
Document ID: INDENICA – D1.3.1

Deliverable Number: D1.3.1
Work Package: WP1

Type: Deliverable
Dissemination Level: PU

Status: final

Version: 1.0
Date: 2012-03-31

Author(s): SUH, SAP, SIE, PDM, TEL, UV

Project Start Date: October 1st2010, Duration: 36months

Document ID: INDENICA - D1.3.1

Engineering Virtual Domain-Specific
Service Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

INDENICA aims at more effective engineering for the integration and domain-specific

customization of service platforms. Often, there is no unique answer to the many

engineering challenges that exist in this context. Thus, correctly identifying the many

possible engineering alternatives throughout and proposing systematic ways of

deciding upon them is of central importance to effective engineering.

This deliverable describes the INDENICA decision support framework. It addresses

and integrates decision making activities throughout the entire INDENICA platform

development lifecycle with a main focus on the requirements engineering and

architecture steps. This first version of the deliverable provides an overview of the

many issues that arise in this context and the different possibilities of addressing

them. Deliverable D1.3.2 will focus on certain parts of the methodology and will

provide a prototype solution to support decision making effectively.

Decision Support Framework for

Platforms as a Service (Interim)

Version

0.1 14. February 2012 Document Structure for integration defined

0.2 9. March 2012 Detailed document template

0.3 16. March 2012 Added the content of Section 6

0.4 26. March 2012 Revised Section 6.1, 6.2

0.5 27. March 2012 Revised Section 6.3

0.6 27. March 2012 Updated the introduction of Section 6.1 and Section

6.3 with the relationship to VbMF in WP3 and added

the related publications.

0.8 31. March 2012 Updated Architecture part, parts of the requirements

part

0.9 12. April 2012 Updated requirements part, mostly finished.

1.0 20. April 2012 final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction ... 6

2 Requirements Decision Making ... 7

2.1 Requirements-based identification of possible decisions 7

2.2 Requirements Prioritization as Basis of Decision Making 10

2.2.1 Prioritizing requirements ... 11

2.2.2 Resolving conflicts in stakeholder evaluations .. 11

2.2.3 Release and iteration planning based on priorities 14

2.2.4 Priorities as input for variability decisions ... 14

2.2.5 Prioritization Conflicts .. 14

2.3 Variability Decision Making.. 15

2.3.1 Domain Engineering in INDENICA .. 15

2.3.2 Model Composition in INDENICA ... 18

2.3.3 Making Variability Decisions in INDENICA ... 19

3 Architecture Decision Making .. 21

3.1 A Pattern Language for Service-Based Platform Integration and Adaptation

 22

3.2 Fuzzy Logic Based Approach to Support the Selection of Design Patterns . 24

3.2.1 Background on Fuzzy Logic Inference .. 24

3.2.2 Approach Details .. 25

3.2.3 Design space for an example of INDENICA case study 29

3.3 Connect Architectural Decisions to Service Component Views 31

3.3.1 Approach Overview.. 33

3.3.2 An example scenario in INDENICA case study ... 37

4 Summary and Conclusion .. 41

5 References ... 42

6 Appendix .. 46

6.1 Detailed Description of the Pattern Language for Service-Based Platform

Integration and Adaptation ... 46

6.1.1 Integration and Adaptation ... 46

6.1.2 Interface Design ... 49

6.1.3 Communication Style ... 51

INDENICA D1.3.1

4

6.1.4 Communication Flow ... 53

6.1.5 Illustration of the pattern language in INDENICA Case Studies............... 59

INDENICA D1.3.1

5

Table of Figures

Figure 1 Requirements-Priority table .. 13

Figure 2: Priority mosaic .. 13

Figure 3: Development of an explicit variability model in INDENICA. 16

Figure 4: Mapping of variability from the virtual platform to base platforms. 18

Figure 5: Overview of Pattern Language for Platform Integration 23

Figure 6: Gaussian membership functions for 3 linguistic values of property

performance .. 25

Figure 7: Fuzzy Logic Approach for Pattern-Based Decisions 26

Figure 8: Eclipse Tooling .. 27

Figure 9: Mapping and consistency checking between ADDs and Designs 33

Figure 10: An excerpt of the Mapping model .. 35

Figure 11: Eclipse Tooling for ADD and Service Component view Development 37

Figure 12: Mapping of architectural design decisions to the Service Component view

 .. 38

Figure 13: Platform Integration and Adaptation Patterns ... 46

Figure 14: Direct Invocations vs. Proxy-Based Platform Integration 47

Figure 15: Integration Adapter: example design ... 48

Figure 16: Interface Design .. 49

Figure 17: Interface Design with Facade and Integration with Adapter 51

Figure 18: Interface Design with Service Abstraction Layer .. 51

Figure 19: Communication Style .. 51

Figure 20: Communication Flow .. 54

Figure 21: Relationships between CORRELATION IDENTIFIER and other patterns 54

Figure 22: Organizing Communication Flows in a Service-Based Integration Platform

 .. 58

Figure 23: Integration Scenario in the Warehouse .. 59

Figure 24: Excerpt of the Integration Architecture .. 60

Figure 25: Examples of Communication Flows .. 61

INDENICA D1.3.1

6

1 Introduction

Developing virtual domain-specific service platforms is a rather complex engineering

task. As a consequence many different decisions need to be adequately made in

order to prepare an adequate infrastructure in order to support this task. The same

holds true for deriving an individual instance, i.e., a specific virtual service platform,
which is adapted to the specific concerns of a situation, from the created

infrastructure. Again, it is a non-trivial task to identify the right decisions to make

and to ensure the resulting decisions are correctly taken. As a reaction to recognizing

this challenge, the INDENICA-approach provides also decision making support to the

engineer on a conceptual, methodological, and tool-supported level. Of course,

depending on the type of decisions and the influences on decision making not all

decisions can be fully tool-supported or even automated. This deliverable will discuss

the current status of the contributions to INDENICA-decision-making. In a second

deliverable, we will build on these results and describe tool prototypes that support

decision-making within the INDENICA methodology.

INDENICA decision-making support focuses on two main aspects: requirements-level

support and architecture-level support. These are covered in the following two
Sections 2 and 3, respectively.

Further relationships to other INDENICA deliverables are:

- D.1.1: Report on state of the art discusses a number of problems and issues,

which are relevant to this deliverable as well.

- D1.2.1: The requirements engineering framework is of fundamental

importance to Section 2.
- D2.1: Open Variability Modelling Approach for Service Ecosystems provides

the basis for modelling of variability. This is taken up again in Section 2.3.

- D3.1: View-based Design Time and Runtime Architecture for Tailoring Virtual

Service Platforms is related to the work on architecture decision making, as

discussed in Section 3.

Comments on the relation to previous work:

- The contributions described in Sections 2 and 3 were developed as part of the

INDENICA project and were motivated by the project. There exist relations (as
described above) to previous deliverables, however.

- Further, especially the contributions in Section 3 are currently submitted for
publication or already published.

INDENICA D1.3.1

7

2 Requirements Decision Making

The first step in the decision-making process is to determine what to build, both

from the perspective of the possible range of virtual service platforms, as well as for

a single, specific virtual service platform. This is the realm of requirements decision-

making. In this section, we will discuss how the requirements engineering approach
IRENE is used to identify the potential decision space that is available during

requirements engineering. In practice, usually not all requirements that are desirable

will also be realized. As a consequence, we require a requirements prioritization

approach as a first filtering step after identifying the decision space. This is discussed

in Section 2.2. INDENICA aims not only at supporting a specific infrastructure, but to

provide the basis for significant, domain-specific customization. This is realized by

identifying variability and resolving this variability while deriving a specific platform.

This is described in Section 2.3.

2.1 Requirements-based identification of possible decisions

This section addresses requirements engineering as a fundamental part of the
INDENICA (decision making) methodology. Requirements engineering in INDENICA is

based on IRENE, a goal-oriented approach, and is supported by the IRET tool. We

think a platform could be specified as if it were a “conventional” single solution,

whose aim is to provide services to others, which in turn may create different

applications.

IRENE (Indenica Requirements ElicitatioN mEthod) borrows from KAOS [Vla09] to

provide the user with a “complete” solution to elicit the “usual” functional and non-

functional requirements, but also to state the foreseen adaptation capabilities and

the variability that should be embedded in the system-to-be:

• Requirements can be classified as either crisp, that is, they are either satisfied

or not satisfied, and fuzzy, to embed flexibility in the system and be able to

reason in terms of different degrees of satisfaction;

• Adaptation is specified in terms of adaptation goals, that is, foreseen ways to

let the platform-to-be to adapt to some external events. These goals can also
be quite vague and identify general-purpose exception-handling solutions;

• Variability (from a requirements’ perspective) is stated by means of dedicated

forms associated with the different modelling elements. The idea is to let the

user identify the type of variability, the possible values, and also some

hypothetical constraints.

IRENE offers a set of graphical symbols, to let the user state the structure of the
requirements, and textual annotations, to refine and better specify the concepts.

Annotations can be added in the form of natural language, to ease the user in

INDENICA D1.3.1

8

his/her work, but also to allow for an incremental specification of requirements, but

they can also be stated using formal notations.

A prototype tool called IRET (IREne Toolset) supports all these aspects. IRET is

implemented as an Eclipse plugin and fully supports IRENE to allow users to easily

define complete and coherent requirements models.

The interplay between requirements and decisions in INDENICA is summarized in
Figure 1. Besides the general assumption that decisions (on the actual

implementation of the platform) are made based on the requirements identified so

far, IRENE provide some peculiar elements that can be properly exploited to guide

(help) the decision process. More specifically, requirements can work for INDENICA

decisions in different ways:

• Stated requirements identify the “solution space”, that is, they specify the

part of the universe of interest for the particular platform.

• They provide the basis for making any decision since requirements define

what the platform is supposed to offer.

• They provide the constraints for decisions (i.e., as long as decisions do not

impact constraints, then decisions are fine).

• Adaptation goals help decide the adaptation capabilities that must be
embedded in the platform and how they should be provided.

Figure 1: Interplay between Requirements and Decisions in INDENICA.

• Decisions can help prioritize requirements. IRENE already supports priorities

associated with requirements; the decision process helps decide among the

views of the different stakeholders.
They provide explicitly a set of (variability) decisions, which will actually

impact the externally visible behaviour of the system. This is a basis for the

variability in the product line.

INDENICA D1.3.1

9

Besides the usual top-down flow, that is, requirements that feed the decision

process, we must also flip the perspective, and adopt a bottom-up view:

decisions can be used to refine/complement the requirements, and thus

iteratively further refine taken decisions, if needed.

The main task of IRENE is to develop and describe the decision-making space to

begin with. One can summarize that there exist three levels on which decision-

making is important from a requirements engineering perspective:

• Multi-view inconsistencies: different views (either due to the fact that

different representations are used or different stakeholders have different

interpretations) may be inconsistent with each other.

• Prioritization: even, if we have a consistent picture of desirable requirements

that should be realized, for each specific virtual service platform, we are still

bound to a maximum amount of resources that are available. As a

consequence, a prioritization needs to occur.

• Variability: some aspects may simply be relevant only in specific contexts or

for specific application scenarios. These need to be conserved and enabled as

explicit variability. This enables to postpone decision-making from platform

infrastructure development time to platform-reuse time (or even platform
use time, where this overlaps with adaptivity).

IRENE supports all these levels, albeit in different ways:

1. IRENE provides graphical means to integrate different views into a single,

coherent representation of the requirements, and thus into a unique starting
point for the decision process. Usually, requirements specifications comprise

different views, and IRENE provides automatic solutions to merge the views

and obtain a single specification where all “similar” concepts are merged, and

all the differences are highlighted properly.

2. Inconsistency that derives from differences in stakeholder perception can of

course not be avoided this way. Here, IRENE aims at capturing the different

perspectives and at supporting the integration by providing a basis for

discussion. Each stakeholder is free to add his/her view, but then the

integration process merges what is equal in the different views and highlights

the differences among the other elements. IRET does not merge any
inconsistency automatically, but the user is in charge of solving them.

3. The detailed goal-oriented description that IRENE supports provides a good

basis for prioritization. The details of the prioritization approach envisioned
for INDENICA is described in Section 2.2. Each goal is associated with a

foreseen priority, and again this is the starting point for the prioritization
process. Note that different stakeholders may assign different priorities to

the same goals, and thus IRET will help the users identify a single priority

associated with each goal (as described in Section 2.2).

INDENICA D1.3.1

10

4. IRENE explicitly captures base information for variability decisions and

constraints among those decisions. Each element of IRENE can be associated

with variability-related comments. Variability here means: what can vary, it's

possible values, when this variability should be resolved (design-,

deployment-, and run-time), constraints with respect to other variability

requirements, and free notes for the developers. The purpose of this

information is twofold: it (i) feeds the actual design of the variability that
belongs to the platform-to-be and (ii) provides the basis to initiate the

decision process.

Show

video stream

video quality

same video quality

run-time

low, high, premium

premium quality means full HD, while
high quality is only HD, and low is
usual resolution

Variability

Figure 2: Example variability hypotheses in IRENE.

For example, Figure 2 shows a simple case of how variability can be described in

IRENE. If we suppose a simple functional goal of a video-audio conferencing
platform, one may say that the quality of the video stream can assume three

different values: low, high, and premium. This variability must be dealt with at

runtime. The notes specify the meaning of the three values, and the constraint states

that the video quality must be paired with “similar” audio quality.

Thus, while IRENE itself is not part of the actual decision making, it provides the basis
for the further decision-making oriented procedures within INDENICA.

2.2 Requirements Prioritization as Basis of Decision Making

The prioritisation of requirements is a discipline of Requirements Engineering that

brings the business view into the early phases of a development process. But it must
not be seen as a distinct phase, rather priorities evolve during the RE process and

changes to a set of requirements also change priorities.

The interaction between decisions and priorities is manifold:

INDENICA D1.3.1

11

a) stakeholders decide on a priority assigned to a requirement

b) priorities of different stakeholders are in conflict, they are negotiated and a

decision on final priorities is taken

c) prioritized requirements are a major input for planning decisions (e.g. release

plan, iteration plan)

d) prioritized requirements are a major input for architectural and design
decision

There is virtually no development of a product, a system or a solution where the

limiting conditions (time, cost, resources) allow fulfilling all requirements and often

the result cannot be achieved in “one shot” but require a set of releases. This also

applies for service platforms.

2.2.1 Prioritizing requirements

Assigning priorities to requirements is always part of a decision process. At first stage
priorities are often allocated to requirements by “gut feeling” but this can lead to

inadequate priority distribution (“everything has priority 1”). There are a number of
prioritization techniques like

• Ranking,

• Kano classification,

• On-Criterion classification

• Top-ten selection etc.

An overview on these techniques is given in [Po09], page 632.

In practice the number of items to be prioritized should not exceed 100. For

propagating priorities to higher and lower levels of detail there are strategies in
place; a widely applied method for this is the Analytic Hierarchy Process (AHP, see

[SaVa01]). It allows finding strategies for aggregating priorities on higher levels and

inheriting priorities to lower levels.

2.2.2 Resolving conflicts in stakeholder evaluations

It is obvious that different stakeholders or stakeholder groups have different
priorities for the same requirement. Here a negotiation is necessary that leads to

decision on final priorities that are used in the further architecture and design
decisions as an essential input. At the same time this supports the identification of

the overall relevant decision space.

Below we will outline how the INDENICA Requirement Engineering Framework
supports this negotiation [D1.2.1]. It consists of two methods that are part of RE for

service platforms:

INDENICA D1.3.1

12

• IRENE, the INDENICA Requirements ElicitatioN mEthod, which supports the

definition/elicitation of the requirements of innovative service platforms,

• User Centred Requirements Engineering, which supports the negotiation of

different priority views on a set of given requirements.

IRENE provides a hierarchical model of goals that easily allows selecting the

appropriate level of granularity for prioritization.

User Centred Requirements Engineering was elaborated in detail in [D1.2.1]; here we

provide a short summary:

Requirements can be characterized on three levels:

a) the user level

b) the requirements level

c) the importance level

The user level tries to give a structure to various groups of stakeholders. This is of

importance especially in the context of (virtual) service platforms. Two examples:

• In integration projects, users come from different levels of the automation

pyramid: Enterprise resource planning, manufacturing execution, supervisory
control, process control, etc. On all these levels the users have different

views on the integrated system, different goals, different knowledge and thus

different priorities on the requirements.

• In the IDENICA case studies [D5.1] there are two major user groups: the
application developers and the end users, who again may have different

priorities on the Virtual Service Platform depending on their focus on the

warehouse, the yard management, the monitoring, or the overall integration.

The requirements level brings in a (as far as possible) complete and structured set of

requirements. A good structure is necessary for selecting the appropriate level of
abstraction and granularity of the requirements. Here, the goal-based hierarchical

approach of IRENE provides a suitable input. It further shows requirements

dependencies and conflicts.

The importance level shows the priorities that user groups allocate to individual

requirements or requirements groups on the selected level of granularity.

The approach does not contain or predetermine a prioritization technique like

ranking, Kano classification, top ten selection etc.

For applying the User Centred RE method it is necessary to use the same technique

with all user groups. In the following examples we subsume a prioritization model

with four values from 1 to 4, which mean “unimportant”, “fairly important”,
“important” and “very important”.

Within a user group the requirement and priorities span a two-dimensional vector

space that allows conclusions on the quality of voting:

INDENICA D1.3.1

13

Figure 1 Requirements-Priority table

The rows show for each priority level the weighted number of votes. Here a good

distribution is an indicator for a clear decision basis. There are then requirements

which clearly are identified as important or very important and thus candidates for

implementation or for early releases.

If there is an accumulation on one priority level with a big number of requirements
ranked high, and only few ranked low could indicate a weakness in the prioritization

technique and its application. In this case the change of the priority model should be

considered.

For comparing the different sets of priorities from the user groups a graphical

representation was presented in [D1.2.1]:

P
ri
o
ri
ty

R1
R2

R3
R4

R5

R6

Figure 2: Priority mosaic

User groups can also have dedicated weights for their voting. The example in Figure

2 shows a consolidated voting of six user groups where group 1 has a higher (double)

weight than the others.

The columns show for each requirement the voting over all user groups. This gives

valuable input for the final priority: a homogenous voting gives a clear final priority.
An inhomogeneous voting triggers the negotiation with user groups. And for final

decisions on requirements to be implemented a further analysis of implementation

cost, time and resources will be necessary.

INDENICA D1.3.1

14

2.2.3 Release and iteration planning based on priorities

A set of requirements with finalized priorities is a valuable and crucial input for

planning processes.

On a product portfolio level a product roadmap or product evolution plan can be

derived. A systematic approach for this was presented by Ullah, Ruhe and Garousi

with the COPE+ method [UlRuGa10].

Also service platforms evolve and affect a Virtual Service Platform with multiple and

independent life cycles. The need for coordination of platform lifecycles and the

respective planning process was elaborated in the Deliverable on Governance of

Virtual Service Platforms [D3.2].

2.2.4 Priorities as input for variability decisions

The analysis of priority distributions allows more conclusions that lead directly to

decisions in the context of product line engineering:

• A homogeneous allocation of high priority indicates that the requirement is

important for many user groups; it is a candidate for a commonality.

• An inhomogeneous distribution of priorities indicates that the requirement is

specific for one or only a few user groups; consequently it is allocated to a

specific product or solution that is based on a platform.

As a final result of the prioritization all requirements have a priority that is agreed

upon by the user groups, but is still not free of conflicts. In the best case there is a
bunch of requirements clearly identified as the most important ones. In case an

iterative approach is applied, they shall be treated in the following analysis in the

first iterations. At the same time it is clear that there are also other decision criteria

for allocating requirements to a platform or to the application level.

 At this point the analysis goes into the solution space by evaluating them against

architectural options and constraints. Requirements priorities ensure that in these

following decisions on architectural and design options the “Voice of the Customer”

is respected and the resulting system or platform will satisfy the expectations.

2.2.5 Prioritization Conflicts

Defining the VSP capabilities means at first stage selecting from a set of requirements where
the priority is a main decision criterion. The other set of decision criteria comes from the
definition of architectural constraints. Bringing these two dimensions together leads to the
core of the decision for VSP; here extreme situations may occur:

• A highly prioritized requirement cannot be implemented at all on the architecture level.
In this case the solution space has to be enlarged and options beyond the VSP must be
evaluated:

o Extension of one of the base platforms

INDENICA D1.3.1

15

o Integration of another platform that allows fulfilling the requirement

o Dropping the VSP approach and evaluating the development of an application
on pure base platforms.

• The VSP approach conflicts mostly with low priority requirements. In this case the
affected requirements are not selected for further analysis and implementation.

• None of the constraints conflicts with any of the requirements. In this case all
requirements can be fulfilled unless they are de-selected by other criteria (e.g. cost,
time, resources…)

In practice there will always be a continuum between these extreme options and this makes
it more necessary to invest effort in a thorough prioritization of requirements.

2.3 Variability Decision Making

Variability management is typically considered to consist of two main parts: domain

engineering and application engineering [vLRS07]. While domain engineering aims at

establishing a precise model of the decisions to be made, application engineering
focuses on the use of these decisions for deciding on the particular properties of an

individual solution (in our case, an instantiated, virtual and domain-specific service
platform). We will first address the domain engineering phase in INDENICA, then the

application engineering phase.

2.3.1 Domain Engineering in INDENICA

Typically, the first step in domain engineering is to identify the potential range of
variation that requires support. This is typically called scoping. Scoping is typically

done by developing a set of potential products and identify their commonalities and

differences [JE09] and part of product management for product lines [HSH06]. In

INDENICA, the approach differs and an analysis of the relevant requirements,

including their scope is done by IRENE, the requirements elicitation and analysis
methodology. The result of IRENE is a set of requirements with identified potential

variabilities. These variability decisions are only identified on an informal level. The

next step is the prioritization (cf. Section 2.2), which identifies requirements of lower

importance, which may be removed from the requirements. It is the focus of

INDENICA decision modelling to refine and formalize the identified decisions using
the approach described in [D2.1]. Thus, the derivation of decisions amounts to a

three-step approach as shown in Figure 3, left side.

The result of domain engineering in INDENICA is actually not a single model, but
rather a refined, two-layered model. This is shown in Figure 3, right side. On the

upper level it contains the overall (requirements level) variability, as specified in

[D2.1]; on the lower level it contains the various requirements, along with
descriptions defining which requirements relate to which decision.

INDENICA D1.3.1

16

IRENE informal
decision capturing

Filteringof
requirementsby

prioritization

Requirements
model with explicit

variability

Variability
model

Requirements
base model

Figure 3: Development of an explicit variability model in INDENICA.

In order to derive the full variability model, we need to refine the information

contained in the IRENE model. In particular, we need to identify the following

aspects, which are not (a formal) part of the IRENE model:

• Value range - what are the different (perhaps alternative) resolutions of a

certain variability.

• Multiplicities - can we select multiple values or can only a single value (true

alternative) be picked.

• Dependencies - what constraints and dependencies exist among individual

variabilities?

• Hierarchy - often it is useful to identify a hierarchical ordering among

individual variabilities.

• Binding Times – at which time in the lifecycle must/can a decision be made.

An important observation when translating from IRENE to a variability model is that

goal-models like IRENE are basically forming and-or-trees. Thus, they already provide

a logic structuring of the requirements, including hierarchical dependencies among

the individual requirements.

In order to identify a relevant variability decision based on IRENE, we will usually

assume that this is already identified in an informal way in IRENE. For example, a
comment (or a requirement) may define that it must be possible to have support for

emergency shipping. We conclude that this is a feature that is not necessary for all

instances, thus, we identify it as a variability decision (example 1). In another case
there might be different requirements for the types of trucks that need to be

INDENICA D1.3.1

17

supported (e.g., cooling, different sizes, etc.) and we conclude that this is not a

difference among stakeholders, but rather that this is a difference due to different

installations (example 2).

In both cases, in order to be sure that these are indeed relevant differentiations that

should amount to variabilities, we can use the information from prioritization, but

still need to make additional checks: if there is a significant difference among

stakeholders regarding the priority of such a requirement (e.g., cooling in example
2), then there might be two reasons: the stakeholders simply have different views,

although there is only a common variant. In this case, requirements prioritization

needs to combine with requirements negotiation and common ground regarding

what is more appropriate needs to be found. However, if the stakeholders vary in

their judgement because they are actually judging different cases, e.g., an

installation in the US for a small company vs. a customer-specialized solution for a

large European company, then this might actually give rise to a variability. This

difference can only be identified through additional stakeholder information.

Whenever we judge that we have to deal with a true variability (this may also be
directly identified as a goal), then we come up with a name for the corresponding

decision.

The value range is defined accordingly by inspecting the various alternatives

identified in the IRENE-model. In the first example this is very simple as it amounts to

a Boolean decision. The second is more complex: we might identify an enumeration

for the different transportation types like cooling, road train size, large size, etc.

However, in practice further analysis of such an enumeration often reveals that
several concerns are intermingled. In the given example, actually there is a form of

goods (cooling, normal, etc.) and sizes intermingled. It might then be more

appropriate to derive these basic concerns explicitly as different decisions.1

Multiplicities need to be identified as well from a combination of model analysis and

explicit information elicitation as the informal model information will typically not be

sufficient. There are, however, two main cases, which will usually be easy to identify

from the IRENE models: a) the different alternatives cannot be combined or b) they

can be arbitrarily combined. In the first case, we can directly model them as an

enumeration, while in the second case, the INDENICA Variability Modelling Language

(IVML) allows to model this as a set or list (if ordering is important).

Besides the basic decisions also dependencies among the decisions must be

identified. To some extend this can be deduced directly from the IRENE models. As

these models provide on the one hand formal relations among individual
requirements (and-or), these can be translated into constraints among different

decisions (respectively values of decisions). As further information also informal

1 It should be noted that the resulting decisions will typically be interdependent (e.g., cooling might only be

available in combination with certain truck sizes). As these decisions are not necessarily identified during the
initial requirements modelling, we will also not have requirements model information on this. Thus, the

necessary constraint information needs to be identified from scratch in this stage.

INDENICA D1.3.1

18

constraints can be described in IRENE (cf. Section 2.1). Often this will be sufficient as

a starting point and can be translated into formalized constraints among decisions.

Even though these constraints may be informal, IVML provides a very rich constraint

language, which should be powerful enough to easily translate these constraints. In

cases, where the input model is not sufficiently detailed, further elicitation activity is

necessary to complete the constraint model.

Finally, it is sometimes useful to structure the various decisions in a hierarchical
manner. This hierarchical structure can easily be deduced from the structure of the

IRENE models on one hand (if the basic decision is described already in the IRENE

model) or through domain information on the other hand. The idea is to have a more

specific decision as a part of a more general decision. In IVML this can be easily

described using the compound construct. A particular case of such a hierarchical

model is the possibility to deal with multiple abstraction levels.

2.3.2 Model Composition in INDENICA

When considering the INDENICA variability decisions we should keep in mind that

INDENICA addresses the domain-specific customization of (base) platforms as well as

the integration of the individual platforms into a virtual platform. When we develop
a new virtual platform according to the concepts outlined above, we will usually rely

on existing (customizable) base platforms. In such a situation it is important to not

only derive a variability model for the integrated platform, but also to describe the

mapping of the variability to the base platform variabilities. This is conceptually

shown in Figure 4. The IVML supports such mapping explicitly by its variability
composition support and its interface concepts.

Integrated Virtual
Platform

Variability Model

Base Platform 1
Variability Model

Base Platform 2
Variability Model

Base Platform 3
Variability Model

Figure 4: Mapping of variability from the virtual platform to base platforms.

In IVML we can encapsulate the variability of the various base platforms using the

concept of interfaces. Thus, we can identify an arbitrarily rich variability model for
each of the different base platforms, independently. Then we define an interface

that describes the variability, which should be available to the construction of the
virtual service platform in terms of a variability interface. This interface may also

introduce an arbitrary renaming, in case this is helpful to the variability definition.

The variability model definition of the virtual platform may now reuse an arbitrary

base platform variability model by importing it (respectively its interface). This allows

INDENICA D1.3.1

19

access to this variability. The important step is now to connect the variability on the

virtual service platform level with the lower level variability of the base platform.

In IVML this can be done using constraints. Decisions regarding the virtual platform

variability model, may be defined to determine lower-level decisions (i.e., base

platform variability). According to the current IVML-status [D2.1] this is the main

approach to support platform integration on the variability model level. However,

we currently analyze further approaches like dependency generation based on
composition models (cf. [RS10] for an example). Another approach, which could

provide further support would be the one described in [DN+08]. However, while the

former makes assumptions which are not necessarily appropriate in our context, the

second does not simplify the generation of the variability model per se, but does

mainly provide support in the evolution phase.

Thus, it is part of our further research to improve the composition of the variability

model.

2.3.3 Making Variability Decisions in INDENICA

In the previous subsections, we focused on constructing decision models for
variability management. Here, we will now focus on the application engineering part,

i.e., making variability decisions.

There are various aspects that need to be taken into account in order to support

decision making in application engineering. Some examples are:

• number of decisions - variability decision models for large and complex

systems may typically contain several thousand decisions. Organizing this

effectively, i.e., minimizing the number of decisions that need to be taken

manually is thus very important.

• roles - usually people involved in the decision making process fill different
roles in the organization. This may include sales people, architects,

developers, etc.

• lack of domain knowledge - usually people involved in the decision making

process and domain engineers are different persons. These people may be

lacking the necessary knowledge to perform a complete configuration. In
order to overcome this problem, these people should be supported with

appropriate background knowledge.

The INDENICA decision support framework will offer strategies to address the

aforementioned problems. Different types of strategies can be distinguished

according to the following dimensions:

• by order of decision making (abstract to detailed, according to different sub-

areas, according to different responsibilities and roles, according to different
organizational units).

INDENICA D1.3.1

20

• focusing on local and global constraints (i.e., within and between these

groupings)

• strategies for structuring the work (e.g., using explicit workflows, visibility,

hierarchy, constraints)

We discuss some of these strategies below, which we assume may play an

important role in the INDENICA project. Where appropriate, we will rely on

available related work [Hub12, RD07, RGD07, Sch10]:

• filtering support - concepts like filtering and searching of decisions address

large and complex variability decisions models by reducing the number of

decisions, which must be taken into account by a single application engineer.

Some approaches use role-specific views to support decision making. It allows

people to focus on those variabilities that are important to them and also

insures that, for example, sales personal does not accidentally set low-level

technical decisions.

• historical data - some approaches rely on the reuse of configuration data of
older projects. Hence, the users can use this data if they are lacking of

domain knowledge. This approach could be extended to a recommendation

service, which will offer suggestions based on the current situation and old
configurations.

• value resolution support - if a high number of decisions values and constraints

is available, this will significantly constrain the further solution space. Such

information can also be used to optimize the question: which information to
identify next as the various possible decisions will differ in terms of how

much they further constrain the decision space.

• additional guidance - another approach is to introduce further (softer)

information. This is, for example, used in package management systems like

Eclipse, Debian, etc. Here, soft constraints like recommends, suggests, etc.

provide guidance to the user.

• profiles - high level decisions that provide guidance for the selection of low-

level decisions (market-type=Telecommunication may lead to setting

thousands of other decisions), is actually pretty common, e.g., in systems like
SAP. From a more formal point of view, this can be considered as a form of

default reasoning. In this form it is also supported by IVML.

While, so far, individual of these strategies have been proposed in various works,

their combination and integration has not yet been supported. We assume that
this will be necessary to significantly reduce the complexity of decision making in

complex and large-scale multiplatform scenarios.

INDENICA D1.3.1

21

3 Architecture Decision Making

A typical service-based application often relies on functions provided by different

service platforms specialized for different domains. As a consequence, many

applications pose the requirement for integration of services from one or multiple

heterogeneous platforms. However, platform integration is a rather challenging task
as the software architects and developers are confronted with several architectural

design decisions (ADDs) at different levels of abstractions and different levels of

granularity. There is a considerable amount of approaches targeting various aspects

of service-based integration and adaptation [GHJV94, BMR+00, BHS07a, Fow03,

HW04, VKZ05, HZ09, Dai12, HZ12]. Unfortunately, these approaches, on the one

hand, have documented architecture decisions with a different focus. On the other

hand, walking through several patterns scattered in different literature in order to

achieve a reasonable solution for service integration is tedious and time-consuming.

During the course of building up the architectural decision, for instance, by using a
pattern language, software architects have to justify how a design pattern will fit into

the overall architecture and identify its dependencies to the others. Unfortunately,

there are several factors introducing different sources of uncertainty for the task of
selecting architectural design pattern alternatives, variants and implementations.

Some examples of the sources of uncertainty are:

• Most of patterns can introduce solutions to several similar problems and can

appear in many different variations.

• When sorting out appropriate patterns during the decision making process, the

software architects have to balance various forces and consequences in the

context of these patterns as well as numerous of related requirements that are

often vague, ambiguous, and possibly competing to each other.

• Given a decision problem at hand, the software architects still have to adapt the

appropriate patterns to technology and system specific contexts and options.

• In the pattern literature, design patterns are described in a rather informal

narrative style using slightly different text structures by the authors [Zdu07].

Apart from the aforementioned issues, the lack of a formal mapping of the ADDs and

corresponding software designs (e.g., component models, deployment models, or
Service Component views in INDENICA) leads to inconsistencies and low traceability

when either or both of them evolve.

The INDENICA architectural decision making support approach presented in this

section aims at addressing the problems mentioned above. In particular, the main

contributions are:

• To revisit the existing patterns and design decisions regarding service-based
integration and adaptation of platforms and organize them in a comprehensive

pattern language which software architects and developers can systematically

reference and follow to build up an appropriate platform integration and

INDENICA D1.3.1

22

adaptation solution. We briefly describe the pattern language in Section 3.1 and

provide detailed explanation of the pattern language in Appendix 6.1

• To propose a novel fuzzy logic based approach to resolving the uncertainty and

variability of pattern-based decisions and providing semi-automated decision

support. This approach will be presented in detail in Section 3.2.

• To propose a constraint-based mapping approach that enables explicit

formalized mappings of architectural design decisions onto software designs such
as Service Component views and supports the consistency checking between the

decisions and the corresponding Service Component views. Our approach will

bridge the gap between requirements and design, between ADDs and

architectural views, combining ADDs with Service Component views in a formal

way. This approach is also the result of the integration between the INDENICA

architectural decision making support tool developed in WP1 and the view-based

design time and runtime architecture developed in WP3 (see [D3.1]). Section 3.3

will elaborate our constraint-based mapping approach.

So far, we have partially published relevant scientific results at conferences in the

fields of software architecture and software design, which are:

1. I. Lytra, H. Tran, and U. Zdun. Constraint-Based Consistency Checking

between Design Decisions and Component Models for Supporting Software

Architecture Evolution. 16th European Conference on Software Maintenance

and Reengineering (CSMR), March 27-30, Szeged, Hungary, 2012.

2. I. Lytra, S. Sobernig, H. Tran, and U. Zdun. A Pattern Language for Service-

Based Platform Integration and Adaptation. Accepted to the shepherding
phase of EuroPLoP 2012.

We have also partially developed a prototypical implementation of the

aforementioned contributions aiming at supporting software architects and

developers in making architectural decisions and building up appropriate domain-

specific service platform integration solutions. The final prototype will be reported in
M36.

3.1 A Pattern Language for Service-Based Platform Integration and

Adaptation

In the context of platform integration, the diversity of service platforms with respect

to their functional and non-functional properties often leads to several alternative
ways for successfully tailoring, adapting, and integrating those platforms. In other

words, the software architects and developers are usually confronted with numerous

design decisions at different levels of abstractions and different levels of granularity

to arrive at a reasonable platform integration solution. The main focus of this section
is a comprehensive pattern language that software architects and developers can

systematically reference and follow to develop an appropriate platform integration
and adaptation solution. The pattern language presented in this paper considers four

essential high-level architectural decision categories in the context of service

platform integration, which are Adaptation and Integration, Interface Design,

INDENICA D1.3.1

23

Communication Style, and Communication Flow. Each category constitutes a number

of architectural design decisions described in terms of relevant patterns and their

relationships along with their variations or alternatives and the decisive reasons

leading to choosing these patterns. Based on the descriptions of this pattern

language, the functional and non-functional properties of the service platforms, and

particular requirements of the service-based applications built on top of the

platforms, one might develop not only a platform integration solution but also a
number of alternative configurations of the solution.

Figure 5: Overview of Pattern Language for Platform Integration

Our proposed pattern language for service-based platform integration and

adaptation describes interconnected design decisions using existing patterns
material from different sources, such as patterns for general software design

[GHJV94], software architecture [BMR+ 00, AZ05], distributed system design

[BHS07a], enterprise application architecture [Fow03], messaging [HW04], remoting

middleware [VKZ05], service-oriented systems [HZ09], service design [Dai12], and

process-driven SOA [HZ12]. Figure 5 gives an overview of the main categories of
design decisions that we document in our pattern language. The direction of the

arrows implies follow-on decision categories. In our pattern language, we consider

the following major architectural decision categories: Adaptation and Integration,

Interface Design, Communication Style and Communication Flow.

• Adaptation and Integration concerns design decisions regarding the integration

of platform services into a service-based integration platform and their interface

and protocol adaptation, if required.

• Interface Design mainly covers design decisions regarding the design of the

exported interface(s) of the service-based integration platform. Decisions in the
categories Adaptation and Integration can be performed in parallel to decisions

in the Interface Design category. These categories mainly concern developing
components and interfaces for the connections between applications, platforms,

and the service-based integration platform.

• Communication Style describes follow-on design decisions that must be taken

for each distributed component connection. The Communication Style category
describes design options for connecting two components. That is, these decisions

usually reside at a lower level of abstraction than the decisions in the other
categories.

• Communication Flow describes additional follow-on decisions that must be

considered in case the service-based integration platform introduces more

INDENICA D1.3.1

24

complex communication flows than simple forwarding from exported interface

to imported interfaces. For instance, it describes how to handle requirements for

aggregating or splitting the messages going through the service-based

integration platform.

The aforementioned architectural decision categories aim at covering the core

design space of service-based platform integration and adaptation. In Appendix 6.1,

we will provide further elaborations of these categories.

3.2 Fuzzy Logic Based Approach to Support the Selection of Design

Patterns

The fuzzy logic based approach elaborated in this section aims at supporting the

software architects in answering the question “Which pattern fits best in the current

design situation?” that appears numerous times during the design. Until now, the

pattern-based decision making process has been largely ad hoc and informal and an

automated decision support does not exist. Apart from that, existing models do not

consider the inherent uncertainty and variability in pattern-based decisions, and it is
hard to adapt existing decision models to technology or system specific contexts. Our

fuzzy logic based method is the first approach that considers the uncertainty and

variability of pattern-based decisions explicitly and provides semi-automated

decision support. It systematizes the solution space for a design problem by

considering alternative patterns, pattern variants and implementations along with

their forces and consequences. Fuzzy logic helps us to deal with the imprecision and

ambiguity of the design pattern selection problem and to calculate best-fitting

solutions given the requirements. For this, we integrate software patterns and fuzzy
logic by creating fuzzy models leveraging experts’ knowledge, and provide a fuzzy

inference system to make pattern decisions under uncertainty, considering patterns’

forces and consequences. Along with the general fuzzy models we derive specialized

fuzzy models for specific technologies and system contexts. These fuzzy models are

described using a domain-specific language (DSL) and get stored in a repository.
Thus, they provide reusable assets for pattern-based decision making.

3.2.1 Background on Fuzzy Logic Inference

Fuzzy Logic

Making decisions that contain uncertainty, such as the uncertainty in natural
language is not an easy task. To address this problem Lotfi Zadeh introduced in 1965

the Fuzzy Logic [Zad65]. Key concepts of Fuzzy Logic are the fuzzy sets and their
membership functions. Unlike classical sets fuzzy sets contain objects that satisfy

imprecise properties of membership [Ros04]. In binary logic the membership

function takes only two values: 0 and 1. Zadeh extended this binary membership to
express various “degrees of membership” spanned in the interval [0, 1]. A

membership function of a fuzzy set is a curve that defines how each point in the

input space (the universe of discourse) is mapped to a membership value between 0

INDENICA D1.3.1

25

and 1. We use the representation μÃ(x) to express the degree of membership of

element x in a fuzzy set Ã. Thus we can write:

μÃ(x) = degree to which x ∈ Ã,

μÃ(x) ∈ [0, 1]

Fuzzy Logic allows the numerical encoding of the vague but rather simple linguistic

values that humans use in their communication. For example the property scalability
could be described as high, medium or low. These linguistic values can be

interpreted using fuzzy sets which get mapped to overlapping membership functions

(see Figure 6). The membership functions can be triangular, trapetzoidal, gaussian,

etc.

Figure 6: Gaussian membership functions for 3 linguistic values of property performance

Fuzzy Inference System

Fuzzy relations can be assembled from linguistic knowledge, expressed as IF–THEN

rules. Fuzzy inference is the process of formulating the mapping from a given input
to an output using fuzzy logic. Mamdani method for fuzzy inference [MA99] is the

most suitable for capturing expert knowledge, as its rules allow us to describe the

expertise in more intuitive and human-like manner. In this case, a fuzzy rule-based

system contains simple canonical rules of the following form: “IF condition B, THEN

conclusion C”. The condition B can contain multiple antecedents in conjunctive or
disjunctive form or combination of both.

The conclusion C is of the type “y IS Ã”, where Ã is a fuzzy value of the output

variable y. The fuzzy inference process comprises the following steps: fuzzify the

input, evaluate the fuzzy rules, aggregate the outputs to reach the final decision, and

defuzzify the output to obtain a crisp value. In our work we integrate software
patterns and fuzzy logic and apply a Mamdani-type inference method to make

pattern decisions under uncertainty.

3.2.2 Approach Details

Overview

To have an overview of the steps of our approach our fuzzy logic based method is

illustrated in Figure 7. To create our DSL we used the Eclipse toolkit Xtext2 for

2 http://www.eclipse.org/Xtext/

INDENICA D1.3.1

26

creating textual DSLs. Along with our Eclipse tooling we used the open source Fuzzy

Logic library jFuzzyLogic3 which implements the Fuzzy Control Language (FCL)

specification [Int00] and provides a DSL and a fuzzy inference system. FCL is a rather

general language that implements fuzzy control. We choose, however, to focus on

the domain of pattern selection and we develop a simple expressive DSL to describe

our fuzzy models which is definitely easier to read and write. The software architects

use our Eclipse tools to capture generic and technology-specific pattern-based
knowledge. That means that they have to define the patterns with their forces as

well as to describe the fuzzy rules using our DSL. After that, FCL files can be

automatically generated from DSL files and stored in a repository in order to be

ready for use from the fuzzy inference system. The requirements engineers use the

Eclipse tooling to give the requirements in crisp values using a grading system (e.g. 1-

10) for fuzzy input variables like scalability and reliability. The fuzzy inference system

returns the appropriate design patterns and their ranking for the given requirements

as we can see for example in Figure 8.

Figure 7: Fuzzy Logic Approach for Pattern-Based Decisions

3 http://jfuzzylogic.sourceforge.net

INDENICA D1.3.1

27

Figure 8: Eclipse Tooling

Domain Specific Language for Fuzzy Logic Models

Fuzzy Pattern-Based Decision Models

In this section we explain how to define our fuzzy pattern-based decision models

using the DSL. The pattern documentations help us to find the related patterns and

define the forces and consequences of the patterns that are mapped to the fuzzy

inputs. Patterns that refer to a specific domain, problem or technology can be

organized in groups, for example:

group asynchronous_invocation

Pattern fire_and_forget

Pattern sync_with_server

...

Before we write the rules for the pattern selection we need to define the patterns’
forces and consequences and their possible values – the fuzzy sets. Along with the

fuzzy sets, we need to select their membership functions. For the quality attributes

(e.g. reliability) we may choose triangular, trapetzoidal, gaussian, etc. membership

functions, however, for properties that do not contain any fuzziness (e.g. supports

acknowledgement can be either yes or no) we use singleton membership functions.
The patterns and pattern variants are the values of the fuzzy output variable pattern

with a singleton membership function, as they do not contain any fuzziness as well.

We define quality attributes with their linguistic values and membership functions as
following:

INDENICA D1.3.1

28

forces

reliability gauss { low medium high }

...

end

schemas

gauss { gauss [1 2] gauss [5 2] gauss [10 2] }

...

end

The precise shape of the membership curves is not so important, as their

approximate placement on the universe of discourse, the number of curves used and

their overlapping character are the most important ideas [Ros04]. The overlapping of

the curves helps us express the ambiguous and vague borders between the linguistic

attribute values. But we should keep in mind that the type of the membership

functions, the grade of their overlapping and the number of the variable values

depend on the engineers’ preferences, experience and intuition and affect the

precision of the results. Therefore, the membership functions should be tuned
manually (e.g. empirically by trial and error).

Finally, the experts’ experience gets translated into fuzzy rules as in the following

example:

if performance is high and reliability is medium then poll_object

We can also assign weights to the rules according to their importance.

Technology-Specific Decision Models

To include technology and system-specific, knowledge pattern implementations can

extend the generic patterns and thus inherit their membership functions and rules:

group apache_cxf

import "generic.fuzzypattern"

Pattern oneway ofType fire_and_forget

...

The generic rules must be also combined with the specialized rules. Therefore, we

generate the FCL files from the DSL files according to the following rules:

1. For the generic fuzzy models, all input variables, fuzzy sets, membership

functions and rules are translated as they appear in the DSL.
2. For technology-specific fuzzy models the FCL files contain all input variables,

fuzzy sets and membership functions they inherit from the generic fuzzy models.

They contain also all the rules that refer to patterns which they inherit as well as
combined rules that are constructed. Imagine the case where we claim that the

INDENICA D1.3.1

29

fire and forget pattern provides high performance. We should be allowed to use

this pattern even if we are satisfied with low or medium performance.

Fuzzy Inference System

We use the max-min inference to infer the degree of appropriateness of each of the

patterns represented by the length of the spikes of the fuzzy singletons. The

membership functions of the fuzzy sets of the conclusions are limited to the degree
of accomplishment of the condition and then, in turn, get combined to create a fuzzy

set by forming a maximum. In our case, the defuzzification does not produce any

useful information, because the order of the different software patterns in the

output space is arbitrary.

3.2.3 Design space for an example of INDENICA case study

DSL-Based Specification of Design Space

To illustrate our approach we elaborate an example from the INDENICA case study.

We consider an excerpt of the remoting pattern language described in [VKZ04] as an
example of communication between one of the integrating platforms and the

Operator Application. The remoting patterns describe the inner workings of

distributed middleware systems (such as Web Services, CORBA, Java RMI and .NET
Remoting) and explain how to use them to create distributed systems. In our

example we focus on the asynchronous remote invocation patterns. Unlike blocking

synchronous invocations, asynchronous invocations allow client applications to

resume with their work while waiting for a response to a remote invocation, thus

improving scalability and performance. In our example we examine the following
patterns:

1. fire and forget: A server application provides remote objects that get invoked

by the clients without expecting any return value.

2. sync with server: The client sends an invocation as in fire and forget and waits

for a reply from the server informing it about the successful reception.

3. poll object: The server delivers the results to a poll object which is queried by

the client in certain intervals.

4. result callback: The server notifies the client once the results become
available.

Our first step is to define the pattern forces and consequences (our fuzzy sets) and

their membership functions. By reading the relevant documentation, we decided to
use the following decision criteria for the generic DSL files: performance, reliability,

acknowledgement and log application error. We experimented with different

number of fuzzy sets and membership functions in order to tune them and report
our results. For the writing of the rules we consulted the pattern documentation as

well as our experience. In the following, we present an excerpt of a DSL file which

captures generic decision knowledge on the asynchronous invocation patterns. Of
course, what we present here reflects our interpretation of the design pattern

INDENICA D1.3.1

30

documentation and our experience and can be modified to include more or less

forces, different membership functions, different sets of rules, etc.

group asynchronous_invocation

Pattern fire_and_forget

Pattern poll_object

...

forces

performance gauss { low medium high }

acknowledgement yesno { no yes }

...

end

schemas

gauss { gauss [0 2] gauss [5 2] gauss [10 2] }

yesno { singleton [0] singleton [1] }

end

rules

rule1 --> if performance is atmost high and reliability is

low and acknowledgement is no and log_application_error

is no then fire_and_forget

rule2 --> if performance is atmost high and reliability is

atmost medium and acknowledgement is yes and

log_application_error is yes then poll_object

rule3 --> if performance is atmost high and reliability is

atmost medium and acknowledgement is yes and

log_application_error is no then poll_object with 0.1

...

end

This representation can be enough to capture application-generic explicit

knowledge, but software engineers need more tangible technology-specific

knowledge to apply these patterns to a problem at hand. To support this transition
from application-generic to application-specific knowledge, which is called Utilization

in the literature [FB09], we did a research for the existing frameworks and solutions

that allow us to embed the asynchronous invocation patterns in the application

domain. Thus, we investigated all the pattern implementations as well as the specific

INDENICA D1.3.1

31

decision criteria for the following frameworks: Apache CXF4, Apache Axis 25, Metro

1.26, .NET7 and CORBA8. The technology-specific DSL files import the generic DSL file

and the pattern implementations extend the generic design patterns. Following we

present an excerpt of a DSL file that captures knowledge about CORBA.

group corba

import "generic.fuzzypattern"

Pattern AMI_polling ofType poll_object : "AMI polling model"

Pattern AMI_callback ofType result_callback : "AMI callback model"

Pattern oneway_sync_none ofType fire_and_forget : "Reliable one-way

SYNC_NONE"

Pattern oneway_sync_target ofType fire_and_forget : "Reliable one-way

SYNC_WITH_TARGET"

Pattern oneway_sync_server ofType sync_with_server : "Reliable one-way

SYNC_WITH_SERVER"

forces

complexity gauss { low medium high }

...

end

rules

rule1 --> if complexity is low then AMI_polling

rule2 --> if complexity is atmost medium then AMI_callback

...

end

3.3 Connect Architectural Decisions to Service Component Views

The relationship between the INDENICA architectural decision making support and

the View-based Modeling Framework (VbMF) [D3.1] developed in the context of

WP3 reflects a typical issue in the fields of software architecture and software
design. That is, the gap between architectural design decisions (ADDs) and software

designs will lead to inconsistencies between ADDs and designs and implementations

when the system evolves.

4 http://cxf.apache.org

5 http://axis.apache.org

6 http://metro.java.net

7 http://www.microsoft.com/net

8 http://metro.java.net

INDENICA D1.3.1

32

ADDs capture knowledge that may concern a software system as a whole, or one or

more components of software architecture. In recent years, software architecture is

seen more and more as a set of principal ADDs rather than the components and

connectors constituting a system’s design [JB05]. The idea behind this new

perspective is to document not only components and connectors but also the design

rationale of the architecture as well as to contribute to the gathering of Architectural

Knowledge (AK). Unfortunately, in practice, the ADDs frequently do not get
maintained over time as the requirements and the design of the software system

change and they often do not get synchronized with other architectural views that

represent the system structures [ZZGL08]. Moreover, the lack of formal mappings of

the ADDs and architectural views leads to inconsistencies and low traceability.

Our constraint-based mapping approach aims at bridging the gap between

requirements and design, between ADDs and architectural views, combining ADDs

with Service Component views in a formal way. For this purpose, we propose a

mapping model from ADDs onto the Service Component view that is used to

describe the architecture of virtual service platforms [D3.1]. The Service Component

view can easily be mapped to popular component-based modeling approaches such
as the UML 2 Component Diagram9. Based on the mapping model, we can generate

the Service Component view and constraints for consistency checking between ADDs
and the Service Component view by using model-driven techniques. During the

evolution of the software systems, the ADDs may be altered. Accordingly, the Service

Component view and the constraints can be re-generated, and therefore, remain in

sync with the ADDs. As the Service Component view is changed, the constraints

checking shall verify whether these changes invalidate the corresponding ADDs or
not. In case inconsistencies between the ADDs and the Service Component view

occur, the relevant design elements that invalidate the ADDs shall be highlighted.

9 Section 8 in http://www.omg.org/spec/UML/2.2/Superstructure/PDF

INDENICA D1.3.1

33

3.3.1 Approach Overview

Figure 9: Mapping and consistency checking between ADDs and Designs

Our contributions to the software architecture and design process are summarized in
Figure 9. Our approach can be used not only at design time but also during software

system evolution and maintenance. The mapping between ADD and the Service

Component view can enable traceability and consistency checking between them

and automate the generation of an initial instance of a Service Component view that

reflects the design decisions. Apart from the generation of the Service Component
view, we introduce the generation of constraints that are used for consistency

checking between the ADDs and the Service Component view. As the human

decision is important in the interpretation of the ADDs and their connection to

software architectures, the mapping from ADDs to the Service Component view shall

be performed in a semi-automatic manner. After the mapping is established, the

generation of Service Component views and constraints is fully automated. The

software architects and designers can use our tool to analyze and estimate how the

changes of certain ADDs shall affect the design and/or leverage the generation to

come up with a recommendation design directly derived from the ADDs rather

starting from scratch. Apart from that, we aim at reducing the cost and burden of the
maintenance of both ADDs and Service Component views. Information included in
the ADDs shall be fully reflected in the Service Component view. Changes at the

Service Component view or the ADDs that cause inconsistencies get highlighted.

Hence, we aim at ensuring that ADDs and Service Component views remain

consistent with each other and are traceable back and forth.

Solution Details

In this section we leverage the Service Component view presented in [D3.1] which is
used for specifying the architectures of virtual service platforms in INDENICA. Next,

we introduce a mapping model from ADDs to the Service Component view. We

elaborate afterwards this mapping model for the generation of the Service

INDENICA D1.3.1

34

Component view and of constraints for checking consistency using model-driven

techniques. We revisit the case study and explain how our approach can be applied

to bridge the gap between ADDs and the designs. For the sake of integrating

different models, we utilize the concepts such as NamedElement and

AnnotatedElement of the Core model [D3.1].

3.3.1.1.1 Mapping of ADDs to Service Component Views

Capturing architectural design decisions is important for analyzing and

understanding the rationale and implications of these decisions and reducing the

problem of architectural knowledge vaporization [HAZ07, CBB+ 10]. Several existing

approaches have been proposed for addressing the aforementioned challenges

[TA05, ZGK+ 07]. However, none of these approaches supports to explicitly capture

the causal relationships between the decisions and relevant design artifacts. These

relationships are crucial because they enable the traceability between ADDs and the

designs for analyzing the design coverage (e.g., checking whether some ADDs have

been realized or not), estimating change impacts (e.g., which design artifacts are

affected by certain changes of ADDs), checking consistency between ADDs and the
designs, and many other tasks. In this paper, formalizing these relationships in order

to bridge the gap between ADDs and the designs as well as using them for
generating Service Component views and constraints for checking consistency are

the key contributions.

We propose a generic concept, namely, AD, for representing ADDs (see Figure 10).

Each AD has a number of Outcomes which are inputs for designing Service

Component views. An Outcome can be mapped to a certain element of the Service
Component view such as a component or connector. The ADD’s Outcomes are often

expressed in natural language, and therefore, human interventions are necessary for

instantiating the Mapping model. For instance, if an Outcome implies a new property

of a component, the name of the component and the name, type, and value of the

property should be defined manually.

INDENICA D1.3.1

35

Figure 10: An excerpt of the Mapping model

3.3.1.1.2 Generation of Service Component View

The Mapping model presented in the previous section shall connect the architectural

decisions and designs at various levels of granularity. Each mapping represents a

relationship between a certain Outcome of an ADD to an element of the design (in

this case, the Service Component view) such as a component, port, connector, an

annotation, property, and so on. Among the benefits of the Mapping model

mentioned before, we can also leverage these mappings to generate an initial

Service Component view that can serve as a starting point for designing the

corresponding software architecture. In case of a green-field development scenario
(i.e., there are no existing designs), this step can save tedious efforts that the

software architects and designers have to spend to sketch the designs from scratch.

Nevertheless, in case there are existing designs, the generated designs can be

referenced for analyzing the deviation as well as estimating necessary changes in

order to accomplish the architectural decisions. In addition, constraint checking can

be performed beforehand to ensure that the Service Component view can be
updated without any errors. The constraint-checking at this stage is necessary not

only for generating the Service Component view but also for finding out the issues
due to that the Service Component view cannot be generated, if any. For instance,

assume that we want to assign a property to a connector linking the ports of two

components. We illustrate the templates that will be used for the generation of the
constraints that will be checked before the generation of the Service Component

view. The variables within the notion $..$ (e.g. $componentA$, $portA$) shall be

substituted with concrete values during the constraint instantiation.

INDENICA D1.3.1

36

∃c ∈ Components | c.name = $componentA$

∃c ∈ Components | c.name = $componentB$

∃c1, c2 ∈ Components | c1.name = $componentA$

∧ c2.name = $componentB$

∧ (∃ con ∈ Connectors)

∧ (∃ p1 ∈ c1.ports, ∃ p2 ∈ c2.ports |

(p1.name = $portA$ ∧ p2.name = $portB$)

∧ ((p1 = con.source ∧ p2 = con.target)

∨ (p1 = con.target ∧ p2 = con.source)))

Whenever a certain constraint is not satisfied, specific errors shall be reported. The

stakeholders have to fix those errors before the Service Component view can be

generated properly. The Service Component view gets successfully generated if and

only if all constraints are satisfied. Each kind of mapping might imply one or more

consequent updates to the Service Component view. For example, suppose that we

want to assign the property to a connector, after the constraints are checked and

satisfied, a new property should be created and annotated to the connector. We

implement the constraint checking using the declarative constraint checking
language Check. The Service Component view is generated based on the mapping

model by using the expression language Xtend. Xtend and Check are powerful OCL-

like expression languages provided by the Eclipse Model-to-Text (M2T) project10. The
process of constraint-based model validation and Service Component view

generation is integrated using the modeling workflow language provided in the

Eclipse M2T project.

3.3.1.1.3 Generation of Consistency Checking Constraints

Each of the aforementioned types of mapping is related to a set of constraint

templates from which concrete constraint “instances” are generated. The constraint

templates have been already defined for each kind of mapping. The constraint

“instances” are generated using the Velocity template engine11 and the attributes to

be replaced get values from the mapping of the ADDs to the Service Component
view. The generated constraints are also based on the Check language. We illustrate

an excerpt of the constraint templates used for creating constraints on the mapping

of an ADD to a new property of a certain component. As mentioned above, the

variables within the notion $..$ shall be substituted with concrete values during the

instantiation of the constraints.

∃ p ∈ P roperties| p.name = $name$

∧ p.value = $value$

∧ (∃ c ∈ Components | c.name = $component$)

∧ (∃ a ∈ c.annotations | a = p)

These constraints are generated and validated as described in the previous Section

for the constraints that have to be checked before the Service Component view

10 http://www.eclipse.org/modeling/m2t

11 http://velocity.apache.org

INDENICA D1.3.1

37

generation. The consistency checking constraints shall check the consistency

between the ADDs and the Service Component view.

3.3.2 An example scenario in INDENICA case study

To illustrate our approach, we apply it for a simplistic excerpt extracted from the

INDENICA case studies [D5.1]. A material flow computer in a warehouse receives

orders from an ERP system and the communication between them is accomplished
through the VSP. Our approach starts at the development stage where the

requirements have been resolved into the ADDs. The ADDs are usually captured in

an informal way using document templates or meta-models [TA05, ZGK+ 07]. The

key concepts that our approach focuses on are architectural decisions and their

implications. Therefore, most of existing approaches for capturing and representing

ADDs can be applied because most of them provide these essential concepts. In this

example, the architecture decision description template proposed in [TA05] is

exemplified to capture ADDs. We show an excerpt of the documented ADDs

including three architectural decisions:

• D01 Expose Place Order functionality as Apache CXF Web Services.

• D02 Connect Place Order to VSP using encrypted HTTPS connection and

compress the messages using standard HTTP/1.1.

• D03 Implement Order Picking as a BPEL flow that is able to handle

asynchronously 1000 orders per minute.

Figure 11: Eclipse Tooling for ADD and Service Component view Development

At this stage, we have necessary information that shall be used as inputs for our

approach. The proof of concept tooling of our approach based on EMF12 and GMF13 is

shown in Figure 11. Our tool can support the development and generation of the

12 http://www.eclipse.org/emf

13 http://www.eclipse.org/gmf

INDENICA D1.3.1

38

constraints as well as the generation and the graphical representation of the Service

Component view.

Mapping of ADDs to Service Component view

Figure 12: Mapping of architectural design decisions to the Service Component view

We extract the useful information of the ADDs that can be mapped to a component,

a connector, an annotation, or a property. Figure 12 presents an excerpt of the
Mapping model between the ADDs and the Service Component view. For example,

the first ADD refers to a new component (Place Order) connected to the VSP

INDENICA D1.3.1

39

component which will be implemented as a Web Service (annotation of component

Place Order) using Apache CXF (property of component Place Order).

Service Component View Generation

Once the mapping of the ADDs to the Service Component view is accomplished, we

can generate an initial instance of the Service Component view. In order to see how

the generation is done, let us take the AnnotateComponent mapping from the
decision D01. Before creating a new annotation and attach it to a component, we

must ensure that the same annotation has not been already assigned to the

component. If the above function for our component graphical view and for

component = “PlaceOrder” and annotation = “WebService” does not return any

annotation we proceed with the creation of the new annotation.

component::Stereotype componentHasAnnotation(

component::ComponentView cv, component::

Component component, String annotation):

component.annotation.select(a|(a.text ==

annotation) && (cv.annotation.typeSelect(

component::Stereotype).exists(s|s == a)));

If the generation of the Service Component view completes without errors, the
visualization of the Service Component view that we get using our Eclipse Tooling is

shown in Figure 11. A component is depicted in terms of a box associated with its

ports. Two ports can be connected by a connector which is an arrow going from the

required to the provided one. The stereotypes are shown inside the symbol “” (e.g.,

HTTPS) and the properties are shown in form of “name[:type]=value” (e.g.,
“technology=Apache CXF”).

annotateComponent(component::ComponentView cv,

component::Component component, String

annotation):

let stereotype = new component::Stereotype :

stereotype.setText(annotation)

-> cv.annotation.add(stereotype)

-> component.annotation.add(stereotype);

Generation of Consistency Checking Constraints

Now we explain how the constraints that check the consistency of the Service

Component view get generated. Let us consider the AnnotateComponent mapping

from the ADD D01. The AnnotateComponent is mapped to the following constraint
template for checking whether a component is associated with a specific stereotype

or not (note that a variable is inside the notion $..$).

context component::ComponentView ERROR

"(Architectural Decision --> ad)

Component $component$ is not annotated as $annotation$":

element.typeSelect(component::Component)

 .exists(c|c.component == "$component$"

 && annotation.typeSelect(component::Stereotype)

 .exists(s|c.annotation.exists(a|a == s && s.text ==

"$annotation$")));

INDENICA D1.3.1

40

In our example, the component “Place Order” shall be annotated as “Web Service”

(i.e., annotation=Web Service) according to the decision ADD D01. The resulting

instantiated constraint is shown following.

// Check whether component is annotated

context component::ComponentView ERROR

"(Architectural Decision --> D01)

Component Place Order is not annotated

as Web Service":

element.typeSelect(component::Component).

exists(c|c.name == "Place Order" &&

annotation.typeSelect(component::

Stereotype).exists(s|c.annotation.

exists(a|a == s && s.text == "Web

Service")));

The above example illustrates a great advantage of our approach: a constraint

template shall be defined once but can be efficiently reused and instantiated for

several corresponding mappings from the ADDs to the Service Component view.

INDENICA D1.3.1

41

4 Summary and Conclusion

INDENICA faces the difficult problem of providing support for integrated domain-

specific service-platforms. Even compared to the development of classical service

platforms or service-based applications, this is extremely complex. This is due to the

large range of decisions faced by requirements engineers, software architects and
developers, who are confronted with many decisions stemming not only from

specific non-functional and functional requirements of the applications but also from

the variety of the underlying domain-specific service platforms and the possibilities

in integrating them. .

In this document, we reported on the INDENICA decision support framework, a

comprehensive, multi-step method which aims at addressing decision throughout

the INDENICA-methodology.

The support framework addresses requirements engineering with the sub-parts of

requirements capture and decision space modelling, requirements prioritization, and
variability decision modelling and resolution. On the architectural level, we

introduced a pattern language for service-platform integration and adaptation,
provided a systematic approach to select specific design patterns and discussed how

to integrate these architectural decisions in the view-based modelling framework

described in [D3.1].

Our future endeavour that will be reported in the final version of this deliverable is,

on the one hand, to complete the decision supporting framework for domain-specific
platforms as well as virtual service platforms. On the other hand, we plan to

accomplish an integration of the aforementioned approaches to form a unified

decision framework and support parts of it by tools. We will evaluate and assess the

decision framework with INDENICA case studies [D5.1].

INDENICA D1.3.1

42

5 References

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A

PatternLanguage: Towns, Buildings, Construction. Oxford University Press, New

York, 1977.

[AZ05] P. Avgeriou and U. Zdun. Architectural patterns revisited – a pattern

language. In Proceedings of 10th European Conference on Pattern Languages

of Programs (EuroPlop 2005), pages 1–39, Irsee, Germany, July 2005.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,

volume 2. Addison-Wesley Professional, 2003.

[BHS07a] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-

Oriented Software Architecture — A Pattern Language for Distributed

Computing, volume 4 of Wiley Series in Software Design Patterns. John Wiley &

Sons Ltd., New York, 2007.

[BMR+ 00] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal, editors. Pattern-Oriented Software Architecture – A System of
Patterns. John Wiley & Sons Ltd., Chichester, England, 2000.

[CBB+ 10] Paul Clements, Felix Bachmann, Lens Bass, David Garlan, James Ivers, Reed

Little, Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software

Architectures: Views and Beyond. Addison-Wesley, 2nd edition, 2010.

[Cop96] J. Coplien. Software Patterns. SIGS Mgt. Briefings. SIGS Books & Multimedia,
1996.

[D1.2.1] INDENICA Deliverable D1.2.1 Requirements Engineering Framework,

Language and Tools for Service Platforms, 2011-09-30

[D2.1] INDENICA Deliverable D2.1, Open Variability Modelling Approach for Service
Ecosystems. 2012-01-31

[D3.1] INDENICA Deliverable D3.1 View-based Design Time and Runtime

Architecture for Tailoring VSPs. 2011-10-18

[D3.2]. INDENICA Deliverable D3.2 Architecture for Role-Based Governance of Virtual

Service Platforms. 2012-02-18

[D5.1] INDENICA Deliverable D5.1 Description of Feasible Case Studies. 2011-07-31

[Dai12] Robert Daigneau. Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services. Addison-Wesley, 2012.

[DN+08] D. Dhungana, T. Neumayer, P. Grünbacher, R. Rabiser. Supporting the

Evolution of Product Line Architectures with Variability Model Fragments.
Working IEEE/IFIP Conference on Software Architecture, 327-330, 2008.

[JE09] I. John, M. Eisenbarth, A Decade of Scoping – A Survey, In Proceedings of the 13th
International Conference on Software Product Lines (SPLC), pp. 31 – 40, 2009.

INDENICA D1.3.1

43

[FB09] Rik Farenhorst and Remco C. Boer. Knowledge Management in Software

Architecture: State of the Art. pages 21–38, 2009.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 4th edition, 2003.

[GHJV94] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design

Patterns – Elements of Reusable Object-Oriented Software. Addison Wesley
Professional Computing Series. Addison Wesley, October 1994.

[HAZ07] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. Using Patterns to Capture

Architectural Decisions. IEEE Softw., 24(4):38–45, July 2007.

[HC01] George T Heineman and William T Councill. Component-Based Software

Engineering: Putting the Pieces Together. Addison-Wesley, 2001.

[HSH06] A. Helferich, K. Schmid, G. Herzwurm. Product Management for Software

Product Lines: An Unsolved Problem? Communications of the ACM, Vol. 49, pp.

66-67, 2006.

[Hub12] Arnauld Hubaux. Feature-based Configuration: Collborative, Dependable,
and Controlled. University of Namur, Belgium, 2012.

[HW04] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2nd edition,

2004.

[HZ09] Carsten Hentrich and Uwe Zdun. A Pattern Language for Process Execution

and Integration Design in Service-Oriented Architectures. In James Noble and
Ralph Johnson, editors, Transactions on Pattern Languages of Programming I,

volume 5770 of Lecture Notes in Computer Science, pages 136–191. Springer

Berlin / Heidelberg, 2009.

[HZ12] Carsten Hentrich and Uwe Zdun. Process-Driven SOA: Patterns for Aligning

Business and IT. Infosys Press, 2012.

[Int00] International Standard CEI/IEC. Programmable Controllers Part 7: Fuzzy

Control Programming. Technical Report 61131-7, IEC-International

Electrotechnical Commission, 2000.

[JB05] Anton Jansen and Jan Bosch. Software Architecture as a Set of Architectural
Design Decisions. In The 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA ’05), pages 109–120. IEEE Comp. Soc., 2005.

[KB98] Wojtek Kozaczynski and Grady Booch. Guest Editors’ Introduction:
Component-Based Software Engineering. IEEE Software, 15(5):34–36, 1998.

[KJ04] Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture
Volume 3: Patterns for Resource Management. Wiley, June 2004.

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building Up and

Reasoning About Architectural Knowledge. Quality of Software Architectures,

pages 43–58, 2006.

INDENICA D1.3.1

44

[LK07] Larix Lee and Philippe Kruchten. Capturing Software Architectural Design

Decisions. In 2007 Canadian Conf. on Electrical and Computer Engineering,

pages 686–689. IEEE, 2007.

[vLRS07] F. J van der Linden, E. Rommes, K. Schmid. Software Product Lines in Action:

The Best Industrial Practice in Product Line Engineering, Springer, 2007.

[MA99] E. H. Mamdani and S. Assilian. An Experiment in Linguistic Synthesis with a
Fuzzy Logic Controller. International Journal of Man-Machine Studies,

51(2):135–147, 1999.

[MT00] N. Medvidovic and R. N. Taylor. A classification and comparison framework

for software architecture description languages. IEEE Transactions on Software

Engineering, 26(1):70–93, 2000.

[Po09] Klaus Pohl: Requirements Engineering, Fundamentals, Principles and

Techniques. Springer Verlag, Berlin und Heidelberg, 2009.

[RD07] R. Rabiser and D. Dhungana. Integrated Support for Product Configuration

and Requirements Engineering in Product Derivation. In Proc. of the 33rd
EUROMICRO Conference on Software Engineering and Advanced Applications

(EUROMICRO-SEAA’07), 2007.

[RGD07] R. Rabiser, P. Grünbacher, and D. Dhungana. Supporting Product Derivation

by Adapting and Augmenting Variability Models. In Proc. of the 11th

International Software Product Line Conference (SPLC 2007), 2007.

[Ros04] T.J. Ross. Fuzzy logic with engineering applications. John Wiley, 2004.

[RS10] M. Rosenmüller and N. Siegmund. Automating the configuration of multi

software product lines. In Proc. of the Fourth International Workshop on

Variability Modelling of Software-intensive Systems (VAMOS'10), pp 123–130,

2010.

[Sch10] K. Schmid, Variability Modelling for Distributed Development: A Comparison
with established practice. Proceedings of the 14th International Conference on

Software Product Line Engineering (SPLC'10), pp. 155-165, 2010.

[SLK09] Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi.

Architectural design decision: Existing models and tools. In IEEE/IFIP Conf. on
Software Architecture/European Conf. on Software Architecture, pages 293–

296. IEEE, 2009.

[SSRB00a] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture, chapter Extension Interface, pages
141–174. John Wiley & Sons Ltd.Wiley, Chichester, England, 2000.

[SSRB00b] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture, chapter Interceptor, pages 109–141.

John Wiley & Sons Ltd.Wiley, Chichester, England, 2000.

[SaVa01] T.L. Saaty, L.G.Vargas: Models, Methods and Concepts of the analytic
Hierarchic Process. Kluwer Academic, 2001.

INDENICA D1.3.1

45

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented

Programming. Addison-Wesley, Boston, MA, USA, 2nd edition, 2002.

[TA05] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architecture.

IEEE Softw., 22(2):19–27, 2005.

[VKZ05] Markus Völter, Michael Kircher, and Uwe Zdun. Remoting Patterns:

Foundations of Enterprise, Internet and Realtime Distributed Object
Middleware. Software Design Patterns. John Wiley & Sons Ltd., Chichester,

England, 2005.

[UlRuGa10] Muhammad Irfan Ullah, Günther Ruhe, Vahid Garousi: Decision

support for moving from a single product to a product portfolio in evoving

software systems. The Jpurnal of Systens and Software 83 (2010).

[Vla09] Axel van Lamsweerde. Requirements Engineering: From System Goals to

UML Models to Software Specifications. John Wiley, 2009.

[Vog01] Oliver Vogel. Service Abstraction Layer. In Proceedings of EuroPLoP 2001,

Irsee, Germany, 2001.

[Zad65] L A Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[Zdu07] Uwe Zdun. Systematic pattern selection using pattern language grammars
and design space analysis. Software Practice & Experience, 37:983–1016, July

2007.

[ZGK+ 07] Olaf Zimmermann, Thomas Gschwind, Jochen Kuester, Frank Leymann,

and Nelly Schuster. Reusable architectural decision models for enterprise
application development. In Proc. of QoSA 2007, pages 15–32. Springer-Verlag,

2007.

[ZZGL08] Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann.

Combining Pattern Languages and Reusable Architectural Decision Models into

a Comprehensive and Comprehensible Design Method. In 7th IEEE/IFIP Conf.
on Software Architecture, pages 157–166. IEEE, 2008.

INDENICA D1.3.1

46

6 Appendix

6.1 Detailed Description of the Pattern Language for Service-Based

Platform Integration and Adaptation

In Section 3.1, we briefly describe the pattern language that software architects and
developers can use to build up architectural decision trees and design solutions for

service-based platform integration and adaptation. In this appendix, we elaborate

the four major aspects of the pattern language and illustrate its usage via an excerpt

of the INDENICA case studies.

6.1.1 Integration and Adaptation

The simplest case of integrating a platform into an application is to directly invoke

the platform services from the application code. However, often we would like to

avoid direct invocations in order to support abstraction or stable interfaces. In

addition, often simple direct invocations are not enough, as the integration logic
should introduce extra functionality, such as logging, monitoring, indirecting, or

adapting the platform access. Provided that the interfaces offered by the platform
are compatible to each other and the extra functionality needed does not change

the invocation flow, the PROXY pattern [GHJV94] can be used to perform platform

integration. Examples of extra functionalities that can be handled using a PROXY are

logging functions, monitoring functions, or access control.

Figure 13: Platform Integration and Adaptation Patterns

Figure 14 illustrates direct invocations vs. proxy-based platform integration. In this
simple, schematic example, the PROXIES introduce extra functionality for monitoring

the invocation flow from the application to the platform.

INDENICA D1.3.1

47

Figure 14: Direct Invocations vs. Proxy-Based Platform Integration

In many cases, applications and platforms are residing in different process or
machine contexts. Hence, invocations must cross the process or machine boundary.

In such cases, we can apply the remote variant of the PROXY pattern, the REMOTE

PROXY [SSRB00a, BHS07a]. In the platform integration context, the REMOTE PROXY
resides in the service-based integration platform and connects application and

platform. The schematic illustration on the right hand side of Figure 14 also applies

to REMOTE PROXIES, but the arrows depict remote invocations instead of local

invocations.

In addition to simple integration, service-based platform integration requires coping
with the diversity of the interfaces that these platforms expose. Calling a remote

interface directly or through a PROXY is not always possible, for instance, because

the interfaces offered by a platform may not offer exactly what the calling

application expects. Using the original interface might be possible, but we need to

take into account that usually the applications are tightly coupled with their
interfaces and implementations. Changing the interfaces of a platform is a possible

solution. But, firstly, an interface change is tedious and error-prone, and, secondly,

most often it is not possible at all because many platforms that need to be

integrated are provided by third parties. In addition, platforms are typically used by

many applications and it is usually not possible to offer a different interface for each
of them. For these reasons, an ADAPTER [GHJV94] can be inserted between the

caller and the remote interface that converts the provided interface into the

interface that the caller expects and vice versa.

The adapter also transforms the data returned by the adaptee into the data

structures expected by the caller. For distributed systems two variants of the
ADAPTER pattern, the OBJECT ADAPTER ([GHJV94, BHS07a]) and the INTEGRATION

ADAPTER ([HZ12]), can be used to connect the interfaces and to perform the

appropriate transformations. From a high-level perspective, OBJECT ADAPTERS

usually have a similar structure as the PROXY example depicted in Figure 14. The

INDENICA D1.3.1

48

ADAPTERS would simply replace the PROXIES and introduce the additional interface

adaptation behavior.

Very often new versions of platforms come with new versions of interfaces. This can

be hidden from the applications using the interfaces by exchanging the OBJECT

ADAPTER. However, the more complex the mapping between the interfaces is, the

more expensive is the mapping in terms of performance and development effort.

A general problem of components like OBJECT ADAPTERS in platform integration

scenarios is that invocations reaching the ADAPTER while it is being maintained (i.e.,

stopped and redeployed) would get lost. In many cases, this is highly undesirable.

This problem is addressed by an extension of the ADAPTER pattern, the

INTEGRATION ADAPTER pattern [HZ12].

An important part of the INTEGRATION ADAPTER pattern is its use of the

COMPONENT CONFIGURATOR pattern [KJ04] to stop, suspend, and start the adapter

component. This pattern can also be used to make other integration solutions, like

the PROXY based solutions discussed before, configurable.

Figure 15 shows a potential INTEGRATION ADAPTER design. The INTEGRATION

ADAPTER implements a configurable component interface to realize the

COMPONENT CONFIGURATOR pattern. To avoid losing message while the adapter is
being maintained, the INTEGRATION ADAPTER has an asynchronous messaging

interface to the client, which queues up messages until the maintenance actions are

performed. The integrated platform is connected via a synchronous connector. The

adapter also performs the translation from asynchronous calls to synchronous calls.

When the service-based integration platform must bridge between different

communication protocols, PROTOCOL PLUG-INS [VKZ05] can be used to realize

translation between the different protocols.

Figure 15: Integration Adapter: example design

INDENICA D1.3.1

49

6.1.2 Interface Design

Figure 16: Interface Design

When developing a service-based integration platform, we need to expose interfaces

to the application. In the simplest case, we can simply expose the PROXIES and

ADAPTERS, as discussed in the previous section. However, often we have additional

interface design requirements, such as unification or abstraction of interfaces,

supporting different protocols or channels, optimizations of invocation flows,
avoiding redundancies in interfaces, or supporting multiple interface versions. We

might have the same requirements for one or more of the platforms to be

integrated. For instance, many legacy applications do not expose an appropriate

service-based interface. Sometimes it makes sense to first make an appropriate

service-based interface design for each of the platforms, and then develop a service-

based integration platform that offers a unified interface.

When designing interfaces for platforms or integration platforms, the design of the

data transfer might be an important concern. Transferring data over the network

between two distributed applications can be very expensive when the number of

calls increases. Therefore, we can use DATA TRANSFER OBJECTS [Fow03] which hold
all the data to be sent. A DATA TRANSFER OBJECT transfers the needed information
within a single call. DATA TRANSFER OBJECTS may wrap primitive data types (e.g.,

integers, strings) or other DATA TRANSFER OBJECTS.

From the viewpoint of the client of a platform, interface unification is often

important. Platforms expose multiple interfaces, often in multiple versions. The
interfaces exposed by the platforms are often not the interfaces required by the

applications using the platforms. The FACADE pattern [GHJV94] describes a general
way to unify interfaces. A FACADE [GHJV94] provides a coarse-grained interface on

fine-grained components. In distributed systems, a REMOTE FACADE [Fow03] can be

used to specify a single point of access for a group of components which provide

INDENICA D1.3.1

50

complex services in order to mediate client requests to the appropriate components.

A REMOTE FACADE can also aggregate features of different components into new

and/or higher-level services. It does not contain any domain logic and can use data

from DATA TRANSFER OBJECTS. Using bulk accessors for the data ensures that using

to the remote interface remains efficient.

A GATEWAY [Fow03] is another variant of FACADE that represents an access point to

an external system used by an application. The application thus becomes
independent of the specific interfaces of the external system and also of its internal

structure. When a platform needs to support consuming and providing remote

objects through multiple channels, a SERVICE ABSTRACTION LAYER [Vog01] can be

used. It introduces an extra layer which contains all the necessary logic to receive

and delegate requests originating from the different channels. To create a SERVICE

ABSTRACTION LAYER a FACADE can be used to offer an interface for creating and

sending service requests.

Figure 17 shows an example of interface design by implementing a FACADE which

uses data from different DATA TRANSFER OBJECTS. The FACADE aggregates
functionality from two application components and exposes an interface for

integration with the remote platform. In this example, an ADAPTER inserts additional

interface adaptation between the FACADE and the remote platform services. By
providing a SERVICE ABSTRACTION LAYER, as illustrated in Figure 18, we support

multiple remoting technologies through three different channels: a JMS, SOAP, and

REST Interface. A FACADE unifies the different channels and exposes a common

interface for the remote platform.

INDENICA D1.3.1

51

Figure 17: Interface Design with Facade and Integration with Adapter

Figure 18: Interface Design with Service Abstraction Layer

Another issue related to the design of interfaces is that the interfaces provided by

platform applications are subject to adaptations and/or extensions due to changing

requirements. To support different client-specific interfaces, related functionalities
can be grouped in separate EXTENSION INTERFACES [SSRB00b] and the common

functionality can be included in a root interface.

6.1.3 Communication Style

Figure 19: Communication Style

INDENICA D1.3.1

52

For each connection between two components in the platform integration solution,

follow-on decisions about the communication style must be made. For instance,

once the design decisions for integration and adaptation, as well as interface design,

have been made at the component or service level, at a lower level of abstraction

follow-on decisions for the communication style used by the connection between

the components must be made. In this section we focus on the different options for

connecting distributed components. That is, in the platform integration design space
these design decisions are especially relevant for the connections between

applications and service-based integration platform, connections between service-

based integration platform and the platforms, distributed connections between the

platforms, and connections among distributed components within the service-based

integration platform.

A basic option is to use synchronous invocations for the connection between two

distributed components. Often synchronous invocations are realized following the

REMOTE PROCEDURE INVOCATION pattern [HW04]. The remote application may

respond either by sending a result value or a void result, unless an execution

problem occurs and an exception is sent back. All communication follows the
REQUEST- REPLY style [HW04]. In a platform integration solution, this synchronous

invocations option will rarely be used because synchronous invocations can lead to
slow and unreliable systems, as the communication of the calling application must

block until it receives the result. Thus, in the following, we mainly focus on the

asynchronous communication style and study the various options for realizing it.

Applications that communicate with each other using asynchronous communication

do not need to block their execution, but they can continue with other tasks while
they are waiting for the results of their invocations. The asynchronous invocation

patterns offer many alternatives of invoking a remote service asynchronously. They

describe asynchronous variants of the REMOTE PROCEDURE INVOCATION pattern. In

particular, when a result or application error needs to be delivered either a POLL

OBJECT [VKZ05] or RESULT CALLBACK [VKZ05] can be used. FIRE AND FORGET
[VKZ05] does not return any result or acknowledgement to the application that

invokes a remote object, but only offers best effort semantics. When a notification

that the request arrived to the remote application is necessary, then SYNC WITH

SERVER [VKZ05] can be used instead of FIRE AND FORGET. FIRE AND FORGET offers

one-way communication. SYNC WITH SERVER provides communication of type
REQUEST- ACKNOWLEDGMENT [HW04]. RESULT CALLBACK and POLL OBJECT offer

the REQUEST-REPLY [HW04] communication style. POLL OBJECT can be used with

the imperative programming style. In contrast to POLL OBJECT, RESULT CALLBACK
requires an event-based programming style to consume the result. It has the benefit

over POLL OBJECT to support immediate reaction upon the arrival of a result.

In asynchronous remote invocations, ASYNCHRONOUS COMPLETION TOKENS
[SSRB00a] are used to associate the callback with the original invocation. The pattern

fulfills the same role as the CORRELATION IDENTIFIER pattern [HW04] discussed

below. To ensure reliability of communication and increase decoupling of the
integrating platforms, MESSAGING [HW04] provides the most convenient solution.

INDENICA D1.3.1

53

The integrating applications exchange MESSAGES [HW04] via a MESSAGE CHANNEL

[HW04] which can be either a POINT- TO - POINT CHANNEL [HW04] or a PUBLISH -

SUBSCRIBE CHANNEL [HW04]. The difference between them is that in the first case

we have only one receiver of the requests and in the second case the messages are

broadcasted, as there are multiple receivers-subscribers of the messages. The

PUBLISH - SUBSCRIBE CHANNEL is the version of the PUBLISH - SUBSCRIBER [BHS07a]

pattern that applies for messaging. Apart from messaging the POINT- TO - POINT and
PUBLISH - SUBSCRIBER styles can be also used in synchronous or asynchronous

remote invocations for unicasting and multicasting respectively. The communication

using MESSAGES can be either one-way or two-way. In a one-way communication

the sender sends a message to a receiver using a one-way channel, without waiting

for any notification or result of its request. A two-way communication requires a

two-way channel to allow delivery of responses (void, result values, or exceptions). A

REQUEST- REPLY communication can be implemented in different ways combining

different asynchronous communication styles. For example, the client can first

receive an acknowledgement of its request and then poll for the results (REQUEST-

ACKNOWLEDGE - POLL [Dai12]) or get notified about the delivery of its request and
receive the request results with a callback service (REQUEST- ACKNOWLEDGE -

CALLBACK [Dai12]).

As in synchronous REMOTE PROCEDURE INVOCATIONS or in the asynchronous POLL

OBJECT or RESULT CALLBACK patterns, messages are also often used to deliver

messages in REQUEST- REPLY style. As in the SYNC WITH SERVER pattern, messages

can be delivered in REQUEST- ACKNOWLEDGE style.

6.1.4 Communication Flow

INDENICA D1.3.1

54

Figure 20: Communication Flow

Figure 21: Relationships between CORRELATION IDENTIFIER and other patterns

Transferring distributed service invocation data from the client applications to the

integrated platform services, mediated by the service-based integration platform,

requires from the software designer to make design decisions related to the data

transformations in the service-based integration platform. These decisions touch a

variety of concerns, e.g., the routing of the invocations and their invocation data to
the intended receivers, as well as all data transformations at different levels (e.g.,

data representation, marshaling, data transport).

The communication flow perspective considers the flow of requests and replies

through the integration platform as a series of data transformations, performed by
infrastructure components. The relevant data items are in-memory objects (e.g.,

DATA TRANSFER OBJECTS) and MESSAGES.

While many patterns described in this section have originally be described in the

context of messaging, in variants they can also be applied in combination with the

other (asynchronous) invocation patterns. If sophisticated message or invocation
routing is required, a MESSAGE ROUTER [HW04] offers an appropriate solution. The

MESSAGE ROUTER listens at the incoming, or frontend, message channels and

redirects the messages intercepted towards the necessary processing chains and

towards the actual backend receivers, i.e., the platform services. With such a central

routing component, there is a single point of responsibility for administering the

routing rules and to configure the processing chains needed for preparing the
messages for the individual platform services. The MESSAGE ROUTER can be made

configurable following the COMPONENT CONFIGURATOR pattern (see also Section
6.1.1).

In a service-based integration platform, routing is often performed by a CONTENT-

BASED ROUTER [HW04]. As a variant of the MESSAGE ROUTER, this router accesses
the message content, i.e., envelope and body elements, to evaluate the standing

routing rules against the data extracted from the messages. This way, the routing

conditions can be set and transmitted by the MESSAGES themselves (e.g., in their
envelopes or by their type annotation), rather than by providing the routing-critical

INDENICA D1.3.1

55

data through an external source. Content-based routing is not applicable only for the

exchange of MESSAGES representing service invocation data (e.g., implicit

invocations on domain objects), but it can also be used to differentiate between

invocation messages and messages carrying invocation-unrelated or opaque types of

data. Imagine application scenarios, which involve setting up audio/video streaming

data between client applications and platform services (i.e., here, streaming

services). Such data requires alternative processing steps when being mediated by
the integration platform; for example as part of an optimization which bypasses

routing and processing steps applicable to handshake and invocation messages only.

Besides acting as a matchmaker between messages and the available data

transformation tasks, a MESSAGE ROUTER also allows for composing processing

chains to be applied on selected messages. Message processing and filter

components can be organized in a PIPES AND FILTERS [BMR+ 00, AZ05] style. Finally,

the processing chains can be constructed in a way so that the delivery to the

responsible platform service is performed by republishing the transformed message

to a backend or outgoing channel.

The data sent across the network will not always be used by the data receiver, i.e.,
the platform services, as it is; whatever the dominating communication styles or the

communication flow approach is (MESSAGING vs. explicit component invocations).
For example, for exposing FACADE interfaces using DATA TRANSFER OBJECTS, the

backend invocations must be decomposed into a series of invocations upon one or

more platforms and their input and output parameter types. The MESSAGING

equivalent to FACADES and DATA TRANSFER OBJECTS are compound messages, with

each of the part messages addressing a distinct platform service.

A SPLITTER [HW04] disassembles the compound messages into their constituents

which are expected by the target platforms. Sometimes multiple elements need to

be collected and reassembled to be delivered to their final destination and to be

accepted by the platform services as message endpoints. On the back channel, e.g.,

for asynchronous REQUEST- REPLY interactions, there is the need for re-assembling
the resulting data elements into a composite reply message. This bears the risk of

duplicates or an out-of-order reassembly. The SPLITTER can for instance split the

messages in the integration platform that are sent to the different platform services.

Conversely, an AGGREGATOR [HW04] merges individual messages or element

subsets thereof into compound messages to be delivered to the platform services.
The AGGREGATOR detects the related elements as well as their right order according

to their CORRELATION IDENTIFIERS. On the reply channel, an AGGREGATOR might

require a SPLITTER. The AGGREGATOR can for instance aggregate messages in the
integration platform that are sent to the different platform services. Apart from this

whole-part mismatch between senders and receivers at the level of messages, the

data contained in the messages might simply be too excessive or incomplete to be
(efficiently) processable by the receivers. There are many possible reasons for this

problem. For example, the domain model of the target system might only

correspond to a subset of the source domain model. Or certain auxiliary invocation
data contained in a message might not be relevant; for instance, the data might only

INDENICA D1.3.1

56

be required for add-on services or constitute metadata relevant only for the

underlying middleware technologies. Sometimes, security requirements demand the

removal of message parts (e.g., identity tokens). In such cases, a CONTENT FILTER

[HW04] is included in the processing chain of a message to extract and drop

excessive data. CONTENT FILTER can be applied in the integrated platform to filter

the messages that pass through it. Requirements for additional data can result from

domain model mismatches, different underlying middleware, or security
requirements. In such cases, a CONTENT ENRICHER [HW04] augments the message

with the missing information by accessing external data sources or the message

context. CONTENT ENRICHER can be used in the message processing of the

integration platform. A frequent source of mismatch between client applications and

platform services are incompatibilities between the data formats supported. Such

format mismatches involve differences in data models, data types, data

representation, and data transport techniques.

When using explicit component invocations and in-memory object representations

of the invocation data, a DATA MAPPER [Fow03] can be used to deal with the

unaligned or non-canonical data formats between integrating platforms. A DATA
MAPPER transforms, e.g., the data from one object type to another. For dealing with

marshalling and transport protocol mismatches, the DATA MAPPER can use the
services offered by MARSHALLER [VKZ05] and PROTOCOL PLUG-IN [VKZ05]

components as offered by the underlying middleware framework.

MESSAGE TRANSLATOR [HW04] can be incorporated into the processing chains of

MESSAGES for transposing them from one data format into another. In the

processing chains, the MESSAGE TRANSLATORS usually come last; as they operate on
the already filtered messages.

The MESSAGE TRANSLATOR can for instance reside in the integration platform and

translate between the client application message formats and the message formats

of the platform services. A particular source of complexity in the communication

flow design of a service-based integration platform is the repeated dis- and

reassembly of data items; and bridging between process synchronization styles.

Both, the content and the synchronization decoupling, require the identification of

decoupled parts. Important examples are message parts of disassembled compound

messages (see SPLITTER pattern) or non-blocking backend replies to blocking
frontend requests. Also, the permanent interleaving of related messages in the

integration platform requires a message tracking mechanism.

Adopting CORRELATION IDENTIFIERS [HW04] is an adequate design decision to

address such tracking requirements. For asynchronous communication styles, where
one has to (implicitly or explicitly) identify exactly a corresponding pair among

multiple communication parties, these identifiers are also referred to
ASYNCHRONOUS COMPLETION TOKENS [BHS07a]. As for designing the frontend

interfaces, for instance, CORRELATION IDENTIFIERS can be employed and stored in

the FACADE to track the resulting backend invocations at a per-request level. One

option is to maintain the identifier in the service descriptions, such that every

INDENICA D1.3.1

57

communication with the service needs to refer to a specific CORRELATION

IDENTIFIER. Alternatively, a FACADE could also store the CORRELATION IDENTIFIERS

in the DATA TRANSFER OBJECTS, if available. In a MESSAGING infrastructure, the

CORRELATION IDENTIFIER is extensively used to realize conversational interactions,

i.e., for exchanging and processing messages such in REQUEST- REPLY interactions

and MESSAGE SEQUENCE interactions [HW04], to name but a few.

In some particular cases, one might need to integrate two or more software
platforms that do not support compatible CORRELATION IDENTIFIER mechanisms.

The reason can be either one of the platforms does not support CORRELATION

IDENTIFIERS or both support CORRELATION IDENTIFIERS but their CORRELATION

IDENTIFIERS are not simply interchangeable. In such cases, components, such as the

PROXIES or ADAPTERS in this pattern language, are often introduced for mediating

the communication and data exchange between these platforms, i.e., translate and

temporarily store the CORRELATION IDENTIFIERS. This can be realized, e.g., by letting

the mediators maintain an additional table to map the CORRELATION IDENTIFIERS

from one communication partner to the CORRELATION IDENTIFIERS of the other

communication partner, and vice versa. The design decisions become embodied in
the way the service-based integration platform lays out the communication flow in

terms of component interactions as depicted in Figure 22. Depending on the
decisions taken on the communication styles, there are various possibilities to laying

out the data transformation infrastructure in the service-based integration platform.

For example, the integration platform can be built using basic MESSAGING principles.

Alternatively, an explicit invocation style between transformer components can be

applied. Both variants are sketched out as exemplary setups in Figure 22.

INDENICA D1.3.1

58

Figure 22: Organizing Communication Flows in a Service-Based Integration Platform

The initial drivers for opting for either approach are the communication styles

supported by the components to integrate (i.e., the client applications and the

platform services), as well as the decoupling strategies to be implemented by the

integration platform. For example, while a straightforward OBJECT ADAPTER can be

easily constructed using explicit invocations, an INTEGRATION ADAPTER with an

asynchronous frontend connector, which attaches to the client applications can
leverage an underlying MESSAGING infrastructure. Both approaches allow for

minimizing, or ideally turning obsolete the need for modifying either the client

applications and/or platform services to assist in the data transformations required.

Client applications or platform services not enabled for MESSAGING can be

integrated using bridging PROXY/ADAPTER components, which act as the sending or

receiving message endpoints to a frontend and backend channel, respectively. This

way, client applications and the platform services do not have to be manipulated

even for overcoming such a mismatch in communication style.

INDENICA D1.3.1

59

6.1.5 Illustration of the pattern language in INDENICA Case Studies

Figure 23: Integration Scenario in the Warehouse

We utilize an excerpt of INDENICA case studies [D5.1] to demonstrate our pattern
language for integrating of three platforms: Warehouse Management System

(WMS), Yard Management System (YMS), and Remote Maintenance System (RMS).
We briefly show in Figure 23 the integration scenario of the case study for unloading

storage bins to the racks in the warehouse in terms of a sequence diagram. Further

details of the case studies can be found in [D5.1].

To enable the operator application to use the services of the three platforms through

an integration platform, many architectural decisions regarding the adaptation and
integration of the heterogeneous interfaces as well as the routing of the information

between the operator application and the platforms need to be made.

INDENICA D1.3.1

60

Figure 24: Excerpt of the Integration Architecture

Figure 23 shows how our pattern language is applied for the aforementioned

integration scenario. The services introduced by the integration scenario are

grouped into components, for example the services initiateVoiceCall and endCall are
grouped into the component CallHandling. Figure 24 depicts an excerpt of the

architecture of the integration between the three platforms through the VSP that

allows the operator application interact with these heterogeneous platforms. A

FACADE (OperatorAppFacade) provides a common application interface for invoking

the different platform services. The component CommunicationFlowManager hides
the communication flow details between the operator application and the

integrating platforms. In order to invoke the remote platform services ADAPTERS

and PROXIES are introduced in the integration layer between after the

CommunicationFlowManager component. In case the access to the remote services

does not require any interface adaptations a PROXY is used (e.g.

TruckManagementProxy, PositionReportingProxy, etc.), otherwise an ADAPTER is
used in order to resolve interface incompatibilities, i.e. parameter changes (e.g.

CallHandlingAdapter and VideoHandlingAdapter).

INDENICA D1.3.1

61

Figure 25: Examples of Communication Flows

Figure 25 demonstrates two examples of communication flow design between the

operator application and the three platforms. In the first communication flow

diagram the platforms send notifications, which get CORRELATION IDENTIFIERS

before they get enriched (WMSNotificationEnricher, YMSNotificationEnricher,

RMSNotificationEnricher) with platform details useful for the operator. The single

notifications get aggregated into one notification (PlatformNotificationAggregator)

that is delivered to the operator application which subscribes to the appropriate

notification channel (PUBLISH - SUBSCRIBER pattern). In the second communication

flow diagram the operator invokes the operation moveTruckToDock and the request

gets a CORRELATION ID. Afterwards the request gets logged using the PUBLISH -
SUBSCRIBER style before it is added to the TruckRequestsQueue queue on which the
YMS is listening for requests.

