
Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

Creating domain-specific service platforms requires the capability of (automatically)
customizing and configuring service platforms according to the specific needs of a
domain. In this deliverable we address this demand. We focus on how to create
customized service platforms using variability implementation techniques.

The focus is on understanding variability implementation in the context of a service
platform specific situation and with respect to the specific demands of the INDENICA
project. Towards this end, we provide an analysis of this situation, structure and
analyze a large body of relevant approaches for customizing service technologies and
finally describe the core concepts that provide the basis of the INDENICA approach to
implement the customization of service platforms.

Document ID: INDENICA – D2.1.1
Deliverable Number: D2.1.1
Work Package: WP2
Type: Deliverable
Dissemination Level: PU
Status: final
Version: 1.0
Date: 2011-09-30
Author(s): SUH, SAP, SIE, TEL

Project Start Date: October 1st2010, Duration: 36months

Variability Implementation Techniques
for Platforms and Services (Interim)

Version History
0.1 01. July 2011 initial version

0.7 7. October 2011 Release version

1.0 14. October 2011 Final version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents
1 Introduction... 6

2 Basic Concepts in Variability Implementation .. 8

2.1 Software Product Line Fundamentals ... 8

2.2 Variability implementation in the Product Line life cycle 10

2.3 Classification of Variabilities ... 12

2.4 Variability implementation techniques in INDENICA 14

2.5 Relation to other work in INDENICA ... 15

3 Variability in Service-Based Systems: an Overview ... 16

3.1 Taxonomy for Variability in Services and Service Platforms 16

3.1.1 Purpose .. 17

3.1.2 Context .. 20

3.1.3 Solution .. 20

3.1.4 Further Aspects .. 22

3.2 Variability Implementation Techniques for Service-based Systems 23

3.2.1 Variability in Service Composition and Processes 23

3.2.2 Variability in Domain-Specific Services ... 24

3.2.3 Variability in Service and Platform Deployment 26

3.2.4 Variability in Technical Platform Services ... 26

3.3 Summary.. 28

4 Demands for Variability Implementation in INDENICA 31

4.1 General Variability Implementation Requirements 31

4.2 Service Platform capability variation .. 34

4.3 Summary.. 35

5 Concepts for INDENICA Variability Implementation ... 37

5.1 Production strategies ... 37

5.2 Binding time shift as exchanging production strategies 40

5.3 Variability of service and component technologies as an exchange of
production strategies .. 44

5.3.1 Service technology fundamentals ... 44

5.3.2 Comparison of Service Technologies .. 45

5.3.3 Using Production Strategies to abstract from Service Technologies – An
Example ... 50

INDENICA D2.1.1

 4

5.4 Summary.. 52

6 Conclusion ... 54

A Appendix: Variability Implementation Patterns ... 56

A.1 Variability in Service Composition and Processes 59

A.1.1 Service Composition Generation .. 59

A.1.2 Component Service Replacement ... 60

A.1.3 Scoping and fine-tuning .. 61

A.2 Variability in Domain-Specific Services ... 62

A.2.1 Component-Based Service Implementation...................................... 62

A.2.2 Pattern Plugin... 63

A.2.3 FOP-based Refinement ... 64

A.2.4 Class Wrapper .. 65

A.2.5 Aspect Service Weaver ... 66

A.2.6 Enhancement Options .. 67

A.3 Variability in Service and Platform Deployment 68

A.3.1 Generation of Deployment/Undeployment Scripts 68

A.3.2 Context-aware deployment plan .. 69

A.4 Variability in Technical Platform Services ... 70

A.4.1 Abstract Roles .. 70

A.4.2 Application specific callbacks .. 71

A.4.3 Extension by Interception ... 72

A.4.4 Aspect-oriented composition ... 73

A.4.5 Reflective variability, meta-data based variability............................. 74

A.4.6 Event-based composition, Publish/Subscribe-Composition 75

A.4.7 Generated component connectors ... 75

A.4.8 Microcomponents .. 76

A.4.9 Use platform management services ... 77

References .. 79

INDENICA D2.1.1

 5

Table of Figures

Figure 1: The two-life-cycle model of software product line engineering. 9

Figure 2: Negative variability vs. positive variability ... 13

Figure 3: Reference architecture for INDENICA services and service platforms 18

Figure 4: The basic concept of a production strategy ... 37

Figure 5: Separation of functional code and variability implementation 39

Figure 6: Implementation of production strategies .. 40

Figure 7: The production process... 41

Figure 8: Aspect template for compile time binding .. 42

Figure 9: Overview on generating aspects and wrappers. .. 51

INDENICA D2.1.1

 6

1 Introduction

The main focus of work package 2 within the INDENICA project is the customization
of service platforms. As part of this effort, this deliverable addresses variability
implementation, in particular variability implementation techniques in service-based
systems in general and demands and concepts for variability implementation in
INDENICA in particular. This is of course related to the modelling of variability, which
will be addressed in deliverable D2.1. For the purpose of this deliverable we will take
as a basis variability modelling techniques that are quite common in literature like
feature modelling and decision modelling.

In this deliverable mainly the initial concepts of variability implementation are in
focus. This will be further developed and extended by deliverable D2.1.2, which will
cover all concepts that are developed for variability implementation as part of this
project. As a consequence, this deliverable plays more a preparatory role within the
project.

In Section 2, we introduce the main concepts of variability implementation, as these
provide a basis for understanding the remainder of the deliverable. This chapter is
still rather generic, as it mainly relies on the general work in product line
engineering, in order to derive the conceptual basis.

Section 3 then discusses relevant work in the area of variability implementation in
service-oriented systems. (We extended the scope to variability implementation
techniques in middleware, as there is actually very little work, particularly on specific
techniques for service platforms and we deemed the general work also relevant to
this deliverable.) We approached this work by defining a general template that
covers the main aspects of service implementation techniques in the form of a
pattern (problem-solution pair). The various techniques were identified using a
systematic literature review technique as well as input from the industrial partners
was sought. The taxonomy, we developed, covers variability implementation
techniques for service platforms as they are addressed in the INDENICA context.
Using our approach, we could identify nearly two dozen techniques for service
variability implementation. We provide an overview of these techniques in Section
3.2. An individual description of the implementation patterns is provided in the
appendix.

In Section 4, we define the requirements for variability implementation in service
platforms as they are relevant to the INDENICA project. This information is derived
from multiple sources, including gathering of feedback from the various industrial
partners in the project.

Overall, INDENICA provides rather demanding requirements for variability
implementation. In particular, we require - in order to realize the INDENICA vision - a
rather general approach to managing variability implementation. However, at this
point existing approaches are very specific in terms of their properties (e.g., types of
artefacts handled, binding time supported, etc. Thus, in Section 5, we discuss the

INDENICA D2.1.1

 7

main concepts we developed for a more general approach to variability
implementation.

INDENICA D2.1.1

 8

2 Basic Concepts in Variability Implementation

The purpose of this section is to provide an overview of major concepts that are
relevant to understanding variability implementation. Variability (and hence
variability implementation) is a classical product line concept. Thus, we will provide
first a short introduction to basic concepts in product line engineering in Section 2.1.

In Section 2.2, we will focus on and explain core concepts in variability
implementation. This will provide the conceptual basis for the remainder of this
deliverable. Section 2.3 will discuss different types of variability implementation
approaches, in order to provide a better understanding of the conceptual landscape,
while Section 2.4 will discuss concepts that are particularly relevant to the approach
that we will present in this deliverable. Finally, Section 2.5 will discuss the relation
between this deliverable and other deliverables in the INDENICA project.

2.1 Software Product Line Fundamentals
In this section, we give an overview on some fundamental terminology in software
product line development.1 First, we discuss how product line engineering differs
from traditional software development and how reuse is addressed in product line
engineering.

Traditional software development focuses on the development of individual
products, typically in a project-based approach, where each project commands its
own infrastructure, including all relevant software. In contrast, software product line
development addresses the integrated development of a range of similar, but also
different products. The products in a product line may support different, individual
customers or may address entirely different market segments. Instead of
understanding each individual system by itself, software product line engineering
looks at the product line as a whole and systematically addresses the differences of
the products. Thus, while systems in a product line differ in some characteristics
(often referenced as features) to serve the needs of different customers or market
segments, the individual systems need also to share a set of common functionality so
they can be effectively developed together as a product line.

The distinction between software development for reuse and development with
reuse is fundamental in software product line engineering. Development for reuse
(domain engineering) provides a basis for the development of individual products in
terms of assets designed and realized for reuse. In contrast, development with reuse
(application engineering) builds the final products on top of the assets developed for
reuse in domain engineering. This distinction is shown as two-life-cycle model in
Figure 1. The two-life-cycle model consists of a specific software development
lifecycle for domain engineering activities and a second lifecycle for application
engineering. The latter relies on the reusable assets created in domain engineering.

1This section is partially based on material from [47].

INDENICA D2.1.1

 9

Domain engineering provides a basis for the development of individual products.
This basis, the so-called product line infrastructure (also known as core asset base or
product line platform2 [67]) consists of all assets being relevant to the software
development during the whole software development lifecycle. To serve for all
products that may be developed in the product line, the assets in the product line
infrastructure may contain explicit variability. Variation points in the assets describe
the potential locations of impact for individual variabilities. For example, in a
software architecture model individual services may be tagged as variability points
so that the concrete architecture model for a product contains only selected
services. This shows also that the core approach in product line engineering to
dealing with reuse relies on configuring individual variations.

Application engineering builds the final products based on the product line
infrastructure, which usually contains most of the required functionality. The
development of a new product based on an existing product line infrastructure
consists of eliciting requirements, categorizing requirements as being part of the
product line or product-specific and configuring the variabilities in the product line
infrastructure, i.e. deriving instantiated versions of the assets that exactly adhere to
the requirements of the specific product.

Explicit variability in the assets of the product line infrastructure is a key concept in
supporting different customers or market segments. Variability management
encompasses all activities for systematically addressing the variability throughout
software product line engineering, e.g. defining, representing, implementing or
evolving variabilities. In product line engineering, we distinguish three main types of
requirements:

2The term (product line) platform has a significantly different meaning than in the area of service-based systems.

In particular, it differs from (virtual) service platform as defined in D1.1.

Figure 1: The two-lifecycle model of software product line engineering.

INDENICA D2.1.1

 10

 Commonalities are (functional or non-functional) characteristics that are
common to all products in the product line and implemented as a part of the
product line infrastructure.

 Variabilities are characteristics that may be common to some products, but
not to all. Variabilities must be explicitly modelled, implemented and
instantiated in a way that allows having it in selected products only.

 Product-specific characteristics are part of only one product. Typically,
product-specific characteristics arise in order to address the concerns of
individual customers or markets. This type of variability will not be realized
directly by the product line infrastructure, but the infrastructure must be able
to support this type of extension.

While commonalities and variabilities are provided in domain engineering, product-
specific characteristics are exclusively handled in application engineering.

Mastering a range of products instead of individual products is not just a technical
topic, e.g. how to effectively realize different functionality among similar but also
different products. In addition to architectural and technical concerns, successful
software product line development also needs to address business, process and
organization concerns [47]. Briefly summarized, specific product line cost models and
the integration of technical and marketing-oriented product line planning (product
line scoping) are used to address the business concerns. The two-lifecycle model and
the differentiation into domain and application engineering are means to approach
process concerns. Finally, the adoption of the product line approach may lead to
necessary adjustments to the organizational structure as well as to the introduction
of specific roles or responsibilities.

2.2 Variability Implementation in the Product Line LifeCycle
Variability management covers the whole software development lifecycle. It starts
with the early steps of product line scoping, covers all the lifecycle activities to
implementation and testing and finally needs to be considered during evolution. In
this section we relate the activity of variability implementation to the software
product line lifecycle and highlight particularly the influence of domain and
application engineering on variability binding and implementation.

The basis for relating the activity of variability implementation to both lifecycles of
the two-lifecycle model shown in Error! Reference source not found. is a clear
understanding of concerns. Therefore, we briefly introduce the notion of spaces to
separate different concerns regarding variability in software product line engineering
in general, and to describe in particular the relation of variability implementation to
these spaces.

The Variability Space comprises all issues concerning variability modeling in software
product line development. This is, defining and maintaining the product line’s
variability model, selecting variants for the variation points and the resulting model
configuration itself. To be more precise, the variability space covers the following
activities and artifacts:

INDENICA D2.1.1

 11

 The Variability Model is an abstraction of all common and varying software
assets of the respective software product line. The model illustrates all
commonalities and variabilities, their relation and the rules and
dependencies between them. Consequently, the model specifies all possible
product configurations in terms of commonalities and variabilities.

 The Configuration (Process) describes the process of making decisions or
selecting variants to achieve one model representing the description of the
final product. This model is called Variability Configuration.

The Asset Space comprises all issues concerning software assets in software product
line development. This is, developing and managing the different product line assets,
instantiating specific assets for use in a specific product and the resulting asset
instances itself. In more detail, the asset space covers the following activities and
artifacts:

 The Product Line Assets are any assets that are needed to create the
products of the product line and may be used to realize commonalities and
variabilities. At this point, all assets are generic assets, e.g. there exist
wildcards in the code files which have to be replaced by code fragments with
respect to a certain variant decision in a product configuration. Of course,
these product line assets need not necessarily to be code fragments. This also
includes models for model-driven development, libraries, e.g. different JDBC
drivers for support for different databases, or text files for generating
manuals. The set of all product line assets is called Product Line
Infrastructure.

 The Product Assets are a subset of the product line assets, selected to yield in
a final product. The variability inside these assets is reduced to a minimum. In
case of pre-compile time binding the assets are variation free (we will
introduce the definition of different binding times in Section 2.3). Product-
specific characteristics may be added to these assets.

 The process of Instantiation aims at creating the product assets in
consistency to the related variability configuration. This includes, among
other tasks, code substitution, deletion of assets irrelevant to a specific
configuration, combination of several input files for generating new files, and
replacement of whole components or services.

Variability implementation, as a fundamental part of domain engineering, provides
the basis for the activities of application engineering. As a consequence also
variability implementation must be prepared in the domain engineering phase, while
the results are used in application engineering. In domain engineering, mostly
common and variable product line assets are implemented as part of the product
line infrastructure, e.g. as parameter values, alternative components or services,
alternative code fragments, as code generation rules, etc. Concrete techniques for
implementing variabilities in service platforms and services will be discussed in
Section 3.2.

In addition, the variability model is defined in domain engineering. This is not an
essential part of variability implementation but it serves as a basis for variability

INDENICA D2.1.1

 12

configuration and therefore product line asset instantiation (resolution of
implemented variability).

Application engineering is responsible for deriving concrete products from the
product line infrastructure. Therefore, a variability configuration is configured in the
variability space, which contains the binding of the individual variabilities according
to the concrete requirements of the product. While creating the variability
configuration dependencies among the different variabilities need to be taken into
account, e.g. it may be the case that variability A excludes a variability B and, thus,
predefines the variability binding for variability B. The individual product line assets
from the product line infrastructure are then instantiated according to the variability
configuration, i.e. irrelevant alternatives are removed from the product. Dependent
on the concrete variability implementation technique this can be done e.g. in terms
of a configuration file, by passing concrete values to a code generator or by just
excluding certain assets from the build process.

2.3 Classification of Variabilities
A high-level classification of variability was given in Section 2.1, which differentiated
characteristics of a software product line into commonalities, variabilities and
product-specifics. Section 2.2 introduced variability and asset space for separating
activities and artefacts according to development concerns. In this section we
introduce further categories for characterizing how a variability and its
implementation may affect assets of the product line infrastructure. The categories
will be used in the remainder of this deliverable to characterize variability
implementation techniques for service platforms and services in INDENICA.
Therefore, we will discuss the completeness of variabilities, how assets are affected
from two points of view (the one of the software lifecycle and the one of the asset
itself) as well as when variabilities may be bound.

A variability configuration consists of bindings for individual variabilities, i.e.
information on how a variability is bound. The completeness of a variability
configuration indicates whether a product can be derived from the configuration or
whether further configuration steps are required. A variability configuration may be
complete, i.e. all variabilities are bound and a concrete product can be derived due
to that configuration. A configuration may also be partial, i.e. certain (required)
variability bindings are left open. Partial variability configurations need to be further
concretized by subsequent configurations until a complete binding is reached (also
called staged configurations [27]). Partial variability bindings are useful e.g. when
application engineering is shared among different departments so that partially
bound products, which are preconfigured for a certain market segment by one
department, are customized for a specific customer in a subsequent department.

From the point of view of the software lifecycle, variabilities may affect assets in
different phases, such as

 Requirements phase: Domain- and application-level functional and non-
functional requirements.

 Architecture phase: Architecture descriptions, architectural models, available
architectural views and architectural styles etc.

INDENICA D2.1.1

 13

 Implementation phase: Source code assets, generation templates,
deployment descriptors etc.

 Runtime phase: Active components and services, dependencies and wiring
among components, type and granularity of monitoring actions, etc.

Variabilities on levels related to earlier lifecycle phases may impact variabilities in
later lifecycle phases in terms of dependencies or constraints. Let us assume that the
domain requirements provide a variability whether the system must comply with
given real-time constraints. When the real-time variability is selected, certain
architectural styles may not be used, i.e. constraints enforcing this may be activated.
As a consequence, the code generation may be forced to avoid dynamic bindings
wherever possible and at runtime a high-performance server that is able to provide
some real-time guarantees is target of the deployment.

If we describe the relation between the variabilities and the commonalities that are
relevant to an individual asset, there are two basic forms as outlined e.g. in [37]:

 The reusable asset may contain not only the common, but also all possible
variable parts. Then as part of the instantiation parts that are not relevant for
a configuration are removed. This is called negative variability or subtractive
variability and is illustrated in Figure 2 a). An example of this approach are
pre-processor-based approaches as they are often used in the context of the
C-programming language.

 The core reusable asset contains only the common parts and possible
variable parts are contained in separate assets. In this case the configured
asset results from combining the variable parts with the core asset. This is
called positive variability or additive variability and is illustrated in Figure 2
b). An example of this is aspect-oriented composition of the assets.

In practice, negative variability is applied more frequently. This is due to the fact that
negative variability is supported traditionally using pre-processor statements in
C/C++ source code3.

3Pre-processor statements are recognized as a variability implementation technique in product line engineering

with similar effects as explained for constants explained in this section.

Figure 2: Negative variability vs. positive variability

(based on [37])

a)

Option A

Option B

Option C

Option A

Option B

Option C

b)

INDENICA D2.1.1

 14

Traditionally, product line engineering targets the development time of the product,
i.e. variability binding and instantiation is typically made during the development of a
product. More precisely, the binding of a variable may happen at one of several
points in time (binding time) during the software lifecycle such as described in [78]

- Design time – point in time when the architecture of the product is designed.
- Derivation time – defining a product (line) specific architecture from a more

general architecture by binding open variation points.
- Check out time - when the assets are obtained from the development

repository.
- Compilation time – when the source code assets are processed by the

compiler.
- Link time – when the compiled binaries of the product are linked to an

executable.
- Startup time – when configuration settings of the product are read, e.g.

operation system specific settings, interworking with other installed
software, user specific settings, etc.

- Runtime – the variability binding is postponed and affects the executed parts
until runtime of the product. While runtime binding is traditionally not in the
focus of product line engineering, it recently attracts more interest in
dynamic software product lines (DSPL) [39].

The binding time for a concrete variability is usually defined as part of domain
engineering and defines the latest point in time when a concrete variability must be
bound. Applying different binding times in one product line leads also to partial
configurations so that e.g. a subset of the variability is bound at configuration time
while others are bound at compile time.

A variability implementation technique is used to realize a certain variability. The
implementation technique that is used mostly defines the binding time. Thus, once a
specific variability is implemented in a specific way, its binding time is usually fixed.
There are few techniques that deal with multiple binding times, as we will discuss in
Section 5.2. Being able to vary something that is usually taken as fixed in variability
implementation (like the binding time, the implementation technique, etc.) is also
called meta-variability [72].

2.4 Variability Implementation Techniques in INDENICA
Several different variability realization techniques can be found in practice and in
literature. Some work concentrates on the traditional aspects of product line
engineering (excluding runtime variability) such as the realization taxonomies by
Muthig and Patzke in [53] or the one by Svahnberg and Bosch in [78]. Recently, work
on variability implementation in product line engineering also addressed
implementation techniques for runtime variability, including specific variability
techniques for service-oriented architectures and service-based systems. We will
discuss the current state of the art in detail in Section 3 as a basis for this deliverable.
In this section, we briefly summarize the main differences between existing work and
variability implementation for service platforms and services in INDENICA.

INDENICA D2.1.1

 15

- Services are typically bound dynamically, i.e. during startup, initialization or
at runtime. Work in INDENICA will particularly focus on realizing variability at
late binding times as well as for binding time ranges, i.e. for multiple binding
times in order to extend flexibility and provide advanced options for runtime
adaptivity of services and service platforms.

- Naturally, variability in service-based systems may affect individual services,
their functionality, their interfaces or their configuration. This is
complemented in INDENICA as the variability realization techniques will
particularly influence the service deployment configuration and, thus,
support optimized deployment of services in the (virtualized) service
platforms.

- Additionally to variability in individual services, INDENICA will provide specific
implementation techniques for the variability of service compositions,
particularly the variability of service orchestrations.

- A key aspect in INDENICA is the integration of existing platforms into a
virtualized service platform, which provides aggregated services of the
existing platforms as well as management services for the virtualized
platform. While there is work on systematically configuring middleware or
even service platforms, variability for a generic virtualized service platform is
a specific research challenge in INDENICA.

- Furthermore, work in INDENICA will take quality of service (QoS) aspects in
variability models and variation points into account. While work in this field
already exists, so far very little work is available at the moment.

2.5 Relation to Other Work in INDENICA
This deliverable discusses variability implementation techniques for service
platforms and services to be applied in INDENICA. Techniques for modelling
variabilities as a prerequisite for variability binding and instantiation, i.e. the
characteristics of a variability, the interrelations and constraints among variabilities
as well as special considerations for achieving scalability of variability models will be
a topic of D2.1.

Further relationships to other INDENICA deliverables are:

- D1.2.1: Variabilities in the requirements model.
- D3.1: Variabilities in architectural models and in the view-based modelling

approach, instantiation of models and variable assets by generative
techniques

- D4.1: Configuration of deployment and monitoring.
- D5.2: Concrete variability points in the use cases and industrial platforms.

INDENICA D2.1.1

 16

3 Variability in Service-Based Systems: an Overview

In the previous sections, we focused on variability implementation in general.
However, the specific focus of variability in the service world is of particular
importance in this deliverable for three reasons:

 INDENICA focuses on the customization and the interoperability of service
platforms, thus the customization and hence variability of services is
important.

 INDENICA will work with a wide range of different domain-specific service
platforms. Thus, we need to be open in terms of the used technologies.

 INDENICA platform customization will need to work at different binding
times, depending on the specific contexts in which the customization needs
to be done. This requires the availability of a range of different techniques.

In Section 3.1, we will describe a taxonomy that we used to review the existing work
in variability of services. Section 3.2 will then discuss the actual variability techniques
that we found as part of our overview and their commonalities and differences.

3.1 Taxonomy for Variability in Services and Service Platforms
In this section, we present a taxonomy for classifying and characterizing variability
implementation techniques for services. The sources for these techniques are mainly
twofold: first, we made an extensive literature survey to capture basically all existing
variability implementation techniques that were specifically developed to rely on
service-oriented foundations; second, we asked our industry partners to report on
techniques that are relevant to them.

As a basis for reporting on the found variability implementation techniques, we used
the concept of a pattern. This is an already well-established approach for reporting
on software development knowledge. Originally described in the context of design
patterns [35], this approach has also been used to describe software architectures
[20], or programming approaches(also called idiom) [20]. A major step for using a
pattern-based approach is to define the exact structure of the pattern.

The structure that we developed for this deliverable was driven by the goal to have a
good index into the problem space that can be used to structure the possible
solutions. Thus, on the top-level the structure of our pattern template is rather
standard. These are the top-level aspects of the pattern template:

Name: each pattern receives a name. As many patterns we found do not have a
name from their authors, we often tried to provide a meaningful name.

Purpose: this is sub-structured and the various facets together describe the
situation for which a variability implementation technique is required.

Context: the context provides further restrictions on the situations in which the
technique is applicable.

Solution: this describes the solution that is proposed by the pattern.

INDENICA D2.1.1

 17

Further Aspects: any aspects that seem relevant or of interest, but do not fit
into the previous categories.

In the following subsections, we will further discuss purpose, context, solution, and
further aspects, as these consist of several (non-trivial) entries. In the Appendix A we
describe the detailed application of this template on a number of techniques that we
could identify.

3.1.1 Purpose
The purpose section of the pattern template consists of four main categories. These
are:

Description: this provides a short description of the problem in variability of
service-based systems and service platforms that is addressed by the
variability implementation technique. The description is a short summary
in free text format.

Variability Object: the variability object is the part of the service platform,
service, or application that is supposed to vary. This is further explained
below.

Form of Variation: in variability modelling we typically differentiate several
forms of variability. This can also be used to distinguish between
variability implementation problems. Again, we will describe this further
below.

Binding Time: finally an important issue is when is it necessary to decide on the
specific variability that is relevant in a specific situation. This is also called
the binding time. Again, we will further discuss this below.

Variability Object
In general in product line engineering variability implementation typically relates to
some fragments of code (lines of codes, methods, components, etc.). Given the
specific context of service-oriented computing in general and INDENICA in particular,
we can be much more precise. Figure 3 shows a reference architecture, we use
throughout this deliverable to identify the various levels on which variability can be
relevant to an INDENICA platform.

The lowest level of the reference architecture is the technical platform. This could be
a platform like OSGi [80] or SCA [59]. That is a technical platform, which makes
implicitly some assumptions about the context of use (e.g., regarding the non-
functional requirements). However, this is mostly domain-independent. Such a
technical platform can be sub-divided into:

 Service platform infrastructure: This is the basic platform implementation,
which cannot be further refined into specific services. This can be realized in
an arbitrary (non-service-oriented) way. Thus, arbitrary variability
implementation techniques may be applied. Instead of repeating generic
surveys on variability implementation, we exclude this from our analysis.

 Technical Platform Services: These are services that are provided from the
technical platform. They enable functionality like the registration of services

INDENICA D2.1.1

 18

or other infrastructure capabilities. There can be variability regarding those,
e.g., regarding the exact range of services or their exact behaviour.

An INDENICA Platform is a domain-specific platform. This implies in particular that it
includes domain-specific capabilities. The range of these capabilities may require
customization in turn. These capabilities can be realized as:

 Domain-Specific Services: This includes any variability in domain-specific
services where a service is modified, augmented by additional functionality,
and otherwise adapted. In particular this may happen either while keeping
the interface or modifying the service interface as well.

 Service Composition and Processes: This includes all cases where the specific
composition of processes is modified. It encompasses in particular any
situations where a specific service is explicitly exchanged for another service
satisfying the similar interface, but behaving differently. Service compositions
by themselves can form services, but it is worth looking at them
independently as usually different approaches are used in such a situation.

Finally, besides varying the composition of functionality it is sometimes also relevant
to modify the deployment of services (e.g., changing the number of servers where a
deployment happens). Even not deploying a specific service can be used as a way to
modifying a service platform. Thus service and platform deployment is the final form
of variability object we will look at:

 Service and platform deployment: This covers any form of variability that
influences the specific deployment of a service (e.g., not deploying, location
of deployment, parameterization, etc.)

Figure 3: Reference architecture for INDENICA services and service platforms

(provides basis for variability objects)

deploy

deploy

Service Platform Infrastructure

Technical Platform
Service

Technical Platform
Service. . .

UI/Application

Domain-specific
Service

Domain-specific
Service. . .

Business ProcessBusiness ProcessBusiness Process

Application
Service

Application
Service. . .

Business ProcessBusiness ProcessBusiness Process

Indenica
Platform

Application

offer
service(s)

use
service(s)

Variability in
domain-specific
services
(composition)

Variability in
technical
platform

Variability in
application
services
(composition)

INDENICA D2.1.1

 19

 Form of Variation
We can differentiate multiple forms of variation. These are rather generic, however,
they get a specific meaning, as described below, in the context of service orientation:

 Optional: A variability object may only be part of an installation under certain
circumstances. This is called optional variability. This might be a service, or a
specific aspect of the functionality of a service or of the underlying platform.

 Alternative: Sometimes it is important that one of several variability objects
is present, but the variation is in which of the objects to pick. This can be, for
example, one of several possible service realizations that adhere to the same
interface or alternative behaviours of a platform infrastructure.

 Multiple selection: Sometimes multiple options from a set of variability
objects can be selected.

 Parameterization: Variation can be described also as a parameter,
respectively the value.

 Extension: Variation can occur by extending a feature, service or property
that already exists. Typically, this is achieved by providing explicit extension
points. This can be the possibility to add additional services, or integrate
specific functionality in a well-defined form in a call chain.

 Interface: The interface (e.g., of a service) is adapted, e.g. by modifying the
number and type of its parameters.

Binding Time
An important question is also: when is the decision made about the specific contents
of the variability platform? Many different approaches are possible and discussed in
literature. Some examples are given below:

 Implementation time: this means that human intervention is required. In
case this variability management is in place, the human intervention might be
minimal like changing a few lines of code in a specific file. Thus, it should not
be confused with maintenance.

 Compile time: this means that the variability is realized in terms of compile
time modifications. Examples could be pre-processors or mechanisms that
are part of the build-process like static weaving in aspect-oriented
programming. Often a more refined distinction is made, that also identifies
link time as a separate binding time or distinguishes between compile-time
and precompile-time. This did not proof necessary here.

 Deployment time: the deployment of components or services can be used to
realize variability as well. This can happen by identifying whether to deploy at
all and where to deploy and also by providing deployment parameters.

 Initialization time: initialization information that is given to a starting system
can be used to realize variability as well. In this case, however, the variability
must be handled by the system (INDENICA platform) during start-up phase.

 Service-binding time: whenever a service is bound to an implementation, this
can be seen as a form of variability, as the same interface may relate to
different implementations.

INDENICA D2.1.1

 20

 Runtime: this subsumes all other cases of binding (determining) variability
that happens during the execution of the system for which the variability
applies.

The list of binding times, which we identified above, only provides a set of reference
binding times that we found useful in describing our taxonomy. In any specific
system context additional or different binding times can become relevant. There is
no single list of binding times, which is useful and relevant throughout all situations.

In the case of runtime bindings, a binding of variation can either be permanent or
volatile. A permanent binding is made once during the runtime of the system and
henceforth not altered, while a volatile binding is not (in the later case a rebinding
for a new variation is possible). Obviously, the distinction between permanent and
volatile only makes sense for runtime binding.

In some situations it can be important to support multiple binding times, i.e., it is
not only possible to differentiate between different capabilities, but also when the
binding of these capabilities is made. However, in such a situation, we need to
support multiple variability implementation mechanisms alternatively [72], as any
specific mechanism usually only supports one specific binding time.

3.1.2 Context
The context section provides additional information on the constraints under which
the variability implementation technique can be applied. The context section
consists of the environment context and the assumptions on systems.

Environment Context
This describes any assumptions an approach makes, respectively, technical
constraints it has on the environment in which it is used. In particular, a specific
approach might be described in the context of Web Services or with OSGi. While this
does not mean that it cannot be transferred to situations outside of this context, it
only ensures that it is actually working in this context.

Assumptions on Systems
A specific variability implementation technique may also make further assumptions
on the specific systems for which it can be used. For example, a technique might
focus on being resource-saving and without any real-time disadvantages to make it
appropriate for deeply embedded systems.

3.1.3 Solution
The solution section forms together with the purpose section the core part of the
pattern template. It consists of six main categories. These are:

Key idea: this describes the key idea of the technique

Technology Background: this describes any general implementation
technologies (e.g., aspect-oriented techniques) that are used to
implement this approach.

INDENICA D2.1.1

 21

Variability Approach: this characterizes the assumptions the technique
makes about the relation of the variable parts and the core parts of
the implementation.

Variability Granularity and Selection: this describes the level of granularity
on which variability can be described and how individual variable
elements can be selected for inclusion or exclusion into a variant
realization.

Dependency Management Support: if the technique provides direct support
for management of dependencies among variant selection, this is
described here.

Platform Definition Support: if the technique supports the identification and
definition of the variable parts that are needed to make up a service
platform, this is described here.

Key Idea
It is usually difficult to describe all the details of a technology using a predefined
schema. This is in particular true as we gathered to a significant extent the relevant
information from literature. In such a situation, a description is limited by the
amount of information available in literature. This is the reason why we added a free
form field to describe the basic idea of the approach to the technology pattern.

Technology Background
While a specific variability implementation technique is typically a rather complex
thing and composed of several different elements, there are some fundamental
technologies that are used often in the context of variability implementation. Typical
examples of this are template processing techniques, textual (or syntax-based) pre-
processing with elimination of not required parts, aspect-orientation, etc.

In this section, we link the specific approach to these basic technologies. The
expectation is that this may help to identify some general techniques that are used
over and over in developing appropriate implementation techniques.

Variability Approach
This describes the basic relation between the core implementation and the variable
implementation parts that is used by the technique. The most extreme viewpoints
are positive and negative variability, respectively. Approaches that rely on positive
variability use an approach that assembles the final realization from multiple pieces.
A typical example of this is aspect-oriented programming. Here aspects can be used
to implement variable parts. The basic implementation is combined with the aspect
implementations to derive the final system. An example of purely negative variability
implementation is given by pre-processor-based variability implementation. In such a
case a pre-processor is used to cut out those parts of an implementation that are not
needed for a specific variant. Other forms of variability realization include generative
approaches. In generation-based variability the necessary implementation is
generated from a description in a different form. A single variability implementation
technique can be composed of several individual implementation approaches.

INDENICA D2.1.1

 22

Variability Granularity and Selection
Different techniques provide different levels of granularity of what can vary and how
they identify those parts and their relationship to a specific variation need. Typical
examples of granularity are lexical units like a line of code or a file and syntactical
units like a statement, parameter, function/method, module, a component, service,
service binding, service bundle, deployment unit. Always with the meaning, that this
is the smallest granularity supported by the specific technique.

Further in some form the relation between the variable element and the variability
decision must be described and also where exactly a specific variability should have
an impact. The first is actually often handled externally. For the second different
approaches exist. Sometimes annotations are made directly where the variations are
(textual pre-processors for conditional compilation are an example) alternatively
some generic descriptions can be used to describe where to attach variable parts
(e.g., advices in aspect-orientation).

Dependency Management Support
Typically individual variable implementation parts are not independent, but have
some relation (e.g., a customization relating to a specific feature can only be done, if
another one is done as well). In some cases variability implementation mechanisms
have an approach to support this. In most cases, however, an external mechanism is
used. This is also one aspect that is typically realized in external tools. In case the
technique handles this in an integral way, this is described here.

Platform Definition Support
If many parts are variable in a generic platform, we need an approach identify which
parts to select to identify a specific variable platform (i.e., to perform a product
definition). Again this is often not done as part of a technique, but relegated to an
external mechanism or tool environment. In case, this is part of the mechanism, this
is described here.

3.1.4 Further Aspects
In the section Further Aspects those issues relevant to the technique that did not fit
in the previous categories are described. In contains only of the entries Source and
Comments.

Source
This describes the source of the information on the technique. This might be
literature or other forms of information.

Comments
Any information that does not fit the categories above, but is considered important
for the purpose of the analysis is described here.

INDENICA D2.1.1

 23

3.2 Variability Implementation Techniques for Service-based
Systems
In this section we will provide an overview of the various techniques for variability
implementation we found. We categorize current variability implementation
techniques in terms of our taxonomy. Therefore, this section is structured according
to the variability objects we introduced in Section 3.1.1. Within each section we
roughly structure our discussion according to the binding times. A detailed
description of the techniques is given as a structured catalogue of techniques in the
Appendix of this deliverable in Section A. Within this section, we focus only on
providing an overview of the kinds of techniques that have so far been described.

Due to a lack of detailed literature for some of the variability objects, we consider
also literature on component-based systems and configurable middleware.

3.2.1 Variability in Service Composition and Processes
In our survey, we identified two representative approaches to realize variability in
the composition of services. In Section 3.1.1 we define service composition to be a
combination of services.

The composition of services at implementation / compile time is often supported by
implementation techniques that exploit MDD techniques, e.g. model transformation
and model element mapping.

In [52] the Business Process Family Model (BPFM) is proposed. This represents a
variability-enhanced common business process model as a core asset. Park et al. [64]
use this as a basis to derive business process variants. The BPFM maps features of an
initial feature model to domain activities (these activities are mapped to domain
services in a following step). The BPFM is modelled using Unified Modelling Language
(UML) [58] activity diagrams that are expanded with variation points, variation point
bindings and variant regions. The derivation of a business process variant is based on
a given feature configuration and the selection of the corresponding core domain
activities and variants. This is, deriving a UML activity diagram in which all variability
is resolved. The automated transformation of an UML 2.0 activity diagram to
Business Process Execution Language BPEL [63] is presented in [15, 38, 21].Similar to
business process models, Steffen et al. [77] introduce reusable flow graphs within
METAFrame environment [76] to model service behaviour and then use the final and
consistent flow graph to automatically instantiate new services.

Service composition can also be changed at runtime to meet new QoS constraints. Li
et al.[46] present a set of algorithms for QoS-driven dynamic reconfiguration of SOA-
based systems. In this approach, each Web service is annotated with QoS attributes,
e.g. response time or cost. Given a set of available services with their QoS attributes
and a new QoS constraint, the presented algorithms will calculate the QoS of the
overall system with regard to the process structure. As long as the QoS of the system
does not meet the new QoS constraint, one or more services will be replaced to
meet the constraint – the overall process structure will not be changed.

SAP provides standard platforms and applications, which can be adapted to the
customer’s specific business needs. One provided solution is Business Configuration

INDENICA D2.1.1

 24

by scoping and fine-tuning for Business By Design4, SAPs on-demand platform.
Additional to the platform SAP delivers at one hand a comprehensive catalogue
(BAC, Business Adaptation Catalogue) exposing the entire set of solution capabilities,
described using non-technical business language. At the other hand, SAP and
partners deliver so-called Business Configuration (BC) sets, which contains
predefined business configurations. At first the customer has to make selection from
the BAC based on his specific business needs (scoping), at second he can overwrite
parameters of the predefined configuration (fine-tuning). The results are stored in a
configuration workspace. The final configuration becomes active through BC
deployment. The process comprises activation of UI components and services as well
as writing the configuration to Customizing Tables, which are evaluated at runtime.

3.2.2 Variability in Domain-Specific Services
This is the single largest group of patterns we could find. It includes changes to a
service that impact its implementation (and thus its behaviour and/or its Quality of
Service characteristics), as well as variability of the interface. Though the two forms
of variability are closely related, the differentiation between these two types is
almost always mentioned in literature due to the higher complexity connected with
interface variation. Service interface variability affects always the underlying service
implementation in a way so that the provided service functionality has to be
modified accordingly. Service implementation variability exclusively affects the
underlying methods without modification of the interface.

Variability implementation techniques, which become effective at compile time,
exploit the abilities of an underlying, implementation-oriented approach like
component composition or application of base asset refinements according to a
feature selection. Actually, many of the techniques, we found, focus on
implementation time / compile time variability. All of these techniques support the
pure implementation variability. The basic idea is in all these cases the same: apply
standard variability implementation techniques like component-composition or
feature-oriented programming to represent the variability within in an
implementation. The component-based service implementation approach [48]
focuses on introducing an additional component layer that provides a basis for
deriving the service implementation. Like the FOP-based approach, described in [6],
it also uses feature modelling as a basis for representing the variability in the
implementation. In [76] flow graphs are defined to compose components to a
service while a model checker checks consistency among the composition based on a
predefined constraint library. The flow graph, whose nodes represent components
and whose edges represent conditions under which the related component is
activated, is used as input for automatically instantiate the components which yield
in the final service. Except for the details of the underlying composition elements the
three approaches are rather similar. Somewhat different from these three is the
pattern plugin approach [54]. In this approach the focus is on generating the

4http://help.sap.com/saphelp_byd30/en/KTP/Software-Components/01200615320100003379/SAP_BBD/

SAP_BBD.html

INDENICA D2.1.1

 25

implementation of a configured service from a higher-level description. With respect
to the other aspects, the approach is, however, rather similar.

The pattern plugin and FOP-based refinement approaches address also interface
variability. However, the approaches focus on direct manipulation of the interfaces
(e.g., remove or add a specific parameter). It seems, the approaches do not provide
additional guidance to ensure that the interface modifications and the service
implementation match. As the modifications are also local to the services, there is no
support to ensure that not only the call interface is customized, but also the callee.

Some approaches also support service variability at (initialization time or) runtime.
The two approaches we identified differ somewhat in terms of how they handle the
creation of a variant at runtime. The class wrapper approach described in [75] is
rather similar to FOP-based refinement [6]. The main enhancement that the class
wrapper does is that it moves the binding time to runtime. This is achieved by
creating a wrapper class, which serves as a proxy and at runtime a new service
implementation is created (basically using compile time techniques). These updated
implementations are then integrated at runtime using the Java HotSwap [41]
implementation. This can be seen as a compiler-oriented approach. Once introduced
the new service implementation is directly executed.

The Asset Service Weaver (ASW) pattern [51] has a somewhat different focus. It
relies on the aspect service weaver tool [10, 40, 81] to intercept service calls (SOAP
messages) and if a message includes a request for a method that the service does
not support currently, advice services are queried. These advice services hold the
codes for new methods that can be woven into existing services by the ASW. This
can be seen as a more interpreter-oriented approach.

SAP provides with the Enhancement and Switch Framework5 a solution to enhance
business functionality of SAPs NetWeaver ABAP core without modifying the original
code. The modifications are bound to hooks called Enhancement Options in the
original code during runtime, which is similar to Aspect Oriented Programming
(AOP). Enhancement Options can be implicit or explicit. Implicit Options are provided
by the framework (e.g. begin of methods), explicit options are defined by the
developer. There are two kinds of explicit options - source code plug-ins and object
plug-ins. With source code plug-ins the developer can define Enhancement Points,
which are hooks for adding additional code or Enhancement Sections, which are
hooks for overwriting existing code. An object plug-in is called BAdi (Business Add-
in). It comprises an interface defining methods, which add new and changeable
functionality to an object. At the end the enhancement options can be activated and
deactivated with the help of the Switch Framework.

In summary, there exists already a breadth of approaches to implement variability.
They cover both development time and runtime adaptation and differ in their
approaches and assumptions.

5http://help.sap.com/saphelp_nw73/helpdata/en/

INDENICA D2.1.1

 26

3.2.3 Variability in Service and Platform Deployment
The deployment of services, respectively of service platforms impacts the physical
layout but not the logical content of a platform. Deployment may influence many
characteristics of the running platform at deployment time or even at runtime. In
literature, variability of the deployment is usually realized by generative techniques.
The artefacts describing the deployment such as models, descriptors or scripts are
either generated from additional information in the variability model or by extracting
the relevant information from a generic artefact (negative variability).

An example for the first approach is to annotate the variability model with
deployment information for each variant. Mietzner et al. describe in [50] that WS-
BPEL deployment and undeployment scripts for deployment time as well as for
runtime can be generated from the additional information in the variability model.

An example for using generic artefacts is a deployment plan, which describes the
deployment of each possible variant including the initial deployment. Ayed and
Berbers extend in [9] the standardized CORBA Component Model (CCM) deployment
model [55] by variation points in order to express a context-aware deployment plan.
At runtime, the generic plan is instantiated by generative techniques to a concrete
plan based on context information.

3.2.4 Variability in Technical Platform Services
The services provided by a platform may also be subject to variation. For example
this may happen when a platform should be tailored to meet domain-specific
requirements, when several platforms are integrated into one and only selected
services should be reused or, in INDENICA, when platform services should be
composed on a higher level from integrated services.

The techniques for platform service variability in literature typically rely on existing
interfaces provided by the (middleware-) platform core. Variabilities are bound to
the core platform by implementing selected interfaces and by performing a
registration procedure. Table 1 summarizes the implementation techniques
described in the remainder of this section. The techniques particularly differ in the
individual combination of binding approaches, the use of code generation, the
(latest) binding time and whether the technique is integrated with a variability
model. Most techniques described in this section bind variabilities at compile time.
Four techniques (partially) rely on affecting call chains (interceptors). It is also
notable that all described techniques represent the variabilities as some kind of
components, in most techniques in the sense of a larger building block with defined
interfaces which realizes rich functionality but in one technique also as subordinate
parts of a component with simple but distinguishable functionality, so called micro
components. This focus is biased by a lack of specific literature for platform
variability in service platforms so that we also considered literature on component
based systems and configurable middleware.

INDENICA D2.1.1

 27

U
se

 p
la

tf
or

m

m
an

ag
em

en
t s

er
vi

ce
s

Ex
te

ns
io

n
by

In

te
rc

ep
tio

n
Re

fle
ct

iv
e

va
ria

bi
lit

y
As

pe
ct

-o
rie

nt
ed

co

m
po

si
tio

n
Ab

st
ra

ct
 R

ol
es

Ap

pl
ic

at
io

n-
sp

ec
ifi

c
ca

llb
ac

ks

Ev
en

t-
ba

se
d

co
m

po
si

tio
n

G
en

er
at

ed
 c

om
po

ne
nt

co

nn
ec

to
rs

M
ic

ro
-c

om
po

ne
nt

s

Binding
approach

Component-
based x x x x x x x x x

AOP x x
Interception x x x x
Reflection x
Callbacks x

Code
generation

Variants x x
Glue code x

Binding
time

compile time x x x x x
runtime x x x x

Use of variability model x x x x
Table 1: Comparison of platform service variability techniques

In the remainder of this section, we discuss first the probably most natural variability
technique in service-based systems, the use of platform management services. Then
we outline techniques, which rely on interception, then techniques which combine
aspect-orientation with interception, then callbacks and finally generative
techniques.

Component or service platforms offer management functionality such as
suspending, resuming, deploying, adding, binding or deleting components or
services. The management functionality can be used as a mechanism to realize
runtime variability, either on the level of entire deployment units (e.g. bundles in
OSGi) or on entity level within deployment units (e.g. services in OSGi). Parra et al.
use the management services of SCA in [65, 66] as variability implementation
technique while SAP relies on OSGi.

Additional management services may be added to an existing middleware platform
by modifying explicit call chains provided by the platform. In an interceptor chain, a
service call is represented as an object and passed to the callee via a chain of
interceptors which may modify, consume or reissue the call. Froihofer et al. describe
in [31] runtime variability of platform management services by adding, replacing or
removing related interceptors.

Reflective capabilities of a component framework offer the potential to reason
about the possible variation points and their variants at runtime as well as to
dynamically execute the functionality represented by individual variants. Therefore,
the reflection mechanism may expose (in [24] on demand) information such as the
component interface, the interception chain a component is registered in or the

INDENICA D2.1.1

 28

topology of component instances. In [12], Bencomo et al. apply reflective techniques
to realize (runtime) variability for platform services and functionality.

Typically, aspect-oriented techniques (AOT) add variabilities to a small core platform
(positive variability). Variabilities are represented as aspects and bound to the core
platform using an aspect weaver, i.e. a tool which injects calls to the selected
variabilities into the core platform, here at defined extension points. Aspect-
oriented composition modifying existing interceptor chains may be applied to
integrate and reuse existing middleware services as shown by Walraven et al. in [84].
Extension points of the core platform may also represent additional semantics such
as the abstract functional roles introduced by Coleman et al. in [23]. Abstract roles
can be used to select dynamically among the services, e.g. based on constraints and
QoS-specifications as done in [23].

Alternatively, callbacks can be used to integrate application specific functionality
into a given (middleware) platform. As a prerequisite, the platform must provide
extension points in terms of callback interfaces, which are then implemented by
application-specific functionality in an extra layer on top of the platform. The
technique has been applied by Froihofer et al. in [32] to extend platforms such as
CORBA, .NET or JBOSS (using remote callbacks over HTTP) with explicit management
of application-specific data integrity constraints.

The set of management services provided by a middleware can also be configured
using event-based composition and publish-subscribe mechanisms. This technique
requires a basic event service provided by the core platform. Middleware services
are then realized as components offering their functionality in terms of events.
Fuentes and Gamez apply in [33] a middleware variability model for selecting
existing services to be integrated with the core and generate the glue code for
initializing and registering enabled variabilities.

In addition to glue code also larger parts or even the entire code of a variability may
be derived by generative techniques from detailed and precise models. One example
is the generation of domain-specific deployment tools by Bures et al. in [18]. A
feature-based connector model [17] describes the communication style, the
deployment and non-functional properties of the communication of deployed
components. The model is used to generate the deployment tool from a code
template, the concrete component connectors and the initialization of the
connectors in the deployment tool. Another example is to generate only relevant
sub-functionality in terms of pluggable sub-modules to be used by a variability.
These so called microcomponents are used in [18] to obtain a domain-specific
execution environment for component-based systems. Therefore, the sub-activities
of the component lifecycle such as starting a component or component lookup
areturned into variabilities and represented as microcomponents.

3.3 Summary
As a result of our survey on variability implementation in service-based systems, we
identified 20 variability implementation techniques and presented them as high-level
descriptions in Section 3.2. In Appendix A, each technique is discussed in more detail

INDENICA D2.1.1

 29

in terms of the taxonomy introduced in Section 3.1. In this section, we summarize
our findings and discuss opportunities applying the techniques in INDENICA.

Table 2 summarizes the capabilities of all 20 techniques in terms of the affected
variability object, the individual type of variability and the supported binding time.
While 70% of the described techniques primarily target one type of variability object,
the remaining techniques can be applied to two or even three types. This is
particularly true for the technical platform services techniques, as most of them
were applied in the context of more general software systems such as middleware or
component-based systems rather than being specific to service-based systems. 60%
of the implementation techniques rely on previously defined extension points while
the remaining techniques focus on optional variabilities and alternatives. In contrast,
multiple selection, parameterization and modification of interfaces are additionally
supported by only three implementation techniques. Regarding binding time, the
described implementation techniques mainly focus on runtime (70%) or compile
time (35%). Implementation techniques for deployment also support runtime
variability and overlaps between compile time, initialization time and runtime were
registered only for technical platform service variability, i.e. few techniques support
explicitly multiple binding times. One particular topic for INDENICA, the binding of
variabilities based on the QoS is targeted by two approaches, namely Component
Service Replacement and Abstract Roles (not depicted in Table 2).

One specific part of the work in WP2 will be to identify relevant variability
implementation techniques for INDENICA based on the discussed approaches and to
integrate them into a coherent framework. An integrative concept based on
production strategies will be outlined in Section 5. Industrial demands for the
selection of concrete variability implementation techniques in INDENICA will drive
the research (cf. Section 4). Our focus is not to develop yet another set of variability
mechanisms for services and service platforms. We rather work on the assumption
that all these techniques have their specific role and make sense. What is missing is a
more unified approach that will allow integrating them.

As identified above, only few approaches deal with QoS, parameterization or
multiple selection, explicitly. Some of the more general techniques for technical
platform service variability might also be considered for variability implementation
of domain-specific services or service compositions (e.g. callbacks or
microcomponents).

INDENICA D2.1.1

 30

Se
rv

ic
e

Co
m

po
si

tio
n

G
en

er
at

io
n

Co
m

po
ne

nt
 S

er
vi

ce
 R

ep
la

ce
m

en
t

Sc
op

in
g

an
d

fin
e-

tu
ni

ng

Co
m

po
ne

nt
-B

as
ed

 S
er

vi
ce

 Im
pl

.
Pa

tt
er

n
Pl

ug
in

FO

P-
ba

se
d

Re
fin

em
en

t
Cl

as
s W

ra
pp

er

As
pe

ct
 S

er
vi

ce
 W

ea
ve

r
En

ha
nc

em
en

t O
pt

io
ns

De

pl
oy

m
en

t /
 U

nd
ep

lo
ym

en
t

Sc
rip

ts

Co
nt

ex
t-

aw
ar

e
de

pl
oy

m
en

t p
la

n
Ab

st
ra

ct
 ro

le
s

Ap
pl

ic
at

io
n-

sp
ec

ifi
c

ca
llb

ac
ks

Ex

te
ns

io
n

by
 in

te
rc

ep
tio

n
As

pe
ct

-o
rie

nt
ed

 c
om

po
si

tio
n

Re
fle

ct
iv

e
va

ria
bi

lit
y

Ev
en

t-
ba

se
d

co
m

po
si

tio
n

G
en

er
at

ed
 d

ep
lo

ym
en

t
co

m
po

ne
nt

 c
on

ne
ct

or
s

M
ic

ro
co

m
po

ne
nt

s
U

se
 p

la
tf

or
m

 m
an

ag
em

en
t

se
rv

ic
es

Va
ria

bi
lit

y
ob

je
ct

Platform service x x x x x x x x x
Domain-specific
service x x x x x x x x x x x

Service
composition /
processes

x x x

Service and
platform
deployment

 x x

Ty
pe

 o
f v

ar
ia

bi
lit

y Optional x x x x x x x
Alternative x x x x x x x x
Multiple
selection x

Parameterization x
Extension x x x x x x x x x x x
Interface x x

Bi
nd

in
g

tim
e

Implementation
time

Compile time p p p p p p p
Deployment time v v
Initialization time v v p v v
Runtime v v v p v v v p v p v v v

Table 2: Summary of variability implementation techniques

(x = supported, p = permanent, v = volatile)

INDENICA D2.1.1

 31

4 Demands for Variability Implementation in INDENICA

In this section, we provide an overview of the main requirements that we could
identify for variability implementation in the INDENICA context. There are several
sources to these requirements. Some requirements were already described on a high
level in the proposal document. Further, we discussed variability implementation
requirements with our industrial partners. While these requirements are somewhat
influenced by existing products and experiences in building them, they should
provide additional insight. The results of this analysis and discussions are described
in Section 4.1.

In addition, we analysed some of the platforms that we expect to be used in the use
case. The results are also of interest, as we expect that this kind of variation in the
service platforms must be supported by our approach. This will be described in
Section 4.2.

While we discuss variability requirements here, it should be taken into account that
some of the issues are overlapping with variability modelling. In this case, we will
only briefly mention this, as we will discuss variability modelling on a detailed level in
Deliverable 2.1.

4.1 General Variability Implementation Requirements
Requirements for variability implementation and modelling in the INDENICA-project
have many different facets. This includes:

 Typical capabilities that are in general expected from variability realization.
 Issues that relate to the fact that the goal of INDENICA is to customize service

platforms and not arbitrary implementations.
 Issues that relate to the fact that it should be possible to derive domain-

specific platforms.
 Issues that are derived from non-functional variabilities.
 Issues that relate to supported binding times.

We will now go systematically through these different classes of requirements and
will discuss requirements with a specific focus on the industrial partner
requirements.

General Capabilities in Variability Implementation
A basic requirement for any variability realization approach is to support the
different forms of variation like optional or alternative variation. Most approaches
that discuss variability, especially in the context of features, focus only on these
variations (e.g. [74]). However, from a practical point of view these are rather
restricted. Thus, we emphasize the need to be able to address a larger range of
variation. When looking at the various capabilities outlined below, one should take
into account that we are not referring to modelling the variability, but modelling the
variation. This is very uncommon, as often rather simple approaches that use a direct
relation between features and implementation parts are used [43, 68]. Rather, in our

INDENICA D2.1.1

 32

approach, as we will discuss in Section 5, we will allow transformations on the
models, based on the variability information that is provided. This is in line with
approaches we proposed earlier, like [73]. Next, we will describe the major
requirements on handling variable implementation elements:

 Optional: an implementation element may only be part of a platform under
certain circumstances. This is called Optional Variability.

 Alternative: Sometimes it is important that one of several implementation
elements is present, but it is possible to choose among them. This is referred
to as Alternative Variability.

 Multiple selection: in this case, multiple options exist and arbitrary subsets
can be selected. This requires on an implementation level that also the
integration / combination of these parts is addressed or is possible.

 Parameterization: variation can be communicated through a parameter,
respectively a value. On the implementation level it is necessary that this
value can be referenced in the correct syntax.

 Multiplicity: it might be that some implementation elements need to be
repeated. This is the case, if the variability description is providing a
variability, but this variability cannot be mapped into a parameter, but rather
some implementation element must be repeated. This might be the case if a
subpart must be described differently in different elements. Thus, multiplicity
may need to be supported in combination with the previous variability
operations.

 Grouping: the above operations might be applied to whole groups of
elements.

In addition to these general cases that are still rather common, it is important that
extensions are supported, i.e., it is possible to define that something will be
augmented by a specific implementation, but it is currently not possible to exactly
say what this realization might do. Some industrial partners also explicitly raised this
issue. Finally, it is also necessary to address the more general situation of
functionality that is specific to an individual situation. It must be possible to augment
the implementation correspondingly.

A further aspect in variability description is to use more complex languages, like
domain-specific expressions and higher-level language constructs. At this point it is
not yet clear, whether we will need this within the INDENICA-platform, however, this
will be further analysed in the context of D2.1. If this will be included, we will need to
introduce corresponding capabilities also on the level of variability implementation.
Our corresponding description in Section 5 already takes this into account.

Customizing Service Platforms
The fact that we deal with service platforms had specific significance to some
requirements. This leads to the need to address all levels of the service platform
model we depicted in Figure 3. Thus, we need to address in particular the
implementation of:

 Variability in service composition and processes,
 Variability in domain-specific services,

INDENICA D2.1.1

 33

 Variability in service and platform deployment, and
 Variability in technical platform services.

Within this list the last two are particularly interesting as they strongly embed
specific aspects of the service platform world.

Service platforms may vary with respect to the technical platform services that are
supported. The way this can be done, however, will depend in general on the specific
technical platform and the means it provides. While some platforms provide a basis
for this, in other cases we will need to be able to resort to modifying the base
implementation.

Also the need to adapt the physical distribution of the platform elements, i.e., their
deployment was explicitly raised as a concern. A solution to variability
implementation that addresses our needs must also be able to deal with deployment
variability. Further, the need to customize service compositions (e.g., business
processes) was explicitly mentioned by one of the industrial partners.

In total, it is important to address the whole range of different layers of the service
platform taxonomy we identified in Section 3.1.

Domain-Specific Platforms
The need to derive domain-specific platforms indirectly leads to additional
requirements. This means, we need to be able to use rather abstract characteristics
(e.g., platform for fluid goods) to control the customization. However, this seems less
an issue of the variability implementation than of the variability management.

Further, as there is no fixed granularity of what a domain is, respectively, any domain
may have sub-domains, it seems reasonable to expect that platforms can also be
partially customized (to a broad domain) and successively to a more narrowly
defined domain. Such a multi-step approach that allows for partial instantiation will
be realized using our approach. This implies that also partial instantiations can be
(but need not be) executable platforms.

Currently, it is an open issue, which is under further analysis in the context of the
D2.1 deliverable, whether there is a true need to significantly extend the
expressiveness of the variability description language and allow more general
domain-specific languages in the context of variability specification. It seems that
such integration might be beneficial. This would also have ramifications for
variability implementation, as the integration of domain-specific languages, which
typically rely on code generation, would be required.

Quality Requirements
A major aspect that is traditionally rarely addressed in the area of product line
engineering and variability management is the aspect of the variation of quality
characteristics. However, in the context of service platforms quality aspects are of
very high importance. Based on the information from the industrial partners, the
variation of quality aspect also has a very high importance in the context of their
platforms. Among others, variation of the following quality characteristics was
identified:

INDENICA D2.1.1

 34

 Performance requirements like throughput or latency as well as cycle time
 Real-time requirements; it can vary whether hard, soft or no real-time

requirements are relevant
 Scalability requirements may vary strongly among specific cases
 Reliability requirements may vary. Higher reliability demands can, for

example, be addressed by increased available redundancy.
 Safety requirements may vary as well, as different subsystems, as well as

systems used in different context may vary significantly in terms of their
criticality.

Typically quality variation is addressed by varying aspects of the implementation.
The major difference that must be addressed is that quality aspects are typically
more distributed across an implementation. Thus, our implementation approach
needs to be able to cope well with cross-sectional variability implementation.

Binding Times
Various binding times are relevant already today in customizing the various service
platforms of the industrial partners. In this context several demands can be derived.
Sources of these demands are: the proposal, the context of variability in service
platforms, as well as industrial cooperation partners:

 A large range of different binding times exists in service platforms. In
particular, the issue of deriving domain-specific platforms requires develop-
ment time binding of variation, while the nature of service platforms points
to the need for runtime binding. Within each of these big areas several
binding times exist and in particular deployment binding connects the two.

 Supporting this large range of binding times from an implementation
perspective leads to two possibilities: either addressing each (relevant) one
separately or providing technologies that enable to abstract from a specific
form of binding time implementation.

 It also occurs that the same variability must be decided upon at different
binding times. In particular, it happens that the need arises that it must be
possible to decide upon a variability either during construction time, at
installation time or on a case-by-case basis at runtime.

Thus, we can summarize that a flexible approach that enables a binding time neutral
approach to implementation is important.

4.2 Service Platform Capability Variation
In the context of the INDENICA use case, three specific service platforms are
expected for integration into a virtual service platform. These are Pococapsule [3],
Mobicents [2], and Virgo [4]. On top of these industrial applications will be running.
Thus, we did also analyse the variability of these platforms in an effort to ensure that
we could also cover corresponding variation on an implementation basis.

In this section, we summarize some of these customization possibilities for these
three service platforms, i.e. variability points listed according to their binding times
as well as candidates for variability implementation mechanisms that could be used
to replicate this behaviour. The variability identified here is only a list of examples

INDENICA D2.1.1

 35

drawn from the current status of the platforms and is supposed to be used as a
checklist to ensure that we identified the major possibilities in the previous
subsection. Additionally, the variability can be bound at different times in the
platform’s lifecycle (different binding times for different variabilities), thus we
structure the discussion below according to binding times.

Several functionalities may be added or removed statically at least at compile time.
Examples for these functionalities are the base configurations of Mobicents and the
extension points provided by Pococapsule (plugins for domain specific modelling or
supported component frameworks). Here, the extension points provided by the
respective platform e.g. in terms of callbacks or even traditional variability
implementation techniques such as binary replacement [78] can be applied.

At deployment time, parts of the underlying infrastructure may yet be installed, thus,
restricting the number of configuration options, and the deployment of the concrete
platform can be selected accordingly. Basically, Mobicents can be installed on
different servlet containers whereas Virgo contains a specific servlet container
(Apache Tomcat or Jetty) depending on the chosen version of Virgo. However, the
underlying servlet container may restrict the available functionality (e.g. in case that
MobicentsSip Servlets are installed on Apache Tomcat) or the validity of the
installation (Mobicents Media Server requires JBoss application server)6.

At startup time, functional as well as non-functional runtime properties of the
platform can be determined. Some examples are optimization for availability or
performance event routing, congestion control or logging amount (in Mobicents) as
well as distributed hot-deployment locations, the use of provisioning repositories
and further properties such as timeouts (in Virgo).

At runtime, several options of Mobicents and Virgo can be modified using Java
Management Extensions (JMX), e.g. controlling OSGi properties in Virgo, and thus,
providing means for (adaptive) fine-tuning.

The above cases show examples of variability that are relevant for service platforms
in general and for the service platforms that will be used in the project use cases in
particular. Thus, the approaches we provide for handling variability should be able to
handle the situations above as well – and if possible in a generalized fashion.

4.3 Summary
In this section we discussed what we regard as key requirements for the variability
implementation in the INDENICA project. We gathered those requirements both
from general discussions of the underlying problem as described already in the
proposal as well as using information from the industrial partners on their current
(and expected future) situation. Finally, we also validated this with a discussion of
some existing service platforms and their customization capabilities. We saw that
this existing variability is conformant to the range of variation we described in
Section 4.1.

6A new version (2.0) provides a standalone version.

INDENICA D2.1.1

 36

We can summarize the major requirements on the variability implementation in the
following way:

 It must be possible to cover all typical forms of variability, but on top of this,
also case-specific extensions must be easily possible.

 Variability in technical capabilities of service platforms must be well
supported.

 Variabilities on all levels of a service platform realization need to be
supported (based on the reference model shown in Figure 3).

 Domain-specific variation needs to be well supported, in particular
incrementally refined customized would be desirable.

 It must be possible to address quality variation. This requires in particular the
need to support cross-cutting concerns.

 It must be possible to support many different binding times, in particular
binding times, both from a development time as well as from a runtime
perspective. In particular this may apply to the same variability.

All this should be supported in an easy-to-use technology-independent way.

INDENICA D2.1.1

 37

5 Concepts for INDENICA Variability Implementation

In this section, we will describe the major concepts for variability modelling and
variability implementation techniques, which will be the basis for the work in
INDENICA and in particular for the tool support we will provide. The concepts aim to
meet the requirements we identified in the previous section.

A major focus of both, our description here, as well as the variability implementation
approach we are developing, is to be technology – or more precisely – artefact-type
independent. Towards this end we will introduce the concept of a production
strategy, a transformation of an arbitrary type of model (including code as needed)
to instantiate variability. This will be the main focus in the first subsection. In the
second subsection, we will show how abstraction of binding time and as an effect
how a shift of binding time can actually be realized with the concepts we describe
here. In subsection 5.3, we will also describe how to formulate the special case of a
service-technology independent variability implementation using the concepts
described in this section.

5.1 Production Strategies
In the previous section, we introduced the major requirements on variability
implementation that can be derived from the context of INDENICA. A major
requirement was to be rather independent of the specific service technology. This is
achieved mainly through introducing the concept of a production strategy.

A production strategy defines how variant parts must be assembled in the presence
of a variability resolution (i.e., a value was assigned to a decision variable). To be
more general, arbitrary expressions over decision variables may provide the basis for
driving the instantiation of the variability. Thus, a production strategy takes several
partial source models (or in general parts of artefacts) of some kind and realizes a
selection at a specific variation point in a target model as illustrated in Figure 4. As
shown there the introduction of the selected element(s) can be combined with the
generation of additional glue code. A simple example of a production strategy is
realized by the #ifdef in conditional compilation in the C language along with the
preprocessor that interprets it. This can be used to realize a variability in the context
of the C programming language. Although, preprocessor macros have negative ram-

Figure 4: The basic concept of a production strategy

INDENICA D2.1.1

 38

ifications [53], they are often used in practice and can serve here to illustrate our
notion of a production strategy. We use this mainly because it is simple and widely
known, not because we particularly recommend this technology. In this case the
elements are the parts guarded by the #ifdef, #else, and #endif constructs,
the selector (the specification how sub-elements are defined and combined) is
exactly formed by these constructs, while the variation point is provided by the
position where this construct is placed. In this case no glue-code is produced
because the glue is already defined in terms of source code, i.e. only the selected
element becomes part of the target model, which here of the same type than the
source model (C language source code). The selector also provides the necessary
capabilities to determine which of the elements to put. While this example is very
simple, most real cases will be more complex, but can also be described using this
approach.

Any production strategy consists of certain elements in order to realize a variability.
These elements can be easily identified, if we analyze what a production strategy
must achieve. A production strategy attaches to a certain point in a model (also
source code is seen as a model here), and instantiates the model by selecting some
elements that are related to this variation point (based on information about chosen
values for the decisions), combining them in some form (if necessary) and inserts the
result at the variation point. The combination of the elements is necessary, e.g., if we
select multiple values. In this case some glue needs to be produced in order to
identify at runtime the necessary element. However, the notion of glue is meant
here more generic. It can basically be any kind of additional model elements,
required in order to embed the selection result. The details of what is selected
depend on the chosen decision values. Thus, we can say, in order to describe a
production strategy, we need the following elements:

 Definition and evaluation of a variability value: a way of mapping decision
values that are used to define a specific product into specific resolutions that
include the variant parts and include them appropriately into the target
artefact. Using the example of the C-Preprocessor, #ifdef directly takes an
argument which must be provided by the environment.

 Variation point identification: this describes where the variation occurs, in
particular, where the result of the production and selection process is placed.
In the example, this is given by the textual context of an #ifdef statement
in the source code. However, many different means exist for identifying this.
This will always depend on the available technologies and the relevant types
of artefacts.

 Technique for selecting (and combining) elements: this defines how sub-
elements (e.g., the various alternative elements of a selector) are identified
and combined. A combination is necessary in case of a multiple selection. In
this case, the various selected sub-elements must be integrated in some way.
This also subsumed as glue in Figure 4.

 Technique for introducing selected elements (including relevant glue): after
selecting and combining the final elements, it might be necessary to use
some sort of insertion mechanism in order to integrate the combined parts

INDENICA D2.1.1

 39

into the target model (at the position denoted by the variability point
identification). An approach, which requires this, is when aspect-orientation
is used and the individual functionality that varies is described using aspects.
In this case, the aspect preprocessor provides also the capabilities for
inserting the result.

As outlined above, a single realization technique (like a preprocessor) is often
insufficient to address all variability concerns. This is the case even if we restrict
ourselves to a specific form of representation (like C-code), a specific form of
selection (e.g., multiple selection), and a specific binding time (e.g., preprocessing). It
is, for example, problematic to use C-preprocessor directives to realize multiple
selection, as this requires glue among the selected variabilities.

In order to successfully support variability implementation in the way we discussed it
in Section 3, we need also to realize the artefacts in a way that is independent of the
specifics of what we would like to insert. So, in order to provide technology
independent variability implementations, i.e. the ability of exchanging the service
technology while applying the production strategy, we also need to abstract in the
underlying artefacts from this.7 This form of separation is shown in Figure 5.

In Figure 6, we show how the implementation of a production strategy may look like
in a process view. Based on the decision model a (partial) instantiation is described.
These values must be translated into a form that can be understood by the selector.
This selector definition is then the basis (together with the variation point definition)
to derive with the help of the glue generator an implementation. The resulting
implementation is then injected at the variation point into the target model.

In order to more formally – and thus, precisely – define what a production strategy
is, we need to look at its characteristics. These include: the type of target model
(e.g., C-code), the binding time (e.g., preprocessing), and, the kind of selection
supported. Nevertheless, a production strategy is still generic. It still provides a very

7We combine here the realization of variability with the service technology realization. It is currently an open

issue whether it might be better to vary the service technology in an independent step.

Figure 5: Separation of functional code and variability implementation

INDENICA D2.1.1

 40

general mechanism that can be applied to a very large number of variabilities in a
product line. In summary, we can interpret an individual production strategy as a
transformation function of the form:

PS(target, vip, val, elem1, …, elemn) model

Here, target provides the target model where a variability must be resolved. The
specific point in the model where the results of the variability resolution shall be
inserted is also called a variability impact point (vip) [70]. Val defines the value of the
decision for a specific product. Finally, elem1 to elemn are the elements among which
a selection occurs, i.e., the arguments to the variability selector. This can be used to
more formally describe the generation of instantiated platforms. However, a
complete formalization still requires much further work.

While Figure 6 provides the view of a single application of a production strategy,
Figure 7 provides a more comprehensive view of the production process as a whole
as it is currently seen. The basic implementation that provides the functional content
(depicted as base production code) is transformed using production strategies. In
this case, we expect that variability code which is binding time specific will actually
be introduced through this operation. This leads to integrated production code,
which contains the actual variability (and service technology) implementations. This
code is then exposed to the different production stages, leading to the binding of
variabilities where appropriate.8

5.2 Binding Time Shift as Exchanging Production Strategies
The selection of the implementation technique for a variability typically fixes the
binding time. However, sometimes, this is undesirable and it is desired that the

8Note that this is not necessarily done this way, actually the introduction of the production strategies could

happen at exactly those stages corresponding to the binding times. However, this would be more complex. The
depicted approach has also been applied in previous work [72].

Figure 6: Implementation of production strategies

Injected into,
glued to

Definition / Evaluation
of variability value

Decision Model
(Definition)

(Partial)
Instatiation

Generic Artifact

Instantiated by,
derived to

Product Line Core
(Target model)

Value Translator

Glue Generator,
Injector

Variation
Point 1

Variation
Point n

Selector

Sub-element 1

Sub-element m

Instantiation and
Validation

INDENICA D2.1.1

 41

binding of platform services can also be flexible in their binding time. For example,
for one instantiation of a platform it is known that several services should not be
present at all, while for another instantiation of the same platform the decision on
the available services should be made dynamically at runtime.

Examples of approaches that support such variability of the binding time are timeline
variability [28, 29], anytime variability [82], or meta-variability [71, 72]. These
approaches support a dynamic shift of the binding time. Timeline variability and
anytime variability are very restrictive, as they consider only a specific form of
variability realization.

Experiments showing the technical feasibility of the generation of glue code and
shifting binding times have been implemented in a prototypical tool [71, 72]. In fact,
the tool described below is early work in this field based on initial concepts that
predate the project. The concepts we introduced in the previous subsection provide
a basis for a further systematization of this approach. As part of the further work in
the INDENICA-project WP 2, this will be subject to thorough analysis.

In this initial tool-based approach the variability model as well as all artefacts
relevant to the product line, like source code files, serve as an input. The output is
the product, which is built according to the variability selection as an instance of the
variability model. In this case the variability information also includes the binding
time information. Based on this information, the tool configures the build process so
that only relevant parts of the artefacts are composed, compiled and packaged.

Based on the terminology introduced above, one could reinterpret this early tool as
realizing multiple production strategies, where each production strategy is realized
as an aspect template. Based on annotations in the target code (we use Java as a
programming language in our examples), the tool determines where and which
variabilities need to be actually realized for a specific system. Using this information,
aspect templates are instantiated and woven into the final production code. In this
way, we only have a single template per production strategy. Moreover, all

production strategies are handled in the same way and are completely independent
of the functional code. This approach can be seen as an early attempt into the
direction of binding time variability, as it is expected to be supported by the

Figure 7: The production process

INDENICA D2.1.1

 42

INDENICA project. However, this initial approach was restricted, for example, in the
sense that only aspect-based injection of variability implementation techniques was
possible and thus also only the handling of java artefacts was possible. Further, this
initial approach was not aligned specifically with the context of service technologies.
Moreover, the specific systems on which it was applied had to be particularly
prepared, but no architectural modularization like the one we described in the
previous section was used. However, this initial study showed that the
implementation of a binding time shift for compile time, system initialization, and
runtime is feasible without too high demands on the specific, underlying software.

An example for a compile time binding template is shown in Figure 8. In this example
the template parameters are determined with the help of source code annotations.
Using these parameters the template code is instantiated and an aspect results that
takes care of the specific variability for which it was generated. In order to address
the variability (in this case an optionality) we remove the creation of the instance
and its registration from the system (line 11). As can be seen in the figure (line 3 and
6-8), the template makes certain assumptions about how the various variabilities are
interwoven with the overall code. To some extend these dependencies are due to
the specific realization approach we use for the production strategies (i.e., aspect
orientation, using the AspectJ processor), and to some extend this is due to
fundamental issues, as we need some conventions for variations, as otherwise the
insertion or deletion of code might lead to semantically or functional incorrect code.
In the future we expect to address these assumptions in a more systematic manner
than is the case in this early prototype.

Similar to the aspect template, we showed in Figure 8, we realized other aspect
templates for initialization time binding and runtime binding. In these cases also
additional code for handling dependency and configuration issues is currently
generated in an ad-hoc fashion. Again such an insertion is not possible without
making some assumptions with respect to the underlying system. However, we
achieved complete separation of the variability mechanisms from the functional
code in the sense that we can arbitrarily exchange the various variability
implementations for different binding times. Thus, we regard these experiments as a

Figure 8: Aspect template for compile time binding

INDENICA D2.1.1

 43

promising basis for extending our work along the lines of the described general
production strategies.

The early approach described above has several restrictions:

1) It relies on an aspect-oriented implication (currently AspectJ). This technology is
so far only little used in practice. Moreover it makes strong assumptions
regarding the underlying implementation and the kind of modifications. Within
WP2 we expect to be able to modify the approach so a larger range of systems
and situations can be addressed.

2) The preparation of the system was done manually by inserting source code
annotations or by changing the build process. This required deep knowledge of
the code as well as of the dependencies to the tool. Here, we expect for the
future an approach that is easier to handle. However, an explicit definition of
variability points will always be necessary as an understanding of the semantics
of the variation is required.

3) As stated above, the approach can be interpreted as applying multiple
production strategies. In fact, the concept of a production strategy is not
realized in the early tool prototype and, thus, it is difficult to generalize the
application to other kinds of systems. For the full version to be developed in
INDENICA we have to face these problems, i.e. to provide a clear separation of
technical glue code, to consider consistency issues (e.g. passivation or state
transfer) and functionality as well as to integrate the approach with architectural
concepts.

A summary of the production strategies for the three different binding times
outlined above is given in Table 3.

Production
strategy element AspectJ production strategies for shifting binding times

Definition and
evaluation of a
variability value

Source code annotations mark the variable parts in source code
and link to the variability model. Generated attributes represent
the individual variability bindings. Bindings are represented at

 Compile time as constants
 Startup time or runtime as variables

In the aspect templates, pointcut specifications or aspect source
code representing the glue code may refer to these attributes.

Variation point
identification

AspectJ pointcuts guided by source code annotations.

Technique for
selecting (and
combining)
elements

The variability model defines valid binding times per variability
(meta-variability). The concrete selection defines the binding
time to be applied as a one-out-of-many selection and thus the
concrete production strategy. Multiple selection is not possible.

INDENICA D2.1.1

 44

Technique for
introducing
selected
elements
(including
relevant glue)

A code generator produces the attributes containing the
variability bindings. Depending on the binding time, the
template processor selects the concrete template and
instantiates it using information from the variability model and
the code annotations. Product instantiation happens by weaving
the generated aspects into the system.

 Compile time: static weaving
 Startup time: dynamic weaving, variability binding at system

startup showing a UI dialog
 Runtime: dynamic weaving, add a menu item for the

variability binding dialog, display the UI dialog on request

Table 3: Summary of the production strategies for compile time, startup time and runtime.

5.3 Variability of Service and Component Technologies as an
Exchange of Production Strategies
In INDENICA, the integration of multiple platforms that use a number of different
(service) technologies is a major goal. This implies that specific functionality should
be flexible to be integrated with different component and service implementation
technologies. However, according to the state of practice, varying an
implementation with respect to its component or service technology is extremely
difficult. In an ideal environment, at development time, the functionality of a service
should be in the focus of the software development while the technical integration
with the execution environment (middleware, service platform) should be
transparent to the developer, e.g. by automation. However, today each technology
provides different capabilities, e.g. service call styles and requires specific additional
information or even a certain implementation style, e.g. annotations for Web
Services, IDL in CORBA or specific type compliance in RMI. This variation in
implementation approaches makes a combination of technologies or a migration
among technologies rather difficult. This, in turn, prevents the reuse of the
functional realization across service technologies. In order to improve reuse, we aim
at abstracting, as far as possible from these technology specific issues.

In the following subsections we first introduce our view on service and component
technologies. We will focus on the perspective of varying the implementation
technology as a form of meta-variability. In Section 5.3.2, we discuss the
commonalities and differences of service technologies as this determines the limits
on the extent to which it is possible to exchange service technologies. Finally, we
describe an example of an exchange of service technologies in terms of production
strategies.

5.3.1 Service Technology Fundamentals
A service technology provides a specific way of defining and using services. Service
technologies may target specific application domains, such as web information
systems (e.g. Web services), facilitate dynamic loading and reuse (e.g. OSGi), provide
storage and lifecycle management (e.g. SCA) or remote invocation (e.g. SCA, OSGi).
While service-based approaches lead to a different structuring of the system,

INDENICA D2.1.1

 45

compared to classical component-based approaches, the underlying capabilities are
to a large extend comparable (as we will discuss in Section 5.3.2). One could thus
also employ an approach like CORBA to realize a service-oriented implementation,
although the typical technology for doing so is probably Web Services. For this
reason, we will use the term service technology to mean any form of technology that
supports the interaction of parts of (distributed) software systems.9

In order to facilitate the seamless exchange of service technologies, a set of
properties specific to implementation technologies must be encapsulated and
hidden from the calling program. We call this set of properties a technology profile. It
describes an abstraction from the underlying capabilities of a service technology and
thus provides a means for a comparison of technologies. The technology profile in
particular includes the set of technical platform services as defined in Section 3.1.1.
A service technology may:

 Require a service interface or implementation to comply with a certain type,
e.g. the bundle activator interface in OSGi. Such technology-specific parts of
the implementation can be encapsulated in service wrappers [35].

 Restrict the use of parameter and return types, e.g. String arrays need to be
represented as specific class instances in certain Web Service
implementations. Thus, it might be necessary to specify explicit value
conversions for a certain implementation technology. More sophisticated
mappings are needed, if method names or parameter sequences cannot be
directly mapped.

 Provide a specialized lifecycle management for the components and services.
Often the instantiation depends on specific mechanisms of the
implementation technology, e.g. in SCA instance creation can be used while
in Web service technologies an appropriate stub of the service must be
created.

 Ship with different sets of management services so that the technology
profile may specify the management services being relevant for exchanging
implementation technologies.

5.3.2 Comparison of Service Technologies
We analyzed several service and component technologies as a basis for determining
the limits to which portability across service technologies would be possible and
hence limits to abstract from specific service technologies using production
strategies.
In literature, several surveys classify and compare up to 30 different service-oriented
and component-based technologies [16, 25], respectively up to 23 component-based
technologies [26, 45]. We use the criteria applied in literature as a basis for our
analysis and refine them by additional (technical) categories according to the focus

9Typically, service-orientation is connected with a much higher degree of run-time flexibility as component-based

technologies. However, in practice runtime discovery is also possible with classical „component-technologies“
as well as service technologies are often used in a more static way.

INDENICA D2.1.1

 46

of INDENICA and our specific task of understanding the possibility of varying service
technologies. In the remainder of this section, we present a subset of the categories
and technologies considered in our analysis, particularly those related to the
technology profiles introduced in Section 5.3.1 and to management services relevant
to variability implementation techniques, namely:

 Capabilities related to technology profiles
 The type of (service) units supported by the technology as well as

possible dependencies among them for defining compositions [26, 45].
 Capabilities for describing interfaces to the supported units [16, 25, 45].
 Call semantics and interaction style provided by the respective

technology [26, 45]. This is particularly relevant for separating service
functionality from technology integration.

 Supported platform management services:
 Query and discovery of deployed units; these are considered typical

management functionality in service-based systems.
 Introspection of units [16, 25], i.e. dynamically obtaining the capabilities

of a unit and providing the basis for reflective variability implementation
techniques.

 Specification and support for extra-functional properties [26] such as
quality of service or security.

 Functionality for deploying units [26].
 Event mechanisms for communicating among the units or to receive

information on the state of the platform.

Regarding the considered service and component technologies, we rely here on the
capabilities as they are described by official specification documents and do not take
specific functionality of individual implementations into account. We included those
technologies, which we considered particularly relevant to INDENICA such as the
Service Component Architecture (SCA) [59] (which is under discussion as a
foundation for the INDENICA runtime environment) and OSGi [80] (realized by Virgo
[4]). Further, we include other well-known technologies, which are also considered in
the surveys mentioned above, such as web services the Common Object Request
Broker Architecture (CORBA) [57] and Java Remote Method Invocation (RMI) [60]. As
one kind of web service technology we refer to the web service stack as specified by
OASIS, i.e. the Simple Object Access Protocol (SOAP) [62, 86], the Web Service
Description Language (WSDL) [85] and the Universal Description Discovery and
Integration (UDDI) [30].

INDENICA D2.1.1

 47

Table 4: Service technology capabilities related to technology profiles.

Error! Reference source not found. summarizes the categories related to technology
profiles, i.e. basic unit types, interface capabilities and the call semantics. The
categories discussed above are refined into sub-categories in order to highlight
selected capabilities found while analyzing the individual technologies. Details on
management services are summarized in a second table below.
The basic unit type denotes which kinds of units are supported by the platform.
SCA10, OSGi, and CORBA use mainly services, bundles, and modules. Web services as
well as Java RMI are intended for Remote Procedure Calls (RPC) and either rely on
messages or special types of objects. More specifically, for Web services SOAP
differentiates between such RPCs and sending complete XML documents.
Interfaces to the units handled by a platform are the primary artefact to be
considered for the variability of the service technology. While SCA and OSGi support
the explicit specification of provided and required interfaces, the remaining
technologies typically support only provided interfaces and handle required
interfaces implicitly (e.g. via class loading in RMI). SCA, OSGi and Web services (using
WSDL) provide explicit mechanisms for modelling dependencies among units outside
their implementation while CORBA and RMI rely on remote references used in the

10See also the discussion on nested elements in INDENICA Deliverable D3.1.

Capabilities SCA OSGi Web-
services CORBA RMI

co
nc

ep
ts

basic unit type component,
service bundle, service XML-

Messages
class, struct,

module

Remote
Interface,
Remote
Object

in
te

rf
ac

e

interface
relations

provided,
required

provided,
required provided provided provided

dependencies wiring wiring via WSDL remote reference remote
reference

ex
pl

ic
it

ru
le

s rule types intents,
policies

bundle
specification,

intents
- policies in IDL

(extension) -

Binding
time

assembly,
deployment (runtime) - assembly,

(runtime) -

explicit
protocols

conversions,
transactions - - transactions -

Ca
ll

se
m

an
tic

s

re
m

ot
in

g parameter
type

by value, by
reference (in

same process)
by value by value by value, by

reference

by value,
by

reference

callbacks possible possible - possible possible
local calls possible possible - possible -

INDENICA D2.1.1

 48

implementation. The interfaces as well as the wiring (if supported by the technology)
may be described or constrained further by rules. For this, SCA offers two types,
namely policies (capability description or constraints) and intents (refinement of
policies in terms of requirements). Initially, OSGi supports only rules regarding its
deployment units (e.g. bundle version, bundle dependencies) while recent versions
of the OSGi specification also define intents similar to SCA. Also the basic CORBA
versions did not support rules while recent extensions of the standard add policies
(here a characteristic possibly shared by concrete objects) to the Interface Definition
Language (IDL), e.g. in [56]. Rules may be specified at a certain binding time, i.e. the
point in the application lifecycle, where the units and their connections must at least
be established. Furthermore, two technologies allow the specification of protocol
styles: SCA supports explicit conversations (fixed communication sequences) as well
as transactions following the ACID (Atomicity, Consistency, Isolation, Durability)
paradigm while CORBA supports only transactions.
The call semantics section indicates the supported interaction style, i.e. whether
remote calls or explicit local calls are possible. All technologies support remote calls
as well as passing parameters by value. SCA, CORBA and RMI also support passing
parameters as references; in the later case additional restrictions apply for SCA. All
technologies except Web services11 support callbacks, i.e. the registration of a local
unit at remote side to be called from the remote at defined extension points. SCA,
OSGi and CORBA support explicit remote calls, i.e. the capability to replace remote
calls by direct calls to locally hosted units in order to avoid network overhead and to
improve performance.

11C.f. SectionA.4.2 for work on callbacks via HTTP as a possible basis for callbacks in Web services.

INDENICA D2.1.1

 49

Capabilities SCA OSGi Web Services CORBA RMI

query &
discover

by domain-
level

composite,
name or URI

by name, URI

UDDI, Web
Services
Dynamic
Discovery

by name,
repository
interface

by name

introspection - - -

via
get_interface,

repository
interface,

CORBA
reflection, ORB

interface

-

security via policies permissions additional
specifications

security
policies,
trusted

domains

QoS via intent bundle
capabilities - policies, fault

tolerance -

deployment
functions

install, update,
remove, add /

remove
composite

install, start,
stop, deactivate,
update, uninstall

-
bind, rebind,

unbind,
upgrade

export, bind,
rebind,
lookup,

unexport

ev
en

ts
 unit yes, in

channels yes - yes, as defined
in IDL -

platform - yes - - -

event
service yes yes

Table 5: Management services provided by service and component technologies.

Error! Reference source not found. summarizes management capabilities of the
considered technologies. Each technology provides individual capabilities for
querying and discovering units, e.g. using a qualified name. In addition, the CORBA
specification describes an interface to the internal repository, which may be used to
execute queries. In CORBA, the same repository interface as well as a specific
reflection interface or the Object Request Broker (ORB) interface may be used for
introspecting units. The remaining technologies do not explicitly support
introspection (this might be handled using the reflective capabilities of the
underlying programming language if available).
Except for RMI, where the basic Java security mechanisms apply, all techniques
provide explicit security mechanisms, in additional specifications (Web services), on
source code or bundle level (OSGi) or on interface specification level (SCA, CORBA).
Only SCA, OSGi and CORBA provide (basic) mechanisms for specifying and enforcing
Quality of Service aspects. While the Web service specification does not explicitly
define management services for the deployment (this depends on the implementing
container), the remaining technologies define similar capabilities for installing,
starting, stopping, updating or deleting the respective units.
Some technologies offer information on the execution of management actions or on
the change of certain unit states. While SCA, OSGi and CORBA provide events on
their respective units, only OSGi also offers events describing the platform state. SCA
and CORBA provide a general event service, which might be used to realize event-
based variability (c.f. Section A.4.6).

INDENICA D2.1.1

 50

In summary, we compared the individual capabilities of five different technologies:
SCA, OSGi and Web services as service-based platforms as well as CORBA and RMI as
(more) component-based platforms. While this analysis does not go into the
technical details, e.g. differences among policies in SCA, OSGi and CORBA, it provides
an overview on the main capabilities and the differences among these technologies.
As these differences provide major obstacles in exchanging one service technology
for another (if a relevant management service is not available, it basically makes the
exchange impossible), this also describes the potential for varying service and
component technologies.
The specifications of SCA and OSGi define various similar concepts, particularly since
the recent alignment of OSGi to SCA. Based on a direct comparison, OSGi appears to
be the more basic (but evolving) service platform while SCA is more advanced.
However, CORBA shares a lot of the discussed concepts with both SCA and OSGi, but
also differences exist like in interface specifications or with respect to introspection.

5.3.3 Using Production Strategies to Abstract from Service Technologies:
an Example
As mentioned above, the generation of wrappers for a given interface (such as stubs
and skeletons) is state of the practice at least since the introduction of CORBA and is
used to translate WSDL to concrete programming language constructs. Also other
approaches target the generation of wrappers among components, e.g. Cavallaro et
al. [22] automatically produce wrappers between two different WSDL web services
or Zhao et al. [87] generate glue code and component wrappers to achieve
interoperable computing systems by unifying the communication to SOAP. Our work
goes beyond existing approaches because we abstract from the concrete technology
and generate the code for the integration technology in a rather general form. This
allows the exchange of the service technology on demand using product line
techniques.

INDENICA D2.1.1

 51

In a prototypical realization that aims at demonstrating the feasibility of
independence of the service technology, we varied the specific service technology
using aspect-oriented techniques to inject the implementation of an individual
instance of a service technology into the target system. In the prototype, we use
aspect-orientation merely as a kind of preprocessor. To render our approach
independent of the specific system under study, the concrete aspects are generated
from a set of basic aspect templates. Figure 9 depicts an overview of the generation
process in our prototype.

Once a specific instance is desired, the affected service interface, the related aspect
template containing the generic realization of the binding, and the service
technology (profile) are selected. The code generator takes this information as input
and generates the glue code for binding the variability, similar to the approach for
shifting binding times in Section 5.2, as well as a wrapper according to the
appropriate technology profile. The aspect is then used to inject the realization of
the service technology for the specific decision into the target system.

While this approach enables independence from the specific service technology and
thus also supports the exchange of service technologies, it does not modify the
underlying architecture. Thus, if a true component-based or service-oriented
implementation is desired, corresponding services must be designed and identified
on an abstract level. The specific technology, however, can be determined and
changed at a rather late point in time.

A summary of the elements of a production strategy that realize a service technology
is given inError! Reference source not found.. Individual strategies may differ in the
selected technology profile and depend on the concrete service interface they are
applied to.

Figure 9: Overview on generating aspects and wrappers.

INDENICA D2.1.1

 52

Production strategy element Example production strategy

Definition and evaluation of
variability value

Source code annotations mark the variable. Source
code annotations mark the variabilities, each with
the identification of the realized variability. The tool
environment matches the identification against the
variability model.

Variation point identification Variation points are implicitly represented by the
interface of the services marked as variabilities.

Technique for selecting (and
combining) elements

The variability model defines the available service
technologies as an alternative. The concrete
selection defines the technology (profile) to be
applied as a one-out-of-many selection. Multiple
selection is not possible.

Technique for introducing
selected elements (including
relevant glue)

A code generator produces the technical integration
into a service technology based on the concrete
technology profile, glue code templates and the
individual service interface. Particularly, in case of
remote interfaces, the generator produces the
appropriate call style, i.e. by reference (e.g. as
remote callback similar to the variability
implementation technique in Section A.4.2) or by
value.

Table 6: Summary of production strategy elements for service technology independence

5.4 Summary
In this section, we introduced the key concepts relevant to variability
implementation according to the INDENICA approach. The core aspect is the
introduction of what we call a production strategy. This provides a generalized
means of introducing a variability implementation into an asset.

In particular, we propose to separate on the one hand the specifics of the service
technology from the functional aspects and on the other hand the variability
implementation from the functional aspects. This enables to introduce variability
implementation and service technology on demand and thus provides a significant
degree of freedom, which is otherwise not possible.

The effects of such an approach, we studied using two different examples. First of all,
by separating the variability technique, we can introduce at a very late point in time
the necessary variability. This allows, among other things, to vary the effective
binding time very late. However, it can also be used to separate out the service
technology and thus introduce a specific service technology at a very late point in
time.

INDENICA D2.1.1

 53

We also discussed limits to such an exchange of variability techniques, by analysing
the differences among individual service technologies. This provided some insight
into which technologies will actually be exchangeable.

Within the further work in INDENICA, a particular focus will be on:

 demonstrating the described forms of variability realization in further, more
complex examples.

 formalizing the notion of production strategy, in order to analyse in more
depth its applicability and usefulness.

 integrating and extending this approach in an integrated tool environment.

INDENICA D2.1.1

 54

6 Conclusion

In this deliverable, we aimed at deriving the initial concepts for the variability
implementation approach that will be used within INDENICA to support domain-
specific customization of service platforms.

In a first step, we summarized main concepts that are relevant to variability
implementation in general. As of now, we assume that we will be able to address
most concerns using a configuration-based approach. Thus, the focus was on a
decision-oriented description of variability, which provides the basis for the effective
tailoring of the service platforms. We will study this further in the upcoming D2.1
deliverable.

In Section 3, we studied in detail related work. The focus was less on a positioning of
this work relative to other research as it was clear from the beginning that the broad
focus that we have in this work is so far unmatched. Rather, the main focus was on
providing a collection of best practices from research and industry that we would like
to include our at least the capabilities of which we would like to emulate as part of
this deliverable. While Section 3 summarizes these patterns, the full description of
these patterns is provided in Appendix A.

Section 4 focused on capturing the main requirements that any approach to
variability implementation that addresses the INDENICA needs, must provide. As part
of this work, we could identify a number of different requirements. Some had
already been described (on an abstract level) in the project description: However, a
number of requirements could only be identified through interviews of the industrial
partners and through analysis of the state of technology, including the expected
platforms that will be used as part of the use case. A major challenge will be to
strongly abstract from the specific service platform technology, address the broad
range of different binding times and still be able to provide a customization
approach that can easily be used.

Section 5 then focussed on the concepts we developed for achieving a new approach
for variability implementation. The main contribution is to provide a significant level
of abstraction that enables to go beyond the flexibility most current approaches to
variability implementation provide. This relies on earlier work which shows that
binding time variability can be achieved using this approach. But we extended it here
both conceptually as well as in demonstrating the applicability to different service
technologies.

However, while this deliverable established some core concepts of the INDENICA
variability implementation approach, still a lot of work needs to be done. We need to
further formalize the implementation approach in order to provide a more
generalizable applicability. It is not yet fully clear, but this might require also a
specific form of modelling the services together with the variability. Also the
resulting production strategies need to be implemented in the tool environment, in
order to demonstrate and test the applicability of the approach. At this point the
tool only provides rather limited production approaches.

INDENICA D2.1.1

 55

Also the variability in terms of quality of service aspects will provide a challenge,
where we expect that further work up to the final implementation deliverable needs
to be done both on a conceptual as well as on an implementation level.

Finally, a question, which we will address in the context of deliverable D2.1 will have
major ramifications also for the further work in variability implementation. In D2.1
we will discuss in detail the potential approaches for modelling variability per se
within INDENICA along with its trade-offs. The specific form(s) of variability
modelling that will be supported, may also have a significant impact on variability
implementation.

INDENICA D2.1.1

 56

A Appendix: Variability Implementation Patterns

In this section we provide an overview of different variability implementation
techniques found in literature, which are relevant to service oriented development.
Our overview is mainly based on a literature review, but also takes into account
reported practices from project partners.

The structure of our patterns is inspired by standard pattern catalogues like [35],
however, it was refined based on the specific context of our work, namely variability
implementation and service orientation. A more detailed description of the structure
is provided in Section 3.1.

Name: Each form of handling variability implementation (aka variability
implementation pattern) receives a unique name for easy identification
and reference.

Purpose: The variability implementation problem that the technique supports to
solve is described in this section of the template.

Description: A short description on what problem in variability of service-
based systems and service platforms the variability implementation
technique aims to solve.

Variability Object: This describes the object that is supposed to vary. In
Accordance with Figure 3 and the discussion in Section 3.1, we
differentiate between:

 Technical infrastructure: the technical infrastructure provides
the backbone of the service platform. As this is typically not by
itself service-based, any form of variability implementation can
be used with this. In order to restrict the scope of this survey,
we do not address this here.

 Platform service: within a service platform also infrastructure
services exist like the registration of services, location of
services, etc. A platform implementation may itself vary in
terms of availability of platform services.

 Domain-Specific services: an INDENICA platform includes also
domain-specific services that extend beyond the technical level.
These can vary.

 Service composition (and processes): even within the INDENICA-
platform services may be composed. This is often done by
integrating them in the form of a process, that itself can be
seen as a service. Variation may occur in the constituents of the
composition.

 Service and platform deployment: services or a complete
platform is deployed does not impact the logical content of a
platform, but it strongly impacts the physical layout and thus
many characteristics of the running platform. Deployment can
be an object of variation as well.

INDENICA D2.1.1

 57

Form of Variation: We can differentiate multiple forms of variation. Most
of them are derived from variability management in general, but
some are inspired by service-orientation:

 Optional: a variability object may only be part of an installation
under certain circumstances. This is called Optional Variability.

 Alternative: sometimes it is important that one of several
variability objects is present, but the variation is in which of the
objects to pick.

 Multiple selection: sometimes multiple options from a set of
variability objects can be selected.

 Parameterization: variation can be communicated through a
parameter, respectively the value.

 Extension: variation can occur by extending a feature, service or
property that already exists. Typically, this is done by providing
explicit extension points.

 Interface: the interface (e.g., of a service) is adapted, e.g. by
modifying number and type of its parameters.

Binding Time: This determines when a choice of the specific variation
needs to be made. Typical examples are implementation time
(explicit human interference is required, e.g., to modify a program
description), compile time, deployment time, initialization time,
service-binding time, and runtime (meaning at any time during the
operation of the system). Further a binding of variation can either
be permanent or volatile (in the later case a rebinding for a new
variation is possible). Some techniques also support multiple
binding stages; this will be noted as well.

Context: This section describes the context in which the technique can be used.
While this does not mean that the technique cannot be used outside of
this context, it is at least not so straightforward or not based on existing
experience.

Environment Contexts: This describes the technical dependencies to the
environment the approach has. For example a specific technique
might be proven with Web Services or in the OSGi context. This does
not mean it cannot be applied outside the context, but only that no
experience its application exist so far.

Assumptions on Systems: Techniques may make further assumptions on the
types of the systems they will be applied in. If applicable, they will be
listed here.

Solution: This section describes the technical solution. While we expect that
several techniques will be available that have the same or similar
purpose, we will only describe unique solutions as independent patterns.

Key idea: This describes the key idea of the technique, we found. We will aim
to transfer the description into the terminology used throughout this
deliverable, as far as possible.

INDENICA D2.1.1

 58

Technology Background: If specific implementation technologies (e.g.,
aspect-oriented techniques) are required for using this technique,
we list them and characterize their role, with respect to the
variability implementation.

Variability Approach: This characterizes the assumptions the technique
makes about the relation of the variable parts and the core parts of
the implementation. A technique may employ positive or negative
variability: positive means variable parts are added to the core
implementation (aspect-oriented approaches are typically an
example of this), negative means all variable parts are part of the
main implementation and not applicable variation is removed. In
generation-based variability the necessary implementation is
generated from a description in a different form. If a categorization
on this basis is not possible, we will put it as not applicable.

Variability Granularity and Selection: This describes the level of granularity
on which variability can be described and how individual variable
elements can be selected for inclusion or exclusion into a variant
realization. Typical examples are line of code, file, statement,
parameter, function, module, service, service binding, service
bundle, deployment unit. Effective selection typically happens via
some sort of mark-up or reference but may also be handled
externally.

Dependency Management Support: If the technique provides direct support
for management of dependencies among variant selection, this is
described here.

Platform Definition Support: If the technique also supports the identification
and definition of the variable parts that are needed to make up a
service platform, this is described here.

Further Aspects: Further information regarding the technique that does not fit
the above categories is described here.

Source: The sources for the information described above are listed here. This
may include literature or company references.

Comments: Any information that does not fit the categories above, but is
considered important for the purpose of the analysis is described
here.

Using the above pattern template, we analysed the techniques that aimed at
product line variability and described them in this way. We aimed at being
exhaustive in this effort, thus also some borderline cases are included that do not
provide a well-defined or unique technique. The overview is organized according to
the variability objects we defined above to achieve good accessibility of the results
from a problem perspective. Out of the different variability objects, we did not
address service platform infrastructure as this can be implemented using any kind of
variability and providing a survey on this would have led to replicating existing,
generic surveys of product line implementation such as [53, 78].

INDENICA D2.1.1

 59

A.1 Variability in Service Composition and Processes

A.1.1 Service Composition Generation
Name: Service composition generation

Purpose:

Description: Support variability of service composition by generating a
specific business process (in BPEL [63]) based on feature configuration and
the selection of corresponding domain activities of a Business Process
Family Model (BPFM). A BPFM specifies common and variable services in
the same way a Feature Model specifies common and variable features in
traditional product line engineering.

Variability Object: Service composition (and processes)

Form of Variation: Alternative, Optional

Binding time: Compile time, permanent

Context:

Environment Contexts: The existing implementation requires Web Service
technology and the use of UML 2.0 activity diagrams as a basis for BPFM
modelling.

Assumption on Systems: -

Solution:

Key idea: Generation of specific business processes (in BPEL) from a generic
BPFM including common and variable services. The BPFM is modelled using
an extension of UML activity diagrams including variation points, variation
point bindings and variants regions (introduced by this approach). The
generation of a business process variants from the BPFM is based on a given
feature configuration and the selection of the corresponding core domain
activities and variants (used to implement the selected features). This is,
deriving a UML activity diagram in which all variability is resolved. The
automated transformation of an UML 2.0 activity diagram [58] to BPEL is
presented in [15, 38, 21].

Technology Background: Transformation component is required to
automatically transform a business process variant derived from the BPFM
(UML activity diagram) into a business process defined in BPEL.

Variability Approach: generation-based

Variability Granularity and Selection: Service

Dependency Management Support: Rules and dependencies among
services are managed on the level of the feature model by specifying
relations and dependencies among features using the FODA methodology
[42].

Platform Definition Support: -

INDENICA D2.1.1

 60

Further Aspects:

Source: [64, 52] and the conceptually equal Business Process Line (BPL)
approach proposed in [14]

Comments: -

A.1.2 Component Service Replacement
Name: Component service replacement

Purpose:

Description: Support variability of service composition by replacing one or
more component services of a business process. A component service
provides functionality that is required to achieve the overall goal of the
business process. Variability exists in the way that component services are
replaced to meet varying QoS constraints.

Variability Object: Service composition (and processes)

Form of Variation: Alternative

Binding time: Runtime, volatile

Context:

Environment Contexts: The existing implementation requires Web Service
technology.

Assumption on Systems: -

Solution:

Key idea: Triggered by a QoS constraint violation, each component service
of the business process is analysed to identify one or more component
services that have to be replaced in order to satisfy the QoS constraint (this
is based on a set of QoS attributes, their values and calculation algorithms).
The replacement of component services does not affect the overall
structure of the business process.

Technology Background: -

Variability Approach: not applicable

Variability Granularity and Selection: Service

Dependency Management Support: Rules and dependencies among
services only exist in the sense of QoS attributes and constraints on the
overall QoS value of the business process. No specific variability modelling
approach is given.

Platform Definition Support: -

Further Aspects:

Source: [46]

Comments: -

INDENICA D2.1.1

 61

A.1.3 Scoping and Fine-tuning
Name: Scoping and fine-tuning

Purpose:

Description: Adaptation of a generic service platform to specific business
needs.

Variability Object: Domain-specific Services

Form of Variation: Optional, Alternative, Multiple selection, Parameterization

Binding time: Runtime, volatile

Context:

Environment Contexts: Scoping and fine-tuning is a solution for Business By
Design, SAPs on-demand platform.

Assumptions on Systems: -

Solution:

Key idea: SAP provides standard business solutions targeting several fields of
industries as well as companies with different preconditions and requirements.
So a single company must be able to select only the functionality needed for
the specific business needs. Additional to the Business By Design platform SAP
delivers at one hand a comprehensive catalogue (BAC, Business Adaptation
Catalogue) exposing the entire set of solution capabilities, described using non-
technical business language. At the other hand SAP and partners deliver so
called BC sets which contains predefined business configurations. At first the
customer has to make selection from the BAC based on his specific business
needs (scoping), at second he can overwrite parameters of the predefined
configuration (fine-tuning). The results are stored in a configuration workspace.
During all this steps constraints will be checked, to receive a consistent
solution. The final configuration becomes active through Business
Configuration (BC) deployment. The process comprises activation of UI
components and services as well as writing the configuration to Customizing
Tables, which are evaluated at runtime.

Technology Background: -

Variability Approach: negative variability

Variability Granularity and Selection: Service, external description

Dependency Management Support: Constraint checks to receive a consistent
solution.

Platform Definition Support: -

Further Aspects:

INDENICA D2.1.1

 62

Source: SAP12

Comments:

A.2 Variability in Domain-Specific Services

A.2.1 Component-Based Service Implementation
Name: Component-Based Service implementation

Purpose:

Description: The approach is rather generic and more a conceptual
framework than a single approach. It adds a component layer as refinement
of services and mainly aims at realizing variability within the component
level. The approach also supports and allows variability on a higher level like
a business process. There is no single implementation technique prescribed,
however, a focus on component-based implementation techniques to
realize variable service functionality (i.e., different component
compositions, pre-processors, aspect-orientation).

Variability Object: Domain-specific services

Form of Variation: Alternative, Optional

Binding time: Compile time, permanent

Context:

Environment Contexts: Service technology is required but the approach
does not focus on any specific service technology. Component-based
development (CBD) is used to implement each variant (feature) in a
different component.

Assumption on Systems: -

Solution:

Key idea: Each component represents a specific variant (feature). Based on
a feature selection, the corresponding components are composed to
provide the desired service functionality. Superfluous components (features
that are not selected) can be removed.

Technology Background: -

Variability Approach: supposedly can be combined with negative and
positive approaches.

Variability Granularity and Selection: Module, Service

Dependency Management Support: Rules and dependencies among
components are managed on the level of the feature model. In the feature

12http://help.sap.com/saphelp_byd30/en/KTP/Software-Components/01200615320100003379/SAP_BBD/

SAP_BBD.html

INDENICA D2.1.1

 63

model relations and dependencies among the features can be defined. No
specific feature modelling approach is given.

Platform Definition Support: -

Further Aspects:

Source: [48]

Comments: -

A.2.2 Pattern Plugin
Name: Pattern Plugin

Purpose:

Description: The approach uses model-based techniques to derive a specific
implementation using a business process with variabilities as a basis. The
variation point information is then used to derive a specific implementation
by repeatedly applying some patterns at the variation point.

Variability Object: Domain-specific services, service-composition and
processes

Form of Variation: Alternative, Optional, Interface

Binding time: Compile time, permanent

Context:

Environment Contexts: Service technology is required but the approach
does not focus on any specific technology.

Assumption on Systems: -

Solution:

Key idea: A SOA solution is modelled based on the meta-model of the
approach (results in a design model) and is augmented with variation
points. Each variant of a variation point has its own variation model that
holds the information about added, removed or modified implementations,
interfaces or processes. A new solution is defined by choosing the
appropriate variations. The variation models of the desired variants are
composed into the primary design model, via pattern application. The
composed model can finally be transformed into code artefacts.

Technology Background: UML modelling tool to define the pattern plugins
which are applications that impose design patterns on an existing design
model.

Variability Approach: generation-based

Variability Granularity and Selection: variables, operations, interface parts

Dependency Management Support: Rules and dependencies between the
artefacts are modelled separately in the form of a Constraint Satisfaction

INDENICA D2.1.1

 64

Problem (CSP); constraint checker are used to check for consistency among
the constraints.

Platform Definition Support: -

Further Aspects:

Source: [54]

Comments: -

A.2.3 FOP-based Refinement
Name: FOP-based refinement

Purpose:

Description: Variability of service implementation and service interfaces can
be supported by applying feature-oriented programming (FOP). In such an
approach the code of a feature is encapsulated into a feature module and
used to the refine the service’s base code by joining the base code and the
code of a feature. Actual implementation in this approach is done by
delegating the work to implementation techniques like aspect-orientation
or composition based on the AHEAD tool suite [11].

Variability Object: Domain-specific services

Form of Variation: Optional, Alternative, Extension, Interface

Binding time: Compile time, permanent

Context:

Environment Contexts: The current implementation requires Web Service
technology as WSDL is used to define interfaces and interface refinements.

Assumption on Systems: -

Solution:

Key idea: Features are separated from the basic service architecture by
implementing them as individual feature modules. Each feature module
consists of one or more extensions (e.g. a set of Java class refinements and
WSDL interface refinements) to the artefacts of the base services the
feature affects. If a feature is selected at configuration time, the extensions
are applied to the affected service base classes and interface (feature
composition). To extend the correct classes and interfaces, the extensions
have the same name than the base implementation or interface.

Technology Background: Extensions to programming languages to support
features, e.g. Java [11], C++ [7], XML [5], and WSDL [8]. The extensions are
required for feature modularization and composition.

Variability Approach: Positive variability

Variability Granularity and Selection: Statement, Function, Module

INDENICA D2.1.1

 65

Dependency Management Support: In this approach, FOPS performs
feature composition based on a declarative specification [11]

Platform Definition Support: -

Further Aspects:

Source: [6]

Comments: Service implementation has to be accessible (single vendor,
white-box-service), or a common feature model must exist that allows
vendors to provide a feature-based specification of their services (multiple
vendors, black-box-service).

A.2.4 Class Wrapper
Name: Class wrapper

Purpose:

Description: Support variability of service implementations at runtime by
applying feature-oriented programming (FOP) techniques to encapsulate
the code of a feature into a feature module and refine service’s base code
by joining the base code and the code of a feature via Java HotSwap at
runtime. Java HotSwap is incorporated within the debugger API (since Java
1.4 JVM) and allows debuggers to update bytecode in place using the same
class identity [41].

Variability Object: Domain-specific services

Form of Variation: Extension (including Alternative and Optional)

Binding time: Runtime, volatile

Context:

Environment Contexts:-

Assumption on Systems: -

Solution:

Key idea: Features are separated from the basic service architecture by
implementing them as individual feature modules. Each feature module
consists of one or more classes and wrappers. Adding a feature at runtime
requires loading all base classes and wrappers it introduces. Base class code
updates only internal algorithms without affecting the class schema.
Wrappers are used to apply new elements such as new methods to a class.
In order to invoke the new or modified functionality provided by the
wrapper all object references of the changed class have to be updated. This
is also achieved via method reimplementation based on Java HotSwap.

Technology Background: The implementation requires Java HotSwap, which
is a feature of Oracles standard Java virtual machine called HotSpot [61].
HotSwap is required to add features in terms of base classes and wrappers
to the implementation at runtime.

INDENICA D2.1.1

 66

Variability Approach: Positive variability

Variability Granularity and Selection: Function, Module, Service

Dependency Management Support: Rules and dependencies among
features are managed on the level of the feature model. No specific feature
modelling approach is expected.

Platform Definition Support: -

Further Aspects:

Source: [75]

Comments: Similar to A.2.3, a service implementation has to be accessible
to be able to apply features.

A.2.5 Aspect Service Weaver
Name: Aspect Service Weaver

Purpose:

Description: Support variability of service implementation by weaving the
code of advice services into existing services based on requests for certain
functionality. An advice service implements additional code (representing
the variability that can be woven into existing services). Weaving is done by
a tool called Aspect Service Weaver (ASW) [10, 40, 81] that is introduced by
this approach. Additional functionality can be requested at configuration
time as well as at runtime.

Variability Object: Domain-specific services

Form of Variation: Optional, Alternative, Extension

Binding time: Runtime (as explained in the approach, but configuration time
is also possible), permanent

Context:

Environment Contexts: The existing implementation requires Web Service
technology supporting message transaction based on SOAP protocol as ASW
only intercepts SOAP messages at runtime.

Assumption on Systems:-

Solution:

Key idea: ASW intercepts the SOAP messages between service consumer
and provider at runtime. If such a message includes a request for a method
that the service does not support currently, advice services implementing
the variability are queried. These advice services implement the additional
methods that can be woven into existing services by the ASW. Thus,
dynamically requested methods are implemented by advices and deployed
at runtime by weaving the corresponding advices into the existing service.

Technology Background: AOP technology required

INDENICA D2.1.1

 67

Variability Approach: Positive variability

Variability Granularity and Selection: Function, Module

Dependency Management Support: -

Platform Definition Support: -

Further Aspects:

Source: [51]

Comments: Limitation to the capabilities of the ASW and the AOP language;
further limitation to SOAP message interceptions. Compile time weaving is
considered as variability implementation technique for traditional software
product lines [53].

A.2.6 Enhancement Options
Name: Enhancement Options

Purpose:

Description: Enrich services with additional functionality or overwrite existing
functionality to provide variability for services at runtime without modifying
the original implementation.

Variability Object: Domain-specific Services

Form of Variation: Extension

Binding time: Runtime, volatile

Context:

Environment Contexts: The Enhancement and Switch Framework is a solution
to enhance business functionality of SAPs NetWeaver ABAP core.

Assumptions on Systems: -

Solution:

Key idea: SAP provides standard business solutions, which are generic in nature
and cannot cover all specific business needs. There is a need to combine the
advantages of both, the standard (easily maintainable) with the proprietary
(more flexible) solutions while avoiding the drawbacks of standard software
(lack of flexibility) and customized software (upgrade issues). The Enhancement
Framework allows this by defining Enhancement Options that are hooks in the
original code, which bind the modifications during runtime. Enhancement
Options can be implicit or explicit. Implicit Options are provided by the
framework (e.g. begin of methods), explicit options are defined by the
developer. There are two kinds of explicit options - source code plug-ins and
object plug-ins. With source code plug-ins the developer can define
Enhancement Points, which are hooks for adding additional code or
Enhancement Sections, which are hooks for overwriting existing code. An
object plug-in is called BAdi (Business Add-in). It comprises an interface
defining methods, which add new and changeable functionality to an object.

INDENICA D2.1.1

 68

The enhancement options can be activated and deactivated with the help of
the Switch Framework.

Technology Background: Aspect-orientation-

Variability Approach: positive variability

Variability Granularity and Selection: line of code

Dependency Management Support: -

Platform Definition Support: -

Further Aspects:

Source: SAP13

Comments:

A.3 Variability in Service and Platform Deployment

A.3.1 Generation of Deployment / Undeployment Scripts
Name: Generation of Deployment / undeployment scripts

Purpose:

Description: Support variability of the deployment of services by generating
individual deployment (and undeployment) scripts based on infrastructure
configuration.

Variability Object: Service and platform deployment

Form of Variation: Optional, Alternative

Binding time: deployment time, runtime, volatile

Context:

Environment Contexts: The existing implementation is based on Web
Service technology. A suitable language to describe and execute
deployment scripts is Web Service Business Process Execution Language
WS-BPEL [63] as shown in [44, 49, 69]. The current example is based on the
Apache Tuscany service component architecture (SCA) runtime.

Assumption on Systems:-

Solution:

Key idea: Annotation of the variability model with deployment information
for each variant. Based on a configuration the planning component of the
deployment infrastructure can generate a specific deployment script by
composing the deployment information of each selected variant.

Technology Background: The variability implementation technique requires
a deployment infrastructure that is capable of executing the WS-BPEL
deployment scripts.

13http://help.sap.com/saphelp_nw73/helpdata/en/

INDENICA D2.1.1

 69

Variability Approach: Positive variability

Variability Granularity and Selection: Service Binding, Deployment Unit

Dependency Management Support: Rules and dependencies among
variants are managed on the level of the variability model. The Orthogonal
Variability Modelling (OVM) approach for variability management is used as
an example.

Platform Definition Support: -

Further Aspects:

Source: [50]

Comments: -

A.3.2 Context-aware Deployment Plan
Name: Context-aware deployment plan

Purpose:

Description: Support variability of the deployment of components to
different execution locations at runtime by replacement of component
instances including state transfer and rewired inter-component connections.

Variability Object: Service and platform deployment

Form of Variation: Optional, Alternative, volatile

Binding time: deployment time, runtime

Context:

Environment Contexts: The existing implementation requires a CORBA
runtime environment supporting the CORBA Component Model (CCM)
deployment model [55]. In the platform, further management components
are required to provide a safe redeployment.

Assumptions on Systems: -

Solution:

Key idea: Extension of the deployment model by including (architecture)
variation points to affect the distribution of components and the deployed
component implementation versions (implementation variants). The so-
called context-aware deployment plan contains the initial deployment and
the supported variability at runtime. Runtime variability of the deployment
plan is handled by generating new deployment plans in terms of removing or
adding components, removing or adding component connections as well as
selecting a component due to its implementation version. In the specific
approach a consistency manager enforces specific component states for
redeployment. Furthermore, a consistency manager blocks new connections
during redeployment, handles the state transfer among components as well
the reestablishment of component connections to the replaced component
instance.

INDENICA D2.1.1

 70

Technology Background: -

Variability Approach: generation-based

Variability Granularity and Selection: service, service binding

Dependency Management Support: Constraints may be specified on
component connections for expressing required components or component
connections.

Platform Definition Support: -

Further Aspects:

Source: [9]

Comments: -

A.4 Variability in Technical Platform Services

A.4.1 Abstract Roles
Name: Abstract Roles

Purpose:

Description: Integrate services from different middleware implementations
into one application specific middleware using runtime variability to
dynamically adapt service compositions and service interactions to meet a
given Quality of Service (QoS).

Variability Object: Platform service, Domain specific services

Form of Variation: Extension (including Alternative and Optional)

Binding time: Initialization time, Runtime, volatile

Context:

Environment Contexts: In the concrete realization, the application-specific
middleware is an instance of the generic ROAD library (Role-oriented
Adaptive Design). The integration of middleware platforms relies on WSDL-
SOAP.

Assumptions on Systems: Due to the WSDL-SOAP protocol overhead, the
realization is (probably) limited to systems, which do not require high load or
small response times.

Solution:

Key idea: The (aggregated) application-specific middleware performs no
domain-specific function by itself but provides abstract functional roles that
can dynamically be played by other entities, e.g. services provided by
middleware implementations to be integrated. Adapters realize the roles for
concrete middleware implementations and brokers support the flexible
communication among adapters. The instantiation of concrete adapters in
the aggregated middleware realizes binding of the variabilities and the
integration of existing functionality.

INDENICA D2.1.1

 71

Technology Background: The approach relies on association aspects, an
extension of AspectJ [1]. Association aspects are used to restrict the
communication among roles by message interception (c.f. Section A.4.3).

Variability Approach: positive variability

Variability Granularity and Selection: module, service, service binding

Dependency Management Support: Contracts define the topology among
roles in terms of provided, required and permissible communication as well
as non-functional (QoS) requirements.

Platform Definition Support: -

Further Aspects:

Source: [23]

Comments:-

A.4.2 Application-specific Callbacks
Name: Application-specific callbacks

Purpose:

Description: Supply application-specific parts to existing middleware services.
Middleware services call the domain-specific implementation via (remote)
callbacks.

Variability Object: Platform service

Form of Variation: Extension (is also used to realize optional and alternative)

Binding time: Runtime, permanent (during the lifetime of a transaction)

Context:

Environment Contexts: The existing implementation targets application-
specific callbacks in web-based systems (realized for JBoss/Struts, CORBA and
.NET), i.e. callbacks between server and browser-based clients using the HTTP
protocol.

Assumptions on Systems: -

Solution:

Key idea: Existing platform services provide callback interfaces so that
domain-specific functionality can be executed at certain points of service
execution. New components are defined in an extra layer on top of the
platform and register themselves as callback handlers. Variabilities are bound
when registering the callback handlers.

Technology Background: -

Variability Approach: positive variability

Variability Granularity and Selection: function

Dependency Management Support: -

INDENICA D2.1.1

 72

Platform Definition Support: -

Further Aspects:

Source: [32, 31]

Comments:

A.4.3 Extension by Interception
Name: Extension by Interception

Purpose:

Description: Modify or replace management services in an existing
middleware platform or a service container by dynamically manipulating call
chains.

Variability Object: Platform service, Domain-specific service

Form of Variation: Extension (including Optional, Alternative)

Binding time: Initialization Time, Runtime, volatile

Context:

Environment Contexts: The platform needs to provide a specific call chain for
each distinct management service. The existing implementation uses the
JBoss Application Server as underlying platform.

Assumptions on Systems: -

Solution:

Key idea: Instead of direct calling a callee from a caller the call is represented
as a call object and passed through a chain of interceptors. Each interceptor
may work with the data, modify, consume or reissue the call object. For each
type of call the platform must provide appropriate interceptor chains. Custom
interceptors may handle calls in different, domain-specific ways. Variability is
bound by adding, replacing or removing interceptors.

Technology Background: -

Variability Approach: typically positive variability, negative variability can be
realized by removing or replacing interceptors from a default interceptor
chain

Variability Granularity and Selection: function, module

Dependency Management Support: -

Platform Definition Support: -

Further Aspects:

Source: [31, 32]

Comments: Interceptor chains in web or service containers are typically only
traversed if the invocation comes from a call to a (service) interface through

INDENICA D2.1.1

 73

the (service) container. Calls among (service) interfaces are typically not
subject to interception chains.

A.4.4 Aspect-oriented Composition
Name: Aspect-oriented composition

Purpose:

Description: Introduce variability into existing platforms, which provide
certain functionality. Reuse the platforms without modifying their code base.

Variability Object: Platform service, Domain-specific service

Form of Variation: Extension (including Optional, Alternative)

Binding time: Compile time, Initialization time, Runtime, permanent

Context:

Environment Contexts: The existing implementation applies the technique to
a CORBA Object Request Broker realized in component-based design in order
to support dynamic substitution of objects during marshalling and
unmarshalling or to add additional interceptors for domain specific
functionality (see Section A.4.3)

Assumptions on Systems: -

Solution:

Key idea: A core platform, which exhibits defined extension points is used as
common infrastructure. Variabilities (or their binding to the core) are
expressed as aspects realizing certain extension points. Variabilities are
bound by weaving the aspects into the core platform.

Technology Background: An aspect weaver is required at the respective
binding time. In [84, 83] the utilized aspect technology is enhanced by an
aspect-based variability model, which enriches the static and dynamic
weaving functionality and ensures thread-safe aspect oriented composition.

Variability Approach: positive variability

Variability Granularity and Selection: function, module

Dependency Management Support: The aspect-based variability model
supports depends and conflicts relationships among variabilities.

Platform Definition Support: -

Further Aspects:

Source: [84, 83]

Comments: AOP techniques are considered as a general variability technique
on various levels of granularity [53]. Due to required compatibility with the
type system of the underlying programming language, AOP may particularly
not remove existing methods, interfaces or types and, thus, may typically
realize only additive variability. The authors of [36] aim at balancing the

INDENICA D2.1.1

 74

overhead by domain-specific resource-aware weavers, i.e. the weaver itself is
considered as subject to (dynamic) variability.

A.4.5 Reflective Variability, Meta-data-based Variability
Name: Reflective variability, meta-data based variability

Purpose:

Description: Use meta-information on the system and its constituting
components (such as topology of components, component interfaces, etc.) in
order to determine and reason about variation points and available variants
at runtime.

Variability Object: Platform Service, Domain-specific Service

Form of Variation: Extension

Binding time: Initialization time, Runtime, volatile

Context:

Environment Contexts: The existing implementation is based on the domain-
specific language tool Genie [13], which is used as a basis to generate
software artefacts, component framework configurations and reconfiguration
policies.

Assumptions on Systems: -

Solution:

Key idea: Reflective capabilities of a component framework offer the
potential to reason about the possible variation points and their variants at
runtime. Reflection is the inspection and manipulation of causally connected
meta-models of a software system as exposed via their meta-interface.
Typical meta-models cover the functional component interface, the
architecture (topology of components) or interception support (execution of
component functionality via the interface meta-model). Reflective techniques
can be applied to realize (runtime) variability, i.e. to gain information on the
running system such as the concrete locations of variation points or
applicable variations as well as to manipulate the system by binding concrete
variabilities.

Technology Background: A middleware with reflective capabilities such as
GridKit [13] is required. A programming language with built-in reflection
capabilities may simplify the realization.

Variability Approach: negative variability

Variability Granularity and Selection: function, module, service, service
bindings

Dependency Management Support: -

Platform Definition Support: -

Further Aspects:

INDENICA D2.1.1

 75

Source: [12]

Comments: An interception meta-model allows runtime modification to
existing interceptor chains (c.f. Section A.4.3). In [24] an extensible set of
orthogonal meta-models can be attached or unattached from components on
demand at runtime.

A.4.6 Event-based Composition, Publish/Subscribe-Composition
Name: Event-based composition, Publish/Subscribe-Composition

Purpose:

Description: Add or remove management services from a middleware
platform and select the correct (concrete) implementation of individual
management services based on functional and non-functional characteristics.

Variability Object: Platform service

Form of Variation: Alternative, Optional

Binding time: Compile time, permanent

Context:

Environment Contexts: The described implementation is based on the
FamiWare microkernel [33, 34].

Assumptions on Systems: The approach targets Ambient Intelligence
Systems.

Solution:

Key idea: A middleware platform provides a core set of event services. The
event services deliver communication events among subscribed platforms or
domain-specific application services. Services are realized as pluggable
components, which subscribe to relevant event services in order to react on
or modify received events. Variability can be obtained by unregistering
existing services and registering new services.

Technology Background: -

Variability Approach: positive variability

Variability Granularity and Selection: service, service binding

Dependency Management Support: Logical expressions which can be
reduced to usage and mutual exclusion.

Platform Definition Support: -

Further Aspects:

Source: [33, 34]

Comments:

A.4.7 Generated Component Connectors
Name: Generated Component Connectors

INDENICA D2.1.1

 76

Purpose:

Description: Obtain a domain-specific deployment tool for a component-
based platform.

Variability Object: Platform service

Form of Variation: Extension

Binding time: Compilation time, permanent

Context:

Environment Contexts: The described implementation relies on the SOFA2
[19] component system.

Assumptions on Systems: -

Solution:

Key idea: Entities realizing the concrete communication among components
are encapsulated as so called connectors. The generic deployment tool itself
is described as a skeleton. The skeleton is filled by generating the code of the
instantiations for the concrete connectors selected in the product line
configuration.

Technology Background: -

Variability Approach: negative variability

Variability Granularity and Selection: module

Dependency Management Support: -

Platform Definition Support: Allows deriving domain-specific deployment
tools.

Further Aspects:

Source: [18]

Comments:

A.4.8 Microcomponents
Name: Microcomponents

Purpose:

Description: Obtain a domain-specific execution environment by varying the
lifecycle control of the components.

Variability Object: Platform service

Form of Variation: Extension

Binding time: Initialization time, Runtime, volatile

Context:

Environment Contexts: The described implementation is realized as part of
the SOFA2 [19] component system.

INDENICA D2.1.1

 77

Assumptions on Systems: -

Solution:

Key idea: Represent individual control functionalities in the lifecycle of a
component such as starting a component, interface lookup etc. as simple
subcomponents called microcomponents. Microcomponents can be grouped
into “aspects” in order to define consistent extensions of the lifecycle control
mechanisms. Variation is bound when adding, replacing or removing
microcomponents or aspects from the lifecycle control of a platform.

Technology Background: -

Variability Approach: positive variability

Variability Granularity and Selection: module, service

Dependency Management Support: grouping of microcomponents

Platform Definition Support: -

Further Aspects:

Source: [18]

Comments:

A.4.9 Use Platform Management Services
Name: Use platform management services

Purpose:

Description: Use the management services of a platform to obtain a loosely
coupled component or service-based platform to enable variability.

Variability Object: Platform service, Domain-Specific services, Service
composition

Form of Variation: Extension

Binding time: Service-binding time, Runtime, volatile

Context:

Environment Contexts: Component or service-based systems.

Assumptions on Systems: -

Solution:

Key idea: Realize variable functionality in terms of the component or service
platform and use the provided management functionality for suspending,
resuming, deploying, adding, binding or deleting components or services. This
allows decoupling variabilities and supports runtime variability and runtime
(service) composition. Therefore modularization takes places on two axes.

 Deployment units (e.g. bundles in OSGi) have well-defined interfaces and
dependencies. The linking of the deployment units happens during

INDENICA D2.1.1

 78

startup of the component. Deploying and selecting specific bundles
enables service implementation variability.

 Deployment units can export and import services. Registration and
deregistration of services occurs at runtime. This allows (service)
composition variability at runtime as services are registered with a
symbolic name.

Technology Background: Depends on the capabilities of the underlying
component or service platform, e.g. OSGi [79] at SAP or SCA in [65, 66]

Variability Approach: positive variability

Variability Granularity and Selection: module, service

Dependency Management Support: -

Platform Definition Support: Automatic resolution of dependencies between
deployment units may happen based on requirements, offerings and optionally
further functional or non-functional constraints.

Further Aspects:

Source: [65,66], SAP

Comments:

INDENICA D2.1.1

 79

References

[1] Project homepage AspectJ, 2011. Online available at:
http://www.eclipse.org/aspectj/.

[2] Project homepage Mobicents, 2011. Online available at:
http://www.mobicents.org/.

[3] Project homepage Pococapsule, 2011. Online available at:
http://code.google.com/p/pococapsule/.

[4] Project homepage Virgo, 2011. Online available at:
http://www.eclipse.org/virgo/.

[5] F. I. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Artifacts. In
Proceedings of the 7th International Conference on Web Engineering (ICWE
'07), pages 473–478, 2007.

[6] S. Apel, C. Kaestner, and C. Lengauer. Research Challenges in the Tension
Between Features and Services. In Proceedings of the 2nd International
Workshop on System Development in SOA Environments (SDSOA '08), pages
53–58, 2008.

[7] S. Apel, T. Leich, M. Rosenmueller, and G. Saake. FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In Proceedings of the
4th International Conference on Generative Programming and Component
Engineering (GPCE '05), pages 125–140, 2005.

[8] S. Apel and C. Lengauer. Superimposition: A Language-Independent Approach
to Software Composition. In Proceedings of the 7th International Conference on
Software Composition (SC '08), pages 20–35, 2008.

[9] D. Ayed and Y. Berbers. Dynamic Adaptation of CORBA Component-Based
Applications. In Proceedings of the 22nd Annual ACM Symposium on Applied
Computing (SAC '07), pages 580–585, 2007.

[10] F. Baligand and V. Monfort. A Concrete Solution for Web Services Adaptability
Using Policies and Aspects. In Proceedings of the 2nd International Conference
on Service Oriented Computing (ICSOC '04), pages 134–142, 2004.

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. In
Proceedings of the 25th International Conference on Software Engineering
(ICSE '03), pages 187–197, 2003.

[12] N. Bencomo, G. Blair, G. Coulson, and T. Batista. Reflective Component-Based
Technologies to Support Dynamic Variability. In Proceedings of the 2nd
International Workshop on Variability Modelling of Software-intensive Systems
(VAMOS '08), 2008.

[13] N. Bencomo, G. Blair, and P. Grace. Models, Reflective Mechanisms and Family-
Based Systems to Support Dynamic Configuration. In Proceedings of the 1st
Workshop on Model Driven Development for Middleware (MODDM '06), 2006.

INDENICA D2.1.1

 80

[14] N. Boffoli, M. Cimitile, F. M Maggi, and G. Visaggio. Managing SOA System
Variation through Business Process Lines and Process Oriented Development.
In Proceedings of the 3rd Workshop on Service-Oriented Architectures and
Software Product Lines: Enhancing Variation (SOAPL '09), 2009.

[15] B. Bordbar and A. Staikopoulos. On Behavioural Model Transformation in Web
Services. In S. Wang, K. Tanaka, S. Zhou, T.-W. Ling, J. Guan, D Yang, F. Grandi,
E. Mangina, I.-Y. Song, and H. Mayr, editors, Conceptual Modeling for Advanced
Application Domains, volume 3289 of Lecture Notes in Computer Science, pages
667–678. Springer Berlin / Heidelberg, 2004. 10.1007/978-3-540-30466-1_61.

[16] H. P. Breivold and M. Larsson. Component-Based and Service-Oriented
Software Engineering: Key Concepts and Principles. In Proceedings of the 33rd
EUROMICRO Conference on Software Engineering and Advanced Application
(EUROMICRO-SEAA '07), pages 13–20, 2007.

[17] T. Bures. Generating Connectors for Homogeneous and Heterogeneous
Deployment. PhD thesis, Charles University in Prague, Faculty of Mathematics
and Physics, 2006.

[18] T. Bures, P. Hnetynka, and M. Malohlava. Using a Product Line for Creating
Component Systems. In Proceedings of the 24th Annual ACM Symposium on
Applied Computing (SAC '09), pages 501–508, 2009.

[19] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model. In Proceedings of the 4th International
Conference on Software Engineering Research, Management and Applications
(SERA '06), pages 40–48, 2006.

[20] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-oriented Software
Architecture: On Patterns and Pattern Languages. John Wiley and Sons, 2007.

[21] J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA Approach to
B2B Applications: A Road Map. In Proceedings of the 2004 Workshop on Model
Driven Development (WMDD '04), 2004.

[22] L. Cavallaro, E. Di Nitto, P. Pelliccione, M. Pradella, and M. Tivoli. Synthesizing
Adapters for Conversational Web-Services from their WSDL Interface. In
Proceedings of the 5th ICSE International Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS '10), pages 104–113, 2010.

[23] A. Colman, L. D. Pham, J. Han, and J.-G. Schneider. Adaptive Application-
Specific Middleware. In Proceedings of the 1st Workshop on Middleware for
Service Oriented Computing (MW4SOC '06), pages 6–11, 2006.

[24] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and
T. Sivaharan. A Generic Component Model for Building Systems Software. ACM
Transaction on Computer Systems, 26:1:1–1:42, March 2008.

[25] I. Crnkovic and H. P. Breivold. Tutorial: Emerging Technologies in Industrial
Context - Component-Based and Service-Oriented Software Engineering. In
Proceedings of the 31st IEEE International Computer Software and Applications
Conference (COMPSAC '07), 2007.

INDENICA D2.1.1

 81

[26] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R.V. Chaudron. A Classification
Framework for Software Component Models. IEEE Transactions on Software
Engineering, 99(PrePrints), 2010.

[27] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-based
Feature Models and their Specialization. Software Process: Improvement and
Practice, Special Issue on Software Variability: Process and Management,
10(1):7 – 29, 2005.

[28] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser. Capturing Timeline Variability
with Transparent Configuration Environments. In Proceedings of the 1st
International Workshop on Software Variability Management (SVM '03), 2003.

[29] E. Dolstra, G. Florijn, and E. Visser. Timeline Variability: The Variability of
Binding Time of Variation. In J. van Gurp and J. Bosch, editors, Proceedings of
the 1st International Workshop on Software Variability Management (SVM
'03), 2003.

[30] Organization for the Advancement of Structured Information Standards. UDDI
Spec Technical Committee Draft, Version 3.0.2, 2004. Online available at:
http://www.uddi.org/pubs/uddi_v3.htm.

[31] L. Froihofer, K. M. Goeschka, and J. Osrael. Middleware Support for Adaptive
Dependability. In Proceedings of the 8th ACM/IFIP/USENIX International
Conference on Middleware (Middleware '07), pages 308–327, 2007.

[32] L. Froihofer, J. Osrael, and K. M. Goeschka. Middleware/Application
Interactions to Support Adaptive Dependability. In Proceedings of the 1st
Workshop on Middleware-Application Interaction (MAI '07), pages 31–36,
2007.

[33] L. Fuentes and N. Gámez. Configuration Process of a Software Product Line for
AmI Middleware. Journal of Universal Computer Science, 16(12):1592–1611,
2010.

[34] N. Gámez and L. Fuentes. FamiWare: a family of event-based middleware for
ambient intelligence. Personal Ubiquitous Computer, 15:329–339, April 2011.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 2000.

[36] W. Gilani, N. H. Naqvi, and O. Spinczyk. On Adaptable Middleware Product
Lines. In Proceedings of the 3rd Workshop on Adaptive and Reflective
Middleware (ARM '04), pages 207–213, 2004.

[37] I. Groher and M. Voelter. XWeave: Models and Aspects in Concert. In
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling
(AOM '07), pages 35–40, 2007.

[38] R. Gronmo and M. C. Jaeger. Model-Driven Semantic Web Service
Composition. In Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC '05), pages 79–86, 2005.

INDENICA D2.1.1

 82

[39] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product
Lines. Computer, 41(4):93–95, 2008.

[40] M. B. Hmida, R. F. Tomaz, and V. Monfort. Applying AOP Concepts to Increase
Web Services Flexibility. Journal of Digital Information Management, 4(1):37–
43, 2006.

[41] J. Kabanov. Reloading Java Classes 401: HotSwap and JRebel - Behind the
Scenes, 2010. Online available at:
http://www.zeroturnaround.com/blog/reloading_java_classes_401_hotswap_j
rebel.

[42] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21 ESD-90-TR-222, Software Engineering Institute Carnegie Mellon
University, 1990.

[43] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines.
In Proceedings of the 30th International Conference on Software Engineering
(ICSE '08), pages 311–320, 2008.

[44] A. Keller and R. Badonnel. Automating the Provisioning of Application Services
with the BPEL4WS Workflow Language. In Proceedings of the 15th IEEE/IFIP
Distributed Systems: Operation and Management (DSOM '04), pages 15–27,
2004.

[45] K.-K. Lau and Z. Wang. Software Component Models. IEEE Transactions on
Software Engineering, 33(10):709–724, October 2007.

[46] Y. Li, X. Zhang, Y. Yin, and J. Wu. QoS-Driven Dynamic Reconfiguration of the
SOA-Based Software. In Proceedings of the 2010 International Conference on
Service Sciences (ICSS '10), pages 99–104, 2010.

[47] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in Action -
The Best Industrial Practice in Product Line Engineering. Springer, Berlin /
Heidelberg, 2007.

[48] F. M. Medeiros, E. S. de Almeida, and S. R. L. Meira. Towards an Approach for
Service-Oriented Product Line Architectures. In Proceedings of the 3rd
Workshop on Service-Oriented Architectures and Software Product Lines:
Enhancing Variation (SOAPL '09), 2009.

[49] R. Mietzner and F. Leymann. Towards Provisioning the Cloud: On the Usage of
Multi-Granularity Flows and Services to Realize a Unified Provisioning
Infrastructure for SaaS Applications. In Proceedings of the 2008 IEEE Congress
on Services (SERVICES '08), pages 3–10, 2008.

[50] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability Modeling to
Support Customization and Deployment of Multi-Tenant-Aware Software as a
Service Applications. In Proceedings of the 2009 Workshop on Engineering
Service Oriented Systems (ICSE '09), pages 18–25, 2009.

[51] V. Monfort and S. Hammoudi. Towards Adaptable SOA: Model Driven
Development, Context and Aspect. In Proceedings of the 7th International Joint

INDENICA D2.1.1

 83

Conference on Service-Oriented Computing (ICSOC-ServiceWave '09), pages
175–189, 2009.

[52] M. Moon, M. Hong, and K. Yeom. Two-Level Variability Analysis for Business
Process with Reusability and Extensibility. In Proceedings of the 32nd Annual
IEEE International Computer Software and Application Conference (COMPSAC
'08), pages 263–270, 2008.

[53] D. Muthig and T. Patzke. Generic Implementation of Product Line Components.
In Proceedings of the 2002 Net.ObjectDays (NODE '02), pages 313–329, 2002.

[54] N. C. Narendra, K. Ponnalagu, B. Srivastava, and G. S. Banavar. Variation-
Oriented Engineering (VOE): Enhancing Reusability of SOA-Based Solutions. In
Proceedings of the 5th IEEE International Conference on Services Computing
(SCC '08), pages 257–264, 2008.

[55] Object Management Group, Inc. (OMG). Deployment and configuration of
component-based distributed applications specification (DEPL), 2006. Online
available at: http://www.omg.org/spec/DEPL/.

[56] Object Management Group, Inc. (OMG). Quality of Service for CORBA
Components Specification, version 1.1, 2008. Online available at:
http://www.omg.org/technology/documents/corba_spec_catalog.htm.

[57] Object Management Group, Inc. (OMG). Common Object Request Broker
Architecture (CORBA/IIOP), 2011. Online available at:
http://www.omg.org/spec/CORBA/3.1.1/.

[58] Object Management Group, Inc. (OMG). Unified Modeling Language (UML)
Resource Page, 2011. Online available at: http://www.uml.org/.

[59] Open Service Oriented Architecture Collaboration (OSOA). Service Component
Architecture Specifications, 2009. Online available at:
http://www.osoa.org/display/Main/Service+Component+Architecture+Specific
ations.

[60] Oracle. Java Remote Method Invocation (RMI), 2010. Online available at:
http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html.

[61] Oracle. Java SE HotSpot at a glance, 2011. Online available at:
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html.

[62] Organization for the Advancement of Structured Information Standards
(OASIS). Web Services Dynamic Discovery (WS-Discovery) Version 1.1, 2009.
Online available at: http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-
discovery-1.1-spec-os.pdf.

[63] Organization for the Advancement of Structured Information Standards
(OASIS). OASIS Web Service Business Process Execution Language (WS-BPEL),
2011. Online available at: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[64] J. Park, J. Kim, S. Yun, M. Moon, and K. Yeom. An Approach to Developing
Reusable Domain Services for Service-Oriented Applications. In Proceedings of

INDENICA D2.1.1

 84

the 25th ACM Symposium on Applied Computing (SAC '10), pages 2252–2256,
2010.

[65] C. Parra, X. Blanc, and L. Duchien. Context Awareness for Dynamic Service-
Oriented Product Lines. In Proceedings of the 13th International Software
Product Line Conference (SPLC '09), pages 131–140, 2009.

[66] C. Parra, R. Leano, X. Blanc, L. Duchien, N. Pessemier, C. Taconet, and Z. Kazi-
Aoul. Dynamic Software Product Lines for Context-Aware Web Services. In Q. Z.
Sheng, J. Yu, and S. Dustdar, editors, Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies. Chapman and Hall/CRC, 2009.

[67] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Berlin / Heidelberg, 2005.

[68] I. Schaefer. Variability Modelling for Model-Driven Development of Software
Product Lines. In Proceedings of the 4th International Workshop on Variability
Modelling of Software-intensive Systems (VAMOS '10), 2010.

[69] T. Scheibler, R. Mietzner, and F. Leymann. EAI as a Service - Combining the
Power of Executable EAI Patterns and SaaS. In Proceedings of the 12th
International IEEE Enterprise Distributed Object Computing Conference (EDOC
'08), pages 107–116, 2008.

[70] K. Schmid. A Quantitative Model of the Value of Architecture in Product Line
Adoption. In Proceedings of the 5th International Workshop on Product Family
Engineering (PFE '03), pages 32–43, 2003.

[71] K. Schmid and H. Eichelberger. EASy-Producer – A Product Line Production
Environment. In Proceedings of the 12th International Software Product Line
Conference (SPLC '08), pages 357–357, 2008.

[72] K. Schmid and H. Eichelberger. Model-Based Implementation of Meta-
Variability Constructs: A Case Study using Aspects. In Proceedings of the 2nd
International Workshop on Variability Modelling of Software-intensive Systems
(VAMOS '08), pages 63–71, 2008.

[73] K. Schmid and I. John. A Customizable Approach To Full-Life Cycle Variability
Management. Science of Computer Programming, 53(3):259–284, 2004.

[74] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature Diagrams: A Survey and
a Formal Semantics. In Proceedings of the 14th IEEE Requirements Engineering
Conference (RE '06), pages 139–148, 2006.

[75] N. Siegmund, M. Pukall, M. Soffner, V. Köppen, and G. Saake. Using Software
Product Lines for Runtime Interoperability. In Proceedings of the Workshop on
Reflection, AOP and Meta-Data for Software Evolution (RAM-SE '09), pages 1–
7, 2009.

[76] B. Steffen and T. Margaria. METAFrame in Practice: Design of Intelligent
Network Services. In Ernst-Rüdiger Olderog and Bernhard Steffen, editors,
Correct System Design, volume 1710 of Lecture Notes in Computer Science,
pages 390–415. Springer Berlin / Heidelberg, 1999. 10.1007/3-540-48092-
7_17.

INDENICA D2.1.1

 85

[77] B. Steffen, T. Margaria, V. Braun, and N. Kalt. Hierarchical Service Definition.
Annual Review of Communication, International Engineering Consortium (IEC),
pages 847–856, 1997.

[78] M. Svahnberg, J. van Gurp, and J. Bosch. A Taxonomy of Variability Realization
Techniques. Software – Practice and Experience, 35(8):705–754, 2005.

[79] The OSGi Alliance. OSGi - The Dynamic Module System for Java, 2011. online
available at www.osgi.org.

[80] The OSGi Alliance. OSGi Service Platform Core Specification, 2011. Online
available at: http://www.osgi.org/download/r4v43/r4.core.pdf.

[81] R. F. Tomaz, M. B. Hmida, and V. Monfort. Concrete Solutions for Web Services
Adaptability Using Policies and Aspects. International Journal of Cooperative
Information Systems, 15(3):415–438, 2006.

[82] A. van der Hoek. Design-Time Product Line Architectures for Any-Time
Variability. Science of Computer Programming, Special Issue on Software
Variability Management, 53(30):285–304, 2004.

[83] S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen. Aspect-Based Variability
Model for Cross-Organizational Features in Service Networks. In Proceedings of
the 1st International Workshop on Composition: Objects, Aspects, Components,
Services and Product Lines (Composition & Variability '10), pages 57–63, 2010.

[84] S. Walraven and P. Verbaeten. AO Middleware Supporting Variability and
Dynamic Customization of Security Extensions in the ORB Layer. In Proceedings
of the 9th ACM/IFIP/USENIX International Conference on Middleware
(Middleware '08), pages 121–123, 2008.

[85] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) 1.1, 2001. Online available at: http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.

[86] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), 2007. Online available at:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[87] W. Zhao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M. Olson, and M. Auguston.
Automated Glue/Wrapper Code Generation in Integration of Distributed and
Heterogeneous Software Components. In Proceedings of the 8th IEEE
International Enterprise Distributed Object Computing Conference (EDOC '04),
pages 275–285, 2004.

