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1 Introduction 

The main focus of work package 2 within the INDENICA project is the customization 

of service platforms. As part of this effort, this deliverable addresses the realization 

of the customization in terms of variability implementation techniques, in particular 

those which are currently applied in the INDENICA case studies. This work is of 

course related to the modelling of variability, which is addressed in Deliverable D2.1 

[10] in terms of the INDENICA Variability Modelling Language (IVML) and Deliverable 

D2.4.1 [15] on the realization of the variability engineering tool. 

In this deliverable, the main focus is on the specific variability implementation 

techniques which are actually applied in the INDENICA case studies and their support 

by the INDENICA variability engineering tool. Based on our practical experience in 

realizing the variability implementation technique, we will summarize lessons 

learned and introduce a set of more general concepts, which we identified. Creating 

a language based on these concepts eases the future application and the general 

uptake of the INDENICA variability implementation techniques as well as their tool 

support. 

In Section 2, we summarize the requirements for variability implementation in 

INDENICA. We provide this section as an introduction to variability implementation, 

to the specific needs in INDENICA, and, in particular, as a link to D2.2.1 where the 

requirements have already been collected. In contrast to D2.2.1, we detail here the 

individual requirements from an implementation perspective which will serve as a 

basis for our discussion of the tool support, the actual implementation in the case 

studies and as well for future conceptual improvements. 

In Section 3, we will discuss the current state of the variability instantiation in 

INDENICA. First, we will focus on the technical framework provided by the INDENICA 

variability engineering tool in terms of the architecture of the related components, 

their application as well as the specific support for hierarchical product lines and 

software ecosystems. Then, we will discuss the specific strategies realized for the 

three INDENICA case studies, their realization in terms of algorithmic descriptions as 

well as illustrating examples. In addition, we will provide an outlook on additional 

case studies for variability implementation we performed in INDENICA as well as in 

related projects. Finally, we will conclude this section with a summary of the lessons 

learned as well as improvements for the current state of variability instantiation. 

Overall, the practical work on variability implementation techniques in INDENICA 

fulfils the general requirements in Section 2. However, the current state can be 

summarized as a Java-based implementation, which needs specific implementation 

work for each case study. Thus, in Section 4, we will take up the experiences we 

made in Section 3 and propose a more generalized framework of concepts for 

variability implementation. This framework will ease the realization of specific 

variability implementations and enable a wider uptake in future. 
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2 Requirements for Variability Instantiation 

In this section, we provide an overview of the requirements for variability 

implementation. Basically, this section follows the structure of the original discussion 

on requirements in D2.2.1 (general capabilities, customizing service platforms, 

domain-specific platforms, quality requirements, binding times) but highlights the 

individual requirements for this deliverable in the context of the INDENICA case 

studies. 

RQ1. Support for handling variability implementation elements: As identified in 

[11, 6] the INDENICA variability instantiation approach must support  

• Optional variability: An implementation element may or may not be 

part of a platform under certain circumstances. One example is the 

(enabled or disabled) support for mobile clients in the Yard 

Management (YMS) Platform demonstrated in the review meeting. 

• Alternative variability: The decision for a variability allows choosing 

one out of several alternatives, such as the communication protocols 

in the YMS platform [13, p. 33] or the connectivity mechanism in the 

YMS base platform [13, p. 32]. 

• Multiple selection: Multiple options exist and arbitrary subsets can be 

selected. This requires on an implementation level that also the 

integration / combination of these parts is addressed or is possible. 

This is in particular relevant for instantiating the Warehouse 

Management System (WMS) topology, such as the configuration of 

individual racks [10] or the details about various bins used in a specific 

warehouse [13, p. 21]. 

• Parameterization: Variation is communicated through a parameter, 

respectively a value. Variability implementation must support that this 

value can be referenced in the correct syntax. Examples for such 

variation in INDENICA is the low-level modification of service 

configurations, e.g., to realize the service variability in the YMS 

platform [13, p. 33], the pre-deployment service variability in the 

Remote Maintenance System (RMS) [13, p. 26] or the specific 

strategies in the WMS [13, p. 21]. 

• Multiplicity: Repetition of implementation in case that a variability 

cannot be directly mapped to a parameter, but rather some 

implementation element must be repeated. This form is, for example, 

needed to derive initialization scripts for the WMS databases, i.e., 

multiple data sets derived out of one generic data set describing 

similar parts of the WMS topology [15]. 

• Grouping: The above operations might be applied to whole groups of 

elements, such as combining Parameterization and Multiplicity in the 

case of the WMS database initialization. 

• Extension: Support the possibility to define that something in the 

implementation will be augmented by a specific implementation, but 

it is currently not possible to exactly say what this implementation 
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might do. One example is to derive optimized implementations of 

WMS components based on the configured topology in the WMS 

variability model [10] or instantiated workflows based on a generic 

workflow artefact and related variability configuration. 

Some implementation elements given in this requirement need further 

information from the specific application context such as the integration / 

combination in case of multiple selection. This will be addressed below when 

describing variability instantiation using the concept of production strategies. 

RQ2. Support for artefact-specific instantiation: Variability instantiation that 

supports the customization of service platforms must to take into account 

the various levels of the service platform model introduced in D2.2.1. In 

particular, the instantiation must support variability in service composition 

and processes, in domain-specific services, in service and platform 

deployment and in the technical platform services. This implies that an 

instantiation must be able to bind variability in different types of artefacts 

and to cope with possible dependencies among the individual mechanisms 

used to realize the instantiation. The individual mechanisms may be generic, 

reusable and configurable (such as a generic template language) or domain- 

or even platform-specific. We already faced the importance of this 

differentiation in the INDENICA use cases. On the one hand, the 

instantiation mechanisms for service configurations in the WMS and RMS 

case are rather similar, but differ in details [15]. In this case, a reusable 

instantiation mechanism would be beneficial. On the other hand, the SAP 

Cocktail approach [11, 15] for the cloud-based YMS is an example for a 

platform-specific instantiation mechanism. 

RQ3. Support for partial instantiation: Domain-specific platforms introduce 

specific needs to variability modelling and instantiation as discussed in 

D2.2.1. One need is the introduction of domain-specific concepts, which can 

be easily handled in the variability model as demonstrated in D2.1 for the 

three INDENICA use cases. As there is no fixed granularity of what a domain 

is, respectively, any domain may have sub-domains, it is reasonable that 

platforms can also be initially customized to a broad domain and 

successively to a more narrowly defined domain. This can be realized by 

successive (multi-step) and partial instantiation (not only for executable 

platforms but also for partially configured platforms). Partial instantiation 

enables pre-configuring the INDENICA base platforms for certain (sub-

)domains prior to the integration into a virtual service platform.  

RQ4. Support for cross-sectional variability implementation: In D2.2.1, several 

quality characteristics were identified as being important to variability 

implementation in INDENICA, such as performance requirements, real-time 

requirements, scalability requirements, reliability requirements or safety 

requirements. Basically, these characteristics are defined and specified in 

the variability model. The IVML [10] provides a sophisticated constraint 

language to express such requirements. In contrast, the variability 

implementation typically handles quality requirements in terms of varying 

aspects. Due to their nature as realization of quality requirements, these 



INDENICA D2.2.2 

 

  9

aspects are typically rather distributed across an implementation so that 

variability instantiation in INDENICA must support cross-sectional variability 

implementation. 

RQ5. Support for binding times: A binding time defines the latest point in time 

when the decision about a variability and its implementation must be made. 

In INDENICA, the support for different binding times is in particular 

important for the YMS [13, p. 29] and for the RMS [13, p. 26]. This allows to 

differentiate between variability resolutions, which are made at compile- or 

deployment-time and fixed afterwards, and dynamic variabilities, which 

must be resolved at runtime. Examples are the compile-time configuration 

of the WMS topology or the dynamic adjustment of strategies such as the 

location services in the YMS or the communication channels in the RMS. The 

supported binding times as well as their technical details are defined in the 

variability model. In the IVML [10], binding times are defined in terms of 

typed attributes, which support individual as well as groups of binding 

times. Thus, variability instantiation in INDENICA must provide support to 

relate instantiation mechanisms or combinations of instantiation 

mechanisms to the generic definitions of binding times as well as their 

actual values in IVML. 

We will realize the given variabilities in terms of production strategies as we will 

detail in this deliverable. A production strategy defines how variant parts must be 

assembled in the presence of a variability resolution (i.e., a value was assigned to a 

decision variable). As described in [11], a production strategy is characterized in 

terms of the definition and evaluation of a variability value, a variation point 

identification (RQ2, RQ4), techniques for selecting (and combining elements to 

concretize details left open in RQ1) and a technique for introducing selected 

elements including relevant glue (RQ2, RQ4). In particular, a production strategy 

enables the realization of specific forms of variability (RQ1) by (potentially) multiple 

variability instantiation mechanisms (RQ2) executed at one or multiple binding times 

(RQ5). Partial instantiation (RQ3) can be realized by successively reapplying 

production strategies.  

In the next section, we will discuss the current support and application of production 

strategies to the INDENICA case studies. 
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3 Variability Instantiation in INDENICA 

In this section, we discuss the current state of variability instantiation concepts 

based on the INDENICA case studies as well as their realization in terms of the 

related tool support developed in INDENICA. We will structure this section into three 

main parts, the current support for production strategies in WP2 tooling in Section 

3.1, the detailed production strategies of the INDENICA case studies realized by the 

WP2 tooling in Section 3.2 and a summary of the current state in Section 3.3. 

3.1 Production Strategies Support 

This section details the tool support for production strategies. Basically, the 

realization of a production strategy needs to identify what to transform (the 

artefacts), which configuration values influence the transformation and how the 

actual instantiation shall be performed. In particular, the instantiation described by a 

production strategy may be realized by one or by multiple instantiation steps, while 

each instantiation step is realized by an arbitrary number of specific instantiators.  

In this section, we will detail the current support for production strategies and 

instantiators. Therefore, we will first discuss the current architecture for variability 

instantiation in EASy-Producer, which actually forms a flexible and extensible 

framework of production strategies and instantiators. Then, we will discuss the 

configuration of production strategies for application to a specific base platform, 

and, finally, the specific support for hierarchical product lines (partial instantiation) 

and service ecosystems. 

 

Figure 1: Overview of the EASy-Producer architecture (parts not directly relevant to 

instantiator-management are greyed out).  

…
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3.1.1 EASy-Producer Architecture 

EASy-Producer provides an extensible architecture for managing and realizing 

software product lines. The overall architecture was discussed in detail in D2.4.1. 

Figure 1 illustrates the overall architecture. In particular, in this deliverable we will 

focus on the realization of the instantiation part. As shown in Figure 1, in EASy-

Producer the instantiation part is realized by the (generic) instantiator core and 

individual instantiation mechanisms, so called instantiators. We will describe the 

instantiator core and the individual instantiators in detail in this section. 

The design of the variability instantiation support is depicted in Figure 2. The 

instantiator core component is a general framework for variability instantiation. It 

realizes the production strategy concept and details it by further related concepts 

such as artefact management mechanisms or instantiators as we will describe below. 

The specific mechanisms are either implemented in a reusable way (such as the Java 

package adaptation or the Velocity instantiator) or realized in terms of case-study 

specific implementations (such as the Siemens instantiators for the Warehouse 

Management System). All components are realized as OSGi bundles or in the case of 

multiple related components as OSGi features in order to simplify the customization 

of EASy-Producer itself. 

Figure 2: Detailed architecture of the EASy-Producer instantiator core and instantiator 

components. 

The variability instantiation support in EASy-Producer (cf. Figure 2) consists of: 

• File Instantiation Model, a collection of artefacts with similar characteristics, 

i.e., all files which can be instantiated or are already (partially) instantiated in 

a similar way. These models save also the (link to the) source of every 
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(partially) instantiated artefact. This facilitates traceability and enables 

updates if more recent versions of artefacts are available. 

• The Artefact Management Mechanisms are responsible for the preparation 

of the artefacts which shall be instantiated. This includes provisioning of 

artefacts, package adaptation to avoid conflicts (an example for software 

ecosystems is given in Section 3.1.4), file renaming, etc. 

• Instantiator Engines (or short instantiators) perform a specific kind of 

instantiation on the artefacts provided by an Artefact Management 

Mechanism. The abstract super class InstantiatorEngine takes a variability 

model configuration as input and turns the relevant decision variables and 

their values into an instantiation context, e.g., to consider only frozen 

variables during an instantiation.  

• A Production Strategy combines an arbitrary number of File Instantiation 

Models, Artefact Management Mechanisms, and Instantiator Engines to 

realize a certain part of the variability instantiation process.  

• The Registry enables the introduction of new Artefact Management 

Mechanisms and Instantiator Engines to flexibly fulfil the INDENICA variability 

instantiation requirements. When Eclipse starts, all installed Instantiator 

Engines and Artefact Management Mechanisms are registered automatically 

at the Registry through the OSGi Declarative Services mechanism [19]. 

• The Instantiation Execution Component (not shown in Figure 2) handles 

arbitrary production strategies and is responsible for their execution. In 

particular, the instantiation execution component handles the execution of 

different production strategies at different binding times. This component 

also manages partial instantiation as we will detail in Section 3.1.3. 

In summary, the described architecture realizes the requirements for variability 

instantiation in INDENICA. Individual instantiator engines in combination with a file 

instantiation model and specific artefact management mechanisms handle the 

artefact-specific instantiation (RQ2), the specific types of handling variability 

implementation elements (RQ1), and cross-sectional instantiation (RQ4). Cross-

cutting instantiation functionality such as partial instantiation (RQ3) or binding time 

support (RQ5) is managed by the instantiation execution component. 

The initial architecture of EASy-Producer was revised in the context of INDENICA to 

fulfil the requirements RQ1 – RQ5. Through the plug-in structure, the creation of not 

yet specified production strategies is supported. Therefore, the developed 

architecture offers a maximum of flexibility regarding the definition of instantiation 

processes. 

3.1.2 Instantiator Configuration 

A production strategy must be configured to enable the instantiation of individual 

artefacts. As described in Section 3.1.1, a production strategy links instantiator 

engines, artefact management mechanisms, and file instantiation models to form an 

instantiation process. This section shows how a new production strategy is currently 

created in the EASy-Producer user interface. 
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Usually, the configuration of specific instantiators takes place in the base platform 

(project) as part of the domain engineering activities, as the platform variant creator 

[14] of a specific platform may not know which implementation techniques are 

actually used in the base platform. In some cases, artefacts may also be instantiated 

from an external source, e.g., from a code repository, so that the related 

instantiators cannot be configured in the base platform. For this situation, the 

platform variant creator can configure needed instantiators inside the specific 

platform. The selection of suitable instantiators for a set of artefacts takes place in 

the Instantiator View of EASy-Producer. Figure 3 shows the Instantiator View without 

any configured instantiators. 

 

Figure 3: Instantiator View without any configured instantiators. 

The drop down menu of Figure 3 shows all installed instantiators, which can be used 

to specify the current production strategy. Figure 4 shows the selection of such an 

instantiator. The selected instantiator must be confirmed by pressing the “Add 

Instantiator” button to add it to the current production strategy. Further 

instantiators can be added, if needed, e.g., if different types of artefacts are 

instantiated in specific ways. 
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Figure 4: Selection of an Instantiator. 

After the instantiators are added to the production strategy, the Instantiator View 

allows the selection of the artefacts to be applied to the selected instantiators. This 

step builds up a file instantiator model (cf. Figure 5).  

 

Figure 5: Configuration of files and folders, which shall be instantiated by the currently 

selected instantiator. 

3.1.3 Hierarchical Product Line Support 

EASy-Producer supports the management of hierarchical product lines as shown in 

Figure 6. The example shows a platform, which is partially instantiated for creating 

localized products on different markets. Such partially instantiated platforms still 

contain open variability while some variable parts are already resolved. 



 

Figure 
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of (partially instantiated) 

frozen variables, can be treated as a product line. 

derive a specific platform to fulfil the customer needs independent

instantiation steps were applied before.

In such a hierarchical product line, configured production strategies of a predecessor 

project will automatically be inherited by all successor 

consistent instantiation of all 

sub-production strategies for the instantiation of additional parts, e.g., a variable 

component, which is only developed for the German market.
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Producer does not differentiate between (not instantiated) base platforms 

pecific platforms for a specific customer to support any combination 

 platforms. Platforms still containing variable parts, i.e., 

can be treated as a product line. Such platforms can be used to 

specific platform to fulfil the customer needs independent

instantiation steps were applied before. 

In such a hierarchical product line, configured production strategies of a predecessor 

project will automatically be inherited by all successor projects to ensure a 

consistent instantiation of all artefacts. Partially instantiated projects can add further 

production strategies for the instantiation of additional parts, e.g., a variable 

component, which is only developed for the German market. 
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3.1.4 Software Ecosystems 

Integration of independent service platforms is one of the key objectives of the 

INDENICA project. For this purpose, an instantiation process is needed

capable of combining indepen

Such an integrated solution can be managed in one project, which simplifies the 

configuration, instantiation

sometimes referred as Multi 

applied to service platforms in order to build softw

In the context of INDENICA, EASy

such software ecosystems. One possible MSPL structure is illustrated in 

example illustrates how the case studies of Deliverable D5.1

to a new integrated service platform 

could be used to customize 

components can be added to the platform to integrate the individual parts, i.e

data from one platform to another
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Figure 9: Production strategies of the software ecosystem shown in Figure 8. 

As described in Section 3.1.3, EASy-Producer does not differentiate between 

instantiated and non-instantiated platforms. Therefore, the integrated platform 

“Complete_solution” could also be used to derive different individual platforms (c.f. 

Figure 10). Also in such a derivation chain, the correct instantiators selected in the 

origin projects (“Yard”, “Warehouse”, and “Remote_Maintenance”) would be used 

to instantiate the assets for the final platforms (“Prod_1”, Prod_2”, and “Prod_3”). 

 

Figure 10: Hierarchical software ecosystem. 

3.2 INDENICA Case Studies 

In this section, we discuss the individual production strategies, which are currently 

applied in the INDENICA case studies as well as their realization from a technical 

point of view. We structure this section according to the case studies and for each 

case study we will discuss the specific requirements, the production strategy that 

was developed, the instantiators realizing the production strategy, and examples for 

artefact instantiations in the respective context. The examples in this section will rely 

on fragments taken from the individual use cases, such as fragments from the 

variability model as also discussed in [10] and fragments from specific artefacts. We 

refrain from describing entire artefacts here in order to focus on the most relevant 

aspects. 

Yard

Predecessor

Successor

(partial)

Instantiation

Product

Product Line ProjectWarehouse

Prod_1

Remote_Maintenance

Complete_Solution
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We will describe the individual production strategy in the form of the tables used in 

Section 5.2 of Deliverable 2.2.1 [11]. In this deliverable we will use one table for an 

individual production strategy rather than summarized tables as done in D2.2.1. 

Further, we will also discuss the individual instantiators used to realize the 

production strategy in terms of an algorithmic description in pseudo code. For this 

pseudo code, we use the following notation: 

• Bold denotes typical commands such as foreach, if, etc. 

• Italics highlights variables, i.e. temporary results 

• CAPITAL refers to input or output of an instantiator 

• «TABLE»-entry matches generic entries in a structured artefact, such as table 

creations in SQL scripts or element in XML files. «TABLE» implicitly defines a 

temporary variable. 

• “String” denotes a constant string 

• // marks comments 

Typically, an algorithmic description consists of two parts, namely the selection of 

relevant decision variables and their associated configuration from the variability 

model and the instantiator algorithm itself. At first glance, the selection step may 

appear to be superfluous in some instantiators. Basically, the selection step ensures 

that only frozen variables are used during instantiation. Frozen variables are 

explicitly fixed at some point in the configuration process so that these values must 

not change in subsequent partial (staged) configurations. Moreover, the selection 

step may focus on relevant variables, i.e., a specific subset, instead of working on all 

available variables. In particular, this is used in the Warehouse Management case in 

Section 3.2.2. 

3.2.1 Yard Management System 

In the YMS case study, two different systems are affected by the variability 

instantiation:  

1. The YMS platform itself is customized and instantiated in order to reflect the 

actual configuration and to enable the modification of selected values at 

runtime. 

2. A web-based user interface is generated which connects to the actual 

running instance of the YMS and enables the convenient manipulation of the 

actual values. 

The requirements for variability instantiation in the YMS case study are 

• Generation of configuration files for the SAP Cocktail mechanism for different 

binding times [15]. 

• Execution of the Cocktail mechanism to realize the variabilities in the YMS 

and to generate the web-based user interface. 

• Support of an OSGi-based implementation of the YMS, in particular, OSGi-

bundles realized in individual Eclipse projects. 
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Description of the YMS Production Strategies 

The requirements defined above yield two production strategies, one for resolving 

compile-time and one for runtime variabilities. The compile-time production strategy 

is summarized in Table 1, while the runtime production strategy is shown in Table 2. 

Production strategy 

element 

Yard management production strategy  

(Compile-time) 

Definition and evaluation 

of a variability value 

Source code annotations mark the variable attributes 

and link to the variability model. The specific constant 

value of an annotated attribute is replaced with the 

respective value in the configuration. 

Variation point 

identification 

Source code annotations 

Technique for selecting 

(and combining) elements 

The variability model defines valid binding times per 

variability (meta-variability). The configuration defines 

the binding time to be applied as a one-out-of-many 

selection and, thus, the instantiator to be applied. 

Multiple selection is not possible. 

Technique for introducing 

selected elements 

(including relevant glue) 

The Cocktail byte code analyzer searches for the 

source code annotations and inserts constant values. 

Table 1: Cocktail-based compile-time production strategy for the YMS case study. 
 

Production strategy 

element 

Yard management production strategy  

(runtime) 

Definition and evaluation 

of a variability value 

Source code annotations mark the variable attributes 

and link to the variability model. The specific value of 

an annotated attribute is replaced with the respective 

value in the (Web-based) configuration through 

additional code. The additional code enables the 

manipulation of the actual value entered into the 

web-based configuration interface. 

Variation point 

identification 

Source code annotations 

Technique for selecting 

(and combining) elements 

The variability model defines valid binding times per 

variability (meta-variability). The configuration defines 

the binding time to be applied as a one-out-of-many 

selection and, thus, the instantiator to be applied. 

Multiple selection is not possible. 

Technique for introducing 

selected elements 

(including relevant glue) 

The Cocktail byte code analyzer searches for the 

source code annotations and inserts additional code 

(runtime). 

Table 2: Cocktail-based runtime production strategy for the YMS case study. 
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Cocktail Instantiator 

The two production strategies for the WMS case study are realized by a specific 

instantiator, the Cocktail Instantiator. The instantiator is executed once for a given 

binding time and, thus, realizes both production strategies at once. 

The idea of the Cocktail instantiator is to reuse existing Cocktail tools for realizing 

variability. This is a well-known concept also in commercial product line tools such as 

pure::variants [20] or Gears [1], namely using existing tools as a black box. 

The algorithmic description of the Cocktail instantiator is given in Figure 11. Basically, 

the instantiator transforms the variability configuration into a Cocktail specific 

format and executes Cocktail. 

Cocktail Instantiator Example 

We will now discuss an example for applying the YMS production strategy. The 

variability model of the YMS platform contains the following two decision variables 

shown in Figure 12: 

Let us assume that the configuration of the YMS platform defines the specific values 

depicted in Figure 13: 

 

 

Figure 12: Fragment from the YMS variability model. 

Cocktail Instantiator 

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

Output: 

• Cocktail-specific variability model COCKTAIL_VAR_MODEL 

• Cocktail-specific resolution COCKTAIL_RESOLUTION 

Process: 

For Each frozen variable in IVML_CONFIG 

New Cocktail-Variable var 

var.declaration.name = variable.name 

var.value = variable.value 

COCKTAIL_VAR_MODEL.add(var.declaration)  

COCKTAIL_RESOLUTION.add(var.value)  

End For Each 

Execute byte code manipulation on COCKTAIL_RESOLUTION 

Figure 11: Algorithmic description of the Cocktail instantiator. 
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For discussing the instantiation, we will consider the source code artefact from the 

YMS case study depicted in Figure 14.  

The Cocktail instantiator transforms the YMS variability model into a (simplified1) 

XML representation. Cocktail then takes the XML representation of the variability 

model as input and manipulates the byte code or generates the Web-based user 

interface, respectively. 

For the compile-time production strategy shown in Table 1, Cocktail produces for 

compile-time variabilities the code displayed in Figure 15 (instead of byte code we 

display equivalent source code for convenience). As a result, in Figure 15, the 

annotations are removed and the specific values from the variability model are 

inserted as constants in line 5 and line 7. 

For the runtime production strategy given in Table 2, Cocktail inserts additional code 

for the runtime variabilities, which links the variable attributes to the 

implementation of the configuration user interface. This is illustrated in Figure 16. 

Also, here, the annotations are removed (line 5 and 7) as no re-instantiation at 

runtime is intended. Further, a new code block is inserted (line 9-20). This specific 

code block links the Java attributes to the runtime mechanism of Cocktail, i.e., the 

changes in the web-based user interface are reflected in the related attributes. 

                                                      
1 Cocktail is a code-centric lightweight approach to variability implementation. Thus, its model is much simpler 

than IVML as it is not intended for full-fledged variability modeling. 

 

Figure 13: Fragment from a YMS configuration. 

 

Figure 14: Annotated source code fragment from the YMS case study. 

 

Figure 15: Cocktail output for compile time variability. 
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3.2.2 Warehouse Management System 

In the WMS case study, four different types of artefacts must be instantiated. One 

artefact is related to the configuration of actual services in the WMS platform, the 

remaining three artefacts are related to the database structure and the WMS 

topology. This leads to the following specific requirements: 

• Modification of (parts of) Spring service configuration files. 

• Modification of the database schema from a generic artefact using negative 

variability. 

• Modification of the related object-relational database from a generic artefact 

using variability. 

• Generation of a database initialization script, which reflects the WMS 

topology. 

• The variability instantiation must support the implementation of the WMS 

platform in terms of C# services realized as a Visual Studio Solution [17]. 

Further, mechanisms provided by the Spring framework [24] and C# related 

tools must be exploited for variability instantiation. 

Description of the WMS Production Strategies 

The requirements defined above yield the production strategies summarized in Table 

3 to Table 6.  

  

Figure 16: Cocktail output for runtime variability. 
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Production 

strategy element 

Warehouse management production strategy 

(Spring configuration) 

Definition and 

evaluation of a 

variability value 

Service names and individual service parameters are taken 

over into the Spring configuration file. The mapping is 

supported by a specific naming convention for the decision 

variables. 

Variation point 

identification 

Markup-elements in the Spring configuration file identify the 

variation points. 

Technique for 

selecting (and 

combining) 

elements 

The variability model defines the service configuration. The 

specific configuration defines the values to be taken over 

without the need for adjusting the values to the syntax of the 

target artefact (parameterization). Multiple selection is not 

possible. 

Technique for 

introducing 

selected 

elements 

(including 

relevant glue) 

Not needed as generated artefacts are interpreted by the 

platform implementation. 

Table 3: Spring configuration production strategy for the WMS case study. 

Production 

strategy element 

Warehouse management production strategy 

(Database schema) 

Definition and 

evaluation of a 

variability value 

Boolean decision variables configure the presence of specific 

columns in the database schema. The mapping is supported 

by a specific naming convention for the decision variables. 

Variation point 

identification 

Column names in the SQL scripts identify the variation points. 

Technique for 

selecting (and 

combining) 

elements 

The variability model defines the database schema 

configuration. The specific configuration defines the values to 

be taken over without the need for adjusting the values to the 

syntax of the target artefact (parameterization). Multiple 

selection is not possible. 

Technique for 

introducing 

selected 

elements 

(including 

relevant glue) 

Not needed as generated artefacts are interpreted by the 

platform implementation. 

Table 4: Database schema production strategy for the WMS case study. 
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Production 

strategy element 

Warehouse management production strategy 

(Object-relational mapper configuration) 

Definition and 

evaluation of a 

variability value 

Boolean decision variables enable or disable parts of the 

object-relational mapping configuration. This is supported by 

a specific naming convention for the decision variables. 

Variation point 

identification 

XML elements and related attributes in the object-relational 

database mapper configuration point to the affected database 

tables and columns. 

Technique for 

selecting (and 

combining) 

elements 

The variability model defines the object-relational mapping 

configuration. The specific configuration defines the values to 

be taken over without the need for adjusting the values to the 

syntax of the target artefact (parameterization). Multiple 

selection is not possible. 

Technique for 

introducing 

selected 

elements 

(including 

relevant glue) 

Not needed as generated artefacts are interpreted by the 

platform implementation. 

Table 5: Object-relational mapper production strategy for the WMS case study. 

Production 

strategy element 

Warehouse management production strategy 

(Database initialization) 

Definition and 

evaluation of a 

variability value 

The database content reflects the topology of the warehouse, 

i.e., individual values of structures defined in the variability 

model are taken over by instantiating templates in the generic 

artefact. Due to the nature of the warehouse topology, this 

implies multiplicity as variability implementation type. 

Variation point 

identification 

Column names in the SQL scripts identify the variation points. 

Technique for 

selecting (and 

combining) 

elements 

The variability model defines the database initilization 

configuration. The specific configuration defines the values to 

be taken over without the need for adjusting the values to the 

syntax of the target artefact (parameterization). Multiple 

selection, i.e., of material entities, is handled by multiplicity as 

variability implementation type. 

Technique for 

introducing 

selected 

elements 

(including 

relevant glue) 

Not needed as generated artefacts are interpreted by the 

platform implementation. 

Table 6: Database initilization production strategy for the WMS case study. 
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The WMS production strategies are realized by four specific instantiators. Different 

instantiators are needed due to artefact-based configuration of instantiators in EASy-

Producer. 

The specific instantiators are the 

1. Spring Configuration File Instantiator. 

2. Database Schema Instantiator. 

3. Object Relational Mapper Configuration Instantiator. 

4. Database Content Instantiator. 

The instantiators are executed in the sequence given above. We will detail the 

individual instantiators in terms of algorithmic descriptions and examples below. 

However, due to the different artefacts the instantiators are applied to, also the 

nature of the examples will differ. The example for the Spring configuration 

instantiator will independently focus on exchanging a service, while the examples for 

the database instantiators will be related: the example for database schema 

instantiator will introduce the context of the example and demonstrate how to 

adjust the database schema of the WMS. Accordingly, the example for the relational 

Spring Configuration Instantiator  

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• List<File> FILES //Spring configuration files to instantiate  

Output: 

• Instantiated files //all *.config-files in FILES with specific values from the 

variability configuration 

Process: 

List<DecisionVariable> spring_context 

For Each frozen variable in IVML_CONFIG  

add variable to spring_context 

End For Each 

For Each file in FILES 

For Each «easy:varprop»-Entry in «element»-Entry in «spring»-Entry in 

file 

If «element».name equals “property” 

String varName = «easy:varprop».getContent() 

Decision dec = spring_content.get(varName) 

If dec != null 

«element».setAttribute(“value”, dec.value) 

«easy:varprop».delete() 

End If 

End If 

End For Each 

End For Each 

Figure 17: Algorithmic description of the WMS Spring configuration instantiator. 
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mapper will reconfigure the mapping of the data to WMS classes. Finally, the 

example for the database content instantiator will show how the reconfigured data 

schema impacts the initial creation of the database contents, i.e., the WMS topology. 

Spring Configuration File Instantiator 

Spring configurations are specified in XML format. The idea for this instantiator is to 

take an existing Spring configuration file as a template and to modify marked 

elements, either by inserting a specific configuration value or by removing marked 

parts based on a certain configuration value (negative variability). Additional XML 

elements defined according to the Spring specification mark the XML elements to be 

affected. Thus, a variable Spring specification is again a valid Spring configuration. 

Figure 17 shows the algorithmic description of the Spring instantiator for the WMS 

case study. As the implementation of the WMS platform relies on multiple Spring 

configuration files, the Spring instantiator may instantiate them as part of a single 

execution. Basically, the instantiator takes all frozen decision variables into account 

and tries to match them with the (additional) XML elements in the Spring 

configuration file. Thereby, the specified value from the variability configuration is 

taken over and replaced in the marked configuration element. The XML marker is 

removed after the actual value is inserted into the artefact. 

 

Figure 18: Fragment from the WMS variability model related to the Spring 

instantiator. 
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Spring Configuration File Instantiator Example 

We will now discuss the application of the Spring instantiator in terms of an example. 

Figure 18 depicts the related fragment from the WMS variability model. Type 

declarations and decision variables not related to the Spring instantiation are not 

shown in Figure 18. 

Let us assume that a WMS configuration defines the variability resolution for the 

storage area compound depicted in Figure 19 (only the relevant decision variable is 

shown). 

We will use the fragment from a WMS Spring configuration file shown in Figure 20 to 

demonstrate the application of the Spring configuration instantiator. The fragment 

depicts the service configuration for the alternative storage bin search strategy. 

Further service configurations and other parts of the Spring configuration file are not 

depicted in Figure 20. In Figure 20, lines 77-83 contain the marker for the 

instantiator given in terms of a regular Spring extension (easy:varprop ). This 

marker refers to the storage area compound (stArea ) in the WMS variability model. 

 

Figure 19: Fragment from a WMS configuration related to the Spring instantiator. 

 

Figure 20: Fragment from a generic Spring configuration in the WMS case. 
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The instantiator processes the Spring configuration file and searches for such 

markers. As stArea.stAreaAbcStrategy  points to the decision variable 

determining the storage bin search strategy, the instantiator replaces the value of 

the parent element of the marker (easy:varprop ) with the value of this decision 

variable (here Abc  as shown in the configuration above). The result is depicted in 

Figure 21. 

 

Database Schema Instantiator 

The database schema instantiator is responsible for adjusting the database schema 

of the WMS according to the WMS variability configuration. 

Basically, the database schema instantiator realizes negative variability, i.e., the 

underlying SQL artefact contains the code for the case that all variabilities are 

enabled. However, not all decision variables in the WMS IVML model shall affect the 

database schema, such as those related to the WMS topology as they represent data 

rather than the underlying schema. A simple mechanism to realize this separation is 

a naming schema, i.e., this instantiator considers only decision variables, which end 

with “Config”. The instantiator will remove the disabled variabilities. The result will 

contain a subset of the SQL statements of the input file. The algorithmic description 

of the database schema instantiator is shown in Figure 22. 

 

 

Figure 21: Instantiated fragment from the WMS Spring configuration shown in Figure 20. 
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Database Schema Instantiator Example 

The example for this instantiator focuses at changing the database schema and, thus, 

will define the data structures to which the remaining two WMS database 

instantiators must comply. Therefore, we will introduce a common example here 

and continue this example in the discussion of the remaining two instantiators. 

The WMS variability model contains compounds for configuring the data managed 

by the WMS. One example is the compound MaterialConfig  shown in Figure 23, 

which describes the (additional information of the) material to be stored in a 

warehouse2.  

 

                                                      
2 An example involving the rows, columns and racks of a warehouse would increase the space needed to describe 

the example. As the same mechanisms are applied to these parts of the topology configuration, we will discuss 

the simpler case here for convenience. 

Database Schema Instantiator 

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• Single SQL-file SQL_FILE //SQL file to instantiate  

Output: 

• SQL_FILE with adapted/customized table columns 

Process: 

List<DecisionVariable> db_context 

For Each frozen variable in IVML_CONFIG  

with variable.name ends with “Config” 

add variable to db_context  

End for Each 

For Each «CREATE TABLE»-entry in SQL_FILE 

For Each variable in db_data_context 

If «CREATE TABLE ».name equals variable.compoundName 

For Each «column» -entry in «CREATE TABLE»-entry 

If “db”+ «column».name +”Config” equals variable.name  

&& variable.value == false 

Delete « column»-entry 

End If 

End For Each 

End If 

End For Each 

End For Each 

Figure 22: Database Schema Instantiator for the WMS case study. 
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Currently, the name of the compound (variable) indicates whether a compound may 

impact the underlying WMS database structure. A more sophisticated specification 

of the instantiation description language would provide details in terms of a mapping 

specification rather than a naming convention. 

We now show how the WMS variability model can be used to configure the data 

managed by the WMS. As an example, we disable the descriptive information for the 

material as shown in Figure 24: 

Figure 25 depicts a fragment from the WMS database creation script, here the part 

for creating the material table in terms of SQL statements. Basically, it creates the 

individual data structures representing the WMS topology in terms of database 

tables and data columns.  

 

 

Figure 23: Fragment from the WMS variability model related to  

the database configuration. 

 

Figure 24: Fragment from a WMS configuration related to  

the database configuration. 

 

Figure 25: Fragment from the WMS database creation SQL script. 
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Applying the database schema instantiator, the fragment in Figure 25 will be 

modified as shown in Figure 26. As a result, columns related to the disabled 

variability will be removed from the initialization script. 

Object-relational Mapper Configuration Instantiator 

An object-relational mapper is responsible for providing a program with uniform 

access to the database contents in form of Database Access Objects (DAO). 

Dependent on the specific mapper, advanced functionality such as caching or 

transactions may be handled by the DAOs or the mapper in a transparent fashion. 

Further, access to the data is simplified as error prone manual access statements are 

generated and encapsulated in the DAOs. In the specific case of the WMS, the 

object-relational mapper of Visual Studio is also responsible for the mapping of 

database tables and columns to user interface components. Consequently, modifying 

the mapper configuration in a consistent way enables to configure the managed data 

as well as their access from the user interface. In summary, the configuration for the 

object-relational mapper in the WMS platform consists of four parts, namely, 

• The storage model describes the database. 

• The conceptual model describes the C#-classes to be generated. 

• The data mapping describes the mapping between database and C#-classes 

as well as their properties 

• The graphical mapping to user interface elements. 

 

 

 

 

 

 

 

Figure 26: Instantiated fragment from Figure 25. 



INDENICA D2.2.2 

 

  32

 

The idea for this instantiator is rather similar to the database schema instantiator 

discussed above. The object-relational mapper instantiator realizes negative 

variability, i.e., a configuration file for all enabled variabilities is used as a generic 

artefact and disabled variabilities are removed. Following the same naming schema 

as the database schema instantiator, the object-relational mapper instantiator 

considers only decision variables, which end with “Config”. The algorithmic 

description of the instantiator is given in Figure 27. 

Object-Relational Mapper Instantiator 

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• Single edmx-file MODEL_FILE //generic mapper configuration artefact 

Output: 

• Customized MODEL_FILE //instantiated mapper configuration 

Process: 

List<DecisionVariable> or_mapper_context 

For Each frozen variable in IVML_CONFIG  

with variable.name ends with “Config” 

Add variable to or_mapper_context 

End For Each 

For Each sub_model in MODEL_FILE  

For Each variable in or_mapper_context 

For Each «EntityType»-entry  

with «EntityType».Name + “Config” equals variable.name 

For Each «Property»-entry  

If variable.hasVariable(«Property».name)  

&& variable.getVariable(«Property».name).value == false 

Delete «Property»-entry 

End If 

End For Each 

End If 

// similar for ScalarPropert in MappingFragment, AssociationSet, etc. 

End For Each 

End For Each 

Figure 27: Instantiator for the object-relational mapping in the WMS case study. 
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Object-relational Mapper Configuration Instantiator Example 

In this example, we will rely on the variability model fragment discussed above for 

the database schema instantiator, i.e., the MaterialConfig . We will apply the 

same configuration as shown above, i.e., the descriptive text is disabled. 

Figure 28 depicts a fragment of the object-relational mapper configuration of the 

WMS having all variabilities enabled. In this fragment the definitions of entity sets, 

association sets and the user interface designer section are not shown as they are 

not relevant for this example.  

 

 

Given the WMS variability model and the specific configuration discussed above, the 

generic mapper configuration in Figure 28 will be instantiated as shown in Figure 29. 

Thereby, in particular the property in line 18 is removed. Related properties in the 

conceptual models and mappings sections are handled similarly and, thus, they are 

not displayed in Figure 28 and Figure 29. Please note that also cross-relations such as 

association sets, associations or association connectors are affected if required. This 

is not shown here in order to keep the example and the fragments readable and 

understandable. 

 

 

 

 

Figure 28: Fragment of the generic database mapper configuration in the WMS case. 
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Database Content Instantiator 

The database content instantiator is the last instantiator executed in sequence as 

part of the WMS production strategy. The idea of this instantiator is to create a 

database initialization script from scratch. This is required to produce output which is 

consistent with the results of the previous instantiators, i.e., disabled fields or 

relationships must not be instantiated. While this may also be achieved with 

negative variability, this instantiator must also create an initialization for an arbitrary 

number of instances, such as a material list or a set of racks. As the database 

structure is reflected in the variability model, we can easily create the SQL 

initialization script from scratch. As discussed above, also this instantiator follows the 

naming convention for decision variables, i.e., the instantiator will consider decision 

variables related to the WMS topology rather than to the database structure. 

Moreover, the alignment between database structure and WMS topology already 

starts in the variability model as we will show below.  

The algorithmic description of the database content instantiator is depicted in Figure 

30. Basically, it considers all frozen decision variables of the WMS variability model 

for which the name ends with “Topology” due to the WMS specific naming 

convention. For these decision variables, it creates the corresponding SQL insert 

statements and for each defined variable the related SQL data-value assignments. 

Here, only defined variables are considered, i.e., those which have not been 

removed from the database schema, and the mapping by the preceding 

instantiators.  

 

Figure 29: Instantiated database mapper script. 



INDENICA D2.2.2 

 

  35

 

Database Content Instantiator Example 

Also in this example, we will rely on the context of the examples discussed above for 

the database schema instantiator and the object-relational mapper instantiator. 

After executing these two instantiators, the database schema is defined and 

correctly mapped to DAOs. The final step in the WMS production strategy is to turn 

the WMS topology defined in the actual WMS variability configuration into database 

entries. 

The compound MaterialConfig  discussed above defines the data to be managed 

in the WMS. In contrast, the compound Material  shown in Figure 31 is responsible 

for configuring the material part of the WMS topology, i.e., the specific material to 

Database Content Instantiator 

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• OUTPUT_FILE_NAME 

Output: 

• SQL_FILE with adapted/customized INSERT-statements 

Process: 

List<DecisionVariable> db_data_context 

For Each frozen variable in IVML_CONFIG ends with “Topology” 

add variable to db_data_context 

End For Each 

New SQL-FILE with OUTPUT_FILE_NAME 

New «USE»-Entry on “wmsdb” 

For Each variable in db_data_context 

For Each element in variable // matches (non-)container contents 

new «INSERT»-Entry in SQL_FILE 

«INSERT».name = substring(variable.name, -”Topology”.length) 

For Each var in variable 

If isDefined(var) 

new «COLUMN»-Entry in «INSERT» 

«COLUMN».name = var.name 

«COLUMN».value = var.value  

End If 

End For Each 

End For Each 

End For Each 

Figure 30: Database content instantiator for the WMS use case. 



INDENICA D2.2.2 

 

  36

be inserted into the initial WMS database. As the actual structure of Material  can 

be configured by MaterialConfig , the instances of Material  must be aligned 

with the actual configuration in the decision variable materialConfig . This is done 

by defining a constraint in the WMS variability model as shown in Figure 31. Finally, 

the container materialTopology  contains the actual material as part of the WMS 

topology configuration. 
 

Figure 32 depicts a fragment from a WMS configuration specifying a part of the WMS 

topology, here the initially available material. The description  information was 

disabled in the related examples above and, thus, cannot be configured here: 

Consequently, the database content instantiator shown in Figure 30 will produce the 

fragment from the database initialization script depicted in Figure 33. The insert 

statements are generated by the instantiator due to the WMS topology 

configuration. The specific lines for materialTopology  are shown in lines 4-5, 

while the remaining lines of the fragment are generated from other parts of the 

WMS topology configuration not discussed in the examples above. 

 

Figure 31: Fragment from the WMS variability model related to the WMS topology. 

 

Figure 32: Fragment from a WMS configuration related to the WMS topology. 

Figure 33: Generated database content initialization script reflecting the configured WMS 

topology. 
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3.2.3 Remote Management System 

For the RMS case study, also a platform-specific service configuration file must be 

handled. In addition, the constraints on the runtime variables defined in the 

variability model shall be made available to the WP4 adaptivity manager in order to 

support the determination of the actual configuration values at runtime. This leads 

to the following specific requirements: 

• Modification of (parts of) a service configuration file at compile-time. 

• Creation of a reasoning-rules artefact which restricts the possible adaptation 

actions at runtime. 

• Variability instantiation in the context of the NDL-specific extension of 

Mobicents / JBoss environment, i.e., Java projects with dependencies 

managed by Maven. 

Description of the RMS Production Strategies 

The requirements defined above yield two distinct production strategies, one for 

compile-time and one for runtime. The compile-time production strategy is 

summarized in Table 7. The runtime production strategy is depicted in Table 8. In the 

RMS case study, these strategies are realized by two specific instantiator, a service 

configuration instantiator and a rules instantiator. 

 

Production strategy 

element 

Remote management production strategy  

(compile time) 

Definition and evaluation of 

a variability value 

Configuration values are directly taken over into the 

specific artefacts. At compile time, enabled services as 

well as their specific parameters are taken over into 

the RMS configuration file.  

Variation point 

identification 

Specific markup elements in service configuration file. 

Technique for selecting 

(and combining) elements 

Some configuration values can be taken over directly 

following the syntax and structure of the target 

artefact. However, for some values also explicit 

mappings must be specified. Multiple selection is not 

possible. 

Technique for introducing 

selected elements 

(including relevant glue) 

Not needed. 

Table 7: Compile-time production strategy in the RMS case study. 
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Service Configuration Instantiator 

The RMS service configuration is defined in terms of an XML file following a platform 

specific structure. In that structure, pre-deployment (compile-time variables) as well 

as default values for runtime variables are specified. However, some element names, 

structures or even configuration values cannot directly be mapped to the variability 

model as this is the case in the YMS case study (cf. Section 3.2.1) or in the WMS case 

study (cf. Section 3.2.2). Therefore, the idea for the Service configuration instantiator 

is similar to the Spring configuration instantiator in Section 3.2.2, i.e., to mark 

affected XML elements for inserting values. In contrast, the values for the RMS 

configuration may require a specific mapping. 

The algorithmic description of the service configuration instantiator is depicted in 

Figure 34. The instantiator selects the frozen variables from the IVML configuration 

and performs a mapping to the XML structure while replacing existing values as well 

as markup elements by specific values from the configuration. Thereby compile-time 

variabilities are considered in order to fill the values of the pre-deployment section 

described above. The instantiator also performs value mapping as stated in Figure 34 

in terms of the map function. The map function either considers the global value 

mappings bound to a certain IVML type or specific mappings defined in the markup 

element (attribute mapping  of the element easy:varprop ). 

  

Production strategy 

element 

Remote management production strategy 

(runtime) 

Definition and evaluation of 

a variability value 

Configuration values are directly taken over into the 

specific artefacts. The RMS platform provides services 

for setting the related decision variable values. The 

values are interpreted by the RMS platform. 

Constraints referring to runtime variables are written 

to a rule format for further use in WP4 to support the 

runtime adaptation of the RMS platform.  

Variation point 

identification 

No variation point identification needed for runtime 

configuration as the result is generated from scratch. 

Technique for selecting 

(and combining) elements 

The rules can be directly generated for the target 

language. Multiple selection is not possible. 

Technique for introducing 

selected elements 

(including relevant glue) 

Not needed. 

Table 8: Runtime production strategy in the RMS case study. 
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Service Configuration Instantiator Example 

Now, we will discuss the application of the RMS service configuration instantiator. 

The RMS variability model contains the (compile-time) decision variables as shown in 

Figure 35. For convenience, we will take the default values of these decision 

variables as the actual configuration. 

 

 

Figure 35: Fragment from the compile-time part of the RMS variability model. 

RMS Service Configuration Instantiator  

Input: 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• File FILE //RMS configuration file to instantiate  

Output: 

• Instantiated file  

Process: 

List<DecisionVariable> rms_context 

For Each frozen variable in IVML_CONFIG with isDefined(variable) 

add variable to rms_context 

End For Each 

For Each «easy:varprop»-Entry in «element»-Entry in «indenica-rms-

main-config»-Entry in file 

For Each variable in rms_context 

If getContents(«easy:varprop») equals variable.name 

«element».setContents(map(«easy:varprop».value, 

«easy:varprop».mapping)) 

«easy:varprop».delete() 

End If 

End For Each 

End For Each 

Figure 34: Algorithmic description of the RMS service configuration instantiator. 
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A fragment from the generic RMS service configuration file is depicted in Figure 36. 

Basically, we focus on the specific configuration options shown in the variability 

model fragment above and leave out similar configuration options.  

As mentioned above, several configuration settings in the configuration file cannot 

directly be mapped to the decision variables in the variability model regarding 

structure, naming or even configuration values. For example, the communication 

type setting for text, voice and video in lines 9-17 does neither match in (nesting) 

structure nor in element naming to the variability model. In addition, also the 

configuration values themselves do not map to the types in the variability model, 

e.g., the value multipoint  corresponds to ServiceState.full  or the value 

point2point  to ServiceState.p2p  while ServiceState.off  can be mapped 

directly. Therefore, we define a (partial) mapping for the type ServiceState  in line 

10. 

 

 

Figure 36: Fragment from the RMS configuration file. 
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The instantiator will produce the instantiated artefact as shown in Figure 37. 

However, the mapping specification remains in the configuration file in order to 

support staged instantiation of currently unresolved variabilities. In case that all 

variabilities are actually resolved, the mapping definitions may be removed by the 

instantiator. 

Runtime Rules Instantiator 

Currently, the RMS platform relies on parameterization for runtime variabilities, i.e., 

specific values are defined by an external mechanism such as the WP4 adaptation 

manager and passed in using a specific Web service interface. However, the values 

determined by the adaptation manager must comply with the constraints on 

runtime variabilities in the variability model. In extreme cases, the constraints may 

even be used to determine appropriate adaptation values.  

The idea for the runtime rules instantiator is to export the constraints from the 

variability model which characterize runtime variabilities to a text file. In the future, 

the rules will be exported to the INDENICA infrastructure repository. As the resulting 

rules shall be used as input to the WP4 adaptivity manager, they must be exported in 

terms of Drools rules [12]. This can easily be done as the main reasoner of EASy-

Producer relies on Drools as described in [15]. Given a specific configuration, the 

instantiator requests the instantiated pre-runtime decision variables from the Drools 

reasoner, i.e., it removes resolved variables and fulfilled constraints. Then, the 

instantiator turns the constraints from the variability model into Drools rules and 

 

Figure 37: Instantiated service configuration file in the RMS case study. 
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stores the rule set into a file for further use. Thus, the algorithmic description for the 

runtime rules instantiator in Figure 38 is fairly simple. 

 

 

Runtime Rules Instantiator Example 

An excerpt of the rules produced by the RMS rules instantiator for the runtime-

related constraints in the RMS variability model is depicted in Figure 39. 

 

RMS Runtime Rules Instantiator  

Input: 

• IVML variability model IVML_MODEL 

• IVML-configuration IVML_CONFIG //read in from the variability model 

• String FILE_NAME //output file name  

Output: 

• Instantiated file  

Process: 

VarModel model = DroolsReasoner.instantiatePriorRuntime 

(IVML_MODEL, IVML_CONFIG) 

String rules = DroolsReasoner.getOpenRules(IVML-MODEL, model) 

New FILE with FILE_NAME 

FILE.write(rules) 

Figure 38: Algorithmic description of the RMS rules instantiator. 

 

Figure 39: Instantiated runtime rules from the RMS variability model. 
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3.2.4 Additional Case Studies 

In addition to the work on variability instantiation in the INDENICA case studies, we 

validated our instantiation approach in further contexts. The additional case studies 

provided further insights and enable the integration of the gained experience and 

realized technologies into the INDENICA case studies. We will briefly discuss the 

additional case studies below. 

• Based on prior work published in [11, 22, 23], we carried out additional 

experiments on shifting the binding time in existing systems (meta-

variability). This is realized by an instantiator, which generates multiple 

artefacts for introducing binding-time specific glue code involving template 

instantiation, aspect-oriented bytecode injection (here used as a pre-

processor), and build-process adjustments (if required). This received 

significant interest. In addition, further experiments on meta-variability of 

component technologies have been conducted. Currently, this work is 

integrated into EASy-Producer by applying the INDENICA variability 

instantiation concepts. 

• In a master thesis, concepts and mechanisms for realizing deployment 

variability for cloud-based applications were developed. Thereby, additional 

instantiators for customizing the deployment mechanisms of cloud 

applications have been realized and validated using EASy-Producer [8]. 

• The national funded project ScaleLog focuses on scaling intralogistics 

software for warehouses of different sizes. One particular aim for Klug 

Integrierte Systeme, the industrial partner in ScaleLog, is to flexibly address 

new markets of medium- and small-size warehouses while providing a clear 

migration path to larger warehouses for potential customers. In ScaleLog, 

further project-specific instantiators for EASy-Producer have been developed 

and, thus, the INDENICA variability instantiation concepts have been 

validated and applied. Some examples are a variant of the Spring 

configuration instantiator discussed in Section 3.2.2, a template-based 

workflow implementation instantiator and an instantiator which customizes 

the user interface. Currently, a more complex instantiator is being developed, 

which combines workflow modelling with variability instantiation using code 

generation. 

• EASyCar is a bilateral project with the Robert Bosch GmbH in Stuttgart / 

Feuerbach. The aim of this project is to research modeling concepts for large-

scale variability in the automotive domain. One step towards this aim is to 

evaluate variability modeling, variability instantiation and the related tool 

support provided by EASy-Producer in a business unit at Bosch. Therefore, 

variability model import mechanisms as well as further instantiators have 

been developed. One particular challenge is to practically apply EASy-

Producer to a large-scale variability model, i.e., the IVML editor, the 

configuration editor, the reasoning support and the instantiation framework. 

The experience made in the projects and works described above drives our aim in 

improving and generalizing the existing INDENICA variability instantiation concepts 

as we will further outline in Section 4. 



INDENICA D2.2.2 

 

  44

3.3 Summary 

The realization of production strategies discussed in this section enables the 

instantiation of variabilities for the individual INDENICA case studies. Additional 

instantiations provide the instantiation functionality to apply the concepts and tools 

also in other projects in an extensible way, such as ScaleLog or EasyCar. The WP2 

tool support described and demonstrated in this section fulfils the requirements 

from Section 2. We discussed this fulfilment in Section 3.1 in terms of the realized 

tool support and in Section 3.2 in terms of the various use cases. 

Although this is a good and solid baseline, our practical work on the INDENICA case 

studies as well as on additional case studies shows that the current realization can be 

improved. The current realization of the INDENICA variability instantiation concepts 

can be summarized as Java-based implementation of production strategies. Some 

particular instantiators may need a specific implementation, such as the (integration 

of the) Cocktail instantiator described in Section 3.2.1. However, the current 

implementation-based approach also implies a technical overhead to apply and 

(partially) reuse existing instantiators. For example, the Spring configuration 

instantiator in Section 3.2.2, the RMS configuration instantiator in Section 3.2.3 and 

even the mapping instantiator in Section 3.2.2 share several similarities, in particular 

as they instantiate XML artefacts.  

Based on our practical experience, we learned the following lessons. We will 

explicitly name the INDENICA instantiators, we draw our lessons from, although we 

made similar experience in the additional case studies. 

E1. Variability instantiation may create entire files (WMS database instantiator) 

or modify individual fragments within a file (RMS configuration file 

instantiator). 

E2. Currently, individual instantiators translate parts of the variability model into 

the result artefact. This translation is implemented in Java, but can be 

abstracted using a template language. Such a template language must be 

able to take over configuration values (WMS spring instantiator), iterate over 

structures in the variability model (WMS database instantiator) or map values 

to artefact values (RMS configuration instantiator). We expect that even 

simple calculations may be helpful in describing such mappings. 

E3. The realization of runtime variability leads to the translation of parts of the 

information on a runtime variability into another language, such as the 

linking code created by the YMS Cocktail instantiator. In general, instantiation 

of runtime variability may happen on specific types of artefacts such as 

classes or components. 

E4. Even a template-based realization of variability instantiation may rely, in 

special cases, on external tools and mechanisms, i.e., blackbox instantiators 

(YMS Cocktail instantiator). 

E5. The specification of a production strategy may be simplified if the sequence 

of instantiators can be described in terms of a batch job or an instantiation 

workflow. This supports the definition of the sequence of instantiators in 

combination with basic operations such as deleting or copying individual files 

or folders.  
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These insights provided a motivation for us to derive a domain-specific language for 

that purpose. We will outline the basics of that language in the next section. 
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4 Variability Implementation Language 

In this Section, we describe the concepts of the INDENICA Variability Implementation 

Language (VIL). VIL is designed to solve the issues we experienced from the 

instantiator-based realization discussed in Section 3. Further, VIL realizes the 

requirements for variability implementation discussed in Section 2 in terms of a 

generic, unified variability instantiation language. 

Actually, VIL is not a single language. It consists of four main constituents: 

• Asset model: The asset model defines the individual capabilities of various 

types of assets used in variability instantiation, such as Java source code, Java 

byte code, XML files but also components (for runtime variabilities), or 

elements of the file system such as files or folders. Production strategies are 

operations on the types of the input and output artefacts using the 

capabilities of the assets for specifying the instantiation. 

• VIL template language is used to instantiate a certain type of target artefact 

in a reusable way. Basically, the VIL template language covers generation as 

well as transformation-based production strategies. 

• Blackbox instantiators: In some situations it might be difficult, inconvenient 

or even impossible to describe a production strategy using the VIL template 

language. One example is the Cocktail instantiator discussed in Section 3.2.1 

as it mainly modifies Java bytecode and, thus, it is easier to realize it in an 

usual programming language such as Java, i.e., from the point of view of VIL 

as a black box. In case of legacy product lines, an existing instantiator may be 

called or wrapped into a VIL extension.  

• VIL workflow language: A language to define individual production 

strategies, i.e., to relate artefacts and instantiation mechanisms, to combine 

production strategies to workflows and to specify the execution of workflows 

in terms of binding times (more generally conditions on IVML attributes). 

VIL and its sublanguages rely on existing, practically proven concepts such as 

workflow or template languages in order to avoid reinventing the wheel. However, 

existing concepts as well as related tooling does not provide the full support for 

variability instantiation. Thus, we reuse and extend existing work to apply it to 

variability realization. 

We will discuss the four constituents listed above in the following subsections, 

namely the artefact model in Section 4.1, the template language in Section 4.2 and 

the (use of) blackbox instantiators along with the workflow language in Section 4.3. 

Finally, we will link VIL to the INDENICA case studies in Section 4.4. 

4.1 VIL Artefact Model 

VIL relies on an explicit artefact model. The purpose of the artefact model is to 

describe the types of artefacts used in the instantiation, their specific capabilities 

and to obtain more precise specifications of the variability instantiation. This will 
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enable warnings and errors already when specifying the instantiation, i.e., while 

defining VIL workflows and templates.  

The VIL infrastructure provides a predefined set of artefact types as well as their 

individual capabilities. However, for instantiating a specific base platform, more 

specific artefacts are needed, such as SQL scripts or Spring configuration files as in 

the WMS case discussed in Section 3.2.2. VIL supports this in two ways, namely via 

programmatic extensions to introduce additional artefact types and via the 

specification of capabilities in VIL workflows. 

Figure 40 depicts the basic (predefined) VIL artefacts. Basically, we distinguish 

between composite artefacts, like a Java file, and fragment artefacts, e.g., parts of 

Java code. Regarding composite artefacts, we further distinguish between file system 

 

Figure 40: VIL artefact model including default artefacts 
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artefacts such as paths, files and folders. While file artefacts can be any type of file, 

folder artefacts subsume other artefact types, like Java packages and C# namespaces 

as they are typically represented as folders in a filesystem.  Software components 

(component artefacts) can be used for runtime manipulation. Please note that 

neither all artefact types, nor all operations are shown in Figure 43. We focus here 

on those artefacts and operations required for describing the instantiation in the 

INDENICA use cases. Based on this artefact model, VIL will provide a unified way of 

specifying the instantiation of individual artefacts as we will describe in the following 

subsections. 

4.2 VIL Template Language 

The VIL template language aims at a generic description of the instantiation of 

artefacts. VIL supports: 

• Value insertion, i.e., at specified locations in the artefact, configured values 

from a variability model are taken over. The template language must support 

value mapping, as discussed in Section 3.2.3, as in several cases values from 

the configuration must be mapped to artefact specific values. 

• Alternatives, i.e., to decide among various alternative instantiations based on 

values or properties defined in the configuration as done in Section 3.2.2 and 

3.2.3. Alternative expressions include logical, relational, mathematical, string 

and regular expression operations as well as the (extensible) operations 

defined in the artefact model and in VIL. 

• Iteration over configured IVML containers (see Section 3.2.2), the structure 

of IVML compounds (see Section 3.2.2) and locally defined value ranges. In 

particular, specific iterator operations similar to those for collections in OCL 

[18, p. 168ff] enable the selection of variables from the variability model (see 

Section 3.2). 

• Undefined expressions: Similar to OCL [18], undefined expressions in VIL are 

prevent further evaluation and, thus, the execution of the containing 

statement. This simplifies the specification of VIL templates. 

• Named subtemplates enable the specification reusable transformation tasks 

and facilitate template imports. 

• Mixing of elements from the target artefacts with statements from the VIL 

template language to specify the instantiation. Here, statements from the VIL 

template language are included into mark-ups. VIL supports configurable 

mark-ups in order to increase the application range, i.e., not to exclude 

artefact types due to a clash with existing semantics of the VIL mark-ups. 

• Extension capabilities, i.e., mechanisms that enable openness in VIL, i.e., 

extension of existing (imported) templates. Therefore, the VIL template 

language supports polymorphic dispatch similar to Xtend [4]. 

The VIL template language combines capabilities of popular generator or template 

languages such as Xtend [4], Xpand [3] and Apache Velocity [27]. Although the VIL 

template language is rather close to Xtend, it avoids a tight integration with Java 

concepts in the template language. Further, it integrates (the access to) IVML models 

with the VIL artefact model, provides instantiation specific operations and enables 
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the customization of the language in mark-ups (relying on Xtext [5] language 

infrastructure generation). 

Below, we illustrate the VIL template language in the context of the INDENICA Yard 

Management use case. Figure 41 depicts the derivation of the Cocktail configuration 

from a given IVML configuration (including the underlying variability model) in terms 

of a generator template. In Figure 41, lines 1-13 define the main template which is 

called from the workflow. The input to that section is the IVML configuration 

(config ) and the target output artefact (output ). Within the main template, in line 

2 the artefact is created, i.e., the existence of an empty artefact is ensured. Then, the 

production of the content of the artefact is described (lines 3-12), which mainly 

consists of Cocktail specific XML elements. As individual variables make up most of 

the content of the target artefact, a statement for processing the variables is 

inserted between the artefact prologue (lines 3-6) and the ending of the artefact 

(lines 9-12). Here, prologue and ending are stated as artefact sections enclosed in 

’’’ , i.e., target artefact elements which will be part of the output . Such sections 

may also include VIL statements with mark-up as we will show below. In lines 7-9, 

each variable in config  is considered and processed by the sub-template 

variabilities (defined in lines 14-18). 

The main purpose of the (reusable) sub-template named variabilities  is to 

create a target XML element for each decision and to take over the relevant 

information from the IVML variability configuration (here we use # as mark-up). The 
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def main(Configuration config, TextArtefact output) { 

  new TextArtefact output 

  ’’’ 

  <?xml version=”1.0” encoding=”utf-8”> 

  <cocktail> 

  ’’’ 

  for $1 in config do 

    variabilities($1) 

  ’’’  

  </cocktail> 

  ’’’ 

} 

 

def variabilities(DecisionVariable variable) { 

  ’’’ 

  <decision name = ” #variable.declaration.name #” 

    value = ” #variable.value #”/> 

  ’’’ 

} 

Figure 41: VIL generation template for Cocktail configuration files 
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enclosed expressions are evaluated in the context of the given IVML configuration, 

i.e., the respective values from the variable declaration and the value of the actual 

decision variable are taken over into the target artefact. 

In addition, the VIL template language also enables the transformation of existing 

artefacts. Therefore, the main template receives an input artefact as parameter and 

all operations are then applied to that artefact. Relying on the artefact model, 

specific elements can be identified, selected and replaced. We will discuss the use of 

the VIL template language for the transformation in context of the WMS case study 

in Section 4.4. 

4.3 VIL Workflow Language 

The VIL workflow language enables the specification of individual production 

strategies, their combinations as well as their application at various binding times. 

The VIL workflow language is inspired by existing build process languages such as 

make [9], ANT [25], Gradle [2] or MWE2 [5, p. 177ff], but it provides specific 

concepts for binding times, integration of instantiators, and integration with the VIL 

template language. 

The VIL workflow language provides the following concepts: 

• Production strategy: A production strategy is specified as the application of 

an instantiator at a specific binding time to a given set of input artefacts in 

order to produce a certain set of output artefacts. Instantiators may be given 

as VIL-integrated instantiators such as the processor for the VIL template 

language and blackbox instantiators. The main difference is that VIL-

integrated instantiators (including wrapped blackbox instantiators) provide 

information on the input and output artefact types to the VIL workflow 

engine while pure blackbox are just executed. 

• Alternatives: Selection of production strategies based on conditions in terms 

of variables and values defined in the IVML configuration (including the 

underlying variability model). 

• Loops: Repeated execution of production strategies based on a certain 

container in the IVML variability configuration, the structure of IVML 

elements such as compounds or selected subsets of the configuration, 

respectively. 

• Workflow: A workflow is a named, reusable sequence of production 

strategies which operates on a given set of input and output artefacts. A 

workflow may specify prerequisites in terms of required binding times, 

artefacts / artefact types or conditions on subsets of the variability model. 

Due to the known input-output relation for the individual productions 

strategies (as exposed by the instantiators), the VIL workflow engine can 

validate the application of production strategies within a workflow and emit 

warnings and errors already while the VIL workflow is specified. To facilitate 

reuse, a VIL workflow may import other VIL workflows. 

• Workflow runner: The definition of binding times in IVML is rather generic. 

Binding times are defined as attributes [10], i.e., neither the name of the 

attribute nor the (user-specified) type are fixed. Thus, VIL needs a 
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specification of the semantics of binding times, i.e., the name of the 

attribute(s) and the intended sequence of binding times. This is done in the 

workflow runner (section). 

• Linking the configuration: A VIL workflow specifies the actual IVML model it 

relies on for passing it to VIL templates, using it in conditions and for 

specifying the sequence of binding times in the workflow runner section. 

• Integration into the build process: VIL may be executed from EASy-Producer 

or from a build process (cf. requirement I11 in D2.1 [10]). The latter is 

supported through specific integrations of parsing and executing VIL 

specifications into existing build process languages. However, VIL workflows 

are not designed to specify the entire build process for a service-based 

system, a base platform or, in general, a software product line as this would 

require a unification of various build process languages such as make [9], 

Maven [26], Gradle [2], msbuild [16], ANT [25], MWE2 [5, p. 177ff], etc. 

Below, we illustrate the VIL workflow language in the context of the INDENICA Yard 

Management use case also including the application of the example VIL template 

discussed in Section 4.2. 

Figure 42 depicts a fragment from the VIL workflow for the YMS use case. In line 1 it 

imports version 0.5 of the YMS configuration (including variability model) into 

config . This establishes the link to the configuration similar to model imports in 

IVML [10], i.e., it also supports the evolution of variability models and configurations.  
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import YMSCfg with YMS.version=v0.5 into config 

 

runner (PathArtifact source, PathArtifact target, 

  ParameterSet param ) { 

    apply(bindingTime=compile)  

    using (source, target) on param 

} 

 

select bindingTime=compile  for 

workflow compileFlow (PathArtifact source,  

  PathArtifact target ) { 

  copy(source, target).exclude(”$source/templates”)  

  tmp = vilTemplateProcessor( 

    config, ”$target/cocktail.xml”, 

    ”$source/templates/cocktail.vtl”) 

  cocktailInstantiator(tmp) 

} 

// runtime workflow skipped  

Figure 42: Fragment from the YMS production strategy 
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Lines 3-7 specify the workflow runner. Basically, the runner receives a source and a 

target path. The source path contains the generic artefacts, while the target path 

denotes where the instantiated artefacts shall be placed. The target path may be 

empty as basic file operations such as the creation of paths or files are handled 

transparently by the VIL workflow engine. The apply  command in lines 5-6 binds 

names of attributes to attribute values, here, the attribute bindingTime  to the 

values compile . Corresponding workflows will be executed using the parameters 

source  and target  provided to the runner. In addition, param  enables to pass 

arbitrary name-value pairs to the VIL workflow so that the caller can request the 

instantiation for a certain binding time. For example, if the caller passes the name-

value pair bindingTime=compile , then only the compile time workflows will be 

executed. 

The YMS workflow for compile time is depicted in Figure 42 in lines 9-17. The 

workflow named compileFlow  is executed only if the runner enables compile  

time as bindingTime . In addition to this binding-time-specific selection condition, 

further conditions on the configuration and the artefacts may be specified, such as 

whether certain variables are defined. A workflow is executed only if all selection 

conditions are fulfilled. The first step in the workflow in line 12 copies all source 

artefacts to the target path except for artefacts in ”$source/templates” . In VIL, 

paths may be denoted as strings containing VIL variables indicated by the $ prefix 

(similar to ANT and MWE2). Please note that copy operations depend on the type of 

artefact and may be overridden by VIL extensions or operations defined in the VIL 

workflow (not shown in Figure 42). This enables specific copy operations such as the 

package adaptation for Java artefacts discussed in Section 3.1.1. Then, in line 13, the 

VIL template processor is executed applying the IVML configuration and the specified 

target file artefact to the given template. The resulting artefact is stored in the VIL 

variable tmp . Finally, in line 16 the blackbox Cocktail instantiator (cf. Section 3.2.2) is 

executed on the previously generated configuration in tmp . Here, the Cocktail 

instantiator is made available to VIL through wrapper code, i.e., the execution of the 

Cocktail instantiator looks akin to the template processor as well as the specific 

input-output relation implemented by Cocktail (XML configuration to transform Java 

classes) is provided to the VIL workflow engine. 

For executing the workflow given in Figure 42, either EASy-Producer starts the VIL 

workflow engine on user request or this is done from a build process. An example for 

the integration into an ANT build process is illustrated in Figure 43. Here, the VIL 

workflow specification (wms.vil ), the source platform project and the target 

platform project are passed as input to the VIL execution engine. In addition, a 

parameter is given, which requests instantiation for compile time. 
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4.4 Application to INDENICA Case Studies 

In this section, we will discuss the application of VIL to the INDENICA case studies. 

4.4.1 Yard Management System 

The application to the YMS case study was already discussed as running example in 

Section 4.2 and 4.3. 

4.4.2 Warehouse Management System 

In this section, we will discuss the application of VIL to the WMS case study. As 

described in Section 3.2.2, the instantiation for the WMS subsystem is realized as 

four different instantiators. Please note that we will not repeat the ideas and 

algorithms of these instantiators here as we discussed them in Section 3.2.2. In this 

section, we will focus on the specification of the WMS instantiation in terms of VIL. 

We will first discuss the templates that instantiate the individual artefacts of the 

WMS. With these templates in place, we will then describe the complete workflow. 

The Spring configuration file instantiation takes an existing Spring configuration file 

as input and modifies marked elements based on a given (IVML) configuration. 

Figure 44 shows this production strategy in terms of a VIL template. In the main 

template an iteration over all XML nodes with child “easy:varprop ” in the given 

XML artefact target  (line 2) is defined.  If an IVML variable corresponding to the 

contents of the child “easy:varprop ” exists (line 3-5), the value of the attribute 

value  in the parent node is replaced by the actual value of the configuration 

variable (line 6) and the child node is removed from the target artefact (line 7). Lines 

12-14 and the corresponding call in line 6 are actually not needed in the WMS case 

study but enable reuse in the RMS case study in Section 4.4.3. Therefore, we also 

skipped the WMS specific focus on the properties  element without affecting the 

correctness of the resulting artefact. 

 

<!--ANT prologue and other targets skipped--> 

<target name=”compile”> 
  <processVIL  
    file=”YMSplatform/templates/wms.vil” 
    source=”YMSplatform”  
    target=”YMSinstance”  
      <param name=”bindingTime” value=”compile”/> 
  </processVIL> 
  <!--remaining tasks such as javac skipped --> 

</target> 

<!--remaining ANT elements skipped --> 

Figure 43: Fragment from an ANT build file integrating the VIL workflow 
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The database schema instantiation in Figure 45 modifies the database schema of the 

WMS according to the (IVML) configuration. In line 2 of the template, a selection of 

the relevant variables according to the WMS naming convention (the VIL execution 

engine provides only access to frozen variables) is defined. Then, for each “CREATE 

TABLE” statement in the SQL target artefact (line 3) the relevant variables are 

narrowed down to those variables for which the compound name matches the table 

name (line 4). Finally, all columns of the containing SQL statement (line 5) are 

considered and for those having a corresponding IVML variable (in the pre-digested 

set cfg1 ) with value false  (line 6-7), the respective column is deleted (line 8). 
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def main(Configuration config, XMLArtefact target) { 

  for $1 in target.selectParent(”*/easy:varprop”) do { 

    var child = $1.getChild(”easy:varprop”) 

    var var = config.variables.get($child.content) 

    if exists(var) { 

      $1.setAttribute(”value”, map(var.value)) 

      child.delete() 

    } 

  } 

} 

 

def map(Value value ) { 

  value 

} 

Figure 44: VIL generation template for Spring configuration files. 
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def main(Configuration config, SQLArtefact target) { 

  var cfg = config.select(v|v.name.endsWith(”Config”)) 

  for $1 in target.selectAll(”CREATE TABLE”) do { 

    var cfg1 = cfg.select(v|v.compoundName = $1.name) 

    for $2 in $1.columns() do 

      for $3 in cfg1.select(v|.value = false && 

        v.name + ”Config” = $2.name) { 

        $2.delete 

      } 

    } 

  } 

} 

Figure 45: VIL generation template for database schemas. 
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The object-relational (OR) mapper configuration instantiation in Figure 46 removes 

those mappings, which have been disabled in the (IVML) variability configuration. In 

the main template (lines 1-7), a selection of the relevant variables according to the 

WMS naming convention is defined. Then, a sub template (lines 9-21) for the 

individual sections of the OR mapper configuration is applied (only two specific 

applications are shown in Figure 46). In the sub-template, a selection of the parent  

element according to given element path (line 11) is defined and the child elements 

are processed (line 14-19) only if a corresponding IVML variable exists (line 12-13). If 

the IVML variable related to the child node exists and has value false  (line 15-16), 

the child node is deleted (line 17).  

The last VIL template for instantiating the WMS describes the creation of a SQL 

database initialization script for initializing the database with the actual content. In 

the template in Figure 47 a complete initialization script is created from scratch. In 

the core template main  (lines 1-12), the creation of the basic script parts, like the 

beginning and the end of the script (indicated by comments) is defined. The creation 

of the insert statements is defined in the sub-template instantiate  (lines 14-34), 

which is applied for each nested element of a compound variable whose name ends 

with “Topology ” (line 6, akin to the instantiator mechanism described in Section 

3.2.2). In the sub-template, first the creation of the basic insert statement with the 

name of the compound variable (without postfix “Topology ” to match the names of 
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def main(Configuration config, XMLArtefact target) { 

  var cfg = config.select(v|v.name.endsWith(”Config”)) 

  process(cfg, target, ”Schema/EntityType”, ”Proper ty”) 

  process(cfg, target, ”Mapping/EntityContainerMapp ing” 

    + ”/MappingFragmet”, ”ScalarProperty”) 

  // further processing according to structure 

} 

 

def process(Configuration config, XMLArtefact target, 

  String parent, String child) { 

  for $1 in target.selectAll(parent) do { 

    var var = config.get ( 

      $1.getAttribute(”name”) + ”Config”) 

    for $2 in $1.selectAll(child) do { 

      var var2 = var.getVariable($2.name) 

      if (var2.value = false) 

        $2.delete() 

      } 

    } 

  } 

} 

Figure 46: VIL generation template for OR-mapper configuration files. 
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the database tables) is defined. The nested elements of this compound variable 

represent the actual content. Each variable corresponds to a column or its value, 

respectively. Following the SQL syntax for insert statements, initialization is created 

in two loops, one for the column names (lines 20-23) and one for the related values 

(lines 27-30). 
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30 
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def main(Configuration config, SQLArtefact output) { 

  new SQLArtefact output 

  ’’’ 

  // Beginning of the script 

  ’’’ 

  for $1 in config.select(v|v.name.endsWith(”Topology”) 

    && v.typeOf(”Compound”)) do 

      instantiate(output, $2) 

  ’’’  

  // End of the script 

  ’’’ 

} 

 

def instantiate(SQLArtefact output,  

    DecisionVariable variable) { 

  ’’’ 

  INSERT [dbo].[#variable.declaration.name.substrin g( 

    -”Topology”.length())#] ( 

  ’’’ 

  for $1 in variable.nestedElements do 

    ’’’ 

    [#$1.declaration.name#] , 

    ’’’ 

  ’’’ 

  ) VALUES ( 

  ’’’ 

  for $1 in variable.nestedElements do 

    ’’’ 

    N’#$1.declaration.value#’ , 

    ’’’ 

  ’’’ 

  ) 

  ’’’ 

} 

Figure 47: VIL generation template for database content initialization scripts 
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Finally, Figure 48 shows the VIL workflow for the WMS use case. The runner section 

is empty as the WMS variability does not separate between compile and binding 

time. Thus, the workflow is specified without selection condition. The workflow 

copies the artefacts (akin to YMS workflow described in Section 4.3) and executes 

then the four VIL templates discussed above. 

4.4.3 Remote Maintenance System 

In this section, we will show the application of VIL in the RMS case study based on 

the instantiators discussed in Section 3.2.3. 

The RMS service configuration instantiation maps the decision variables and their 

values given in terms of an IVML configuration to the properties of an XML file (the 

RMS service configuration). The main difference between the Spring production 

strategy shown in Figure 44 in Section 4.4.2 and the RMS strategy is that in the RMS 

case the configuration values must be mapped explicitly. Thus, the RMS production 

strategy can extend the (generic) Spring production strategy in Figure 44 by 

providing a specific value mapping.  
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import WMSCfg with WMS.version=v0.5 into config 

 

runner (PathArtifact source, PathArtifact target, 

  ParameterSet param ) { 

  apply using (source, target) 

} 

 

workflow compileFlow (PathArtifact source,  

  PathArtifact target ) { 

  copy(source, target).exclude(”$source/templates”)  

  vilTemplateProcessor( 

    config, ”$target/**/*.config”, 

    ”$source/templates/easy_varprop.vtl”) 

  vilTemplateProcessor( 

    config, ”$target/db/schema.sql”, 

    ”$source/templates/sql_schema.vtl”) 

  vilTemplateProcessor( 

    config, ”$target/db/db.edmx”, 

    ”$source/templates/or_mapping.vtl”) 

  vilTemplateProcessor( 

    config, ”$target/db/data_init.sql”, 

    ”$source/templates/data_content.vtl”) 

} 

Figure 48: Fragment from the WMS production strategy 
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In line 1 of Figure 49, the base template is imported which includes the main  and the 

map sub template. Then the map sub template is overloaded in lines 3-7 using the 

specific type and a shorthand switch-case statement.  

Figure 50 illustrates the VIL workflow for the RMS use case. In line 1 it imports the 

RMS variability configuration. In lines 3-7 the workflow runner is configured for 

compile and runtime binding in the given sequence. The compile time workflow 

(lines 9-17) copies the artefact and executes the RMS configuration file template 

shown in Figure 44. Akin to the instantiator shown in Section 3.2.3, the runtime 

production workflow (lines 19-16) exports the constraints of the runtime variabilities 

in terms of Drools rules. Therefore, it relies on a wrapped blackbox instantiator, 

which integrates the EASy-producer Drools reasoning component into VIL. In line 22, 

the imported configuration is instantiated for all variabilities prior to runtime. The 

instantiation result is exported as Drools rules in line 23. The target artefact is finally 

instantiated by writing the exported rules into a text file artefact. A slightly modified 

workflow can store the exported rules into the INDENICA infrastructure repository 

(not shown in Figure 44). 
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import easy_varprop.vil  

 

def map(Value <ServiceState > value ) { 

  switch (value) {”full” = ”multipoint”,  

    ”point2point” = ”p2p”,  

    value} 

} 

Figure 49: VIL generation template for RMS configuration files. 
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4.5 Summary 

The Variability Implementation Language (VIL) introduced in this section is a major 

step forward in defining and managing the application of variability implementation 

techniques. Based on the previous results in realizing production strategies and the 

experience gained in INDENICA and other projects (cf. Section 3.3, E1-E5), VIL 

improves the current realization of the INDENICA variability concepts in terms of a 

generic, unified variability instantiation language. In this regard VIL is unique at this 

point: 

• VIL supports the instantiation of various variable artefacts ranging from the 

creation of new files from scratch to the modification of individual artefact 

fragments in place (E1). The asset model of VIL provides distinct capabilities 

to manipulate artefacts of different types and granularity. Further, this model 
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import RMSCfg with RMS.version=v0.3 into config 

 

runner (PathArtifact source, PathArtifact target, 

  ParameterSet param ) { 

  apply(bindingTime=compile, bindingTime=runtime)  

    using (source, target) on param 

} 

 

select bindingTime=compile for  

workflow compileFlow  (PathArtifact source,  

  PathArtifact target { 

  copy(source, target).exclude(”$source/templates”) 

  vilTemplateProcessor( 

    config, ”$target/rms.cfg”, 

    ”$source/templates/rms.vtl”) 

  // compile etc. 

} 

 

select bindingTime=runtime  for 

workflow runtimeFlow (PathArtifact source,  

  PathArtifact target ) { 

  tmp = DroolsReasoner (config, ”-instantiate”, run time) 

  rules = DroolesReasoner(tmp, ”-getOpenRules”) 

  new TextArtifact target 

  target.write(rules) 

} 

Figure 50: Fragment from the VIL workflow for the RMS case study 
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ensures type-compliance when applying a certain operation to a specific 

artefact, guaranteeing that the operation is valid for the type of artefact. The 

open plug-in infrastructure of the artefact model also enables the definition 

of new artefact types and the specification of valid operations for the types. 

• The VIL template language provides capabilities to define (reusable) 

translations of (parts of) the variability model into the result artefacts in a 

generic way (E2). While this language provides its own language elements 

and operations to define basic translation-mechanisms (conditions, 

iterations, etc.), it further reuses operations of the IVML, e.g., accessing the 

value of a decision variable, and the asset model, e.g., setting the value of an 

attribute in a XML-file. These translations also support the realization of 

runtime variability (E3), e.g. in terms of translating values of the variability 

model into an artefact type-specific language. 

• The VIL workflow language enables the integration and execution of external 

tools and mechanism, like the black-box instantiators described in Section 3, 

as part of an instantiation (E4). While instantiators are typically registered to 

EASy-Producer (cf. Section 3.1.1) and, thus, can be called simply by their 

names (as shown in Figure 42 for the Cocktail Instantiator), VIL provides 

language elements for calling other (unknown) external tools. Further, VIL 

supports the configuration of such tools in terms of passing parameters, 

similar to calling a tool via the Windows command console. 

• The VIL workflow language also enables the definition of sequences in which 

instantiators, external tools, and basic operations like file system operations 

must be executed (E5). The order of execution is defined by the order of the 

operations within a workflow in VIL. 

VIL supports all realized mechanism for variability instantiation in INDENICA and 

provides further extensions to the definition of such instantiations. The 

implementation of this language and the corresponding constituents will replace the 

Instantiation Core of the variability engineering tool EASy-Producer (cf. Section 3.1.1) 

in the future to provide a flexible and easy-to-use mechanism for specifying 

variability implementation in INDENICA. 
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5 Conclusion 

In this deliverable, we discussed the current approach to variability implementation 

in INDENICA, its application in the INDENICA case studies and its evolution based on 

lessons learned so far.  

In a first step, we summarized the requirements based on the already existing 

requirements collection in D2.2.1. In this deliverable, the focus is on highlighting the 

aspects to be realized by a variability implementation approach. 

In Section 3, we discussed the current state of the realization in two parts, the 

technical framework provided by EASy-Producer, the INDENICA variability 

management tool, and its actual application to the INDENICA case studies. Actually, 

EASy-Producer can be extended by so called instantiators, which perform specific 

instantiation tasks. Currently, we exploit this approach to realize the variability 

implementation in the individual case studies. In summary, this implementation-

based approach fulfils the requirements for variability instantiation in INDENICA, but 

it also lacks flexibility. 

In Section 4, we introduced the Variability Implementation Language VIL, a generic 

and unified approach to variability implementation, which extends the current 

approach. VIL consists of an explicit artefact model, a template language and a 

workflow language, both based on related languages such as Xtend or MWE2, 

respectively. Based on a discussion of the concepts of VIL, we illustrated the 

application of VIL in terms of variability instantiation specifications for the INDENICA 

case studies.  

As a result, the language concepts of VIL enable a flexible and easy specification of 

variability implementations. The realization of VIL as a replacement for the 

instantiation core in EASy-Producer is on the way. It will be realized as part of 

Deliverable D2.4.2. However, the current language statements as well as the 

artefact-specific operations were selected from the fundamental requirements of 

the INDENICA use cases. This selection will be subject to future refinements in order 

to further simplify the variability instantiation, e.g., by more specific artefact 

operations. This refinement will take place after applying VIL also in related projects 

and reviewing the resulting specifications. 
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