform.

RQ4. Support for cross-sectional variability implementation: In D2.2.1, several

quality characteristics were identified as being important to variability

implementation in INDENICA, such as performance requirements, real-time

requirements, scalability requirements, reliability requirements or safety

requirements. Basically, these characteristics are defined and specified in

the variability model. The IVML [10] provides a sophisticated constraint

language to express such requirements. In contrast, the variability

implementation typically handles quality requirements in terms of varying

aspects. Due to their nature as realization of quality requirements, these

INDENICA D2.2.2

 9

aspects are typically rather distributed across an implementation so that

variability instantiation in INDENICA must support cross-sectional variability

implementation.

RQ5. Support for binding times: A binding time defines the latest point in time

when the decision about a variability and its implementation must be made.

In INDENICA, the support for different binding times is in particular

important for the YMS [13, p. 29] and for the RMS [13, p. 26]. This allows to

differentiate between variability resolutions, which are made at compile- or

deployment-time and fixed afterwards, and dynamic variabilities, which

must be resolved at runtime. Examples are the compile-time configuration

of the WMS topology or the dynamic adjustment of strategies such as the

location services in the YMS or the communication channels in the RMS. The

supported binding times as well as their technical details are defined in the

variability model. In the IVML [10], binding times are defined in terms of

typed attributes, which support individual as well as groups of binding

times. Thus, variability instantiation in INDENICA must provide support to

relate instantiation mechanisms or combinations of instantiation

mechanisms to the generic definitions of binding times as well as their

actual values in IVML.

We will realize the given variabilities in terms of production strategies as we will

detail in this deliverable. A production strategy defines how variant parts must be

assembled in the presence of a variability resolution (i.e., a value was assigned to a

decision variable). As described in [11], a production strategy is characterized in

terms of the definition and evaluation of a variability value, a variation point

identification (RQ2, RQ4), techniques for selecting (and combining elements to

concretize details left open in RQ1) and a technique for introducing selected

elements including relevant glue (RQ2, RQ4). In particular, a production strategy

enables the realization of specific forms of variability (RQ1) by (potentially) multiple

variability instantiation mechanisms (RQ2) executed at one or multiple binding times

(RQ5). Partial instantiation (RQ3) can be realized by successively reapplying

production strategies.

In the next section, we will discuss the current support and application of production

strategies to the INDENICA case studies.

INDENICA D2.2.2

 10

3 Variability Instantiation in INDENICA

In this section, we discuss the current state of variability instantiation concepts

based on the INDENICA case studies as well as their realization in terms of the

related tool support developed in INDENICA. We will structure this section into three

main parts, the current support for production strategies in WP2 tooling in Section

3.1, the detailed production strategies of the INDENICA case studies realized by the

WP2 tooling in Section 3.2 and a summary of the current state in Section 3.3.

3.1 Production Strategies Support

This section details the tool support for production strategies. Basically, the

realization of a production strategy needs to identify what to transform (the

artefacts), which configuration values influence the transformation and how the

actual instantiation shall be performed. In particular, the instantiation described by a

production strategy may be realized by one or by multiple instantiation steps, while

each instantiation step is realized by an arbitrary number of specific instantiators.

In this section, we will detail the current support for production strategies and

instantiators. Therefore, we will first discuss the current architecture for variability

instantiation in EASy-Producer, which actually forms a flexible and extensible

framework of production strategies and instantiators. Then, we will discuss the

configuration of production strategies for application to a specific base platform,

and, finally, the specific support for hierarchical product lines (partial instantiation)

and service ecosystems.

Figure 1: Overview of the EASy-Producer architecture (parts not directly relevant to

instantiator-management are greyed out).

…

INDENICA D2.2.2

 11

3.1.1 EASy-Producer Architecture

EASy-Producer provides an extensible architecture for managing and realizing

software product lines. The overall architecture was discussed in detail in D2.4.1.

Figure 1 illustrates the overall architecture. In particular, in this deliverable we will

focus on the realization of the instantiation part. As shown in Figure 1, in EASy-

Producer the instantiation part is realized by the (generic) instantiator core and

individual instantiation mechanisms, so called instantiators. We will describe the

instantiator core and the individual instantiators in detail in this section.

The design of the variability instantiation support is depicted in Figure 2. The

instantiator core component is a general framework for variability instantiation. It

realizes the production strategy concept and details it by further related concepts

such as artefact management mechanisms or instantiators as we will describe below.

The specific mechanisms are either implemented in a reusable way (such as the Java

package adaptation or the Velocity instantiator) or realized in terms of case-study

specific implementations (such as the Siemens instantiators for the Warehouse

Management System). All components are realized as OSGi bundles or in the case of

multiple related components as OSGi features in order to simplify the customization

of EASy-Producer itself.

Figure 2: Detailed architecture of the EASy-Producer instantiator core and instantiator

components.

The variability instantiation support in EASy-Producer (cf. Figure 2) consists of:

• File Instantiation Model, a collection of artefacts with similar characteristics,

i.e., all files which can be instantiated or are already (partially) instantiated in

a similar way. These models save also the (link to the) source of every

<<component>>
InstantiatorCore

+register(AbstractArtefactManagementMechanism)
+register(InstantiatorEngine)

Registry

+copy(src : String, dest : String)

AbstractArtefactManagementMechanism

+init(...)
+addValue(IDecisionVariable)
+instantiate()

InstantiatorEngineFileInstantiationModel

ProductionStrategy
NoAdaptation

<<component>>
Velocity

VelocityInstantiator

<<component>>
...

<<component>>
SIE_Instantiators

SIE_WarehouseDBInstantiator

SIE_SpringInstantiator

SIE_ORDBInstantiator

<<component>>
JavaPackageAdaptation

JavaPackageAdaptation

*

*

*

*

*

INDENICA D2.2.2

 12

(partially) instantiated artefact. This facilitates traceability and enables

updates if more recent versions of artefacts are available.

• The Artefact Management Mechanisms are responsible for the preparation

of the artefacts which shall be instantiated. This includes provisioning of

artefacts, package adaptation to avoid conflicts (an example for software

ecosystems is given in Section 3.1.4), file renaming, etc.

• Instantiator Engines (or short instantiators) perform a specific kind of

instantiation on the artefacts provided by an Artefact Management

Mechanism. The abstract super class InstantiatorEngine takes a variability

model configuration as input and turns the relevant decision variables and

their values into an instantiation context, e.g., to consider only frozen

variables during an instantiation.

• A Production Strategy combines an arbitrary number of File Instantiation

Models, Artefact Management Mechanisms, and Instantiator Engines to

realize a certain part of the variability instantiation process.

• The Registry enables the introduction of new Artefact Management

Mechanisms and Instantiator Engines to flexibly fulfil the INDENICA variability

instantiation requirements. When Eclipse starts, all installed Instantiator

Engines and Artefact Management Mechanisms are registered automatically

at the Registry through the OSGi Declarative Services mechanism [19].

• The Instantiation Execution Component (not shown in Figure 2) handles

arbitrary production strategies and is responsible for their execution. In

particular, the instantiation execution component handles the execution of

different production strategies at different binding times. This component

also manages partial instantiation as we will detail in Section 3.1.3.

In summary, the described architecture realizes the requirements for variability

instantiation in INDENICA. Individual instantiator engines in combination with a file

instantiation model and specific artefact management mechanisms handle the

artefact-specific instantiation (RQ2), the specific types of handling variability

implementation elements (RQ1), and cross-sectional instantiation (RQ4). Cross-

cutting instantiation functionality such as partial instantiation (RQ3) or binding time

support (RQ5) is managed by the instantiation execution component.

The initial architecture of EASy-Producer was revised in the context of INDENICA to

fulfil the requirements RQ1 – RQ5. Through the plug-in structure, the creation of not

yet specified production strategies is supported. Therefore, the developed

architecture offers a maximum of flexibility regarding the definition of instantiation

processes.

3.1.2 Instantiator Configuration

A production strategy must be configured to enable the instantiation of individual

artefacts. As described in Section 3.1.1, a production strategy links instantiator

engines, artefact management mechanisms, and file instantiation models to form an

instantiation process. This section shows how a new production strategy is currently

created in the EASy-Producer user interface.

INDENICA D2.2.2

 13

Usually, the configuration of specific instantiators takes place in the base platform

(project) as part of the domain engineering activities, as the platform variant creator

[14] of a specific platform may not know which implementation techniques are

actually used in the base platform. In some cases, artefacts may also be instantiated

from an external source, e.g., from a code repository, so that the related

instantiators cannot be configured in the base platform. For this situation, the

platform variant creator can configure needed instantiators inside the specific

platform. The selection of suitable instantiators for a set of artefacts takes place in

the Instantiator View of EASy-Producer. Figure 3 shows the Instantiator View without

any configured instantiators.

Figure 3: Instantiator View without any configured instantiators.

The drop down menu of Figure 3 shows all installed instantiators, which can be used

to specify the current production strategy. Figure 4 shows the selection of such an

instantiator. The selected instantiator must be confirmed by pressing the “Add

Instantiator” button to add it to the current production strategy. Further

instantiators can be added, if needed, e.g., if different types of artefacts are

instantiated in specific ways.

INDENICA D2.2.2

 14

Figure 4: Selection of an Instantiator.

After the instantiators are added to the production strategy, the Instantiator View

allows the selection of the artefacts to be applied to the selected instantiators. This

step builds up a file instantiator model (cf. Figure 5).

Figure 5: Configuration of files and folders, which shall be instantiated by the currently

selected instantiator.

3.1.3 Hierarchical Product Line Support

EASy-Producer supports the management of hierarchical product lines as shown in

Figure 6. The example shows a platform, which is partially instantiated for creating

localized products on different markets. Such partially instantiated platforms still

contain open variability while some variable parts are already resolved.

Figure

EASy-Producer does not differentiate between

(instantiated) specific platforms for a specific customer

of (partially instantiated)

frozen variables, can be treated as a product line.

derive a specific platform to fulfil the customer needs independent

instantiation steps were applied before.

In such a hierarchical product line, configured production strategies of a predecessor

project will automatically be inherited by all successor

consistent instantiation of all

sub-production strategies for the instantiation of additional parts, e.g., a variable

component, which is only developed for the German market.

Figure 7: Inherited

Figure 7 shows a Production Strategy of

example in Figure 6. The

the origin of the selected

German_Warehouse

W_Ger1 W_Ger…

INDENICA D2.2.2

Figure 6: Example of a hierarchical product line.

Producer does not differentiate between (not instantiated) base platforms

pecific platforms for a specific customer to support any combination

 platforms. Platforms still containing variable parts, i.e.,

can be treated as a product line. Such platforms can be used to

specific platform to fulfil the customer needs independent

instantiation steps were applied before.

In such a hierarchical product line, configured production strategies of a predecessor

project will automatically be inherited by all successor projects to ensure a

consistent instantiation of all artefacts. Partially instantiated projects can add further

production strategies for the instantiation of additional parts, e.g., a variable

component, which is only developed for the German market.

: Inherited production strategy of example Figure 6.

shows a Production Strategy of the specific platform “W_Ger

 text area in the lower left corner offers information about

the origin of the selected production strategy. The selected production

German_Warehouse

Warehouse

Predecessor

Successor

(partial)

Instantiation

Instantiated Platform

Base Platform

French_Warehouse

W_Gern W_Fra1 W_Fram…

INDENICA D2.2.2

 15

(not instantiated) base platforms and

to support any combination

variable parts, i.e., not

Such platforms can be used to

specific platform to fulfil the customer needs independent of how many

In such a hierarchical product line, configured production strategies of a predecessor

projects to ensure a

. Partially instantiated projects can add further

production strategies for the instantiation of additional parts, e.g., a variable

.

W_Ger1” of the

lower left corner offers information about

roduction strategy was

Predecessor

(partial)

Instantiation

Instantiated Platform

Base Platform

created in project “Warehouse

project “W_Ger1”.

3.1.4 Software Ecosystems

Integration of independent service platforms is one of the key objectives of the

INDENICA project. For this purpose, an instantiation process is needed

capable of combining indepen

Such an integrated solution can be managed in one project, which simplifies the

configuration, instantiation

sometimes referred as Multi

applied to service platforms in order to build softw

In the context of INDENICA, EASy

such software ecosystems. One possible MSPL structure is illustrated in

example illustrates how the case studies of Deliverable D5.1

to a new integrated service platform

could be used to customize

components can be added to the platform to integrate the individual parts, i.e

data from one platform to another

Figure 8: Composition of three software product lines to develop an

EASy-Producer can handle any number of predecessors for a certain

facilitate the customization and instantiation of a complete software ecosystem in

one step. After the combination of predecessor

formed consisting of the individual

9 demonstrates how the production strategy of “Complete_Solution” from

could be assembled in E

different instantiators to instantiate the individual parts of the

projects. For each artefact

instantiation based on the individual

and combining artefacts

name conflicts. Such conflicts can be avoided by applying an appropriate

management mechanism, such as the Java pac

Figure 2. This specific mechanism renames entire package hierarchies consistently

(including contained classes).

INDENICA D2.2.2

Warehouse” and inherited over “German_Warehouse

Software Ecosystems Support

Integration of independent service platforms is one of the key objectives of the

INDENICA project. For this purpose, an instantiation process is needed

g independent base platforms to form an integrated solution.

Such an integrated solution can be managed in one project, which simplifies the

configuration, instantiation, and extension of the existing assets. This approach is

sometimes referred as Multi Software Product Lines (MSPL) [21,

applied to service platforms in order to build software ecosystems.

In the context of INDENICA, EASy-Producer is used to realize the configuration of

such software ecosystems. One possible MSPL structure is illustrated in

example illustrates how the case studies of Deliverable D5.1 [13] could be

integrated service platform “Complete_Solution”. This integrated platform

customize all needed service components. Further service

added to the platform to integrate the individual parts, i.e

data from one platform to another.

: Composition of three software product lines to develop an integrated solution.

Producer can handle any number of predecessors for a certain

facilitate the customization and instantiation of a complete software ecosystem in

one step. After the combination of predecessors, a new production stra

formed consisting of the individual production strategies of the predecessors

demonstrates how the production strategy of “Complete_Solution” from

could be assembled in EASy-Producer. The shown production strategy uses

different instantiators to instantiate the individual parts of the three

artefact, the correct instantiator will be selected for the

instantiation based on the individual file instantiator models. However, instantiation

 from different sources may lead to conflicts

. Such conflicts can be avoided by applying an appropriate

management mechanism, such as the Java package adaptation mechanism shown in

This specific mechanism renames entire package hierarchies consistently

(including contained classes).

INDENICA D2.2.2

 16

Warehouse” to the

Integration of independent service platforms is one of the key objectives of the

INDENICA project. For this purpose, an instantiation process is needed which is

to form an integrated solution.

Such an integrated solution can be managed in one project, which simplifies the

. This approach is

, 7] and can be

Producer is used to realize the configuration of

such software ecosystems. One possible MSPL structure is illustrated in Figure 8. The

could be combined

integrated platform

Further service

added to the platform to integrate the individual parts, i.e., pass

integrated solution.

Producer can handle any number of predecessors for a certain platform to

facilitate the customization and instantiation of a complete software ecosystem in

, a new production strategy is

trategies of the predecessors. Figure

demonstrates how the production strategy of “Complete_Solution” from Figure 8

Producer. The shown production strategy uses five

three predecessor

be selected for the

file instantiator models. However, instantiation

from different sources may lead to conflicts, such as file

. Such conflicts can be avoided by applying an appropriate artefact

kage adaptation mechanism shown in

This specific mechanism renames entire package hierarchies consistently

INDENICA D2.2.2

 17

Figure 9: Production strategies of the software ecosystem shown in Figure 8.

As described in Section 3.1.3, EASy-Producer does not differentiate between

instantiated and non-instantiated platforms. Therefore, the integrated platform

“Complete_solution” could also be used to derive different individual platforms (c.f.

Figure 10). Also in such a derivation chain, the correct instantiators selected in the

origin projects (“Yard”, “Warehouse”, and “Remote_Maintenance”) would be used

to instantiate the assets for the final platforms (“Prod_1”, Prod_2”, and “Prod_3”).

Figure 10: Hierarchical software ecosystem.

3.2 INDENICA Case Studies

In this section, we discuss the individual production strategies, which are currently

applied in the INDENICA case studies as well as their realization from a technical

point of view. We structure this section according to the case studies and for each

case study we will discuss the specific requirements, the production strategy that

was developed, the instantiators realizing the production strategy, and examples for

artefact instantiations in the respective context. The examples in this section will rely

on fragments taken from the individual use cases, such as fragments from the

variability model as also discussed in [10] and fragments from specific artefacts. We

refrain from describing entire artefacts here in order to focus on the most relevant

aspects.

Yard

Predecessor

Successor

(partial)

Instantiation

Product

Product Line ProjectWarehouse

Prod_1

Remote_Maintenance

Complete_Solution

Prod_3Prod_2

INDENICA D2.2.2

 18

We will describe the individual production strategy in the form of the tables used in

Section 5.2 of Deliverable 2.2.1 [11]. In this deliverable we will use one table for an

individual production strategy rather than summarized tables as done in D2.2.1.

Further, we will also discuss the individual instantiators used to realize the

production strategy in terms of an algorithmic description in pseudo code. For this

pseudo code, we use the following notation:

• Bold denotes typical commands such as foreach, if, etc.

• Italics highlights variables, i.e. temporary results

• CAPITAL refers to input or output of an instantiator

• «TABLE»-entry matches generic entries in a structured artefact, such as table

creations in SQL scripts or element in XML files. «TABLE» implicitly defines a

temporary variable.

• “String” denotes a constant string

• // marks comments

Typically, an algorithmic description consists of two parts, namely the selection of

relevant decision variables and their associated configuration from the variability

model and the instantiator algorithm itself. At first glance, the selection step may

appear to be superfluous in some instantiators. Basically, the selection step ensures

that only frozen variables are used during instantiation. Frozen variables are

explicitly fixed at some point in the configuration process so that these values must

not change in subsequent partial (staged) configurations. Moreover, the selection

step may focus on relevant variables, i.e., a specific subset, instead of working on all

available variables. In particular, this is used in the Warehouse Management case in

Section 3.2.2.

3.2.1 Yard Management System

In the YMS case study, two different systems are affected by the variability

instantiation:

1. The YMS platform itself is customized and instantiated in order to reflect the

actual configuration and to enable the modification of selected values at

runtime.

2. A web-based user interface is generated which connects to the actual

running instance of the YMS and enables the convenient manipulation of the

actual values.

The requirements for variability instantiation in the YMS case study are

• Generation of configuration files for the SAP Cocktail mechanism for different

binding times [15].

• Execution of the Cocktail mechanism to realize the variabilities in the YMS

and to generate the web-based user interface.

• Support of an OSGi-based implementation of the YMS, in particular, OSGi-

bundles realized in individual Eclipse projects.

INDENICA D2.2.2

 19

Description of the YMS Production Strategies

The requirements defined above yield two production strategies, one for resolving

compile-time and one for runtime variabilities. The compile-time production strategy

is summarized in Table 1, while the runtime production strategy is shown in Table 2.

Production strategy

element

Yard management production strategy

(Compile-time)

Definition and evaluation

of a variability value

Source code annotations mark the variable attributes

and link to the variability model. The specific constant

value of an annotated attribute is replaced with the

respective value in the configuration.

Variation point

identification

Source code annotations

Technique for selecting

(and combining) elements

The variability model defines valid binding times per

variability (meta-variability). The configuration defines

the binding time to be applied as a one-out-of-many

selection and, thus, the instantiator to be applied.

Multiple selection is not possible.

Technique for introducing

selected elements

(including relevant glue)

The Cocktail byte code analyzer searches for the

source code annotations and inserts constant values.

Table 1: Cocktail-based compile-time production strategy for the YMS case study.

Production strategy

element

Yard management production strategy

(runtime)

Definition and evaluation

of a variability value

Source code annotations mark the variable attributes

and link to the variability model. The specific value of

an annotated attribute is replaced with the respective

value in the (Web-based) configuration through

additional code. The additional code enables the

manipulation of the actual value entered into the

web-based configuration interface.

Variation point

identification

Source code annotations

Technique for selecting

(and combining) elements

The variability model defines valid binding times per

variability (meta-variability). The configuration defines

the binding time to be applied as a one-out-of-many

selection and, thus, the instantiator to be applied.

Multiple selection is not possible.

Technique for introducing

selected elements

(including relevant glue)

The Cocktail byte code analyzer searches for the

source code annotations and inserts additional code

(runtime).

Table 2: Cocktail-based runtime production strategy for the YMS case study.

INDENICA D2.2.2

 20

Cocktail Instantiator

The two production strategies for the WMS case study are realized by a specific

instantiator, the Cocktail Instantiator. The instantiator is executed once for a given

binding time and, thus, realizes both production strategies at once.

The idea of the Cocktail instantiator is to reuse existing Cocktail tools for realizing

variability. This is a well-known concept also in commercial product line tools such as

pure::variants [20] or Gears [1], namely using existing tools as a black box.

The algorithmic description of the Cocktail instantiator is given in Figure 11. Basically,

the instantiator transforms the variability configuration into a Cocktail specific

format and executes Cocktail.

Cocktail Instantiator Example

We will now discuss an example for applying the YMS production strategy. The

variability model of the YMS platform contains the following two decision variables

shown in Figure 12:

Let us assume that the configuration of the YMS platform defines the specific values

depicted in Figure 13:

Figure 12: Fragment from the YMS variability model.

Cocktail Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

Output:

• Cocktail-specific variability model COCKTAIL_VAR_MODEL

• Cocktail-specific resolution COCKTAIL_RESOLUTION

Process:

For Each frozen variable in IVML_CONFIG

New Cocktail-Variable var

var.declaration.name = variable.name

var.value = variable.value

COCKTAIL_VAR_MODEL.add(var.declaration)

COCKTAIL_RESOLUTION.add(var.value)

End For Each

Execute byte code manipulation on COCKTAIL_RESOLUTION

Figure 11: Algorithmic description of the Cocktail instantiator.

INDENICA D2.2.2

 21

For discussing the instantiation, we will consider the source code artefact from the

YMS case study depicted in Figure 14.

The Cocktail instantiator transforms the YMS variability model into a (simplified1)

XML representation. Cocktail then takes the XML representation of the variability

model as input and manipulates the byte code or generates the Web-based user

interface, respectively.

For the compile-time production strategy shown in Table 1, Cocktail produces for

compile-time variabilities the code displayed in Figure 15 (instead of byte code we

display equivalent source code for convenience). As a result, in Figure 15, the

annotations are removed and the specific values from the variability model are

inserted as constants in line 5 and line 7.

For the runtime production strategy given in Table 2, Cocktail inserts additional code

for the runtime variabilities, which links the variable attributes to the

implementation of the configuration user interface. This is illustrated in Figure 16.

Also, here, the annotations are removed (line 5 and 7) as no re-instantiation at

runtime is intended. Further, a new code block is inserted (line 9-20). This specific

code block links the Java attributes to the runtime mechanism of Cocktail, i.e., the

changes in the web-based user interface are reflected in the related attributes.

1 Cocktail is a code-centric lightweight approach to variability implementation. Thus, its model is much simpler

than IVML as it is not intended for full-fledged variability modeling.

Figure 13: Fragment from a YMS configuration.

Figure 14: Annotated source code fragment from the YMS case study.

Figure 15: Cocktail output for compile time variability.

INDENICA D2.2.2

 22

3.2.2 Warehouse Management System

In the WMS case study, four different types of artefacts must be instantiated. One

artefact is related to the configuration of actual services in the WMS platform, the

remaining three artefacts are related to the database structure and the WMS

topology. This leads to the following specific requirements:

• Modification of (parts of) Spring service configuration files.

• Modification of the database schema from a generic artefact using negative

variability.

• Modification of the related object-relational database from a generic artefact

using variability.

• Generation of a database initialization script, which reflects the WMS

topology.

• The variability instantiation must support the implementation of the WMS

platform in terms of C# services realized as a Visual Studio Solution [17].

Further, mechanisms provided by the Spring framework [24] and C# related

tools must be exploited for variability instantiation.

Description of the WMS Production Strategies

The requirements defined above yield the production strategies summarized in Table

3 to Table 6.

Figure 16: Cocktail output for runtime variability.

INDENICA D2.2.2

 23

Production

strategy element

Warehouse management production strategy

(Spring configuration)

Definition and

evaluation of a

variability value

Service names and individual service parameters are taken

over into the Spring configuration file. The mapping is

supported by a specific naming convention for the decision

variables.

Variation point

identification

Markup-elements in the Spring configuration file identify the

variation points.

Technique for

selecting (and

combining)

elements

The variability model defines the service configuration. The

specific configuration defines the values to be taken over

without the need for adjusting the values to the syntax of the

target artefact (parameterization). Multiple selection is not

possible.

Technique for

introducing

selected

elements

(including

relevant glue)

Not needed as generated artefacts are interpreted by the

platform implementation.

Table 3: Spring configuration production strategy for the WMS case study.

Production

strategy element

Warehouse management production strategy

(Database schema)

Definition and

evaluation of a

variability value

Boolean decision variables configure the presence of specific

columns in the database schema. The mapping is supported

by a specific naming convention for the decision variables.

Variation point

identification

Column names in the SQL scripts identify the variation points.

Technique for

selecting (and

combining)

elements

The variability model defines the database schema

configuration. The specific configuration defines the values to

be taken over without the need for adjusting the values to the

syntax of the target artefact (parameterization). Multiple

selection is not possible.

Technique for

introducing

selected

elements

(including

relevant glue)

Not needed as generated artefacts are interpreted by the

platform implementation.

Table 4: Database schema production strategy for the WMS case study.

INDENICA D2.2.2

 24

Production

strategy element

Warehouse management production strategy

(Object-relational mapper configuration)

Definition and

evaluation of a

variability value

Boolean decision variables enable or disable parts of the

object-relational mapping configuration. This is supported by

a specific naming convention for the decision variables.

Variation point

identification

XML elements and related attributes in the object-relational

database mapper configuration point to the affected database

tables and columns.

Technique for

selecting (and

combining)

elements

The variability model defines the object-relational mapping

configuration. The specific configuration defines the values to

be taken over without the need for adjusting the values to the

syntax of the target artefact (parameterization). Multiple

selection is not possible.

Technique for

introducing

selected

elements

(including

relevant glue)

Not needed as generated artefacts are interpreted by the

platform implementation.

Table 5: Object-relational mapper production strategy for the WMS case study.

Production

strategy element

Warehouse management production strategy

(Database initialization)

Definition and

evaluation of a

variability value

The database content reflects the topology of the warehouse,

i.e., individual values of structures defined in the variability

model are taken over by instantiating templates in the generic

artefact. Due to the nature of the warehouse topology, this

implies multiplicity as variability implementation type.

Variation point

identification

Column names in the SQL scripts identify the variation points.

Technique for

selecting (and

combining)

elements

The variability model defines the database initilization

configuration. The specific configuration defines the values to

be taken over without the need for adjusting the values to the

syntax of the target artefact (parameterization). Multiple

selection, i.e., of material entities, is handled by multiplicity as

variability implementation type.

Technique for

introducing

selected

elements

(including

relevant glue)

Not needed as generated artefacts are interpreted by the

platform implementation.

Table 6: Database initilization production strategy for the WMS case study.

INDENICA D2.2.2

 25

The WMS production strategies are realized by four specific instantiators. Different

instantiators are needed due to artefact-based configuration of instantiators in EASy-

Producer.

The specific instantiators are the

1. Spring Configuration File Instantiator.

2. Database Schema Instantiator.

3. Object Relational Mapper Configuration Instantiator.

4. Database Content Instantiator.

The instantiators are executed in the sequence given above. We will detail the

individual instantiators in terms of algorithmic descriptions and examples below.

However, due to the different artefacts the instantiators are applied to, also the

nature of the examples will differ. The example for the Spring configuration

instantiator will independently focus on exchanging a service, while the examples for

the database instantiators will be related: the example for database schema

instantiator will introduce the context of the example and demonstrate how to

adjust the database schema of the WMS. Accordingly, the example for the relational

Spring Configuration Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

• List<File> FILES //Spring configuration files to instantiate

Output:

• Instantiated files //all *.config-files in FILES with specific values from the

variability configuration

Process:

List<DecisionVariable> spring_context

For Each frozen variable in IVML_CONFIG

add variable to spring_context

End For Each

For Each file in FILES

For Each «easy:varprop»-Entry in «element»-Entry in «spring»-Entry in

file

If «element».name equals “property”

String varName = «easy:varprop».getContent()

Decision dec = spring_content.get(varName)

If dec != null

«element».setAttribute(“value”, dec.value)

«easy:varprop».delete()

End If

End If

End For Each

End For Each

Figure 17: Algorithmic description of the WMS Spring configuration instantiator.

INDENICA D2.2.2

 26

mapper will reconfigure the mapping of the data to WMS classes. Finally, the

example for the database content instantiator will show how the reconfigured data

schema impacts the initial creation of the database contents, i.e., the WMS topology.

Spring Configuration File Instantiator

Spring configurations are specified in XML format. The idea for this instantiator is to

take an existing Spring configuration file as a template and to modify marked

elements, either by inserting a specific configuration value or by removing marked

parts based on a certain configuration value (negative variability). Additional XML

elements defined according to the Spring specification mark the XML elements to be

affected. Thus, a variable Spring specification is again a valid Spring configuration.

Figure 17 shows the algorithmic description of the Spring instantiator for the WMS

case study. As the implementation of the WMS platform relies on multiple Spring

configuration files, the Spring instantiator may instantiate them as part of a single

execution. Basically, the instantiator takes all frozen decision variables into account

and tries to match them with the (additional) XML elements in the Spring

configuration file. Thereby, the specified value from the variability configuration is

taken over and replaced in the marked configuration element. The XML marker is

removed after the actual value is inserted into the artefact.

Figure 18: Fragment from the WMS variability model related to the Spring

instantiator.

INDENICA D2.2.2

 27

Spring Configuration File Instantiator Example

We will now discuss the application of the Spring instantiator in terms of an example.

Figure 18 depicts the related fragment from the WMS variability model. Type

declarations and decision variables not related to the Spring instantiation are not

shown in Figure 18.

Let us assume that a WMS configuration defines the variability resolution for the

storage area compound depicted in Figure 19 (only the relevant decision variable is

shown).

We will use the fragment from a WMS Spring configuration file shown in Figure 20 to

demonstrate the application of the Spring configuration instantiator. The fragment

depicts the service configuration for the alternative storage bin search strategy.

Further service configurations and other parts of the Spring configuration file are not

depicted in Figure 20. In Figure 20, lines 77-83 contain the marker for the

instantiator given in terms of a regular Spring extension (easy:varprop). This

marker refers to the storage area compound (stArea) in the WMS variability model.

Figure 19: Fragment from a WMS configuration related to the Spring instantiator.

Figure 20: Fragment from a generic Spring configuration in the WMS case.

INDENICA D2.2.2

 28

The instantiator processes the Spring configuration file and searches for such

markers. As stArea.stAreaAbcStrategy points to the decision variable

determining the storage bin search strategy, the instantiator replaces the value of

the parent element of the marker (easy:varprop) with the value of this decision

variable (here Abc as shown in the configuration above). The result is depicted in

Figure 21.

Database Schema Instantiator

The database schema instantiator is responsible for adjusting the database schema

of the WMS according to the WMS variability configuration.

Basically, the database schema instantiator realizes negative variability, i.e., the

underlying SQL artefact contains the code for the case that all variabilities are

enabled. However, not all decision variables in the WMS IVML model shall affect the

database schema, such as those related to the WMS topology as they represent data

rather than the underlying schema. A simple mechanism to realize this separation is

a naming schema, i.e., this instantiator considers only decision variables, which end

with “Config”. The instantiator will remove the disabled variabilities. The result will

contain a subset of the SQL statements of the input file. The algorithmic description

of the database schema instantiator is shown in Figure 22.

Figure 21: Instantiated fragment from the WMS Spring configuration shown in Figure 20.

INDENICA D2.2.2

 29

Database Schema Instantiator Example

The example for this instantiator focuses at changing the database schema and, thus,

will define the data structures to which the remaining two WMS database

instantiators must comply. Therefore, we will introduce a common example here

and continue this example in the discussion of the remaining two instantiators.

The WMS variability model contains compounds for configuring the data managed

by the WMS. One example is the compound MaterialConfig shown in Figure 23,

which describes the (additional information of the) material to be stored in a

warehouse2.

2 An example involving the rows, columns and racks of a warehouse would increase the space needed to describe

the example. As the same mechanisms are applied to these parts of the topology configuration, we will discuss

the simpler case here for convenience.

Database Schema Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

• Single SQL-file SQL_FILE //SQL file to instantiate

Output:

• SQL_FILE with adapted/customized table columns

Process:

List<DecisionVariable> db_context

For Each frozen variable in IVML_CONFIG

with variable.name ends with “Config”

add variable to db_context

End for Each

For Each «CREATE TABLE»-entry in SQL_FILE

For Each variable in db_data_context

If «CREATE TABLE ».name equals variable.compoundName

For Each «column» -entry in «CREATE TABLE»-entry

If “db”+ «column».name +”Config” equals variable.name

&& variable.value == false

Delete « column»-entry

End If

End For Each

End If

End For Each

End For Each

Figure 22: Database Schema Instantiator for the WMS case study.

INDENICA D2.2.2

 30

Currently, the name of the compound (variable) indicates whether a compound may

impact the underlying WMS database structure. A more sophisticated specification

of the instantiation description language would provide details in terms of a mapping

specification rather than a naming convention.

We now show how the WMS variability model can be used to configure the data

managed by the WMS. As an example, we disable the descriptive information for the

material as shown in Figure 24:

Figure 25 depicts a fragment from the WMS database creation script, here the part

for creating the material table in terms of SQL statements. Basically, it creates the

individual data structures representing the WMS topology in terms of database

tables and data columns.

Figure 23: Fragment from the WMS variability model related to

the database configuration.

Figure 24: Fragment from a WMS configuration related to

the database configuration.

Figure 25: Fragment from the WMS database creation SQL script.

INDENICA D2.2.2

 31

Applying the database schema instantiator, the fragment in Figure 25 will be

modified as shown in Figure 26. As a result, columns related to the disabled

variability will be removed from the initialization script.

Object-relational Mapper Configuration Instantiator

An object-relational mapper is responsible for providing a program with uniform

access to the database contents in form of Database Access Objects (DAO).

Dependent on the specific mapper, advanced functionality such as caching or

transactions may be handled by the DAOs or the mapper in a transparent fashion.

Further, access to the data is simplified as error prone manual access statements are

generated and encapsulated in the DAOs. In the specific case of the WMS, the

object-relational mapper of Visual Studio is also responsible for the mapping of

database tables and columns to user interface components. Consequently, modifying

the mapper configuration in a consistent way enables to configure the managed data

as well as their access from the user interface. In summary, the configuration for the

object-relational mapper in the WMS platform consists of four parts, namely,

• The storage model describes the database.

• The conceptual model describes the C#-classes to be generated.

• The data mapping describes the mapping between database and C#-classes

as well as their properties

• The graphical mapping to user interface elements.

Figure 26: Instantiated fragment from Figure 25.

INDENICA D2.2.2

 32

The idea for this instantiator is rather similar to the database schema instantiator

discussed above. The object-relational mapper instantiator realizes negative

variability, i.e., a configuration file for all enabled variabilities is used as a generic

artefact and disabled variabilities are removed. Following the same naming schema

as the database schema instantiator, the object-relational mapper instantiator

considers only decision variables, which end with “Config”. The algorithmic

description of the instantiator is given in Figure 27.

Object-Relational Mapper Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

• Single edmx-file MODEL_FILE //generic mapper configuration artefact

Output:

• Customized MODEL_FILE //instantiated mapper configuration

Process:

List<DecisionVariable> or_mapper_context

For Each frozen variable in IVML_CONFIG

with variable.name ends with “Config”

Add variable to or_mapper_context

End For Each

For Each sub_model in MODEL_FILE

For Each variable in or_mapper_context

For Each «EntityType»-entry

with «EntityType».Name + “Config” equals variable.name

For Each «Property»-entry

If variable.hasVariable(«Property».name)

&& variable.getVariable(«Property».name).value == false

Delete «Property»-entry

End If

End For Each

End If

// similar for ScalarPropert in MappingFragment, AssociationSet, etc.

End For Each

End For Each

Figure 27: Instantiator for the object-relational mapping in the WMS case study.

INDENICA D2.2.2

 33

Object-relational Mapper Configuration Instantiator Example

In this example, we will rely on the variability model fragment discussed above for

the database schema instantiator, i.e., the MaterialConfig . We will apply the

same configuration as shown above, i.e., the descriptive text is disabled.

Figure 28 depicts a fragment of the object-relational mapper configuration of the

WMS having all variabilities enabled. In this fragment the definitions of entity sets,

association sets and the user interface designer section are not shown as they are

not relevant for this example.

Given the WMS variability model and the specific configuration discussed above, the

generic mapper configuration in Figure 28 will be instantiated as shown in Figure 29.

Thereby, in particular the property in line 18 is removed. Related properties in the

conceptual models and mappings sections are handled similarly and, thus, they are

not displayed in Figure 28 and Figure 29. Please note that also cross-relations such as

association sets, associations or association connectors are affected if required. This

is not shown here in order to keep the example and the fragments readable and

understandable.

Figure 28: Fragment of the generic database mapper configuration in the WMS case.

INDENICA D2.2.2

 34

Database Content Instantiator

The database content instantiator is the last instantiator executed in sequence as

part of the WMS production strategy. The idea of this instantiator is to create a

database initialization script from scratch. This is required to produce output which is

consistent with the results of the previous instantiators, i.e., disabled fields or

relationships must not be instantiated. While this may also be achieved with

negative variability, this instantiator must also create an initialization for an arbitrary

number of instances, such as a material list or a set of racks. As the database

structure is reflected in the variability model, we can easily create the SQL

initialization script from scratch. As discussed above, also this instantiator follows the

naming convention for decision variables, i.e., the instantiator will consider decision

variables related to the WMS topology rather than to the database structure.

Moreover, the alignment between database structure and WMS topology already

starts in the variability model as we will show below.

The algorithmic description of the database content instantiator is depicted in Figure

30. Basically, it considers all frozen decision variables of the WMS variability model

for which the name ends with “Topology” due to the WMS specific naming

convention. For these decision variables, it creates the corresponding SQL insert

statements and for each defined variable the related SQL data-value assignments.

Here, only defined variables are considered, i.e., those which have not been

removed from the database schema, and the mapping by the preceding

instantiators.

Figure 29: Instantiated database mapper script.

INDENICA D2.2.2

 35

Database Content Instantiator Example

Also in this example, we will rely on the context of the examples discussed above for

the database schema instantiator and the object-relational mapper instantiator.

After executing these two instantiators, the database schema is defined and

correctly mapped to DAOs. The final step in the WMS production strategy is to turn

the WMS topology defined in the actual WMS variability configuration into database

entries.

The compound MaterialConfig discussed above defines the data to be managed

in the WMS. In contrast, the compound Material shown in Figure 31 is responsible

for configuring the material part of the WMS topology, i.e., the specific material to

Database Content Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

• OUTPUT_FILE_NAME

Output:

• SQL_FILE with adapted/customized INSERT-statements

Process:

List<DecisionVariable> db_data_context

For Each frozen variable in IVML_CONFIG ends with “Topology”

add variable to db_data_context

End For Each

New SQL-FILE with OUTPUT_FILE_NAME

New «USE»-Entry on “wmsdb”

For Each variable in db_data_context

For Each element in variable // matches (non-)container contents

new «INSERT»-Entry in SQL_FILE

«INSERT».name = substring(variable.name, -”Topology”.length)

For Each var in variable

If isDefined(var)

new «COLUMN»-Entry in «INSERT»

«COLUMN».name = var.name

«COLUMN».value = var.value

End If

End For Each

End For Each

End For Each

Figure 30: Database content instantiator for the WMS use case.

INDENICA D2.2.2

 36

be inserted into the initial WMS database. As the actual structure of Material can

be configured by MaterialConfig , the instances of Material must be aligned

with the actual configuration in the decision variable materialConfig . This is done

by defining a constraint in the WMS variability model as shown in Figure 31. Finally,

the container materialTopology contains the actual material as part of the WMS

topology configuration.

Figure 32 depicts a fragment from a WMS configuration specifying a part of the WMS

topology, here the initially available material. The description information was

disabled in the related examples above and, thus, cannot be configured here:

Consequently, the database content instantiator shown in Figure 30 will produce the

fragment from the database initialization script depicted in Figure 33. The insert

statements are generated by the instantiator due to the WMS topology

configuration. The specific lines for materialTopology are shown in lines 4-5,

while the remaining lines of the fragment are generated from other parts of the

WMS topology configuration not discussed in the examples above.

Figure 31: Fragment from the WMS variability model related to the WMS topology.

Figure 32: Fragment from a WMS configuration related to the WMS topology.

Figure 33: Generated database content initialization script reflecting the configured WMS

topology.

INDENICA D2.2.2

 37

3.2.3 Remote Management System

For the RMS case study, also a platform-specific service configuration file must be

handled. In addition, the constraints on the runtime variables defined in the

variability model shall be made available to the WP4 adaptivity manager in order to

support the determination of the actual configuration values at runtime. This leads

to the following specific requirements:

• Modification of (parts of) a service configuration file at compile-time.

• Creation of a reasoning-rules artefact which restricts the possible adaptation

actions at runtime.

• Variability instantiation in the context of the NDL-specific extension of

Mobicents / JBoss environment, i.e., Java projects with dependencies

managed by Maven.

Description of the RMS Production Strategies

The requirements defined above yield two distinct production strategies, one for

compile-time and one for runtime. The compile-time production strategy is

summarized in Table 7. The runtime production strategy is depicted in Table 8. In the

RMS case study, these strategies are realized by two specific instantiator, a service

configuration instantiator and a rules instantiator.

Production strategy

element

Remote management production strategy

(compile time)

Definition and evaluation of

a variability value

Configuration values are directly taken over into the

specific artefacts. At compile time, enabled services as

well as their specific parameters are taken over into

the RMS configuration file.

Variation point

identification

Specific markup elements in service configuration file.

Technique for selecting

(and combining) elements

Some configuration values can be taken over directly

following the syntax and structure of the target

artefact. However, for some values also explicit

mappings must be specified. Multiple selection is not

possible.

Technique for introducing

selected elements

(including relevant glue)

Not needed.

Table 7: Compile-time production strategy in the RMS case study.

INDENICA D2.2.2

 38

Service Configuration Instantiator

The RMS service configuration is defined in terms of an XML file following a platform

specific structure. In that structure, pre-deployment (compile-time variables) as well

as default values for runtime variables are specified. However, some element names,

structures or even configuration values cannot directly be mapped to the variability

model as this is the case in the YMS case study (cf. Section 3.2.1) or in the WMS case

study (cf. Section 3.2.2). Therefore, the idea for the Service configuration instantiator

is similar to the Spring configuration instantiator in Section 3.2.2, i.e., to mark

affected XML elements for inserting values. In contrast, the values for the RMS

configuration may require a specific mapping.

The algorithmic description of the service configuration instantiator is depicted in

Figure 34. The instantiator selects the frozen variables from the IVML configuration

and performs a mapping to the XML structure while replacing existing values as well

as markup elements by specific values from the configuration. Thereby compile-time

variabilities are considered in order to fill the values of the pre-deployment section

described above. The instantiator also performs value mapping as stated in Figure 34

in terms of the map function. The map function either considers the global value

mappings bound to a certain IVML type or specific mappings defined in the markup

element (attribute mapping of the element easy:varprop).

Production strategy

element

Remote management production strategy

(runtime)

Definition and evaluation of

a variability value

Configuration values are directly taken over into the

specific artefacts. The RMS platform provides services

for setting the related decision variable values. The

values are interpreted by the RMS platform.

Constraints referring to runtime variables are written

to a rule format for further use in WP4 to support the

runtime adaptation of the RMS platform.

Variation point

identification

No variation point identification needed for runtime

configuration as the result is generated from scratch.

Technique for selecting

(and combining) elements

The rules can be directly generated for the target

language. Multiple selection is not possible.

Technique for introducing

selected elements

(including relevant glue)

Not needed.

Table 8: Runtime production strategy in the RMS case study.

INDENICA D2.2.2

 39

Service Configuration Instantiator Example

Now, we will discuss the application of the RMS service configuration instantiator.

The RMS variability model contains the (compile-time) decision variables as shown in

Figure 35. For convenience, we will take the default values of these decision

variables as the actual configuration.

Figure 35: Fragment from the compile-time part of the RMS variability model.

RMS Service Configuration Instantiator

Input:

• IVML-configuration IVML_CONFIG //read in from the variability model

• File FILE //RMS configuration file to instantiate

Output:

• Instantiated file

Process:

List<DecisionVariable> rms_context

For Each frozen variable in IVML_CONFIG with isDefined(variable)

add variable to rms_context

End For Each

For Each «easy:varprop»-Entry in «element»-Entry in «indenica-rms-

main-config»-Entry in file

For Each variable in rms_context

If getContents(«easy:varprop») equals variable.name

«element».setContents(map(«easy:varprop».value,

«easy:varprop».mapping))

«easy:varprop».delete()

End If

End For Each

End For Each

Figure 34: Algorithmic description of the RMS service configuration instantiator.

INDENICA D2.2.2

 40

A fragment from the generic RMS service configuration file is depicted in Figure 36.

Basically, we focus on the specific configuration options shown in the variability

model fragment above and leave out similar configuration options.

As mentioned above, several configuration settings in the configuration file cannot

directly be mapped to the decision variables in the variability model regarding

structure, naming or even configuration values. For example, the communication

type setting for text, voice and video in lines 9-17 does neither match in (nesting)

structure nor in element naming to the variability model. In addition, also the

configuration values themselves do not map to the types in the variability model,

e.g., the value multipoint corresponds to ServiceState.full or the value

point2point to ServiceState.p2p while ServiceState.off can be mapped

directly. Therefore, we define a (partial) mapping for the type ServiceState in line

10.

Figure 36: Fragment from the RMS configuration file.

INDENICA D2.2.2

 41

The instantiator will produce the instantiated artefact as shown in Figure 37.

However, the mapping specification remains in the configuration file in order to

support staged instantiation of currently unresolved variabilities. In case that all

variabilities are actually resolved, the mapping definitions may be removed by the

instantiator.

Runtime Rules Instantiator

Currently, the RMS platform relies on parameterization for runtime variabilities, i.e.,

specific values are defined by an external mechanism such as the WP4 adaptation

manager and passed in using a specific Web service interface. However, the values

determined by the adaptation manager must comply with the constraints on

runtime variabilities in the variability model. In extreme cases, the constraints may

even be used to determine appropriate adaptation values.

The idea for the runtime rules instantiator is to export the constraints from the

variability model which characterize runtime variabilities to a text file. In the future,

the rules will be exported to the INDENICA infrastructure repository. As the resulting

rules shall be used as input to the WP4 adaptivity manager, they must be exported in

terms of Drools rules [12]. This can easily be done as the main reasoner of EASy-

Producer relies on Drools as described in [15]. Given a specific configuration, the

instantiator requests the instantiated pre-runtime decision variables from the Drools

reasoner, i.e., it removes resolved variables and fulfilled constraints. Then, the

instantiator turns the constraints from the variability model into Drools rules and

Figure 37: Instantiated service configuration file in the RMS case study.

INDENICA D2.2.2

 42

stores the rule set into a file for further use. Thus, the algorithmic description for the

runtime rules instantiator in Figure 38 is fairly simple.

Runtime Rules Instantiator Example

An excerpt of the rules produced by the RMS rules instantiator for the runtime-

related constraints in the RMS variability model is depicted in Figure 39.

RMS Runtime Rules Instantiator

Input:

• IVML variability model IVML_MODEL

• IVML-configuration IVML_CONFIG //read in from the variability model

• String FILE_NAME //output file name

Output:

• Instantiated file

Process:

VarModel model = DroolsReasoner.instantiatePriorRuntime

(IVML_MODEL, IVML_CONFIG)

String rules = DroolsReasoner.getOpenRules(IVML-MODEL, model)

New FILE with FILE_NAME

FILE.write(rules)

Figure 38: Algorithmic description of the RMS rules instantiator.

Figure 39: Instantiated runtime rules from the RMS variability model.

INDENICA D2.2.2

 43

3.2.4 Additional Case Studies

In addition to the work on variability instantiation in the INDENICA case studies, we

validated our instantiation approach in further contexts. The additional case studies

provided further insights and enable the integration of the gained experience and

realized technologies into the INDENICA case studies. We will briefly discuss the

additional case studies below.

• Based on prior work published in [11, 22, 23], we carried out additional

experiments on shifting the binding time in existing systems (meta-

variability). This is realized by an instantiator, which generates multiple

artefacts for introducing binding-time specific glue code involving template

instantiation, aspect-oriented bytecode injection (here used as a pre-

processor), and build-process adjustments (if required). This received

significant interest. In addition, further experiments on meta-variability of

component technologies have been conducted. Currently, this work is

integrated into EASy-Producer by applying the INDENICA variability

instantiation concepts.

• In a master thesis, concepts and mechanisms for realizing deployment

variability for cloud-based applications were developed. Thereby, additional

instantiators for customizing the deployment mechanisms of cloud

applications have been realized and validated using EASy-Producer [8].

• The national funded project ScaleLog focuses on scaling intralogistics

software for warehouses of different sizes. One particular aim for Klug

Integrierte Systeme, the industrial partner in ScaleLog, is to flexibly address

new markets of medium- and small-size warehouses while providing a clear

migration path to larger warehouses for potential customers. In ScaleLog,

further project-specific instantiators for EASy-Producer have been developed

and, thus, the INDENICA variability instantiation concepts have been

validated and applied. Some examples are a variant of the Spring

configuration instantiator discussed in Section 3.2.2, a template-based

workflow implementation instantiator and an instantiator which customizes

the user interface. Currently, a more complex instantiator is being developed,

which combines workflow modelling with variability instantiation using code

generation.

• EASyCar is a bilateral project with the Robert Bosch GmbH in Stuttgart /

Feuerbach. The aim of this project is to research modeling concepts for large-

scale variability in the automotive domain. One step towards this aim is to

evaluate variability modeling, variability instantiation and the related tool

support provided by EASy-Producer in a business unit at Bosch. Therefore,

variability model import mechanisms as well as further instantiators have

been developed. One particular challenge is to practically apply EASy-

Producer to a large-scale variability model, i.e., the IVML editor, the

configuration editor, the reasoning support and the instantiation framework.

The experience made in the projects and works described above drives our aim in

improving and generalizing the existing INDENICA variability instantiation concepts

as we will further outline in Section 4.

INDENICA D2.2.2

 44

3.3 Summary

The realization of production strategies discussed in this section enables the

instantiation of variabilities for the individual INDENICA case studies. Additional

instantiations provide the instantiation functionality to apply the concepts and tools

also in other projects in an extensible way, such as ScaleLog or EasyCar. The WP2

tool support described and demonstrated in this section fulfils the requirements

from Section 2. We discussed this fulfilment in Section 3.1 in terms of the realized

tool support and in Section 3.2 in terms of the various use cases.

Although this is a good and solid baseline, our practical work on the INDENICA case

studies as well as on additional case studies shows that the current realization can be

improved. The current realization of the INDENICA variability instantiation concepts

can be summarized as Java-based implementation of production strategies. Some

particular instantiators may need a specific implementation, such as the (integration

of the) Cocktail instantiator described in Section 3.2.1. However, the current

implementation-based approach also implies a technical overhead to apply and

(partially) reuse existing instantiators. For example, the Spring configuration

instantiator in Section 3.2.2, the RMS configuration instantiator in Section 3.2.3 and

even the mapping instantiator in Section 3.2.2 share several similarities, in particular

as they instantiate XML artefacts.

Based on our practical experience, we learned the following lessons. We will

explicitly name the INDENICA instantiators, we draw our lessons from, although we

made similar experience in the additional case studies.

E1. Variability instantiation may create entire files (WMS database instantiator)

or modify individual fragments within a file (RMS configuration file

instantiator).

E2. Currently, individual instantiators translate parts of the variability model into

the result artefact. This translation is implemented in Java, but can be

abstracted using a template language. Such a template language must be

able to take over configuration values (WMS spring instantiator), iterate over

structures in the variability model (WMS database instantiator) or map values

to artefact values (RMS configuration instantiator). We expect that even

simple calculations may be helpful in describing such mappings.

E3. The realization of runtime variability leads to the translation of parts of the

information on a runtime variability into another language, such as the

linking code created by the YMS Cocktail instantiator. In general, instantiation

of runtime variability may happen on specific types of artefacts such as

classes or components.

E4. Even a template-based realization of variability instantiation may rely, in

special cases, on external tools and mechanisms, i.e., blackbox instantiators

(YMS Cocktail instantiator).

E5. The specification of a production strategy may be simplified if the sequence

of instantiators can be described in terms of a batch job or an instantiation

workflow. This supports the definition of the sequence of instantiators in

combination with basic operations such as deleting or copying individual files

or folders.

INDENICA D2.2.2

 45

These insights provided a motivation for us to derive a domain-specific language for

that purpose. We will outline the basics of that language in the next section.

INDENICA D2.2.2

 46

4 Variability Implementation Language

In this Section, we describe the concepts of the INDENICA Variability Implementation

Language (VIL). VIL is designed to solve the issues we experienced from the

instantiator-based realization discussed in Section 3. Further, VIL realizes the

requirements for variability implementation discussed in Section 2 in terms of a

generic, unified variability instantiation language.

Actually, VIL is not a single language. It consists of four main constituents:

• Asset model: The asset model defines the individual capabilities of various

types of assets used in variability instantiation, such as Java source code, Java

byte code, XML files but also components (for runtime variabilities), or

elements of the file system such as files or folders. Production strategies are

operations on the types of the input and output artefacts using the

capabilities of the assets for specifying the instantiation.

• VIL template language is used to instantiate a certain type of target artefact

in a reusable way. Basically, the VIL template language covers generation as

well as transformation-based production strategies.

• Blackbox instantiators: In some situations it might be difficult, inconvenient

or even impossible to describe a production strategy using the VIL template

language. One example is the Cocktail instantiator discussed in Section 3.2.1

as it mainly modifies Java bytecode and, thus, it is easier to realize it in an

usual programming language such as Java, i.e., from the point of view of VIL

as a black box. In case of legacy product lines, an existing instantiator may be

called or wrapped into a VIL extension.

• VIL workflow language: A language to define individual production

strategies, i.e., to relate artefacts and instantiation mechanisms, to combine

production strategies to workflows and to specify the execution of workflows

in terms of binding times (more generally conditions on IVML attributes).

VIL and its sublanguages rely on existing, practically proven concepts such as

workflow or template languages in order to avoid reinventing the wheel. However,

existing concepts as well as related tooling does not provide the full support for

variability instantiation. Thus, we reuse and extend existing work to apply it to

variability realization.

We will discuss the four constituents listed above in the following subsections,

namely the artefact model in Section 4.1, the template language in Section 4.2 and

the (use of) blackbox instantiators along with the workflow language in Section 4.3.

Finally, we will link VIL to the INDENICA case studies in Section 4.4.

4.1 VIL Artefact Model

VIL relies on an explicit artefact model. The purpose of the artefact model is to

describe the types of artefacts used in the instantiation, their specific capabilities

and to obtain more precise specifications of the variability instantiation. This will

INDENICA D2.2.2

 47

enable warnings and errors already when specifying the instantiation, i.e., while

defining VIL workflows and templates.

The VIL infrastructure provides a predefined set of artefact types as well as their

individual capabilities. However, for instantiating a specific base platform, more

specific artefacts are needed, such as SQL scripts or Spring configuration files as in

the WMS case discussed in Section 3.2.2. VIL supports this in two ways, namely via

programmatic extensions to introduce additional artefact types and via the

specification of capabilities in VIL workflows.

Figure 40 depicts the basic (predefined) VIL artefacts. Basically, we distinguish

between composite artefacts, like a Java file, and fragment artefacts, e.g., parts of

Java code. Regarding composite artefacts, we further distinguish between file system

Figure 40: VIL artefact model including default artefacts

INDENICA D2.2.2

 48

artefacts such as paths, files and folders. While file artefacts can be any type of file,

folder artefacts subsume other artefact types, like Java packages and C# namespaces

as they are typically represented as folders in a filesystem. Software components

(component artefacts) can be used for runtime manipulation. Please note that

neither all artefact types, nor all operations are shown in Figure 43. We focus here

on those artefacts and operations required for describing the instantiation in the

INDENICA use cases. Based on this artefact model, VIL will provide a unified way of

specifying the instantiation of individual artefacts as we will describe in the following

subsections.

4.2 VIL Template Language

The VIL template language aims at a generic description of the instantiation of

artefacts. VIL supports:

• Value insertion, i.e., at specified locations in the artefact, configured values

from a variability model are taken over. The template language must support

value mapping, as discussed in Section 3.2.3, as in several cases values from

the configuration must be mapped to artefact specific values.

• Alternatives, i.e., to decide among various alternative instantiations based on

values or properties defined in the configuration as done in Section 3.2.2 and

3.2.3. Alternative expressions include logical, relational, mathematical, string

and regular expression operations as well as the (extensible) operations

defined in the artefact model and in VIL.

• Iteration over configured IVML containers (see Section 3.2.2), the structure

of IVML compounds (see Section 3.2.2) and locally defined value ranges. In

particular, specific iterator operations similar to those for collections in OCL

[18, p. 168ff] enable the selection of variables from the variability model (see

Section 3.2).

• Undefined expressions: Similar to OCL [18], undefined expressions in VIL are

prevent further evaluation and, thus, the execution of the containing

statement. This simplifies the specification of VIL templates.

• Named subtemplates enable the specification reusable transformation tasks

and facilitate template imports.

• Mixing of elements from the target artefacts with statements from the VIL

template language to specify the instantiation. Here, statements from the VIL

template language are included into mark-ups. VIL supports configurable

mark-ups in order to increase the application range, i.e., not to exclude

artefact types due to a clash with existing semantics of the VIL mark-ups.

• Extension capabilities, i.e., mechanisms that enable openness in VIL, i.e.,

extension of existing (imported) templates. Therefore, the VIL template

language supports polymorphic dispatch similar to Xtend [4].

The VIL template language combines capabilities of popular generator or template

languages such as Xtend [4], Xpand [3] and Apache Velocity [27]. Although the VIL

template language is rather close to Xtend, it avoids a tight integration with Java

concepts in the template language. Further, it integrates (the access to) IVML models

with the VIL artefact model, provides instantiation specific operations and enables

INDENICA D2.2.2

 49

the customization of the language in mark-ups (relying on Xtext [5] language

infrastructure generation).

Below, we illustrate the VIL template language in the context of the INDENICA Yard

Management use case. Figure 41 depicts the derivation of the Cocktail configuration

from a given IVML configuration (including the underlying variability model) in terms

of a generator template. In Figure 41, lines 1-13 define the main template which is

called from the workflow. The input to that section is the IVML configuration

(config) and the target output artefact (output). Within the main template, in line

2 the artefact is created, i.e., the existence of an empty artefact is ensured. Then, the

production of the content of the artefact is described (lines 3-12), which mainly

consists of Cocktail specific XML elements. As individual variables make up most of

the content of the target artefact, a statement for processing the variables is

inserted between the artefact prologue (lines 3-6) and the ending of the artefact

(lines 9-12). Here, prologue and ending are stated as artefact sections enclosed in

’’’ , i.e., target artefact elements which will be part of the output . Such sections

may also include VIL statements with mark-up as we will show below. In lines 7-9,

each variable in config is considered and processed by the sub-template

variabilities (defined in lines 14-18).

The main purpose of the (reusable) sub-template named variabilities is to

create a target XML element for each decision and to take over the relevant

information from the IVML variability configuration (here we use # as mark-up). The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

def main(Configuration config, TextArtefact output) {

 new TextArtefact output

 ’’’

 <?xml version=”1.0” encoding=”utf-8”>

 <cocktail>

 ’’’

 for $1 in config do

 variabilities($1)

 ’’’

 </cocktail>

 ’’’

}

def variabilities(DecisionVariable variable) {

 ’’’

 <decision name = ” #variable.declaration.name #”

 value = ” #variable.value #”/>

 ’’’

}

Figure 41: VIL generation template for Cocktail configuration files

INDENICA D2.2.2

 50

enclosed expressions are evaluated in the context of the given IVML configuration,

i.e., the respective values from the variable declaration and the value of the actual

decision variable are taken over into the target artefact.

In addition, the VIL template language also enables the transformation of existing

artefacts. Therefore, the main template receives an input artefact as parameter and

all operations are then applied to that artefact. Relying on the artefact model,

specific elements can be identified, selected and replaced. We will discuss the use of

the VIL template language for the transformation in context of the WMS case study

in Section 4.4.

4.3 VIL Workflow Language

The VIL workflow language enables the specification of individual production

strategies, their combinations as well as their application at various binding times.

The VIL workflow language is inspired by existing build process languages such as

make [9], ANT [25], Gradle [2] or MWE2 [5, p. 177ff], but it provides specific

concepts for binding times, integration of instantiators, and integration with the VIL

template language.

The VIL workflow language provides the following concepts:

• Production strategy: A production strategy is specified as the application of

an instantiator at a specific binding time to a given set of input artefacts in

order to produce a certain set of output artefacts. Instantiators may be given

as VIL-integrated instantiators such as the processor for the VIL template

language and blackbox instantiators. The main difference is that VIL-

integrated instantiators (including wrapped blackbox instantiators) provide

information on the input and output artefact types to the VIL workflow

engine while pure blackbox are just executed.

• Alternatives: Selection of production strategies based on conditions in terms

of variables and values defined in the IVML configuration (including the

underlying variability model).

• Loops: Repeated execution of production strategies based on a certain

container in the IVML variability configuration, the structure of IVML

elements such as compounds or selected subsets of the configuration,

respectively.

• Workflow: A workflow is a named, reusable sequence of production

strategies which operates on a given set of input and output artefacts. A

workflow may specify prerequisites in terms of required binding times,

artefacts / artefact types or conditions on subsets of the variability model.

Due to the known input-output relation for the individual productions

strategies (as exposed by the instantiators), the VIL workflow engine can

validate the application of production strategies within a workflow and emit

warnings and errors already while the VIL workflow is specified. To facilitate

reuse, a VIL workflow may import other VIL workflows.

• Workflow runner: The definition of binding times in IVML is rather generic.

Binding times are defined as attributes [10], i.e., neither the name of the

attribute nor the (user-specified) type are fixed. Thus, VIL needs a

INDENICA D2.2.2

 51

specification of the semantics of binding times, i.e., the name of the

attribute(s) and the intended sequence of binding times. This is done in the

workflow runner (section).

• Linking the configuration: A VIL workflow specifies the actual IVML model it

relies on for passing it to VIL templates, using it in conditions and for

specifying the sequence of binding times in the workflow runner section.

• Integration into the build process: VIL may be executed from EASy-Producer

or from a build process (cf. requirement I11 in D2.1 [10]). The latter is

supported through specific integrations of parsing and executing VIL

specifications into existing build process languages. However, VIL workflows

are not designed to specify the entire build process for a service-based

system, a base platform or, in general, a software product line as this would

require a unification of various build process languages such as make [9],

Maven [26], Gradle [2], msbuild [16], ANT [25], MWE2 [5, p. 177ff], etc.

Below, we illustrate the VIL workflow language in the context of the INDENICA Yard

Management use case also including the application of the example VIL template

discussed in Section 4.2.

Figure 42 depicts a fragment from the VIL workflow for the YMS use case. In line 1 it

imports version 0.5 of the YMS configuration (including variability model) into

config . This establishes the link to the configuration similar to model imports in

IVML [10], i.e., it also supports the evolution of variability models and configurations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import YMSCfg with YMS.version=v0.5 into config

runner (PathArtifact source, PathArtifact target,

 ParameterSet param) {

 apply(bindingTime=compile)

 using (source, target) on param

}

select bindingTime=compile for

workflow compileFlow (PathArtifact source,

 PathArtifact target) {

 copy(source, target).exclude(”$source/templates”)

 tmp = vilTemplateProcessor(

 config, ”$target/cocktail.xml”,

 ”$source/templates/cocktail.vtl”)

 cocktailInstantiator(tmp)

}

// runtime workflow skipped

Figure 42: Fragment from the YMS production strategy

INDENICA D2.2.2

 52

Lines 3-7 specify the workflow runner. Basically, the runner receives a source and a

target path. The source path contains the generic artefacts, while the target path

denotes where the instantiated artefacts shall be placed. The target path may be

empty as basic file operations such as the creation of paths or files are handled

transparently by the VIL workflow engine. The apply command in lines 5-6 binds

names of attributes to attribute values, here, the attribute bindingTime to the

values compile . Corresponding workflows will be executed using the parameters

source and target provided to the runner. In addition, param enables to pass

arbitrary name-value pairs to the VIL workflow so that the caller can request the

instantiation for a certain binding time. For example, if the caller passes the name-

value pair bindingTime=compile , then only the compile time workflows will be

executed.

The YMS workflow for compile time is depicted in Figure 42 in lines 9-17. The

workflow named compileFlow is executed only if the runner enables compile

time as bindingTime . In addition to this binding-time-specific selection condition,

further conditions on the configuration and the artefacts may be specified, such as

whether certain variables are defined. A workflow is executed only if all selection

conditions are fulfilled. The first step in the workflow in line 12 copies all source

artefacts to the target path except for artefacts in ”$source/templates” . In VIL,

paths may be denoted as strings containing VIL variables indicated by the $ prefix

(similar to ANT and MWE2). Please note that copy operations depend on the type of

artefact and may be overridden by VIL extensions or operations defined in the VIL

workflow (not shown in Figure 42). This enables specific copy operations such as the

package adaptation for Java artefacts discussed in Section 3.1.1. Then, in line 13, the

VIL template processor is executed applying the IVML configuration and the specified

target file artefact to the given template. The resulting artefact is stored in the VIL

variable tmp . Finally, in line 16 the blackbox Cocktail instantiator (cf. Section 3.2.2) is

executed on the previously generated configuration in tmp . Here, the Cocktail

instantiator is made available to VIL through wrapper code, i.e., the execution of the

Cocktail instantiator looks akin to the template processor as well as the specific

input-output relation implemented by Cocktail (XML configuration to transform Java

classes) is provided to the VIL workflow engine.

For executing the workflow given in Figure 42, either EASy-Producer starts the VIL

workflow engine on user request or this is done from a build process. An example for

the integration into an ANT build process is illustrated in Figure 43. Here, the VIL

workflow specification (wms.vil), the source platform project and the target

platform project are passed as input to the VIL execution engine. In addition, a

parameter is given, which requests instantiation for compile time.

INDENICA D2.2.2

 53

4.4 Application to INDENICA Case Studies

In this section, we will discuss the application of VIL to the INDENICA case studies.

4.4.1 Yard Management System

The application to the YMS case study was already discussed as running example in

Section 4.2 and 4.3.

4.4.2 Warehouse Management System

In this section, we will discuss the application of VIL to the WMS case study. As

described in Section 3.2.2, the instantiation for the WMS subsystem is realized as

four different instantiators. Please note that we will not repeat the ideas and

algorithms of these instantiators here as we discussed them in Section 3.2.2. In this

section, we will focus on the specification of the WMS instantiation in terms of VIL.

We will first discuss the templates that instantiate the individual artefacts of the

WMS. With these templates in place, we will then describe the complete workflow.

The Spring configuration file instantiation takes an existing Spring configuration file

as input and modifies marked elements based on a given (IVML) configuration.

Figure 44 shows this production strategy in terms of a VIL template. In the main

template an iteration over all XML nodes with child “easy:varprop ” in the given

XML artefact target (line 2) is defined. If an IVML variable corresponding to the

contents of the child “easy:varprop ” exists (line 3-5), the value of the attribute

value in the parent node is replaced by the actual value of the configuration

variable (line 6) and the child node is removed from the target artefact (line 7). Lines

12-14 and the corresponding call in line 6 are actually not needed in the WMS case

study but enable reuse in the RMS case study in Section 4.4.3. Therefore, we also

skipped the WMS specific focus on the properties element without affecting the

correctness of the resulting artefact.

<!--ANT prologue and other targets skipped-->

<target name=”compile”>
 <processVIL
 file=”YMSplatform/templates/wms.vil”
 source=”YMSplatform”
 target=”YMSinstance”
 <param name=”bindingTime” value=”compile”/>
 </processVIL>
 <!--remaining tasks such as javac skipped -->

</target>

<!--remaining ANT elements skipped -->

Figure 43: Fragment from an ANT build file integrating the VIL workflow

INDENICA D2.2.2

 54

The database schema instantiation in Figure 45 modifies the database schema of the

WMS according to the (IVML) configuration. In line 2 of the template, a selection of

the relevant variables according to the WMS naming convention (the VIL execution

engine provides only access to frozen variables) is defined. Then, for each “CREATE

TABLE” statement in the SQL target artefact (line 3) the relevant variables are

narrowed down to those variables for which the compound name matches the table

name (line 4). Finally, all columns of the containing SQL statement (line 5) are

considered and for those having a corresponding IVML variable (in the pre-digested

set cfg1) with value false (line 6-7), the respective column is deleted (line 8).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def main(Configuration config, XMLArtefact target) {

 for $1 in target.selectParent(”*/easy:varprop”) do {

 var child = $1.getChild(”easy:varprop”)

 var var = config.variables.get($child.content)

 if exists(var) {

 $1.setAttribute(”value”, map(var.value))

 child.delete()

 }

 }

}

def map(Value value) {

 value

}

Figure 44: VIL generation template for Spring configuration files.

1

2

3

4

5

6

7

8

9

10

11

12

def main(Configuration config, SQLArtefact target) {

 var cfg = config.select(v|v.name.endsWith(”Config”))

 for $1 in target.selectAll(”CREATE TABLE”) do {

 var cfg1 = cfg.select(v|v.compoundName = $1.name)

 for $2 in $1.columns() do

 for $3 in cfg1.select(v|.value = false &&

 v.name + ”Config” = $2.name) {

 $2.delete

 }

 }

 }

}

Figure 45: VIL generation template for database schemas.

INDENICA D2.2.2

 55

The object-relational (OR) mapper configuration instantiation in Figure 46 removes

those mappings, which have been disabled in the (IVML) variability configuration. In

the main template (lines 1-7), a selection of the relevant variables according to the

WMS naming convention is defined. Then, a sub template (lines 9-21) for the

individual sections of the OR mapper configuration is applied (only two specific

applications are shown in Figure 46). In the sub-template, a selection of the parent

element according to given element path (line 11) is defined and the child elements

are processed (line 14-19) only if a corresponding IVML variable exists (line 12-13). If

the IVML variable related to the child node exists and has value false (line 15-16),

the child node is deleted (line 17).

The last VIL template for instantiating the WMS describes the creation of a SQL

database initialization script for initializing the database with the actual content. In

the template in Figure 47 a complete initialization script is created from scratch. In

the core template main (lines 1-12), the creation of the basic script parts, like the

beginning and the end of the script (indicated by comments) is defined. The creation

of the insert statements is defined in the sub-template instantiate (lines 14-34),

which is applied for each nested element of a compound variable whose name ends

with “Topology ” (line 6, akin to the instantiator mechanism described in Section

3.2.2). In the sub-template, first the creation of the basic insert statement with the

name of the compound variable (without postfix “Topology ” to match the names of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

def main(Configuration config, XMLArtefact target) {

 var cfg = config.select(v|v.name.endsWith(”Config”))

 process(cfg, target, ”Schema/EntityType”, ”Proper ty”)

 process(cfg, target, ”Mapping/EntityContainerMapp ing”

 + ”/MappingFragmet”, ”ScalarProperty”)

 // further processing according to structure

}

def process(Configuration config, XMLArtefact target,

 String parent, String child) {

 for $1 in target.selectAll(parent) do {

 var var = config.get (

 $1.getAttribute(”name”) + ”Config”)

 for $2 in $1.selectAll(child) do {

 var var2 = var.getVariable($2.name)

 if (var2.value = false)

 $2.delete()

 }

 }

 }

}

Figure 46: VIL generation template for OR-mapper configuration files.

INDENICA D2.2.2

 56

the database tables) is defined. The nested elements of this compound variable

represent the actual content. Each variable corresponds to a column or its value,

respectively. Following the SQL syntax for insert statements, initialization is created

in two loops, one for the column names (lines 20-23) and one for the related values

(lines 27-30).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

def main(Configuration config, SQLArtefact output) {

 new SQLArtefact output

 ’’’

 // Beginning of the script

 ’’’

 for $1 in config.select(v|v.name.endsWith(”Topology”)

 && v.typeOf(”Compound”)) do

 instantiate(output, $2)

 ’’’

 // End of the script

 ’’’

}

def instantiate(SQLArtefact output,

 DecisionVariable variable) {

 ’’’

 INSERT [dbo].[#variable.declaration.name.substrin g(

 -”Topology”.length())#] (

 ’’’

 for $1 in variable.nestedElements do

 ’’’

 [#$1.declaration.name#] ,

 ’’’

 ’’’

) VALUES (

 ’’’

 for $1 in variable.nestedElements do

 ’’’

 N’#$1.declaration.value#’ ,

 ’’’

 ’’’

)

 ’’’

}

Figure 47: VIL generation template for database content initialization scripts

INDENICA D2.2.2

 57

Finally, Figure 48 shows the VIL workflow for the WMS use case. The runner section

is empty as the WMS variability does not separate between compile and binding

time. Thus, the workflow is specified without selection condition. The workflow

copies the artefacts (akin to YMS workflow described in Section 4.3) and executes

then the four VIL templates discussed above.

4.4.3 Remote Maintenance System

In this section, we will show the application of VIL in the RMS case study based on

the instantiators discussed in Section 3.2.3.

The RMS service configuration instantiation maps the decision variables and their

values given in terms of an IVML configuration to the properties of an XML file (the

RMS service configuration). The main difference between the Spring production

strategy shown in Figure 44 in Section 4.4.2 and the RMS strategy is that in the RMS

case the configuration values must be mapped explicitly. Thus, the RMS production

strategy can extend the (generic) Spring production strategy in Figure 44 by

providing a specific value mapping.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

import WMSCfg with WMS.version=v0.5 into config

runner (PathArtifact source, PathArtifact target,

 ParameterSet param) {

 apply using (source, target)

}

workflow compileFlow (PathArtifact source,

 PathArtifact target) {

 copy(source, target).exclude(”$source/templates”)

 vilTemplateProcessor(

 config, ”$target/**/*.config”,

 ”$source/templates/easy_varprop.vtl”)

 vilTemplateProcessor(

 config, ”$target/db/schema.sql”,

 ”$source/templates/sql_schema.vtl”)

 vilTemplateProcessor(

 config, ”$target/db/db.edmx”,

 ”$source/templates/or_mapping.vtl”)

 vilTemplateProcessor(

 config, ”$target/db/data_init.sql”,

 ”$source/templates/data_content.vtl”)

}

Figure 48: Fragment from the WMS production strategy

INDENICA D2.2.2

 58

In line 1 of Figure 49, the base template is imported which includes the main and the

map sub template. Then the map sub template is overloaded in lines 3-7 using the

specific type and a shorthand switch-case statement.

Figure 50 illustrates the VIL workflow for the RMS use case. In line 1 it imports the

RMS variability configuration. In lines 3-7 the workflow runner is configured for

compile and runtime binding in the given sequence. The compile time workflow

(lines 9-17) copies the artefact and executes the RMS configuration file template

shown in Figure 44. Akin to the instantiator shown in Section 3.2.3, the runtime

production workflow (lines 19-16) exports the constraints of the runtime variabilities

in terms of Drools rules. Therefore, it relies on a wrapped blackbox instantiator,

which integrates the EASy-producer Drools reasoning component into VIL. In line 22,

the imported configuration is instantiated for all variabilities prior to runtime. The

instantiation result is exported as Drools rules in line 23. The target artefact is finally

instantiated by writing the exported rules into a text file artefact. A slightly modified

workflow can store the exported rules into the INDENICA infrastructure repository

(not shown in Figure 44).

1

2

3

4

5

6

7

import easy_varprop.vil

def map(Value <ServiceState > value) {

 switch (value) {”full” = ”multipoint”,

 ”point2point” = ”p2p”,

 value}

}

Figure 49: VIL generation template for RMS configuration files.

INDENICA D2.2.2

 59

4.5 Summary

The Variability Implementation Language (VIL) introduced in this section is a major

step forward in defining and managing the application of variability implementation

techniques. Based on the previous results in realizing production strategies and the

experience gained in INDENICA and other projects (cf. Section 3.3, E1-E5), VIL

improves the current realization of the INDENICA variability concepts in terms of a

generic, unified variability instantiation language. In this regard VIL is unique at this

point:

• VIL supports the instantiation of various variable artefacts ranging from the

creation of new files from scratch to the modification of individual artefact

fragments in place (E1). The asset model of VIL provides distinct capabilities

to manipulate artefacts of different types and granularity. Further, this model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import RMSCfg with RMS.version=v0.3 into config

runner (PathArtifact source, PathArtifact target,

 ParameterSet param) {

 apply(bindingTime=compile, bindingTime=runtime)

 using (source, target) on param

}

select bindingTime=compile for

workflow compileFlow (PathArtifact source,

 PathArtifact target {

 copy(source, target).exclude(”$source/templates”)

 vilTemplateProcessor(

 config, ”$target/rms.cfg”,

 ”$source/templates/rms.vtl”)

 // compile etc.

}

select bindingTime=runtime for

workflow runtimeFlow (PathArtifact source,

 PathArtifact target) {

 tmp = DroolsReasoner (config, ”-instantiate”, run time)

 rules = DroolesReasoner(tmp, ”-getOpenRules”)

 new TextArtifact target

 target.write(rules)

}

Figure 50: Fragment from the VIL workflow for the RMS case study

INDENICA D2.2.2

 60

ensures type-compliance when applying a certain operation to a specific

artefact, guaranteeing that the operation is valid for the type of artefact. The

open plug-in infrastructure of the artefact model also enables the definition

of new artefact types and the specification of valid operations for the types.

• The VIL template language provides capabilities to define (reusable)

translations of (parts of) the variability model into the result artefacts in a

generic way (E2). While this language provides its own language elements

and operations to define basic translation-mechanisms (conditions,

iterations, etc.), it further reuses operations of the IVML, e.g., accessing the

value of a decision variable, and the asset model, e.g., setting the value of an

attribute in a XML-file. These translations also support the realization of

runtime variability (E3), e.g. in terms of translating values of the variability

model into an artefact type-specific language.

• The VIL workflow language enables the integration and execution of external

tools and mechanism, like the black-box instantiators described in Section 3,

as part of an instantiation (E4). While instantiators are typically registered to

EASy-Producer (cf. Section 3.1.1) and, thus, can be called simply by their

names (as shown in Figure 42 for the Cocktail Instantiator), VIL provides

language elements for calling other (unknown) external tools. Further, VIL

supports the configuration of such tools in terms of passing parameters,

similar to calling a tool via the Windows command console.

• The VIL workflow language also enables the definition of sequences in which

instantiators, external tools, and basic operations like file system operations

must be executed (E5). The order of execution is defined by the order of the

operations within a workflow in VIL.

VIL supports all realized mechanism for variability instantiation in INDENICA and

provides further extensions to the definition of such instantiations. The

implementation of this language and the corresponding constituents will replace the

Instantiation Core of the variability engineering tool EASy-Producer (cf. Section 3.1.1)

in the future to provide a flexible and easy-to-use mechanism for specifying

variability implementation in INDENICA.

INDENICA D2.2.2

 61

5 Conclusion

In this deliverable, we discussed the current approach to variability implementation

in INDENICA, its application in the INDENICA case studies and its evolution based on

lessons learned so far.

In a first step, we summarized the requirements based on the already existing

requirements collection in D2.2.1. In this deliverable, the focus is on highlighting the

aspects to be realized by a variability implementation approach.

In Section 3, we discussed the current state of the realization in two parts, the

technical framework provided by EASy-Producer, the INDENICA variability

management tool, and its actual application to the INDENICA case studies. Actually,

EASy-Producer can be extended by so called instantiators, which perform specific

instantiation tasks. Currently, we exploit this approach to realize the variability

implementation in the individual case studies. In summary, this implementation-

based approach fulfils the requirements for variability instantiation in INDENICA, but

it also lacks flexibility.

In Section 4, we introduced the Variability Implementation Language VIL, a generic

and unified approach to variability implementation, which extends the current

approach. VIL consists of an explicit artefact model, a template language and a

workflow language, both based on related languages such as Xtend or MWE2,

respectively. Based on a discussion of the concepts of VIL, we illustrated the

application of VIL in terms of variability instantiation specifications for the INDENICA

case studies.

As a result, the language concepts of VIL enable a flexible and easy specification of

variability implementations. The realization of VIL as a replacement for the

instantiation core in EASy-Producer is on the way. It will be realized as part of

Deliverable D2.4.2. However, the current language statements as well as the

artefact-specific operations were selected from the fundamental requirements of

the INDENICA use cases. This selection will be subject to future refinements in order

to further simplify the variability instantiation, e.g., by more specific artefact

operations. This refinement will take place after applying VIL also in related projects

and reviewing the resulting specifications.

INDENICA D2.2.2

 62

References

[1] BigLever Software, Inc. BigLever's Gears Product Line Engineering Tool and

Lifecycle Framework, 2013. Online available at:

http://www.biglever.com/solution/product.html.

[2] Hans Dockter Adam Murdoch. Gradle User Guide Version 1.4, 2012. Online

available at: http://www.gradle.org/docs/current/userguide/userguide.pdf.

[3] Eclipse Foundation. Xpand, 2013. Online available at:

http://projects.eclipse.org/projects/modeling.m2t.xpand.

[4] Eclipse Foundation. Xtend 2.4.0 User Guide, 2013. Online available at:

http://www.eclipse.org/xtend/documentation/2.4.0/Documentation.pdf.

[5] Eclipse Foundation. Xtext 2.4 Documentation, 2013. Online available at:

http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf.

[6] H. Eichelberger, C. Kröher, K. Schmid. Variability in Service-Oriented Systems:

An Analysis of Existing Approaches. Proceedings of the 10th international

conference on Service-Oriented Computing (ICSOC'12), 516–524, 2012.

[7] S. El-Sharkawy, C. Kröher, K. Schmid. Supporting heterogeneous compositional

multi software product lines. I. Schaefer, I. John, K. Schmid, editors,

Proceedings of the Joint Workshop of the 3rd International Workshop on

Model-driven Approaches in Software Product Line Engineering and the 3rd

Workshop on Scalable Modeling Techniques for Software Product Lines

(MAPLE/SCALE 2011) at the 15th International Software Product Line

Conference (SPLC '11), volume 2. ACM, 2011.

[8] Y. Eldogan. Automatisiertes Deployment einer SCA-basierten Anwendung in die

Cloud. PhD thesis, University of Hildesheim, Institute for Computer Science,

2012. (in German).

[9] Free Software Foundation. GNU Make - A Program for Directing Recompilation

- Version 3.82, 2010. Online available at:

http://www.gnu.org/software/make/manual/make.pdf.

[10] INDENICA Consortium. Deliverable D2.1: Open Variability Modelling Approach

for Service Ecosystems. Technical report, 2011.

[11] INDENICA Consortium. Deliverable D2.2.1: Variability Implementation

Techniques for Platforms and Services (interim). Technical report, 2011.

[12] INDENICA Consortium. Deliverable D4.1: Framework for Deployment,

Monitoring & Controlling of Virtual Service Platforms. Technical report, 2011.

[13] INDENICA Consortium. Deliverable D5.1: Description of Feasible Case-Studies.

Technical report, 2011.

[14] INDENICA Consortium. Architecture for Role-Based Governance of Virtual

Service Platforms, 2012. Online available at:

http://indenica.eu/fileadmin/INDENICA/user_upload/d32-archgov.pdf.

INDENICA D2.2.2

 63

[15] INDENICA Consortium. Deliverable D2.4.1: Variability Engineering Tool

(interim). Technical report, 2012.

[16] Microsoft. MSBuild Reference, 2013. Online available at:

http://msdn.microsoft.com/en-us/library/0k6kkbsd%28v=vs.90%29.aspx.

[17] Microsoft. Visual Studio Solution (.sln) File, 2013. Online available at:

http://msdn.microsoft.com/en-us/library/bb165951%28v=vs.80%29.aspx.

[18] Object Management Group, Inc. (OMG). Object Constraint Language.

Specification v2.3.1 2012-01-01, Object Management Group, 2012. Online

available at: http://www.omg.org/spec/OCL/2.3.1/PDF/.

[19] OSGI Alliance. OSGi Release 5 Specification, 2012. Online available at:

http://www.osgi.org/Specifications/HomePage.

[20] pure-systems GmbH. pure::variants User's Guide - Version 3.0 for

pure::variants 3.0, 2012. Online available at: http://www.pure-

systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf.

[21] M. Rosenmüller N. Siegmund. Automating the configuration of multi software

product lines. Proc. of the Fourth International Workshop on Variability

Modelling of Software-intensive Systems (VAMOS'10), 123–130, 2010.

[22] K. Schmid H. Eichelberger. EASy-Producer – A Product Line Production

Environment. Proceedings of the 12th International Software Product Line

Conference (SPLC '08), 357–357, 2008.

[23] K. Schmid H. Eichelberger. Model-Based Implementation of Meta-Variability

Constructs: A Case Study using Aspects. Proceedings of the 2nd International

Workshop on Variability Modelling of Software-intensive Systems (VAMOS '08),

63–71, 2008.

[24] SpringSource. Spring Projects - Spring Framework, 2013.

http://www.springsource.org/spring-framework.

[25] The Apache Software Foundation. Apache Ant 1.8.2 Manual, 2013. Online

available at: http://ant.apache.org/manual/index.html.

[26] The Apache Software Foundation. Apache Maven Project, 2013. Online

available at: http://maven.apache.org/index.html.

[27] The Apache Software Foundation. The Apache Velocity Project, 2013. Online

available at: http://velocity.apache.org/.

