.\\\@\’Sll“a[/s/'

S SB
s = 4 A
=t 2 L

2003

Abschlussarbeit im Studiengang IMIT (MSc)

Analysis and Comparison of
Performance and Power Consumption
of Neural Networks on CPU, GPU,
TPU and FPGA

Christopher Noel Hesse

258297

hessech@uni-hildesheim.de

Betreuer:
Prof. Dr. Klaus Schmid, SSE
Dr. Holger Eichelberger

Arbeitsgruppe Software Systems Engineering e Institut fiir Informatik
Universitdat Hildesheim ¢ Universitédtsplatz 1 ¢ D-31134 Hildesheim

Eigenstandigkeitserklarung

Erkliarung iiber das selbststidndige Verfassen von "Analysis and Comparison
of Performance and Power Consumption of Neural Networks on CPU, GPU,
TPU and FPGA"

Ich versichere hiermit, dass ich die vorstehende Arbeit selbststdndig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der obigen Arbeit, die
anderen Werken dem Wortlaut oder dem Sinn nach entnommen wurden, habe ich in jedem
Fall durch die Angabe der Quelle bzw. der Herkunft, auch der benutzten Sekundéarliter-
atur, als Entlehnung kenntlich gemacht. Dies gilt auch fiir Zeichnungen, Skizzen, bildliche
Darstellungen sowie fiir Quellen aus dem Internet und anderen elektronischen Text- und
Datensammlungen und dergleichen. Die eingereichte Arbeit ist nicht anderweitig als Prii-
fungsleistung verwendet worden oder in deutscher oder einer anderen Sprache als Verof-
fentlichung erschienen. Mir ist bewusst, dass wahrheitswidrige Angaben als T&uschung

behandelt werden.

Hildesheim, den 18. Juni, 2021

Christopher Noel Hesse

Abstract

In this work, we analyze the performance of neural networks on a variety of heterogenous
platforms. We strive to find the best platform in terms of raw benchmark performance,
performance per watt and performance per Euro. To reach this goal, we focused on convo-
lutional neural networks and created several micro- and macrobenchmark applications and
used a state-of-the-art real-world network, YOLOv3. We parametrized the benchmarks to
analyze the effect of input size, kernel size and other variables on the performance and

efficiency.

Our results show that a system using FPGA accelerators is about 7x to 45x faster than
a comparable system using high-end GPUs, while consuming about 10% of the power.
Novel heterogenous architectures like the Apple M1 integrated SoC offer between 3-5x
better performance while drawing 10-20% of the power compared to existing consumer
hardware with x86 CPUs and third-party GPUs.

We conclude that the FPGA is the most effective accelerator for neural networks in het-
erogenous systems. It outmatches powerful GPU server class hardware in both performance

and efficiency. The Apple M1 SoC offers the best performance per Euro in our tests.

Performance and Power Consumption of Neural Networks

Acknowledgements

I would like to thank my thesis advisor Dr. Holger Eichelberger for his continuous efforts
in helping me complete this work. He always steered me in the right direction and made
sure that my work holds up to the high standards of university research. I was encouraged
to present parts of my work at the 11th Symposium of Software Performance 2020, where
it was met positively. Furthermore, Dr. Eichelberger established the link with the Institute
of Microelectronic Systems (IMS) of the Leibniz University Hannover, which allowed me

to add more systems to the array of test platforms.

I would also like to thank Gia Bao Thieu and Guillermo Paya-Vaya of the IMS. They
reproduced my experiments on their GPU and FPGA servers which provided valuable

data to my analysis efforts.

Finally, I would like to express my gratitude to my family for supplying me with graphics
art used in Figures in this work. They also provided me with motivation and much-

welcomed distraction during the dire times of the worldwide Corona crisis.

ii

Contents

Contents
List of Figures v
List of Tables vi
Listings vii
1 Introduction 1
1.1 Motivation 2
1.2 Goals e 2
1.3 Structure e 3
2 Related Work 4
2.1 Heterogenous Computing 4
2.2 Neural Networks e 5
3 Heterogenous Computing 6
3.1 History 6
3.1.1 CPU . . . 6
3.1.2 GPU e 8
3.2 Accelerators e 9
321 GPU e 9
322 TPU . . . e 10
323 FPGA e 11
3.3 Heterogenous Architectures 12
3.3.1 Offloading 13
3.3.2 Parallelism 16
3.3.3 Memory Hierarchy, 17
3.4 Programming Stacks L Lo 19
341 CUDA e 20
3.42 OpenCL 23
3.4.3 TensorFlow 26
3.5 Challenges 27
4 Neural Networks 29
4.1 The Neuron e e 29
4.1.1 Biological Inspiration L 0oL, 29
4.1.2 Mathematical Model, 31
4.2 Artificial Neural Networks 35
4.3 Convolutional Neural Networks 36
4.3.1 YOLO e 39

iii

Performance and Power Consumption of Neural Networks

5 Approach
5.1 Metrics e
5.1.1 Latency e
5.1.2 CPU e e e
51.3 RAM e e e
5.1.4 Accelerator
5.1.5 Power e e
5.2 Benchmarks
5.2.1 Microbenchmarks
5.2.2 Macrobenchmarks L.
5.3 Tools e e
5.3.1 wperfstat
5.3.2 Nvidia-smi
6 Setup
6.1 Server e
6.2 Desktop e
6.3 Edge
7 Results
7.1 Full dataexample
7.2 Microbenchmarks
7.2.1 2D convolution
7.2.2 2D depthwise convolution
7.2.3 2D max pooling L
7.2.4 ReLU activation
7.3 Macrobenchmarks
7.3.1 CNNinference
7.3.2 CNN trainingo
7.3.3 YOLOv3inference
7.4 DIiSCUSSION v o i e e
8 Closing thoughts
8.1 Conclusions e
82 Lessonslearned
A Appendix
Al Results. e
Bibliography

43
43
43
43
45
46
47
47
48
50
51
52
93

54
o4
o6
o7

58
o8
60
61
63
64
64
65
65
66
67
68

77
77
78

79
79

88

iv

List of Figures

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

CPU vs. GPU architecture based on [37] 9
TPUv3 architecture based on the Google TPU docs 10
Heterogenous Architecture Tiers 12
Offloading example 14
Taxonomy of parallelism in hardware 16
CPU memory hierarchy oo 17
Naive matrix transposition L oL 19
CUDA architecture 20
Biological Neuron 30
The Neuron e 31
Linear Activation Function (plot by WolframAlpha) 32
Sigmoid Activation Function (plot by WolframAlpha) 33
ReLU Activation Function (plot by WolframAlpha) 33
Leaky ReLU Activation Function (plot by WolframAlpha) 33
Decision boundaries: linear (left) and arbitrary (right) 35
Feed-Forward (left) and Recurrent (right) networks 35
Deep Neural Network o oL 36
Image convolution 37
Max pooling 38
YOLO object detection taken from [39] 40
YOLOV3 full vs. tiny at 416x416 41
CNN microbenchmarks L oo 48
Regular vs. depthwise convolution 50
Synthetic CNN layers 51
Slgpy maxpool2d benchmark results 59
Slgpy maxpool2d GPU benchmark 60
Slgpy maxpool2d GPU usage 61
Slgpy maxpool2d GPU power, 62
2D convolution iteration time distribution oo 64
2D depthwise convolution iteration time distribution 66
2D max pooling iteration time distribution 68
ReLU iteration time distribution 70
CNN inference iteration time distribution 71
Slepy RAM stats e 72
Slepy CPU stats e 72
Slopy benchmark iterations. 73
YOLOWV3 inference iteration time distribution 75
D2¢py YOLOvV3 benchmark iterations 75

Performance and Power Consumption of Neural Networks

7.15

Dlgpy YOLOvV3 benchmark iterations 76

List of Tables

5.1
5.2
5.3
0.4
9.5
5.6
5.7
0.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Al
A2
A3
A4
A5
A6
AT

Linux CPU System metrics 44
Linux CPU Process metrics 45
Linux RAM System metrics 46
Linux RAM Process metrics, 46
Accelerator metrics L. 47
Microbenchmarks 49
Macrobenchmarks 52
YOLOv3 performance e 52
YOLOv3 TensorFlow vs Darknet 53
Nvidia-smi metrics 53
Nvidia DGX-1 specifications 54
FPGA server specifications 55
IMS GPU servers e 55
IMS GPU servers (cont.) oo v v v i 55
IMS FPGA server e 56
HP Omen 15-dh0007ng specifications 56
Apple Mac Mini M1 2020 specifications 57
Nvidia Jetson Nano Developer kit specifications 57
System matrix Lo 58
2D convolution 63
2D depthwise convolution 65
2D max pooling 67
ReLU e 69
CNN inference e 71
CNN training o o e 73
YOLOv3 inference e 74
tl-conv2d . .. L L e 79
tf-conv2d-dwise L 82
tfmax-pool2d L 83
threlu e 85
tf-cnn-inference L L 85
tf-cnn-train L L L 86
tf-yolov3-inference Lo 86

vi

Listings

Listings

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4

Pseudocode for multiply-add o 0oL 8
Pseudocode for thresholding kernel 14
CUDA vector addition 21
OpenCL vector addition 23
TensorFlow vector addition, 26
/proc/stat contents 43
/proc/1/stat contentso 44
/proc/meminfo contents Lo 45
perfstat monitoring loop pseudocode 52

vii

Introduction

1 Introduction

Neural networks are capable of solving today’s problems, such as facial recognition, image
classification, object detection, speech synthesis or even autonomous driving. They often
outperform traditional approaches in their domain. For example in face recognition, neural
networks tend to generalize better to new data than rigid part models that train on
predetermined regions of the face, such as jaws, lips, nose, eyes.

With neural networks becoming more and more complex to solve more complex issues,
the demand for compute power rises accordingly. Since many networks tend to boil down
to highly parallelizable algorithms, CPU hardware is not a good fit. Modern CPUs are
designed to be highly complex, with multiple layers of shared caches, instruction prefetch-
ing logic or branch prediction logic built-in. Thus, the complexity and cost of a CPU is
rather high and the core count is low. Modern multi-core CPU hardware offers no more
than tenths of cores for consumers or hundreds of cores for enterprise level users.

Today, much of the software infrastructure for neural networks in general and deep learning
in particular revolves around Graphics Processing Units (GPU). These accelerators have
been around for a long time and are well understood. Early GPUs were designed only
for graphics processing using a fixed-function pipeline in hardware. In the late 2000s, this
changed and GPU hardware became GPGPU (general purpose computation) capable.
This allowed programmers to run arbitrary code on the GPU, thus being able to exploit
the massive core count found on this class of hardware.

The issue with GPU hardware is again the complexity and the cost. Modern GPU hardware
as built by Nvidia, AMD or Intel still has function blocks that are dedicated to graphics
processing. These circuits are useless for machine learning and only drive up the cost.
Another point to consider is the type of data that can be computed. GPUs traditionally
operate on floating point numbers. Many neural networks can be trained or converted into
a quantized representation, which means it uses integer values exclusively. The impact of
this process on output accuracy varies from network to network. But for select use-cases
such as object detection on embedded systems, this impact may be negligible.

More recently, big corporations have started to look towards other hardware platforms to
run neural networks on. Google for example designed its custom, in-house Tensor Process-
ing Unit (TPU) hardware. This kind of hardware specializes solely in matrix and vector
math, the most common operations used in machine learning and neural networks. Given
the layout and design of the TPU, it is said to be a very efficient and performant acceler-
ator for such applications. Many companies do not have the knowledge or the money at
their disposal to design custom Application-Specific Integrated Circuits (ASIC) though.

FPGA vendors such as Intel or Xilinx often tout their hardware as being more efficient than
CPU and GPU class hardware for machine learning applications. FPGA stands for Field
Programmable Gate Array. FPGAs have been around for a long time already, being used
for telecommunication, audio or video signal processing and more. The benefit of FPGA
hardware is that they consist of generic array logic, allowing them to be reprogrammed
to run a specific algorithm in hardware. FPGA hardware can be built to meet application
requirements, e.g. floating-point logic or integer logic support.

In this work, we analyze the performance of neural networks on an array of heterogenous
systems. We cover server, desktop and edge class hardware. Furthermore, we collect mon-
itoring data from the hardware, allowing us to infer on hardware capability exploitation.
We also measure the power draw of the test systems where possible. To do so, we do not

Performance and Power Consumption of Neural Networks

rely on software readings but connect a measurement device directly between the power
outlet and the respective system. Our benchmark suite encompasses convolutional neural
network applications, including several micro- and macrobenchmarks.

1.1 Motivation

When employing state-of-the-art neural networks in projects, engineers and managers
often face the task of choosing a suitable hardware platform to run on [1]. This applies to
cases ranging from edge computing to desktop class machines as well as high performance
computing including supercomputers. Most of the time, there will be numerous constraints
impacting the decision making process such as performance criteria, efficiency or cost. To
some degree, the same constraints affect the development as well, e.g. in terms of the time
wasted by a developer waiting for models to be trained. Scouting for viable hardware and
accompanying software solutions can be a daunting and time-consuming task. Most of the
time however, absolute chip performance, efficiency, etc. is not the only factor one must
take into account. Rather, the entire heterogenous computing package (including memory
transfer latencies and other overhead) dominates the project outlook.

Neural networks are a good fit for measuring and comparing heterogenous system per-
formance. They are modeled after the human brain, where millions of neurons are in-
terconnected. Accelerators used in heterogenous systems usually operate on hundreds or
thousands of simple cores, compared to the highly complex core design used in CPUs.
Thus, accelerator cores mandate workloads with a high degree of parallelism for optimal
exploitation.

At implementation time, one needs to be aware of the different programming models used
to implement algorithms on the various accelerators. There is a wide breadth of software
implementation standards, some proprietary (like Nvidia CUDA) and some open-source
(like OpenCL). Moreover, some of the standards target only a single hardware platform
such as GPUs, whereas others enable a single implementation on multiple targets.

At a high-level, there are multiple established frameworks which provide abstraction layers
to implement algorithms independent of the underlying programming model of a CPU,
GPU or others. This will often save precious developer time and reduce required entry
skill. At the same time though, it may reduce the roofline performance, as it has to be
able to cater to multiple vendor backends at compile- or runtime.

1.2 Goals

This thesis aims to answer the following research questions:

With regards to select neuronal network use-cases,

1. which platform is the most performant in terms of iterations per time?
2. which platform is the most efficient in terms of iterations per energy?

3. which platform is the most cost-effective in terms of iterations per money?

An iteration in this case describes a single part of code that is executed in a loop during
benchmarking. For example, in case of neural network inference, iteration refers to a single
forward pass. In case of training, it means a single training iteration using all training
images.

To be able to answer these questions, we first had to establish a set of performance and
energy metrics to measure. Second, we had to find a way to acquire the metrics in question

Introduction

by means of extensive benchmarking and monitoring. As a last step, we needed to analyze
and aggregate the acquired data to be able to draw conclusions.

1.3 Structure

This work is structured as follows: first, we take a deep dive in the topic of heterogenous
computing in Chapter 3. We reiterate on the history of processor development and go on
to explore GPUs as one of the first upcoming coprocessor designs. As a follow-up, we talk
about other kinds of accelerators used for machine learning and neural networks especially.
In the final part of the chapter, we explore various modern programming environments for
heterogenous systems.

In Chapter 4, we talk about neural networks. We begin by explaining the development
from understanding the biological neuron as part of the human brain to artificial neu-
ral networks. Afterwards, we show the inner workings of convolutional neural networks
in particular. Finally, we present the YOLOv3 network as a real-world state-of-the-art
model.

Chapter 5 details the approach we took to evaluate the performance neural networks on
heterogenous systems. We define various metrics which we collect during the benchmark
runs, that allow us to reason about hardware usage in relation to changing benchmark
parameters. Afterwards, we present the benchmarks we developed. Finally, we list some
of the tools used to acquire monitoring data such as hardware usage, power draw and
more.

In Chapter 6, we list the system specifications of the machines used in our experiments.

We present the benchmark results in Chapter 7. At the end of the chapter, we discuss the
observed results.

Finally, Chapter 8 concludes our work with lessons learned and closing thoughts.

Performance and Power Consumption of Neural Networks

2 Related Work

Without a doubt, there has been a resurgence of interest in neural networks in the last
decade. Yet, much of the research work is focused on the performance (in the sense of
accuracy) of the networks. In the context of our performance analysis, we typically use
the term performance to describe the computing capabilities of a system. New architectures
are developed each year to outperform existing state-of-the-art models on tasks like speech
synthesis, object detection, handwriting recognition and more.

The remainder of this chapter is structured as follows. First, we present work on generic
heterogenous computing performance in Section 2.1. Next, Section 2.2 is focused on per-
formance evaluations of neural networks in particular.

2.1 Heterogenous Computing

Chung et al. present a model for single-chip heterogenous computing in [9]. They argue
that combining traditional (CPU) with unconventional cores (e.g. GPU, FPGA) allows for
greater energy efficiency. They find that such unconventional cores must be able to exploit
sufficient parallelism in the workload. Furthermore, the off-chip bandwidth poses a first-
order threat to performance and efficiency gains according to the authors. Finally, they
argue that less efficient but more flexible hardware designs such as GPUs or FPGAs are
competitive with custom logic designs, given a parallelism grade of 90-99%. Finally, they
conclude that their model makes a strong case for unconventional cores in heterogenous
computing architecutres.

In [31], Mittal and Vetter survey a range of heterogenous computing techniques. In doing
so, they exclusively look at CPU-GPU systems. They find that programming algorithms
for such systems is still tedious, often mandating custom code for each processor type.
On top of that, they state that one must first identify suitable subtasks to exploit the
accelerator efficiency and performance gains. Mittal and Vetter conclude that ultimately,
fully automatic toolchains would be required so that more application domains can profit
from the benefits of heterogenous computing.

Schulte et al. describe AMD’s vision for exascale computing in [42]. With AMD being a
GPU manufacturer, they argue in favor of GPUs to be used for heterogenous computing
architectures. Their reasoning for going with GPU hardware as the accelerator of choice
is that their customers desire not to pay for custom components only useable for high-
performance computing.

In [8], Che et al. present Rodinia, a benchmark suite to evaluate heterogenous computing
capabilities. They focus on multi-core processors and support CPU and GPU hardware.
The authors claim to cover parallel communication, synchronization and power consump-
tion, providing valuable architectural insight. They explicitly hint at the importance of
memory-bandwidth limitations in heterogenous computing architects.

Danalis et al. developed the Scalable Heterogenous Computing (SHOC) benchmark suite
[11]. They state their initial focus is on systems featuring GPU hardware and multi-core
processors for compute acceleration. The benchmark suite uses the Khronos OpenCL API
and Nvidia’s proprietary CUDA to implement the individual test programs. Similar to our
work, the SHOC suite is composed of microbenchmarks and higher level applications.

In [18], Hu and Rossbach present ALTIS, a GPGPU benchmark suite. They argue that the
benchmark suites we presented earlier, Rodinia and SHOC, were aimed at last-gen GPU
hardware regarding workload and capabilities. In contrast, ALTIS is touted as featuring

Related Work

modern workloads including deep neural networks, graph analytics and crypto-currencies.
The authors adapted selected benchmarks from the other suites and developed new ap-
plications as well. One interesting decision by the authors is to focus on CUDA platforms
exclusively, meaning it can only be used to evaluate systems with Nvidia GPU accelera-
tors.

2.2 Neural Networks

Bianco et al. evaluate a wide range of deep neural network architectures in [3]. They use
two heterogenous systems in their work, one workstation equipped with a Nvidia Titan
X (Pascal) and one Nvidia Jetson TX1 developer kit. Their analysis features performance
indices for accuracy, model complexity but also computational complexity, memory us-
age and inference time. The authors find that model complexity can be used to directly
estimate the total memory utilization of an application. They also state that even the
networks with low model complexity are barely able to run on the embedded test system,
requiring too much GPU memory.

In [22], Karki et al. present Tango, a benchmark suite for accelerators featuring deep
neural network applications. The benchmarks are implemented in CUDA and OpenCL,
which means that they will be able to run on most modern GPU hardware. The authors
evaluate their benchmark suite on three systems, one equipped with a server class GPU,
one using a mobile GPU and one that uses a mobile FPGA. They find that the mobile
FPGA platform is more power efficient than the mobile GPU platform.

Zhu et al. implemented a benchmark suite to analyze the training of deep neural networks
in [52]. Their benchmark applications cover a range of modern machine learning domains
such as image recognition, speech recognition, machine translation and more. Furthermore,
they developed a novel toolchain to perform performance analysis, focusing on profiling
the memory usage of data structures in neural networks.

Performance and Power Consumption of Neural Networks

3 Heterogenous Computing

Heterogenous computing is already prevalent in most of today’s devices. For example,
most consumer devices feature dedicated silicon for graphics rendering and processing.
Even for small office PCs, software rendering is not sufficient to provide a decent user ex-
perience so they are equipped with graphics processing units (GPUs). In the mobile world,
devices are resource constrained and operate on a tight power budget, e.g. smartphones.
Network equipment usually features dedicated circuitry to offload checksum computation,
a seemingly small yet recurring task, instead of running on the main central processing
unit (CPU).

In this chapter, we first explore the history of select compute hardware in Section 3.1.
Section 3.3 introduces heterogenous architectures, the concept of offloading computation
and describes common memory hierarchies. Once the architectures are introduced, we go
on to present the currently used programming models in Section 3.4 and link them to
the architectures they can run on. Finally, we discuss the challenges faced by industry
professionals and researchers when trying to select a heterogenous system for a given
project in Section 3.5.

3.1 History

After reading the introduction of this chapter, one may ask themselves why heterogenous
systems are necessary in the first place. After all, CPUs became more powerful (in terms of
compute power) and less power-hungry ever since the first computer was developed. Why
do we not focus on further improving CPUs, since they can handle any possible workload
and the programming is rather easy? We try to answer this question by exploring the
history of CPU and GPU hardware. After this, we motivate the development of advanced
accelerator hardware.

3.1.1 CPU

Traditionally, CPUs were the only kind of hardware applicable for running general purpose
computations. Ultimately, when we think of performance we mostly think about the time
it takes the hardware to complete a given task. In games for example, the main metric of
performance is the frame time, aka the time it takes for a single frame to be rendered. It is
important to understand which parts of the hardware influence the performance one is able
to achieve when running a program. For CPUs, one of the most relevant key properties is
its frequency. The frequency determines the number of cycles the CPU can execute in a
given time period. For example, a frequency of three megahertz (MHz) would indicate that
a CPU can complete 3.000.000 (three million) cycles per second. To understand how that
relates to actual program code being executed, it is important to understand what a cycle
actually is. A CPU is designed to execute so-called instructions. When writing C code for
example, the compiler translates the high-level code into the low-level assembly language.
That assembly code (also called machine code) contains all the instructions necessary
to perform the requested operations. We deliberately leave out some details regarding
registers and such here for brevity. The key takeaway here is that the time needed to run a
program is directly related to the number of instructions the CPU can execute per second
(which in turn is directly proportional to the number of cycles it can execute).

From the above, one may understand that all we need to do to run programs faster is to
just keep increasing the frequency (disregarding memory transfer times and such). While
true in theory, there are physical limits as to how high the frequency can be for a given
chip.

Heterogenous Computing

P =CpfViy (3.1)

Kogge et al. [23] state the equation for power density as shown in equation 3.1, where P is
the power density in watts (per area), C' is the capacitance, p is the transistor density, f is
the CPU frequency and Vg is the supply voltage. We can already see that the frequency
f is directly proportional to the output power density. Brodtkorb et al. state that modern
CPUs are already approaching the physical limits with current cooling technology [5].
Thus, increasing the frequency will not work in the future to accelerate machine code
execution, unless new cooling technology emerges.

The next step in the evolution of CPU designs were the multi-core architectures. Instead of
just one big and powerful core, silicon vendors started to pack multiple cores onto a single
die. Initial designs featured two processor cores, whereas modern Intel or AMD processors
feature from quad-core up to 32 or 64 core designs for high-end server class CPUs. The cores
are not completely independent of each other, as they share caches and other processor
pipeline integrated circuitry. We will talk about the memory hierarchy in a later section
in this chapter. The multi-core designs do not solve the problem posed by the frequency
limitation though. Traditionally, serial programming was the norm. A program had a single
entry point, a serial control flow and either a defined exit point or a loop it would run. Thus,
ramping up the frequency would always make the program run faster, disregarding any
input/output (I/O) induced latencies and memory throughput limitations. With multi-
core CPUs, running serial code did not see any runtime improvements, sometimes even
an increase in compute time. Scheduling work on multiple cores requires a complex task
scheduler in the operating system. An example for this is the completely fair scheduler
(CFS) in the Linux kernel. In the worst case, a program is scheduled on a different core in
each cycle, which leads to cache trashing as the closest cache lines are specific to each core,
leading to decreased performance. There are techniques such as task pinning which forces
a process to be run on a specific core each time (thus bypassing the placement by the OS
scheduler). But even with this workaround, a CPU with n cores could at best perform on
par with a single-core CPU. To get better performance out of a single program on multi-
core CPUs, multiprocessing and multithreading are required. The former means spawning
multiple processes that communicate with each other and may even share portions of main
memory. This of course requires careful consideration and synchronization techniques by
programmers. The latter, multithreading describes the spawning of multiple threads within
a single process and executing these threads in parallel. Since these threads often share
data in RAM as well, synchronization is required again. There are methods to circumvent
this such as lockfree programming or atomics, but they are often limited to special cases or
hard to apply. In the end, parallel, multithreaded code is always harder to write than serial
code, because more potential issues like race conditions and such warrant the programmers’
attention.

Advanced technologies such as hyperthreading allow running multiple processes or threads
on a single CPU core. Since they do not help with the problem at hand any more than
multi-core CPU designs do, we do not elaborate further on them.

There is another technology which is widely implemented by processor manufacturers to
help overcome the frequency limitation. In simple terms, additional circuitry is added to
the CPU so it can execute multiple instructions in a given cycle. One common extension is
called fused multiply-add (FMA). For example, imagine a simple instruction set where the
assembly instruction add is used to add a number to another number. mov is used to copy

Performance and Power Consumption of Neural Networks

bytes from a source to a destination memory location. Finally, mul is used to multiply a
number with another number.

1| mov a, r7
2 mul a, 0xOF
3ladd a, 0x0A

4| mov 17, a

Listing 3.1: Pseudocode for multiply-add

Listing 3.1 contains pseudocode for a simple multiply-add program. In line 1, the content
of register r7 is copied into the special accumulation register a, where all the calculations
take place. In line 2, the value currently stored in the accumulation register is multiplied by
0xOF. The consecutive add operation adds the value O0x0A onto the result of the previous
multiplication. Finally, the result of the computation is copied back to the register r7 in
line 4. Without FMA, these four lines of program code would boil down to four instructions
being executed serially by the CPU within four cycles. With FMA however, the mul and
add instructions can be executed in a single cycle, so we only need to spend three cycles
running the code.

Techniques such as FMA or other modern CPU extensions such as Intel’s advanced vector
extensions (AVX) drive up the complexity and cost of the hardware. This is a major
drawback in modern CPUs. Consumers may be able to pay a few dollars more for advances
in CPU hardware. But in the embedded world, every cent counts since so many of these
chips are manufactured. Devices need to be cheap to produce and cheap to replace, unlike
high-end server class hardware for example. Thus we can see why people began to look
for alternative processors for generic computations.

3.1.2 GPU

One of the first alternative hardware designs that emerged were GPUs. Once GPUs started
to become popular, they were used for gaming and specifically designed for this sole pur-
pose. The hardware was laid out as a fixed-function pipeline to execute tasks such as
viewport mapping, depth testing and such as fast as possible. Perhaps the most important
issue with this hardware design was its inflexibility. Each time game developers wanted to
add new effects to the graphics application programming interface (API), e.g. Microsoft
DirectX or OpenGL, new hardware was required to implement the functionality. Thus, it
was quickly understood that this kind of design was too inflexible going forward and the
landscape of GPU hardware design drastically changed toward general purpose program-
ming on GPUs (GPGPU). Highly specialized GPU function blocks were replaced with less
specialized ones, for example generic vector addition or multiplication blocks. McClanahan
states the first GPGPU card was the Nvidia Fermi GPU released in 2010 [30]. According
to him, "Generation VII' of GPUs continued the trend from fixed-function cores towards
CPU-like cores. In this case, the compute cores are called CUDA cores by Nvidia, just like
the programming language they invented to program those cores. Modern GPU hardware
features complex schedulers and advanced memory hierarchies, which we will talk about
in Section 3.3.3. Many algorithms of today, including machine learning and artificial in-
telligence ones, lend themselves well to GPGPU hardware. However, it is important to
understand what kind of work a program is really doing to choose the best fitting and
cost-effective hardware to run it on. For example, Lee et al. state that the performance
gap between a Nvidia GTX280 GPU and an Intel Core i7-960 is about 2.5x on average
[26] instead of 100x or even 1000x as indicated by similar research.

Heterogenous Computing

In the next section, we explore common heterogenous architectures of today and talk about
memory hierarchies, design choices and reasons why companies spend billions of dollars
every year to try and come up with even better accelerators to run their workload on.

3.2 Accelerators

Since this work is about performance analysis of neural networks, we focus on accelerators
exclusively and do not touch upon security coprocessors in detail. In this section, we
present the accelerators used in systems that were part of our work. We briefly introduce
each accelerator kind and compare them against each other in terms of deep learning and
neural network compute capabilities.

3.2.1 GPU

Graphics processing units (GPUs) have been around since decades. Over time, they evolved
from simple video output compositors into complex general purpose computation devices.
The old kinds of GPUs, like 2D or 3D fixed-function accelerators are not of interest with
regards to this work. We solely focus on GPGPU capable devices, since they support freely-
programmable compute shaders necessary to execute arbitrary algorithms ("kernels"). This
flexibility allowed GPUs to be used in a wide range of applications including machine
learning [38], linear algebra [25], statistics [27] and others.

In contrast to a CPU, a GPU features less complex core logic. Features like branch pre-
diction or out-of-order execution may be entirely missing, while no modern CPU would
be competitive in performance without these. Instead, a GPU sports a vastly higher core
count leading to a much higher possible degree of parallelism [15]. Thus, GPUs are used
for work that can be parallelized without many serial dependencies. Highly serial tasks
are best left to the CPU, where the powerful cores will usually achieve better performance
than the more simple GPU cores. Figure 3.1 illustrates the difference between CPU and
GPU hardware architectures. The difference in core count and auxiliary logic is shown in
Figure 3.1.

ALU ALU
Control
ALU ALU
Cache
DRAM DRAM
CPU GPU

Figure 3.1: CPU vs. GPU architecture based on [37]

GPU hardware is prevalent in most consumer hardware today. As such, it is the most suit-
able target for compute offload for demanding applications. Most dedicated GPU hardware
uses the PCI Express connector standard, which makes it possible to easily add, remove
and upgrade the accelerator hardware. Enterprise class GPUs are mostly built on top of
their consumer counterparts with various features added on top. Thus application pro-
grammers can target both consumer and enterprise users with the same code, as it will be
able to run on almost all available hardware - given that the software stacks are compati-

ble.

Performance and Power Consumption of Neural Networks

3.2.2 TPU

A tensor processing unit (TPU) is a dedicated accelerator for neural networks. It was
first developed by Google as custom application-specific integrated circuit (ASIC) with
the goal of accelerating machine learning . According to Google, the TPU was designed
to specifically accelerate TensorFlow workloads.

TPUv3 Chip
Core Core
scalar/ scalar/
vector units vector units

r v 1 f v 1

MXU MXU MXU MXU
128x128 128x128 128x128 128x128
A A
\ 4 \ 4
HBM HBM
16GB 16GB

Figure 3.2: TPUv3 architecture based on the Google TPU docs

Figure 3.2 shows the TPUv3 architecture. Google Cloud TPUv3 nodes are equipped with
four of these chips, all interconnected on a single board. Each chip features two cores,
as illustrated in the figure. A core is made up of an array of scalar, vector and matrix
units (MXU). As can be seen from the figure, the MXU array provides the bulk of the
TPU compute power. According to Google, each MXU can perform 16.000 multiply-add
operations per cycle at bfloat16 precision, which is a 16-bit floating point representation
designed for neural networks.

The TPU is quite similar to the early GPU designs in terms of how it came to be. Where
GPUs emerged to handle the very specific task of graphics processing, including lighting,
shading and triangulation, TPUs are built to compute on n dimensional matrices (also
called "tensors") as fast as possible. Just like the GPU, TPU hardware features its own
dedicated high-bandwidth memory to load and store compute operands. Analogous to
multi-GPU configurations like Nvidia SLI or AMD CrossFire, Google allows multiple TPU
devices to be interconnected via high-speed network interfaces.

The Google Cloud TPU architecture has arrived in the world of embedded technology with
the Coral Dev Board [6]. According to Google, it is meant to move neural network inference
out of centralized datacenters on to embedded devices. The vastly more resource intensive
training process of neural networks remains with the datacenters for now, though.

Unfortunately, accessing TPU hardware for custom projects is hard, as Google does not
sell them. Instead, Cloud TPU hardware is available through a rent-on-demand model 2.

"https://cloud.google.com/tpu/docs/system-architecture
’https://cloud.google.com/tpu/pricing

10

https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/pricing

Heterogenous Computing

The only hardware that can be bought is the Coral Dev Board with the embedded variant
of the TPU chip. Another restriction is imposed by the Google Colab Terms of Service
(ToS), which does not allow you to pay for the service outside of a selection of countries,
including the United States and Canada as of 2020 2 %. Colab is the interface through
which one can run TensorFlow code on the rentable TPU hardware.

3.2.3 FPGA

Field programmable gate array (FPGA) describes integrated circuitry that can be designed
to fit a certain task after manufacturing. The circuit layout can be re-programmed using
specific hardware description languages (HDLs). A FPGA chip is made up of an array
of logic blocks, which can carry out complex custom operations or simple logic gates like
AND or OR. According to Wikipedia °, most FPGAs usually feature local memory for
each logic block. This allows the FPGA to carry out stateful operations at each block.
Advanced FPGA designs may feature large on-chip shared memory blocks, bidirectional
buses and more complex circuitry. Depending on the requirements, FPGA logic blocks can
be designed to handle a variety of data types, including integer and floating-point data.

There has been huge research interest in employing FPGA hardware for machine learning.
GPUs are very expensive, consume large amounts of power and are highly complex chips,
yet they are the most used hardware for machine learning and deep learning workload
acceleration. Naturally, researchers and industry professionals are looking for alternatives
to accelerate their algorithms. Custom ASIC hardware is expensive to design and man-
ufacture, but FPGAs have been around for decades and can be bought or built for less
money.

Xilinx research compared a Nvidia Tesla P40 GPU (40 TOP/s INTS8) with their Ultra-
scale+TM XCVU13P FPGA (38 TOP/s INTS) [32]. They argue that GPU ALUs typically
only operate on FP32 and sometimes FP64 data. Since machine learning applications can
usually operate on integer data with a negligible loss in precision, this potential speedup
cannot be leveraged using GPUs. The silicon changes made by GPU vendors only resulted
in a 3X speedup for INT8 computation vs FP32 on the Nvidia Tesla P40 according to
Xilinx. Furthermore, Xilinx argues that the much larger on-chip memory size (500MB)
compared to the Nvidia Tesla P4 (80MB) allows it to hide memory latencies better. They
also tout a much lower power usage compared to GPUs often requiring several hundreds of
watts at peak load. Compared to a Nvidia Tesla V100, they say their Virtex Ultrascale+
offers up to four times better compute efficiency.

The Xilinx claims appear to be backed up by Microsoft researchers [36], who report that
an Intel Arria 10 FPGA performs ten times better in terms of power consumption on an
image classification task. Nvidia’s recently introduced Tensor cores for tensor operations
are said to be able to narrow the gap and bring their GPUs to the same level of efficiency
as FPGAs though.

Intel conducted research on deep neural network (DNN) performance using their Stratix 10
FPGA and a Nvidia Titan X Pascal GPU [34]. They developed a ResNet implementation
with marginally reduced precision for the weights. They say their version of RedNet is
within 1% of the full-precision ResNet implementation. Intel researchers report a 60%
better performance of the Stratix 10 FPGA, while achieving a 2.3X better performance

3https://colab.research.google.com/pro/terms/vi
‘https://colab.research.google.com/signup
Shttps://en.wikipedia.org/wiki/Field-programmable_gate_array

11

https://colab.research.google.com/pro/terms/v1
https://colab.research.google.com/signup
https://en.wikipedia.org/wiki/Field-programmable_gate_array

Performance and Power Consumption of Neural Networks

per watt rating. While the original ResNet benchmark had to be specifically adjusted for
the FPGA, the results certainly weigh in favor of it against the current GPU generations.

Independent researches such as Cong et al. [10] show that a Xilinx Virtex 7 FPGA is able
to achieve almost equal performance compared to a Nvidia K40c GPU for some kernels
of the popular Rodinia GPU benchmark suite. At the same time, the FPGA consumed
only about 28% of the power according to the authors. They ported the GPU kernel code
to the FPGA, including additional optimization like cache tiling etc. Cong et al. conclude
that the FPGA performance was held back by the lower clock frequency and lower off-chip
memory bandwidth.

3.3 Heterogenous Architectures

As mentioned in the beginning of the chapter, heterogenous computing is ubiquitous for
performant, efficient and safe systems. In this section, we present various heterogenous
computing architectures, some common and some rare. We outline the vastly different
purposes served by these architectures and categorize them accordingly.

Key
A

CPU core

Tier 0
Auxiliary
A A cores
PU

CPU C Package
Tier 1
CPU
2
'c
()]
(=]
e o | ¢
2
T Tier 2 <«
k]
: o | ¢
>
3
CPU GPU
g B
Tier 3 €= > ;
B =&

"4 SoC { SoC |
Figure 3.3: Heterogenous Architecture Tiers
In Figure 3.3, we present an arbitrarily chosen ranking of architectures, rated by their

level of heterogenity. Tier 0 encompasses fully heterogenous designs, such as traditional
CPUs using only one kind of core. The first multicore designs fit into this category as

12

Heterogenous Computing

well, as do recent AMD Ryzen chip designs. Tier 1 describes systems that use different
cores, albeit still belonging to the same overall chip family. For example, ARM Cortex
CPU designs fit into this category: they often feature a number of high-performance cores
along with some low-power ones, which helps mobile use-cases. Tier 2 describes package
designs with a CPU and one accelerator chip, each with an arbitrary number of cores.
Finally, Tier 3 describes current system-on-chips (SoCs) like the Apple M1 or Intel Tiger
Lake series, where a single package contains a CPU and multiple auxiliary cores. Most
of the time, auxiliary cores such as neural processing units (NPUs), GPUs or other chips
will even share memory with the CPU. Vendors sometimes combine multiple SoCs into a
single package, for example cellphone chips with one SoC containing the CPU, a GPU, a
security processor and more and a second SoC with an FPGA and additional CPU cores
for data processing logic.

In the following sections, we talk about approaches that can be used to exploit heteroge-
nous systems for optimal performance, efficiency or other goals. We discuss the software
requirements and various tools used to achieve heterogenous applications.

3.3.1 Offloading

Heterogenous computing is all about leveraging alternative processing core designs to
achieve greater efficiency and performance than full blown CPU cores could. At the same
time, it is important to understand that the goal is not to replace CPUs. Instead, copro-
cessors are designed so portions of a task can be executed on them, while other parts are
still carried out by the CPU. For simple computations such as summation of all values in
an array or vector maths a GPU may be sufficient to perform all tasks on its own. When
moving to more complex applications however, we can see why that is not working out.

One example of a sufficiently complex real-world application where offloading can be used
is real-time image processing. To a computer, images are just arrays of numbers, one
dimensional to be specific. To align more with the human way of thinking about images,
they are usually represented as two-dimensional arrays, also called (2D) matrices. Such a
matrix has one cell per image pixel in the case of grayscale images or multiple cells for color
images, e.g. three for RGB. This is also called a packed image representation. There are of
course other image memory representations such as planar ones, but we will discard them
here for sake of brevity. In the most simple case, a program may allocate main memory
(RAM) to hold the image pixel values, fill them with some values and then pass it to the
coprocessor so it can execute a kernel on the image. Such a kernel can perform numerous
operations on the image. Simple kernels operate on a single cell of the image, while more
complex ones exploit the spatial information of the image, i.e. operating on three pixels
at once. The coprocessor is usually programmed in a way that its own scheduler takes
care of iterating over the input array and running the kernel when appropriate. Once
the processing is done, the memory content needs to be read back into main memory to
continue processing.

Figure 3.4 depicts an offloading example application. First, memory is allocated by the
CPU in RAM and zeroes out the contents. The CPU then fills the memory with values,
in this case grayscale pixel intensities. If we assume eight bit per pixel, that leaves us with
a range of [0, 255] for the intensity values. The figure shows the image as a tile of four
pixels, where the top left hand tile has an intensity of 255 (white) and the bottom right
hand tile has an intensity of 0 (black). The other two pixels have intensities somewhere
in between, with the top right hand one being closer to 255 and the bottom left hand one
being closer to 0. Our example application now copies the array to the coprocessor, in
this case a GPU. This copying operation traditionally involved the CPU copying the bits

13

Performance and Power Consumption of Neural Networks

L bl o

allocate() > fill() > kernel()
copy copy

\ 4

save()

- cv]| ov B] cru

Figure 3.4: Offloading example

from main memory and transferring them to the GPU memory. Modern GPUs support
techniques such as direct memory access (DMA), allowing the device to directly access
the RAM and copy the contents on its own. This is useful because the CPU does not need
to waste any cycles for copying the memory, a phase where the GPU needs to wait for
the transfer to finish and thus being blocked anyway. The kernel being executed on the
GPU runs code akin to the pseudocode shown in Listing 3.2. One kernel iteration operates
on a single matrix cell, which is a single pixel intensity. Both input and output type are
eight bit intensities (u8). The function described by the kernel is a two-way thresholding:
intensities higher than half of the maximum intensity are clamped to the maximum value,
while others are set to the minimum value. The grayscale input image becomes a purely
black and white image in the process. Once the kernel is run over all input matrix cells,
the array contents reside in GPU memory. We now need to transfer them back to the
main memory which is CPU accessible to actually use the array contents or share it with
other applications. The only thing we can do on the GPU at this point is to run other
kernels on the array contents, e.g. blurring the image (which would make it a grayscale
image again).

fn kernel(input: u8) —> u8 {
2 if input > 128 {

-

3 return 255
1 }oelse {
5 return 0

(=]

}

Listing 3.2: Pseudocode for thresholding kernel

So far, we designed a simple image processing pipeline involving a coprocessor. Since only
some parts of the program are run on the GPU, this is called offloading. The benefits of such
a seemingly complex architecture are not immediately obvious. For example, most GPUs
support the creation of buffers in their own memory directly. The pixel intensities could
also be filled by the GPU itself, so the first two steps allocate() and fill() do not need to be
executed by the CPU anymore. Instead, the CPU can simply enqueue these commands for
buffer creation and value assignment directly to the GPU, where a task scheduler will run
them. It is easy to come up with a real-world example where the architecture proposed in
Figure 3.4 is required though. Processing arbitrary image data generated by the computer
is usually not interesting in production applications. Instead, image pixel data may be

14

Heterogenous Computing

acquired by a digital camera, connected to the PC via universal serial bus (USB) or other
means. In most popular computing systems, peripherals such as cameras are connected to
a bus such as USB, which in turn is accessible only by the CPU. Reading pixel data from
a camera involves complex drivers which are run by the operating system. If one wants to
perform direct camera access on e.g. a GPU, that GPU would need to run a full-blown
operating system with drivers for the peripherals just to capture images. Such a system
would be too complex and would drive up the cost of the product considerably. Since the
CPU needs to handle peripherals anyway and already runs a complex operating system
to begin with, it is the right processor to grab the image data from the camera. The fill()
step of the example shown in Figure 3.4 is now replaced with a capture() step. This is of
course discarding details about the image format negotiation, buffer allocation and more
that needs to happen before capturing image frames from the camera device.

Offloading is also applied in other contexts. For example, modern smartphones feature
dedicated processor cores and memory for running secure applications. They usually run
an entire operating system simultaneously to the main OS (e.g. Android) which runs on
the CPU. One example for such a security OS is MobiCore by Giesecke & Devrient as
presented by Spitz [46]. It is found in most smartphone SoCs of today such as Qualcomm
Snapdragon or Samsung Exynos. Use-cases include mobile payment authentication or
video content decryption of digital rights management (DRM) protected content. Most
content distributors such as Netflix, Amazon Prime Video or even Spotify Music only
provide DRM protected content through their subscriptions, which explains why these
coprocessors are so ubiquitous. Even the most simple music players require dedicated
silicon to offload audio decoding tasks to, because their main CPU is not powerful nor
efficient enough. Instead, digital audio processors (DSPs) are highly tuned to perform
the floating point math operations as fast as possible, while maintaining minimal energy
consumption.

Another important benefit of offloading is the domain separation. Looking back at our
camera image processing application, systems engineers are usually trained to work with
peripheral hardware such as cameras. They know how to "talk" to the hardware by writing
drivers to get the image buffer transferred into RAM. However, they usually are not trained
specialists in the image processing domain. Granted, a simple thresholding operation may
not pose a real challenge to any software engineer. But more complex compute kernels
such as image convolution algorithms are usually better implemented by domain experts.
These experts need not to worry about the camera hardware. Their work involves writing
the code for the accelerator (in this case the GPU), ensuring optimal task placement
on the many GPU cores, efficient scheduling and algorithm soundness. The tooling for
writing GPU kernels is often complex to setup and even more complex to update (e.g.
Nvidia CUDA or Khronos OpenCL). "Offloading" this work to the domain experts frees
the system engineers from the burden of GPU specific debuggers to make the code work.
Of course, this domain separation is more work than just running all code on the CPU.
However, that is usually not an option because of the vast benefits one can exploit when
running code on accelerators. The efficiency of offloaded computation often depends on
the amount of parallelism of the work package, which we will explore in the next section.

Summarizing, we can conclude that offloading is commonly used for the following (non-
exhaustive) reasons:

e Performance

o Efficiency

15

Performance and Power Consumption of Neural Networks

e Security

e Domain separation

3.3.2 Parallelism

In the previous section, we outlined the benefits of offloading work to coprocessors. We
touted them to be more efficient, more performant or more secure. In this section, we want
to explore the reasons behind the first two aspects - efficiency and performance - of the
accelerator chips.

Modern CPUs are made of more than just their cores, some caches and registers. They fea-
ture highly complex prefetching pipelines, branch predictors and more clever innovations,
all aimed at making serial code execution as fast as possible. Accelerators on the other
hand are usually made of cheap, small and specialized cores in great numbers. A modern
Nvidia consumer grade GPU, the RTX 3080, features more than 8700 CUDA cores 5. As
we already elaborated in the previous section, this poses a software engineering challenge,
because serial control flow programs do not benefit from many-core hardware designs.
To exploit the massive parallel execution that accelerator chips are able to perform, the
workload has to be structured accordingly. This is paramount to good efficiency and per-
formance with accelerators. Figure 3.5 illustrates Flynn’s taxonomy [14] of parallelism in
hardware.

Data Data
Single Multiple Multiple

o) 192,

2 SISD SIMD SPMD 3

%) 5
(2]
S ad
- (]
g g
= (Y
@ 3
f=
£l =z

Q. c

= MISD MIMD > MPMD =

=) o)

= o

Figure 3.5: Taxonomy of parallelism in hardware

Single core CPU designs operate in SISD fashion: a single instruction operates on a single
piece of data at a time. For example, we can refer back to listing 3.1: a value is copied
from RAM into a specific register. Now the ADD assembly instruction operates on that
single register. Adding a value to another variable stored in a register mandates a second
ADD instruction.

Multithreading using multiple hardware threads (possibly backed by multiple CPU cores)
belongs into the SIMD category. Apart from SISD operation, modern CPU cores often
feature instruction set extensions such as Intel SSE/AVX or ARM NEON to enable SIMD
operations. A single instruction can be applied to multiple data pieces in lockstep. Most
accelerators work in the same way: Nvidia CUDA cores are consolidated into so-called

Shttps://www.Nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080/

16

https://www.Nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080/

Heterogenous Computing

Streaming Multiprocessors (SMs), which share cache lines between the cores they con-
trol and operate in SIMD fashion. The same generally applies to Intel and AMD GPUs,
although the terminology differs.

The MISD modus operandi, where multiple instructions are applied to a single piece of
input data, is highly uncommon. One example where it is applied is avionics computers
where multiple machines perform the same computation and must agree on the result,
otherwise the result is faulty. This approach was used in the NASA Space Shuttle flight
controller [45].

MIMD architectures include distributed systems or multi-core superscalar systems. A su-
perscalar processor can execute multiple instructions during each cycle [20], akin to the
fused multiply-add (FMA) instructions found in consumer CPUs, only for generic instruc-
tions. They are commonly found in supercomputers such as Cray systems. Seymour Cray’s
CDC 6600 is regarded one of the first superscalar processor designs. MIMD can be divided
into single program, multiple data (SPMD) and multiple program, multiple data (MPMD)
as shown in Figure 3.5.

3.3.3 Memory Hierarchy

Modern computer systems have access to an array of different memory stores. To an ap-
plication developer, only random access memory (RAM) may be known, since it stores the
program code and any variables created during the lifetime of the program. But the mem-
ory hierarchy in modern CPUs is actually more complex than that. High performance ap-
plications mandate good CPU resource saturation and minimizing stall conditions. When
thinking about CPU stall conditions, many software engineers only have input/output
(I/O) work in mind, where the CPU has to waste cycles idling. This is often caused by
data transfers from external storage such as SATA disks into main memory, where the
CPU can access it. However, many of the precious CPU cycles are wasted by cache trash-
ing. That kind of trashing occurs e.g. when a CPU core discards a cache line to make
place for other content, but needs the old (and discarded) cache contents again in another
iteration in a hot loop.

Bits Registers 0x
g Kilobytes Scratchpad Caches 10x 3?
@ g
Gigabytes Main Memory (RAM) 100x

Figure 3.6: CPU memory hierarchy

Figure 3.6 illustrates the memory hierarchy based on the description by Brodtkorb et
al. [5]. According to them, the smallest memory regions are the CPU registers, which are
usually 64 bits large nowadays. They operate at the same speed as the CPU itself, meaning
there is a zero clock cycle latency when accessing them.

17

Performance and Power Consumption of Neural Networks

Next in the hierarchy are scratchpad memories, also called local store memory, and caches.
While caches provide the hardware logic to move data in and out of them, scratchpad
memory has to be managed externally. Steinke et al. mention scratchpad memory to be
more energy efficient, saving area and energy on a chip usually occupied by cache control
logic [47]. Modern mainstream CPUs do not usually come with scratchpad memory. It is
more commonly found in the embedded world, where chips need to be as small and cheap
as possible. Both scratchpad memory and caches are usually sized in the kilobyte region,
although high level caches such as L3 caches can be sized in megabytes, too. There is a
notable latency penalty of tens of cycles when accessing this kind of memory.

In terms of size, the biggest memory available to the CPU is the main memory, also called
RAM. This is where user-space programs are stored on execution along with any variables
and other program data. Modern systems often come with gigabytes or even terabytes of
RAM. The access latency is much higher than with any other kind of memory, being in
the hundreds of cycles.

So far, we discussed faster, but smaller and slower, but bigger types of memory. Earlier in
this chapter we highlighted the importance of knowing about caches for software engineers.
We believe the issue of cache trashing and its performance implications are best illustrated
by an example: matrix transposition. Imagine a matrix A, with dimensions man. The
transpose operation turns A into a new matrix B with dimensions nzm as shown in
equation 3.2.

A => BjiVi € {1,..,m},j € {1,..,n} (3.2)

Tsifakis et al. [49] compare a cache-ignorant against a cache-blocking and a cache-oblivious
transpose algorithm. Cache-blocking means that the matrix is split up into smaller "blocks"
which fit into the cache. This kind of approach requires the optimal block size to be
determined a-priori. The term cache-oblivious refers to a class of algorithms which do not
specifically target a hardware architecture, but tune themselves to achieve optimal cache
exploitation at runtime. This is usually achieved by recursion and probing whether the
current data block wholly fits into the cache. The authors restricted their analysis to square
matrices which are transposed "in-place", meaning there is only one memory allocation to
hold the source matrix A and the destination matrix B. Thus, the same restrictions apply
here.

Figure 3.7 illustrates the cache-ignorant matrix transpose algorithm and shows the first
iteration. The cache exploitation of this algorithm is poor because cache lines are being
trashed and reloaded during the swap operation. The inner loop that increases j causes
discontiguous jumps between memory addresses during the swap operation. For example,
imagine a primitive memory model where the first matrix element is stored at address
0200. Each cell of the matrix can hold a 32 bit integer value, so a 3z3 matrix requires
3 % 3 % 32 = 288 bits or 36 bytes of memory. At some point, the algorithm will swap the
element in the top right hand corner of the matrix, A(1,3) with the bottom left hand one,
A(3,1). A(1,3) resides at memory address 0208 (because the first is at 0200, the second at
0204, etc), but A(3,1) resides at 0218. To perform the swap operation in cache, the entire
range from 0z08 to 0z18 has to be loaded into the cache, which is five matrix cells or 20
bytes. But for larger matrices of 1002100 or even 100021000, the fastest caches of modern
CPUs are not large enough, leading to a huge number of cache misses.

Tsifakis et al. [49] found that the cache-blocking and cache-oblivious matrix transpose
algorithms could more than halve the cache misses of the naive algorithm, sometimes

18

Heterogenous Computing

cache-ignorant
[/l iterate rows
1 2 3| [for(i=1;i<n-1;i++){ |
_ [/l iterate columns
Aj = 4 15| 6 for =i+ 1;j<n;j++){|
=13 /I swap elements
j= 1:3 7 8 9 }| swap A(l,]) with A(j,1) |

Figure 3.7: Naive matrix transposition

yielding improvements of orders of magnitude. Curiously, the oblivious algorithm actually
yielded more cache misses than the other two for very large input matrix sizes. According
to the authors, this is caused by an interplay between matrix dimension, cache size and
others. They state knowing a-priori which algorithm performs best for a matrix of unknown
size is non-trivial. Ultimately, the authors confirmed the previous work of Chatterjee and
Sen [7], who arrived at similar conclusions.

Since modern CPUs often feature multiple cores integrated on a chip and sharing at least
some larger caches, cache-aware programming is becoming more important. Advances in
processor technology may hide cache trashing issues by other speedups, but especially
constrained environments such as embedded devices require careful algorithm design. As
more and more cores are integrated on a single die, the issue only becomes more apparent:
one core may trash a cache line, requiring the next core to load it again. This can lead to
inter-core cache trashing, which is especially harmful in multithreaded applications, where
multiple cores work on the same piece of data.

3.4 Programming Stacks

In the previous section, we touched on heterogenous architectures in hardware. We ex-
plained how parallelism, special memory hierarchies and offloading can result in huge
performance gains when using accelerators compared to just CPUs. Perhaps the most ap-
parent issue in employing accelerators today is their complex programming procedure. A
naive implementation of an algorithm on an accelerator may not perform better than a
CPU at all. Achieving the maximum performance and full hardware exploitation usually
requires vast domain knowledge and system engineering capabilities. With the vast in-
crease in machine learning and deep learning applications in the recent years, a new breed
of frameworks has emerged, allowing for easy programming even by novices. Since domain
experts designing the algorithms are usually not expert programmers, this is of utmost
importance.

In this section, we present a selection of currently available programming stacks for het-
erogenous architectures and accelerators. The stacks we chose based on popularity are
CUDA, OpenCL and TensorFlow. We add examples illustrating the usage of each stack
and compare the cognitive complexity. Finally, we talk about challenges faced when pro-
gramming accelerators in general, such as tooling environments, debuggers and more.

19

Performance and Power Consumption of Neural Networks

3.4.1 CUDA

CUDA is a proprietary programming stack and API created by Nvidia for their GPUs,
initially released in 2007 according to Wikipedia 7. The latest stable release is CUDA 11,
which was published in 2020. Since its inception, CUDA has gained support for Nvidia
consumer GPUs such as the GTX series as well as their enterprise offering, the Tesla series.
Apart from the main CUDA stack, an entire ecosystem around it was created with spe-
cialized libraries and tools &. This includes generic math libraries as well as some spanning
specific use-cases such as cuDNN for convolutional neural networks or cuFFT for accel-
erated fast-fourier transforms. The tool collection encompasses debuggers, performance
profilers and more.

Software Hardware
os CPU
o TS — :
A A 5
PCI Express
Y Y PCI Express
Userspace GPU 3rd Party

Figure 3.8: CUDA architecture

Figure 3.8 shows the rough CUDA architecture. On the left side, the software stack is
divided into the OS specific part and the user-space part. The former consists of the GPU
driver while the latter encompasses the ecosystem mentioned earlier in this section. On
Linux for example, Nvidia provides a proprietary kernel driver which is not only necessary
for hardware accelerated 2D and 3D operations, but CUDA as well. On the right side, the
hardware architecture enables one or more GPUs connected to the CPU via PCI Express.
The CPU can access the GPU memory or share RAM areas with the GPU for shared
memory access. On enterprise class cards such as Nvidia Tesla series models, advanced
features such as RDMA can be used. RDMA means remote direct memory access and
describes a mechanism for direct device-to-device communication between the GPU and
other third-party PCI Express devices.

CUDA API bindings are available for many general purpose programming languages such
as C, C++ or Fortran. Most developers who get into GPU programming will already know
one of these languages, easing the transition and flattening the learning curve. CUDA also
incorporates various features from the respective languages, e.g. templates from C++.

A CUDA program usually consists of at least the following basic steps:

1. Allocate host and device memory

"https://en.wikipedia.org/wiki/CUDA
Shttps://developer.Nvidia.com/cuda-zone

20

https://en.wikipedia.org/wiki/CUDA
https://developer.Nvidia.com/cuda-zone

Heterogenous Computing

S AN B R

Fill host memory, copy to device memory
Run kernel
Copy device memory contents into host memory
Process

Release device and host memory

First, memory is allocated to hold the data structures the GPU will operate on. Next,
the memory is initialized and filled with data. The input and output memory regions are
now copied into GPU memory. Finally, the GPU runs a kernel, which is the algorithm
that we wanted to run on the input data in the first place. The resulting output memory
area is copied back into host memory, where it can now be processed. At the same time,
the memory areas on the GPU device can be freed, since the results have already been
transferred. Once the processing is done, the host memory regions can be released as

well.

{

© 0 N O Ok W N =

e
w N = O

,_.
'S
—

[un
ot

int

BB R A W oW W W W W W W W W NN NN NNNNNNE B e
W N Rk O © 0N O U kR WNH O © N R WN R O © O]
~

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of ¢
___global___ void vecAdd(double *a, double xb, double *c, int n)

// Get our global thread ID

int id = blockldx.x*blockDim.x+threadldx.x;

// Make sure we do not go out of bounds
if (id < n)
clid] = a[id] + b[id];

main(int arge, charx argv]])

// Size of vectors
int n = 100000;

// Host input vectors
double xh_ a;
double xh__b;
//Host output vector
double *h_ c;

// Device input vectors
double xd_ a;
double xd__b;
//Device output vector
double *d__c;

// Size, in bytes, of each vector
size_t bytes = nsksizeof(double);

// Allocate memory for each vector on host
h_a = (doublex)malloc(bytes);
h_b = (doublex)malloc(bytes);
h_ ¢ = (doublex)malloc(bytes);

// Allocate memory for each vector on GPU
cudaMalloc(&d__a, bytes);
cudaMalloc(&d_ b, bytes);

21

Performance and Power Consumption of Neural Networks

44 cudaMalloc(&d__c, bytes);
45

46 int i;

a7 // Initialize vectors on host
48 for(i =0;1 <njit++){
49 h_a[i] = sin(i)*sin(i);

50 h_b[i] = cos(i)*cos(i);

51

52

53 // Copy host vectors to device

54 cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice);
55 cudaMemcpy(d__b, h_ b, bytes, cudaMemcpyHostToDevice);
56
57 int blockSize, gridSize;
58
59 // Number of threads in each thread block
60 blockSize = 1024;

61
62 // Number of thread blocks in grid

63 gridSize = (int) ceil ((float)n/blockSize);
64
65 // Execute the kernel

66 vecAdd< < <gridSize, blockSize>>>(d_a, d_b, d_c, n);
67
68 // Copy array back to host

69 cudaMemcpy(h__c, d_ ¢, bytes, cudaMemcpyDeviceToHost);
70

71 // Sum up vector ¢ and print result divided by n, this should equal 1 within error
72 double sum = 0;

73 for (i=0; i<n; i++)

74 sum += h_ c[i];

75 printf (" final result : %f\n", sum/n);
76

77 // Release device memory

78 cudaFree(d_a);

79 cudaFree(d_b);

80 cudaFree(d__c);

81

82 // Release host memory

83 free (h_a);
84 free (h_b);
85 free (h_c);
86
87 return 0;

88| }

Listing 3.3: CUDA vector addition

Listing 3.3 implements a simple vector addition operation in CUDA, taken from the Oak
Ridge National Laboratory CUDA tutorial °. The first thing to note is that the heteroge-
nous application consists of a single source file. It is compiled by the Nvidia compiler
(nvee), which extracts the CUDA parts and compiles them to PTX (GPU machine code
instructions). The rest of the program code is then forwarded to a C/C++ compiler that

compiles the host part of the program.

In the Nvidia GPU architecture, each processor core runs a so-called thread. Multiple
threads form a block, where the threads share block-level memory. The block size is set in
line 60 of the example code. It is usually empirically tuned to achieve optimal hardware
occupancy to hide the GPU memory transfer latencies, but has been the topic of ongoing

“https://www.olcf.ornl.gov/tutorials/cuda-vector-addition/

22

https://www.olcf.ornl.gov/tutorials/cuda-vector-addition/

Heterogenous Computing

research such as the one by Wong et al. [50]. The most interesting part of the example is
the CUDA kernel itself in lines 5-14. While the goal is to add one vector to another, CUDA
kernels usually require safe guards to ensure that threads (CUDA cores) do not work on
invalid data. To achieve this, we compute the global thread ID in line 9 and check that it
is smaller than the total number of vector elements, n. If it was not, the thread would be
operating on data beyond the input vectors. This kind of safe guarding is paramount to
CUDA kernels because we usually do not spawn exactly as many threads or thread blocks
as the task requires. Instead, we attempt to estimate the optimal thread count and have
some threads running idle.

As can be seen from the CUDA architecture and the accompanying code example, writing
heterogenous applications for Nvidia accelerators is a complex task even after years of
ecosystem evolution. It still requires expert domain knowledge in systems programming
along with empirical tuning to achieve the best resource exploitation. In the next section,
we take a look at a competing heterogenous programming API, OpenCL.

3.4.2 OpenCL

In the previous section, we introduced CUDA as the de-facto programming API for Nvidia
GPUs. OpenCL is a competing standard initially developed by Apple and later submitted
to the Khronos Group in cooperation with industry partners such as IBM, Intel, Nvidia
and others 0. In contrast to proprietary GPGPU solutions, OpenCL was designed to run
on other kind of hardware as well, for example FPGAs and DSPs. This marks an important
distinction from Nvidia’s CUDA, which solely targets GPUs.

The initial release of the OpenCL 1.0 API specification happened in 2009 and the latest
version, 3.0, was released in 2020. From the active development of the OpenCL specification
and vendor implementations, it is obvious that industry interest in a common compute
APT is still high. While Nvidia used to support OpenCL in parallel to CUDA with their
drivers, they still only provide OpenCL 1.2 implementations on their latest GPUs. AMD,
another big vendor of GPUs for consumer and enterprise class hardware, officially supports
OpenCL 2.2 as part of their ROCm compute framework.

As stated earlier in this section, OpenCL does not focus on GPUs exclusively, but is meant
to run on a wide range of accelerators including FPGAs and DSPs. Naturally, one might
expect the API to be more convoluted and cumbersome than CUDA. The basic program
scheme is similar to CUDA as listed in the CUDA steps: allocate and initialize the memory,
run a kernel, read back the results and process them. Remember to release the host and
device memory afterwards.

1| #include <stdio.h>

2| #include <stdlib.h>

3| #include <math.h>

4| #include <CL/opencl.h>

5

6| // OpenCL kernel. Each work item takes care of one element of c

7| const char xkernelSource = "\n" \
8| "#pragma OPENCL EXTENSION cl_khr_ fp64 : enable \n" \
9| "__ kernel void vecAdd(__ global double *a, \n" \
" ___global double *b, \n" \
1" ___global double xc, \n" \
12| " const unsigned int n) \n" \
15| ' \n' \
14| " //Get our global thread ID \n" \
15" int id = get_ global_id(0); \n" \

Yhttps://en.wikipedia.org/wiki/OpenCL

23

https://en.wikipedia.org/wiki/OpenCL

Performance and Power Consumption of Neural Networks

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

" \n’ \

! //Make sure we do not go out of bounds \n" \
! if (id < n) \n" \
! clid] = aid] + b[id]; \n" \

"} \n" \
"\n" ;

int main(int arge, charx argv|[])

{
// Length of vectors
unsigned int n = 100000;

// Host input vectors
double *h__a;
double xh__b;
// Host output vector
double xh__c;

// Device input buffers
cl_mem d_a;
cl_mem d_b;
// Device output buffer
cl_mem d_c;

cl_platform_ id cpPlatform; // OpenCL platform
cl_device_id device_ id; // device ID
cl__context context; // context
cl__command_ queue queue; // command queue
cl_program program; // program
cl_kernel kernel; // kernel

// Size, in bytes, of each vector
size_t bytes = nxsizeof(double);

// Allocate memory for each vector on host
h_a = (doublex)malloc(bytes);
h_b = (doublex)malloc(bytes);
h_ ¢ = (doublex)malloc(bytes);

// Initialize vectors on host
int i;
for(i =0;1 <mn;i++)
{
h_a[i] = sinf(i)=sinf(i);

h_b[i] = cosf(i)*cosf(i);
}

size_t globalSize, localSize ;
cl_int err;

// Number of work items in each local work group
localSize = 64;

// Number of total work items — localSize must be devisor
globalSize = ceil (n/(float) localSize)*localSize ;

// Bind to platform
err = clGetPlatformIDs(1, &cpPlatform, NULL);

// Get ID for the device
err = clGetDevicelDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);

24

Heterogenous Computing

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139

// Create a context
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

// Create a command queue
queue = clCreateCommandQueue(context, device_id, 0, &err);

// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1,
(const char *x) & kernelSource, NULL, &err);

// Build the program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Create the compute kernel in the program we wish to run
kernel = clCreateKernel(program, "vecAdd", &err);

// Create the input and output arrays in device memory for our calculation

d_a = clCreateBuffer(context, CL_ MEM__READ__ONLY, bytes, NULL, NULL);
d_b = clCreateBuffer(context, CL_ MEM_READ_ ONLY, bytes, NULL, NULL);
d__c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, bytes, NULL, NULL);

// Write our data set into the input array in device memory

err = clEnqueueWriteBuffer(queue, d_a, CL_ TRUE, 0,
bytes, h_a, 0, NULL, NULL);

err |= clEnqueueWriteBuffer(queue, d_b, CL_TRUE, 0,
bytes, h_b, 0, NULL, NULL);

// Set the arguments to our compute kernel

err = clSetKernelArg(kernel, 0, sizeof (cl_mem), &d_ a);
err |= clSetKernelArg(kernel, 1, sizeof (c] _mem), &d_Db)
err |= clSetKernelArg(kernel, 2, sizeof (cl_mem), &d_ c);
err |= clSetKernelArg(kernel, 3, sizeof (unsigned int), &n);

)

// Execute the kernel over the entire range of the data set
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, &localSize,
0, NULL, NULL);

// Wait for the command queue to get serviced before reading back results
clFinish (queue);

// Read the results from the device
clEnqueueReadBuffer(queue, d_ ¢, CL_TRUE, 0,
bytes, h_c, 0, NULL, NULL);

//Sum up vector ¢ and print result divided by n, this should equal 1 within error
double sum = 0;
for (1=0; i<n; i++)
sum += h_ c[i];
printf (" final result: %f\n", sum/n);

// release OpenCL resources
clReleaseMemObject(d__a);
clReleaseMemObject(d_b);
clReleaseMemObject(d_ c);
clReleaseProgram(program);
clReleaseKernel(kernel) ;
clReleaseCommandQueue(queue);
clReleaseContext(context);

//release host memory
free (h_a);
free (h_b);

25

Performance and Power Consumption of Neural Networks

140 free (h_c);
141

142 return 0;
143| }

Listing 3.4: OpenCL vector addition

Listing 3.4 implements a simple vector addition operation in OpenCL, again taken from
the Oak Ridge National Laboratory tutorial ''. Large parts of the program are similar
to the CUDA example (3.3), such as the host buffer initialization. In fact, the kernel
code in lines 6-20 looks almost identical to the CUDA kernel code. The most obvious and
curious difference is that the CUDA kernel can be written in the embodying programming
language (C/C++ in this case), whereas the OpenCL kernel is a mere string. The string
is compiled by the OpenCL driver at runtime (line 92). This is the reason why OpenCL
enabled programs usually take a longer time to start up - kernel compilation happens on
first use. From the example code, we can see that the device initialization is quite a bit
more convoluted than the CUDA equivalent: it encompasses explicit context initialization
and command queue setup. Just like in CUDA, we need to define a fixed local and global
thread size and pass those parameters to the kernel launch command in line 112.

Compared to CUDA, where the buffer transfers using cudaMemcpy look almost like reg-
ular C memcpy calls, the OpenCL API is even more evolved and requires expert domain
knowledge. On the other hand, it defines and implements a uniform memory model for
all kinds of accelerator devices, something not many standards have accomplished. An
OpenCL application written for GPU hardware should theoretically be portable to FPGA
hardware using the same code (barring parameter differences such as local and global work
group sizes). Compared to the other programming APIs (VHDL, Maxeler MaxJ etc.) used
by DSP and FPGA vendors such as Xilinx or Altera, OpenCL seems to be the preferable
approach for reusable and maintainable code.

3.4.3 TensorFlow

We introduced CUDA and OpenCL as low level programming APIs for accelerators in the
previous sections. In this section, we present TensorFlow as an example for a high level
heterogenous computing framework. Technically, TensorFlow is not an API for talking to
accelerator hardware. Instead, it provides multiple levels of abstraction over the execution
backends (such as CUDA, OpenCL and more) it can leverage. Thus, it aims to reduce
the complexity of heterogenous programming with a focus on machine learning and neural
networks.

TensorFlow is developed by Google and was initially released in 2015. The latest stable
release, 2.4.1, was announced in 2021 2. The framework is written in Python and C++,
as are its API bindings. It should be noted that while C++ bindings are available, the
TensorFlow community almost exclusively uses the Python bindings, leading to much
better documentation and testing.

import math
import numpy as np
import tensorflow as tf

n = 100000

N O O W

allocate memory for each vector

"https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/
https://en.wikipedia.org/wiki/TensorFlow

26

https://www.olcf.ornl.gov/tutorials/opencl-vector-addition/
https://en.wikipedia.org/wiki/TensorFlow

Heterogenous Computing

8| h_a = np.empty(n, dtype=np.float64)
9| h_b = np.empty(n, dtype=np.float64)
10
11| # initialize the vectors

12| for i in range(0, n):

13 h_afi] = math.sin(i) * math.sin(i)
14 h_b[i] = math.cos(i) * math.cos(i)
15
16| # compute the elementwise addition

17| h_a_tf = tf.convert_to_ tensor(h_a, dtype=np.float64)
18| h_b_tf = tf.convert_to_tensor(h_b, dtype=np.float64)
19| h_c_tf = tf.math.add(h_a_tf, h_b_tf)

20l h_c =h_c_tf.numpy()

21
22| # sum up the result vector
23/ c_sum = 0

24| for elem in h_c:

25 ¢_sum += elem

26
27| print (" final result: {}".format(c_sum / n))

Listing 3.5: TensorFlow vector addition

Listing 3.5 is the previous vector addition example program from the Oakridge National
Laboratories, converted to TensorFlow. As can be seen from the code, implementing the
task at hand is much easier than in CUDA or OpenCL. The high-level abstractions of
TensorFlow (and the Python language) allow us not to worry about memory allocation
and release. At the same time, we lose much of the control over memory placement and
movement semantics. On the host side, we allocate the two arrays h, and hy as numpy
arrays (lines 8-9), which are just standard Python constructs. The output array, h,, is
allocated implicitly in line 19. Once the actual vector operation happens, we explicitly
convert them into so called Tensors, the main TensorFlow data type. A Tensor has a
datatype (integer, float, etc.) and a shape. The shape determines its dimensionality: a
Tensor can be an 1D array like in this example, a 2D matrix, a 3D body or even a n
dimensional entity.

Perhaps the most obvious simplification introduced by TensorFlow is the kernel execution,
which boils down to a single statement in line 19. Programmers do not need to pay atten-
tion to bounds checking anymore, as was the case with the CUDA and OpenCL examples.
Instead, the TensorFlow execution backend, which is implemented in CUDA or OpenCL
(or others in the future) handles this transparently. We can conclude that TensorFlow
enables scientists and industry professionals without domain expertise to write heteroge-
nous programs to a certain degree. In this sense, it is no different from traditional software
libraries and frameworks that provide high-level bindings to make complex functional-
ity accessible to non-experts. There have been numerous efforts porting these high-level
frameworks to FPGAs and other accelerators, such as the work done by DiCecco et al.
[12].

3.5 Challenges

Programming heterogenous systems is a challenge even with the frameworks and abstrac-
tions of today. Part of that is related to the silicon vendors not agreeing on common APIs.
For example, Nvidia still treats OpenCL as a second-class citizen on their hardware, pro-
viding only OpenCL 1.2 support even on the latest hardware. Nvidia customers have been

27

Performance and Power Consumption of Neural Networks

demanding OpenCL 2.0 support for years to no avail '3. AMD’s high performance com-
puting stack, ROCm, along with their OpenCL stack is not as mature to compete with
CUDA just yet. Even worse, many recent consumer grade GPUs are not supported by
AMD’s latest ROCm release 4. Nvidia has traditionally been more reliable in providing
timely CUDA support on their cards. Intel on the other hand is providing good OpenCL
support for their integrated GPUs and the upcoming dedicated Xe series GPUs. On top
of that, they develop their own high-level abstractions as part of the OneAPI initiative.
Ever since Intel bought out Altera, their FPGA products support OpenCL to a certain
degree, finally enabling truly portable heterogenous applications.

Apart from the software stack challenges, the hardware itself can be challenging to sup-
port as well. For example, many FPGAs and embedded accelerators such as TPUs only
support integer operation modes. If one attempts to run algorithms on floating point data,
the accelerator will reject the data, resulting in a crash at worst and punting to CPU com-
putation at best. Performance consistency is another pain point, often critical to latency
guarantees and service level agreements (SLAs). Since most accelerator designs such as
GPUs or TPUs adopted CPU power-saving features like frequency scaling, they are prone
to load spike issues. On the other hand, FPGAs usually run with a fixed clock frequency,
making runtime performance deterministic.

The industry faces yet another challenge. When designing a product, what kind of accel-
erator fits the use-case best? Building prototypes for each variant, porting the algorithm
and optimizing it so as to be able to run comparative benchmarks is often not an option
for monetary and time constraint reasons. Thinking in terms of product families, is the
accelerator and the code reusable for the next product? Many accelerators are purpose-
designed and not easily integratabtle into a new product. What if the data type that
needs to be processed changes, but the existing accelerator cannot cope with it? Uncer-
tainties like these prevent various industries from using accelerators in their hardware
systems today. Andrade et al. report additional non-functional challenges such as energy
consumption or overheating on top of software and hardware complexity [1]. Furthermore,
they report a vast need for domain specific expertise to successfully reach heterogenous
platform adoption.

Bhttps://forums.developer.nvidia.com/t/opencl-2-x-support-plans/44215
“https://github. com/RadeonOpenCompute/ROCH

28

https://forums.developer.nvidia.com/t/opencl-2-x-support-plans/44215
https://github.com/RadeonOpenCompute/ROCm

Neural Networks

4 Neural Networks

In this chapter, we present an overview on neural networks in general. In doing so, we
touch on classic architectures as well as more recent state of the art developments. In
Section 4.1, we introduce the biological neuron and its artificial representation. Building
on that, we present basic concepts of artificial neural networks in Section 4.2. We go
on to motivate the use of convolutional neural networks for our heterogenous computing
benchmark experiments in Section 4.3. Finally, we present a state-of-the-art convolutional
neural network for object detection, YOLO, which is used in our benchmark suite. We
chose YOLO for its popularity within the deep learning community and its outstanding
performance compared to other object detection network architectures.

4.1 The Neuron

The neuron is the fundamental building block of neural networks. In this section, we
present the basic model that can be used to describe a neuron through the course of
this thesis. Furthermore, we take a look at the origin of that model, looking at the hu-
man brain. Finally, we present a mathematical model of the neuron as described by other
authors during the last few decades. In doing so, we also discuss and motivate so called ac-
tivation functions which enable neural networks to solve the complex, non-linear problems
of today.

4.1.1 Biological Inspiration

All artificial neural networks are modeled after the neurons in the human brain. Thus, it
is vital to understand the way they work to be able to reason about their importance in
computer systems.

Figure 4.1 shows a biological neuron. The following description is based on Jain et al [19].
Apart from its cell body (also called soma), a neuron sports two types of connectors for
communication with other parties: dendrites and azxon. One may describe the neuron using
an information-flow schema: signals are received as small electrical impulses from other
neurons through the dendrites. In the second step, they are processed by the cell body.
Finally, the output signal is emitted through the cells’ axon. That axon will branch out
into smaller strands which in the end are connected to synapses, which in turn are again
connected to the dendrites of other neurons. Thus, a one-to-many connection scheme can
be established.

According to Boers and Kuiper [4], the human brain sports around 10'! neurons. If all of
these neurons were interconnected with each other, that would result in a human head with
a diameter of more than ten kilometers. Curiously, only relatively few connections exist
between the functional areas of the human brain like the motor area, the auditory system
or the visual cortex [4]. Thus, the brain appears to be rather modularized instead. In [19],
Jain et al mention the so called hundred step rule. Apparently, the duration of message
transmission between neurons is in the ballpark of several milliseconds, being modulated
on a frequency in the range of a few up to several hundred hertz. However, even complex
tasks like face recognition are done within a few hundred milliseconds by humans. Such
small end-to-end latencies imply that the computations do not take more than 100 serial
stages (layers in neural network speech). Looking purely at the computational power of
the human brain, Schwartz estimates a capability of 10'® arithmetic operations per second,
using around 10'¢ bytes of memory [43]. According to Wikipedia, some supercomputers
were able to do over 10'7 floating point operations per second '® as of 2017. This would

Yhttps://en.wikipedia.org/wiki/Supercomputer

29

Performance and Power Consumption of Neural Networks

Axon Terminal

Node of Ranvier

Nucleus Axon

‘ Myelin sheath———

@ e
, [4

/.]
Schwann-Cel

|

Figure 4.1: Biological Neuron

indicate we are finally able to match or even exceed the human brain in terms of raw
compute power.

We know about the immense computing capabilities of the human brain from the previous
section. But being able to quickly process input signals cannot make for a decisive point
regarding intelligence, be it biological or artificial. Current developments in the semicon-
ductor industry indicate we will soon surpass the human brain in terms of operations per
second, as outlined at the end of the previous section. Yet many algorithms still struggle
greatly at tasks that seem trivial to humans.

An example where this holds true is face detection (and recognition). There are many
methods to perform efficient facial feature detection known to the author of this thesis, such
as History of Oriented Gradients (HoG), Local Binary Patterns (LBP), Haar-Cascades
and many more. Zafeiriou et al explore various classes of face detection algorithms in
[51]. They categorize them into two categories: rigid templates and deformable models.
Rigid templates describe entire objects, e.g. a car that features a chassis, two wheels
and windows when viewed from the side. In contrast, part models would scan for each
component individually and then conclude whether the image contains a car. Thus, a "car"
like object with only one wheel could still be recognized as a car. This is a useful property
with regards to object occlusion in pictures. Famous algorithms such as Viola-Jones [21]
and all neural network approaches belong to the former category. The latter encompasses
e.g. deformable parts models (DPMs) such as the one presented by Felzenszwalb et al
[13].

30

Neural Networks

Zafeiriou et al. conclude that the performance of the best competitors of the two categories
is roughly equal, but the best performing approach is a hybrid one. The important question
is which steps have to be performed and what effort has to be spent to achieve such levels
of performance. Approaches such as convolutional neural networks (CNNs) enable us to
go from only a set of pixels to full facial features by applying supervised learning (training
on face image datasets). They can arrive at detecting facial features by only exploiting the
spatial information contained in the image itself. Compared to deformable parts models
(DPMs), where the base hypothesis is that there are deformable parts in the first place,
this seems to be a much more robust approach at generic feature learning.

Perhaps one of the most detrimental feature of the human brain is the ability to learn.
The way in which they do so was described by Donald Hebb in 1949 as Hebbian Learning
Law or Hebbian Rule as described by Graupe [16]. It describes the relationship between
two neurons in the following way: imagine three neurons A, B and C. The neurons A
and B are connected to C. If neuron A is able to take part in exciting and thus firing
("activating") neuron B enough times, a metabolical process will strengthen the efficiency
of neuron A. If previously neurons A and B were both needed to fire neuron B, neuron A
might now be able to fire it by itself. We can think of the increase in efficiency as increase
in weight of an edge when thinking of directed acyclic graphs (DAGs). Graupe goes on to
apply the Hebbian Learning Law to the Pavlovian dog (experiments carried out by Pavlov
in 1927): assume a dog which is excited (as seen by its salivation) at the sight of food. Now
each time the dog is fed, one also rings a bell. We can think of cell C' as being responsible
for causing salivation. Cells A and B are excited at the the sound of the bell and sight of
food respectively. The Hebbian Rule states that once the dog hears the bell enough times
right before seeing the food, the efficiency of cell A will increase so much that eventually,
the dog will salivate from the sound of the bell alone, even if there is no food.

In the next section, we will outline how machines "learn" from previous experience. The
biological process of neuron activation needs to be converted into a mathematical model,
so we can model stronger and weaker neuron interconnections. Just like with the Pavlovian
dog, we want to train an artificial brain to figure out the link between one or more stimuli
and an action, event or output. Researchers figured out how to translate the biological
model into machine code already decades ago. However the compute power at that time
was not sufficient. Nowadays, we see even low end devices such as smartphones or internet
of things (IoT) hardware being equipped with accelerator chips to run neural networks.

4.1.2 Mathematical Model

After looking at the biological neuron in the human brain in Section 4.1.1, we will now
take a look at the mathematical model of the same. The model presented in this section
has not changed for more than two decades now, further reinforcing the close relationship
to its biological counterpart.

X1 \
1
—_—>
X:2 - @ - y
Xi %

Figure 4.2: The Neuron

31

Performance and Power Consumption of Neural Networks

Given n input signals, a mathematical neuron computes the weighted sum of those signals
as depicted in Figure 4.2. Here, x = x1, 29, .., x; is the input vector, w = wy, ws, .., w; is
the weights vector, f is the activation function and y is the output value computed by
the neuron. The diagram already shows most the actual parts of an artificial neuron. In
the next step, we show a mathematical equation to describe the process in a functional
way. The notation of the mathematical term tends to vary throughout the literature. For
example, Jain et al. use 0 as the outer activation function being applied after the sum and
—u as negative bias term [19].

y=1r (i wiT; + 9) (4.1)
=0

In our case, y is the output signal emitted by the neuron. w; are weights used to represent
the state of the neuron, for example memory gathered through past data. x; are the input
signals. 46 denotes a positive bias term being applied. Finally, f is an activation function
commonly used to introduce non-linearity for complex problem solving strategies.

A more intuitive notion of the activation function is a dimmer switch as found on modern
lighting solutions. The neurons’ output can be increased, decreased or even turned off
completely using a value of zero. Initially, artificial neurons would not gate their output
using an activation function, but a simple threshold instead. These primitive neurons are
also referred to as perceptrons. If the output of the weighted sum falls below that threshold,
the output value would just be set to zero. Otherwise, it would be set to one, making it
a binary decision. As Nielsen points out, this makes it very hard for networks composed
of such perceptrons to actually learn [33]. A small change in one of the weights could flip
the entire network output, which is a non-desirable property. Instead, training a neural
network is usually done by showing it samples of data and associated ground truth so it
can slowly adjust its weights to solve the task.

Some example activation functions as presented by Sharma et al [44] include:

e Linear activation
flx)=cxx (4.2)

where c is a scaling factor.

Figure 4.3: Linear Activation Function (plot by WolframAlpha)

e Sigmoid function

f(z) = (4.3)

32

Neural Networks

N 2 [2 N

Figure 4.4: Sigmoid Activation Function (plot by WolframAlpha)

 Rectified Linear Unit (ReLU)

f(z) = max(0,x) (4.4)

¢ 2 Z ¢

Figure 4.5: ReLU Activation Function (plot by WolframAlpha)

e Leaky ReLLU

flz) =

{c*x, ifz <0 (4.5)

x, otherwise

where c¢ is a small factor, usually 0.1 or 0.01.

Figure 4.6: Leaky ReLU Activation Function (plot by WolframAlpha)

The list of activation functions presented in this chapter is non-exhaustive. As interest
in the field of artificial neural networks from both the scientific community and the in-
dustry continues to rise, more and more activation functions are bound to surface in the
future. We talk about the benefits and drawbacks of select functions for modern network
architectures later in this section. We can already make various observations from the

33

Performance and Power Consumption of Neural Networks

mathematical terms alone though. The most simple function shown here is the linear ac-
tivation function (4.2). Its sole purpose is to apply a linear scaling factor ¢ to its input
value z. One interesting property of this function is its first order derivative, since it is
always a constant value: f/'(z) = c¢. Next on the list is the sigmoid function (4.3), which
has some rather interesting properties. For one, it normalizes all input values to be in the
range of [0, 1]. Its gradient is smooth, so there are no sudden jumps in output value. For
very large input values e.g. above three or or below minus three, the value of the function
does not change that much anymore. Thus, the intrinsic impact of such extreme values
is decreased. Compared to the linear activation function (4.2), the sigmoid function is
more computationally expensive since it involves calculating a fraction and e®*. The third
function shown here is the rectified linear unit (ReLU) (4.4). While it may look similar to
the linear activation function, there are some distinct differences. Its first order derivative
is not constant, which is a desirable trait for neural networks as we will see later on in
this chapter. In contrast to the sigmoid function, it is far less computationally expensive.
Since a modern neural network architecture generally involves thousands to millions of
neurons, the performance of the activation function is crucial to the end-to-end network
performance in terms of latency. A modified version of the ReL U activation function is the
leaky ReLU function (4.5). While its sibling has a non-constant first order derivative, it
becomes zero for any input values below zero. The leaky ReL U function improves on this
by not capping the output values at zero. Thus its first order derivative is not constant
even for inputs below zero.

Apart from decreasing or increasing the influence of the neuron with regards to the next
layer in the network, the activation function also serves other purposes. First, non-linear
activation functions are required to solve non-linear problems presented by the data. To
illustrate this, Figure 4.7 shows a dataset containing values of two classes (red and green).
The neural network is now tasked with separating the points by assigning a class label to
each of them. We can easily imagine doing the task by hand: how can we best separate
the data into two disjoint sets?

Figure 4.7 shows two decision boundaries side-by-side. On the left, one can see a (naive)
linear separation of the data. The task of separation into two classes is fulfilled as far as
basic logic is concerned: most of the red dots are on the left side of the decision boundary
while most of the green dots are on the right side. Once we stop restraining ourselves to
linear boundaries, we can come up with a better decision boundary though, as displayed
on the right hand side of the figure. Now there is a clean separation with each data point
being assigned to the set it belongs to with no outliers.

Another useful aspect of non-linear activation functions is related to the way most modern
neural network models are trained. The term backpropagation describes a training method
where the network output is compared to some ground truth and an error is computed.
Based on that error value, feedback is propagated backwards through the network to read-
just each neurons’ weights to decrease the error metric. During this process, the derivative
of the activation function needs to be computed. For each linear activation function (and
some others as well) the first derivative is a constant value, rendering them unfit for this
training method.

With the basic understanding of the biological and the artificial neuron, we now move on
to entire neural networks in the next section.

34

Neural Networks

X2

O O

O

O
0© @ 0© o

O
O
O O

ONO
O

N

»

X1

Figure 4.7: Decision boundaries: linear (left) and arbitrary (right)

4.2 Artificial Neural Networks

Jain et al. describe artificial neural networks (ANNs) as weighted digraphs where the
vertices are the individual neurons and the edges are their connections [19]. One can
further split up ANNs by their architecture, where the connection patterns are usually
the distinguishing feature. The two main categories of ANNs as depicted in Figure 4.8 are
thus:

1. feed-forward networks (graph becomes a DAG)

2. recurrent networks (with feedback loops)

Figure 4.8: Feed-Forward (left) and Recurrent (right) networks

In the case of feed-forward neural networks, the graph is acyclic because information can
only "flow" in a single direction. Thus, we get a directed acyclic graph (DAG). Since a
neural network is usually made up of several layers (and possibly several hidden ones),
an input stimuli will only pass each layer once and eventually end up in the output layer.
This is not the case with recurrent networks. An input value ' may traverse a layer n
with a set of neurons ni, no, .., n;. The computed output value y! is then fed to the next
layer. After passing through a number of neurons in that layer, the output of that layer,

35

X1

Performance and Power Consumption of Neural Networks

y? may then be passed back to the previous layer and fed to the same neurons ni, na, .., n;
again as input 22. Thus, recurrent neural networks (RNNs) are dynamic systems whereas
feed-forward networks are static with regards to their response [19].

Another distinction commonly made is that between shallow and deep neural networks.
Nielsen describes deep neural networks as having at least two or more hidden layers. The
term hidden does not really describe anything here and basically just means "neither input
nor output". Figure 4.9 shows a deep neural network with input and output layers as well
as three hidden layers between them. The network depicted in the figure is also a fully
connected network, which means that each neuron in a layer is connected to all neurons
in the next layer.

Input Layer Hidden Layers Output Layer

Figure 4.9: Deep Neural Network

4.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are a special kind of artificial neural networks
(ANN). While ANNs can be used to learn features on arbitrary data, CNNs are specifi-
cally designed for image input. Before talking about the architectural differences made to
account for the input data, we want to motivate the necessity of CNNs.

O’Shea and Nash [35] show that traditional ANNs quickly struggle with computational
complexity. They refer to the MNIST database, which contains images of handwritten
digits saved as black and white raster images. If one was to train a standard feed-forward
network (FNN), a single neuron in the first layer would contain 784 (28 x 28 x 1) weights,
since each image is 28 x 28 pixels with a depth of 1 (black or white). Since 28 x 28 is
a rather low resolution for a picture, we now redo the calculation for bigger images. To
preserve detail, more advanced datasets may choose to store the images in color. Given
e.g. 128 x 128 images with a depth of 3 (RGB channels), we arrive at 49,152 (128 x 128
x 3) weights for each neuron in the first layer. As can be seen from this example, the
parameter count quickly explodes when using traditional ANNs for image classification
or related tasks. A second reason for avoiding regular ANNs given by O’Shea and Nash
is overfitting. Due to the high parameter count and the inherited complexity, the model
is prone to to overfit to training data instead of generalizing to the underlying features
contained in the data.

To overcome the issues mentioned above, CNNs do not link each part of the input data to
a neuron. Instead, the spatial dimensionality of image data is exploited. The convolutional

36

Neural Networks

layer, a basic building block in each CNN, connects a patch of the input data to a neuron.
The size of the patch, which is just a local image region, can be defined as part of the
network layer architecture. For example, we can define a 3 x 3 kernel size, which is then
moved over the input data in a sliding window fashion. Given color input data of size
128 x 128, we arrive at 27 (3 x 3 x 3) weights for each neuron in the convolutional layer,
compared to 49,152 for regular ANNs.

181]loflz2]1 48 | -10 | -14 | 11
Al
ojol7|2]|1]o0 22|32 5|-9
>< als|a] —
1 ({31903 9 |-17 |50 |-25
Al
4111|2810 49|44

Input Image Filter Output Image

Figure 4.10: Image convolution

Figure 4.10 illustrates the generic image convolution operation. In the example, an 8-bit
grayscale image is given with pixel values ranging from 0 (black) to 255 (white). Despite
the small difference in pixel values, we can already recognize a pattern forming a diagonal
edge. When looking at the color pixels, all we can see is a black image though. The filter
is an edge detection filter of size 3 x 3. It enhances the image by increasing pixel values
when there are huge disparities for neighboring pixels. To understand what the convolution
operation is doing, we focus on the cell in the input image shaded in red. We lay the 3 x 3
filter on top of the input image, so that the nine cells of the filter cover nine of the input
image. The center of the filter (the value 8) lies right on top of the value 8 in the input
image (shaded in red). Now we compute the sum of the input values multiplied by the
filter values, also called weights. The resulting sum is the first pixel value of the output
image. For the second iteration we move the filter on to the next column of the input
image, so that the center of the filter lies on top of the 1 in the input image (right of the
8 shaded in red). Moving the filter by one column or row at a time means we are using a
stride of one.

The convolution operation is usually followed by an activation function that introduces
non-linearity into the data. For image data especially, it will also cap the output range at
a zero boundary, so all negative values are eliminated. This is what we did in the example
as well, since negative pixel values are not valid for basic grayscale images. Common types
of activation functions are discussed in Section 4.1.2.

37

Performance and Power Consumption of Neural Networks

As can be seen from the output image pixel colors, we can now recognize the diagonal pat-
tern much better compared to the input image. A side-effect of the convolution operation
is that the input image is shrunk in size from 6 x 6 to just 4 x 4. This happens because
the filter requires a number of input data cells equal to its own cells to operate. To get
around this limitation and maintain the input image size, we can use a padding technique.
Common variants used for neural networks are same or zero padding. The former repeats
each value at the edge of the input data, while the latter treats non-existing values beyond
the image border as a zero.

With CNNs, the filter has no values at the start of the training process. The filter values
("weights") are either initialized with zero or assigned in a random fashion. During the
training, the weights are initialized and the network learns to recognize certain patterns,
for example edges like the one shown in Figure 4.10. There is another parameter which
can be tweaked for convolutional layers in neural networks: the filter depth. It affects the
number of filter outputs generated by a convolution operation. In our example, there is
only one depth level for both filter and output, which detects edges. If we wanted to detect
corners as well, we could use a filter of depth two to learn two features.

The next important layer in CNNs is the pooling layer. It is used to reduce the spatial
dimensions ("subsampling") of filters computed by a preceding convolutional layer. The
pooling operation allows us to preserve much of the information in a filter while reducing
the parameter count and thus computational complexity by a huge amount.

481010 M1 MAX pooling
0 32 0 0 stride: 2 48 1 1
9 o |50 | o size: 2x 2 9 | 50

\ 4

0 0 0 [41

Input Filter Output Filter

Figure 4.11: Max pooling

Figure 4.11 illustrates the max pooling operation. First, we define a pooling window by
providing the stride and size parameters. The parameters have the same meaning as the
ones in the convolution operation: the stride defines how many rows/columns we move
the window during each iteration and the size defines how many input cells are affected
during an iteration. In our example, the pooling operation is applied four times to the
input image, since each iteration covers two rows/columns. Out of the four input values
given to the pooling operator, it always picks the largest value and adds it to the output
filter at the correct position. A window size of 2 x 2 and a stride of 2 effectively halves the
input dimensions, as can be seen from the figure, leading to a 50% reduction in parameter
count. The stride and size parameters usually match each other to avoid overlapping during
the sliding window operation. Apart from max pooling, there are other operators such as
average pooling or regularization methods.

The convolution and pooling layers are the two main defining characteristics of convo-
lutional neural networks. Other layers such as fully-connected or dense layers are basic
building blocks of ANNs in general. In the following section, we present a real-world state-
of-the-art CNN: YOLO. It features several unique ideas that allow it to outperform most
CNN architectures in terms of performance with regards to its (low) complexity.

38

Neural Networks

4.3.1 YOLO

In 2016, Redmon et al. presented a novel approach to object detection using neuronal
networks: YOLO aka "You Only Look Once" [39]. At that time, it was the fastest object
detection system in terms of inference time and accuracy as measured in mean average
precision (mAP) according to its authors. Furthermore, it was one of the only systems that
could handle realtime video at 30 frames per second (FPS) or more. To fully understand
the impact of YOLO on the computer vision community and object detection in general,
we first need to take a look at previous object detection approaches.

As of 2016, most object detection approaches worked by employing two main steps [39]:
1. Region selection
2. Image Classification

Since there were many image classification systems readily available, people tried to reuse
them by first searching for regions in the image which ideally contain only a single object.
Once such a region has been identified, the existing image classification algorithm would
then compute a class label for the selected region. This step is repeated for all regions of
interest in the input image, yielding a set of bounding boxes with their corresponding class
label. In case region proposal-based techniques are deemed too expensive or otherwise unfit
for the task, one may resort to simple sliding window approaches instead. In this case, a
hyper-parameter determines the number of windows where the classification task is run in
the input image.

The issue with such kind of systems (both region proposal-based and sliding window
techniques) is their complexity: one ends up splitting an input image into n sub-images
and running the image classification system on each of those sub-images. On sufficiently
large input images, this can easily lead to tenths or hundreds of classifications per image,
which is the reason why most existing solutions could not run in real time (at least 30
FPS).

Enter YOLO. Given an input image, YOLO predicts bounding boxes and class probabili-
ties in a single evaluation pass. This is done by dividing the image into a Sz.S grid, where
each cell predicts B bounding boxes along with the corresponding confidence scores [39].
The process is visualized in Figure 4.12.

Apart from the bounding boxes, each cell also predicts a conditional class probability
Pr(Class;|Object). Pr encodes the probability of that cell containing the specified object
class, given that it contains any object at all. Thus, we can summarize the YOLO object
detection pipeline in four main steps:

1. Divide image into SxS grid
2. For each grid cell, compute bounding boxes and probabilities
3. For each grid cell, compute a conditional class probability

4. If the bounding box probability exceeds a certain threshold, assign a final bounding
box and the corresponding class label

In late 2016, Redmon and Farhadi presented YOLO9000 ("better, faster, stronger"), which
brought numerous improvements over the previous YOLO object detection pipeline. The
name derives from the fact that the authors claim to be able to detect more than 9000
object categories [40]. Some of the main improvements over YOLO are summarized below.

39

Performance and Power Consumption of Neural Networks

Final detections

S x S grid on input

Class probability map

Figure 4.12: YOLO object detection taken from [39]

To avoid confusion about the naming scheme, we will refer to YOLO9000 as YOLOv2
throughout this chapter.

o Batch Normalization
Added to all convolutional layers: 2% mAP increase

« High Resolution Classifier
Training resolution changed from 224x224 to 448x448: 4% mAP increase

e Anchor Boxes
Used for bounding box predictions (hand-picked initial sizes)

e Dimension Clusters
Instead of hand-picking initial anchor boxes, use k-means clustering to find good
initial dimensions based on the ground truth bounding boxes

e Direct Local Prediction
Improved anchor box center position (x,y) prediction

e Multi-Scale Training
Move from fixed input size (416x416) to random dimension size batch training: every
10 batches a new size is chosen, leading to an easy speed vs. accuracy tradeoff
depending on input size

With all the improvements mentioned above (and some additional ones), YOLOv2 achieves
a 78.6 mAP score on the PASCAL VOC2007 dataset. This marks a significant improvement
over original YOLO, which achieved a score of 63.4 [40]. At the same time, YOLOv2 con-
tinues to be less complex than other architectures. For example, the base feature extractor
used by most state-of-the-art frameworks is VGG-16, coming in at 30.69 billion floating
point operations for a single forward pass run over a 224x224 input image. The custom,
GoogleNet-based feature extractor used by YOLO only requires 8.52 billion floating point
operations for a single forward pass run on an image the same size.

40

Neural Networks

In early 2018, Redmon and Farhadi presented YOLOv3 [41] as an incremental improvement
over YOLOvV2. One of the main novelties is the base feature extractor. Where YOLOv2
used a network called Darknet-19 consisting of 19 convolutional layers, YOLOv3 is much
bigger coming in at 53 convolutional layers and thus being called Darknet-53. Apart from
this change, Redmon and Farhadi made improvements to the bounding box prediction and
scale invariancy using techniques akin to feature pyramids.

The YOLOv3 authors go on to compare the performance of the new model to its prede-
cessor, YOLO9000 by evaluating it on the Microsoft COCO dataset. According to them,
YOLOV2 scores 44.0 in the mAP-50 benchmark, while YOLOv3 achieves 55.3 on the same
input size of 416x416. At this size, they report a latency of 29 milliseconds for a single
forward pass on a NVIDIA Titan X GPU, making it one of the fastest object detectors
as of 2018. At such low latencies, real-time image processing suddenly becomes possible,
something which other famous object detectors such as RetinaNet [28] do not achieve.

The YOLO object detection frameworks are very versatile. This is in part due to their
tiny variants, which are basically "lite" versions of the full networks. For example, the
"full" YOLOv3 network uses Darknet-53 as a feature extractor, with 53 convolutional
layers. YOLOv3-tiny uses just 13 layers according to the configuration file present in
the code repository 6. YOLO author Joseph Redmon presents a table on his website
which compares various YOLO variants 7. In terms of computational complexity, he full
YOLOvV3 network comes in at 65.86 billion floating point operations, while YOLOv3-tiny
cuts that down to just 5.56 billion operations, which amounts to 8% of the full model.
This of course does not come without a hit in accuracy: YOLOv3 achieves a mAP-50 score
of 55.3 at an input size of 416x416, while YOLOv3-tiny achieves 33.1 for the same input
size. Still, that is a 92% decrease in complexity for a 40% decrease in accuracy.

(a) YOLOv3 (b) YOLOv3-tiny

Figure 4.13: YOLOvV3 full vs. tiny at 416x416

Figure 4.13 shows the difference between the full and the tiny YOLOv3 networks applied
to an example image. We ran the YOLOv3 network variants in the Darknet framework
developed by the YOLO authors. The input image was resized to 416x416 before running
it through the network. Humans would naturally detect a dog in front of a bike in the
foreground and a truck in the background. As can be seen from the left image, YOLOv3 is
able to match that expectation. The right image shows that YOLOv3-tiny is pretty close
as well. In the foreground, the bounding boxes for the dog and the bike are a bit off, which
would contribute to a smaller intersection over union (IOU) match, which basically encodes

Yhttps://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
"https://pjreddie.com/darknet/yolo/

41

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
https://pjreddie.com/darknet/yolo/

Performance and Power Consumption of Neural Networks

the match between ground truth and the predicted bounding box. Thus, we can understand
how the mAP score of the tiny network is lower than the full variant, although this might
not actually matter much depending on the real work application. In the background, the
network got confused about the truck and predicted two objects, both car and truck for
the same object. Interestingly, the bounding box predicted for the truck (green) is wholly
contained inside the one for the car (yellow). This means a non-maximum suppression
(NMS) post-processing step with appropriate parameters would be able to suppress the
inner prediction for the truck and leave us with the car.

The YOLO family of object detection networks is widely popular and delivers state-of-
the-art performance while being able to retain real-time latencies on powerful accelerator
hardware. Multiple authors took YOLO as a base and modified or added parts of the
network to tune it for a specific purpose. For example Mao et al reduced the Darknet-53
backbone to decrease the latency in the feature extractor step [29]. They state that their
"Mini-YOLOv3" network reduces the parameter size of the original YOLOv3 network by
84%. They further claim to achieve a comparable mAP-50 score of 52.1 while halving
the time for a forward pass. The fact that they aim at using the network in embedded
scenarios is exciting as it paves the way for efficient, yet accurate object detection on those
power-constrained devices. Unfortunately they did not report the hardware used in their
experiments, which is a problem we often face with scientific work in this area.

42

Approach

5 Approach

In this chapter, we outline our approach to answering the research questions as introduced
in Section 1.2. First, we introduce various metrics to compare the system performance and
power usage in Section 5.1. This includes metrics to measure benchmark performance as
well as system resource usage ones. Next, we present the benchmarks we developed and
show which benchmarks were run on what platform in Section 5.2. In Section 5.3, we show
the tools used to get the record the metrics.

5.1 Metrics

As outlined in the introduction chapter 1, we are not only interested in raw benchmark
numbers, but want to reason about the systems’ resource usage as well. While classic
benchmarks tend to record the CPU usage and memory pressure at most (if at all), our
machine learning workloads often require external device monitoring when offloaded to
accelerators. These devices often have specialized circuits such as arithmetic logic units
(ALUs) or tensor cores to carry out machine learning tasks in an efficient manner. As a
consequence, CPU resource usage cannot be compared to e.g. GPU usage directly. Since
many device monitoring tools only report coarse metrics such as relative usage in percent
anyway, this becomes an issue we are forced to ignore.

5.1.1 Latency

In benchmarking, it is common to refer to the performance of a system when talking about
its compute capabilities. The machine learning (and deep learning) community uses the
term to refer to the accuracy of an algorithm or a network though. When talking about
the time it takes to complete one iteration of an algorithm (or one forward-pass in a neural
network), the term latency is used instead.

It is common practice to batch several input values and feed them to a neural network
at once during training or inference time. For the sake of comparable benchmark results,
we measure the latency for a batch size of one unless stated otherwise. This ensures any
specific optimizations of a framework or implementation do not come into play and skew
the results.

In our experiments, we use the term latency to refer to the time it takes the system to
complete one benchmark iteration. Depending on the benchmark, this can mean computing
a single convolution for a whole image or running a forward pass for a neural network.

5.1.2 CPU

Since all of the test systems run on Linux, this is the only platform we need to gather
monitoring data from. The Linux kernel exposes cpu usage statistics in a virtual file system
in /proc 8. Overall system metrics are contained in the virtual /proc/stat file.

cpu 167721 4918 143452 6244336 25565 20690 16441 00 0
cpul 40612 1122 43533 1542237 10250 9179 6091 0 0 0
cpul 40090 1311 38484 1560875 5598 3811 3722 00 0
cpu2 43889 778 32276 1568395 4729 3938 3486 0 0 0

cpu3 43128 1706 29158 1572827 4985 3761 3141 0 0 0

intr

ctxt 19412198

btime 1610710978

processes 27364

procs_ running 1

© 0 N s W N

=
o

¥https://linux.die.net/man/5/proc

43

Performance and Power Consumption of Neural Networks

11| procs__blocked 0
12| softirq 4578563 2 1548028 147174 672680 0 0 151876 1103145 0 955658

Listing 5.1: /proc/stat contents

Listing 5.1 shows the /proc/stat contents grabbed from the Nvidia Jetson Nano board.
As can be seen from the listing, there are several other metrics reported in that file apart
from CPU ones. For example, there is information on interrupts (intr, softirg), context
switches (ctz) and more. Our system CPU usage monitoring task requires only the very
first line, where overall system CPU statistics are provided. The per-core statistics in lines
two to four are not relevant for our analysis.

Table 5.1: Linux CPU System metrics

1D Name Description Unit
CS1 user Time spent in user mode. Hz
CS2 nice Time spent in user mode with low priority. Hz
CS3 SyS Time spent in system mode. Hz
CS4 idle Time spent in the idle task. Hz
CS5 iowait Time waiting for I/O to complete. Hz
CS6 irq Time servicing interrupts. Hz
CS7 softirq Time servicing softirgs. Hz
CS8 steal Time spent in other operating systems. Hz
CS9 guest Time spent running a virtual CPU for guest operating systems. | Hz
CS10 | guest_ nice Time spent running a niced guest. Hz

We list the values available from the first line of the file contents in table 5.1. In our case,
we are mainly interested in the CPU resource usage caused by the benchmark task. To do
so, we first need to calculate the total time the CPU was busy given a fixed time period
and then calculate the fraction of that time occupied by the benchmark process. We now
define some aliases in order to refer to them throughout this thesis.

T:= Tuser + Tm’ce + Tsys + T%dle + T%owait + T’irq + TsoftiTq + Tsteal + Tguest + Tguestﬁm’ce (51)

Ty =T — Tiqie (5.2)

First, we define T as the cumulated CPU time as sum of all the individual values in
equation 5.1. Next, we introduce T} as the cumulated amount of time doing work in 5.2.
Throughout this work, we also refer to Tj as CPU usage or busy time.

Now that the overall cpu statistics are covered, we move on to per-process monitoring in
Linux. Such process statistics are exposed by Linux again as virtual file in /proc/<PID> /stat,
where <PID> is the process identifier. Several key metrics are contained in that file, but
the important ones for CPU usage reporting are utime and stime.

1|1 (systemd) S0110 —1 1077936384 15724 603410 873 4247 74 262 5634 2178 200 1 0 2
165072896 1088 184467440737095516151 100 0 0 671173123 4096 126000017100 11700
00000000

Listing 5.2: /proc/1/stat contents

44

Approach

Listing 5.2 shows the file contents for the systemd process with PID 1 captured on the
Nvidia Jetson Nano board. We extract the numbers we need based on the indices given
by Linux manuals, e.g. linux.die.net .

Table 5.2: Linux CPU Process metrics

1D Name Description Unit
CP1 | utime Time scheduled in user mode. Clock ticks
CP2 | stime Time scheduled in kernel mode. Clock ticks

CP3 | cutime | Time of children scheduled in user mode. | Clock ticks
CP4 | cstime | Time of children scheduled in kernel mode. | Clock ticks

Table 5.2 shows the two metrics we use to monitor the CPU usage of a Linux process. We
can now define additional metrics such as relative CPU usage. First, we define the sum of
time spent in user mode and kernel mode in equation 5.3.

Tb = Tutime + Tstime + Tcutime + Tcstime (53)

The key takeaways from this section are the system CPU usage T}, (as Tl;g Y'Y from equation
5.2 and the per-process usage Tj, (as T, bP DY from equation 5.3. The monitoring tools used
to conduct the research as part of this thesis read the Linux performance counters and
calculate these metrics. Again, T} is also referred to as (per-process) CPU usage by us in
this work.

5.1.3 RAM

Analogous to the CPU statistics, Linux exposes random access memory (RAM) stats in
the virtual file system under /proc/meminfo. The values in this file describe the system
state. Per-process values have to be obtained through another file, which we will describe
later in this section.

MemTotal: 929988 kB
MemFree: 34952 kB
MemAvailable: 528864 kB

[R SR

Listing 5.3: /proc/meminfo contents

Listing 5.3 shows the first three lines of the /proc/meminfo file contents captured on a
Raspberry Pi 3b+ system. We can observe that the system has a total of about 1GB of
memory installed. From that 1GB, the Linux kernel reserves some bits and places the
kernel image itself, which is how we end up with the number of 929988 kB (or 908
MB) for MemTotal. Of that total memory, only roughly 34MB are free as in unused,
reflected by the MemFree entry in the file. Finally, the MemAwvailable entry describes
the amount of memory available for processes before swapping starts 20. Swapping is the
process of moving memory pages out of RAM and into (potentially) slower storage, such
as persistent ones (HDD, SSD). It becomes necessary when a system runs out of RAM.
Once the available RAM becomes close to zero, all processes allocating memory would just
have to crash or handle the allocation failure in another way. Swapping is used to allow
processes to continue allocating memory to avoid such crashing.

Yhttps://linux.die.net/man/5/proc
2Onttps://man7.org/linux/man-pages/man5/proc.5.html

45

https://linux.die.net/man/5/proc
https://man7.org/linux/man-pages/man5/proc.5.html

Performance and Power Consumption of Neural Networks

Table 5.3: Linux RAM System metrics

1D Name Description Unit
MS1 total Total amount of useable RAM kB
MS2 free Amount of unused RAM kB
MS3 | available | Amount of RAM available before swapping starts | kB

We summarize the RAM stats used as part of this work in table 5.3. Based on these values,
we define our RAM system usage metric M, as shown in equation 5.4.

Mu = Mtotal - Mavailable (54)

It is important to note that the metric M, describes a very coarse-grained memory usage
notion. We do not care about how the memory is used exactly, e.g. for user-space buffers,
kernel-space drivers, or other auxiliary devices. Our aim is to provide a notion of memory
pressure. If the M, value is very high and starts to get close to the total amount of memory
installed in the system, we are in danger of swapping and potential slowdowns. Thus, we
can reason about the validity of benchmark results with the help of this metric.

Analogous to the CPU metrics, we also monitor per-process memory usage on Linux
systems. This is useful so we can compare the memory usage of the benchmark process
between the heterogenous platforms. Memory leaks and other implementation bugs can
be detected by looking at the minimum, maximum and average memory consumption of
a process with regards to the overall time series. If the memory usage of a benchmark
increases monotonically, we can reason about a bug somewhere, since all our benchmarks
perform the same operation thousands of times in a loop.

Table 5.4: Linux RAM Process metrics

ID Name Description Unit
MP1 rss Resident set size (physical RAM usage) kB
MP2 | vmsize | Virtual memory size (includes mapped memory regions) | kB

5.1.4 Accelerator

In contrast to CPU and RAM metrics defined in the previous sections, common metrics
for accelerators are hard to think of. For one, the heterogenous coprocessor landscape
makes it difficult to track down common performance properties. The hardware blocks
for each accelerator chip (or lack thereof) further widen the gap between the devices. For
example, graphics processing units (GPUs) usually pack their own memory, called GDDR*
or HBM* (high bandwidth memory). Other accelerators such as FPGAs or TPUs may not
feature such on-chip memory and opt for using shared main memory (RAM) instead.

We do not define specific accelerator metrics we want to measure for all systems, as
the available tools vary by a great degree. Instead, we choose generic metrics, so that
we can compare the accelerators against each other in the end. To facilitate this, we
focus on performance and power draw, since that will allow us to reason about efficiency,
performance-per-watt and more.

Table 5.5 lists the two metrics used in this work to evaluate accelerators. Power refers to
the total power draw of the accelerator. While we would have liked to measure this for
each iteration, that was not possible with most tools. On top of that, some accelerators do

46

Approach

Table 5.5: Accelerator metrics

Index | Key Description Unit
1 power Power draw watts
2 usage | Hardware exploitation grade %

not expose such power usage metrics directly. The usage metric is similar in this regard,
as it can only be acquired if there exists a tool that can read the value from the hardware.
Usage measured in percent is a very generic metric that means something different for
each silicon vendor. For example, most Nvidia GPUs expose a "GPU busy" metric that
states how many streaming processors (CUDA cores) were busy during the last monitoring
cycle. The usage metric here generally carries the same meaning as CPU usage, thus we
refer to it as T3 as well, analogous to the CPU metric.

5.1.5 Power

Many vendors offer software tools to gather monitoring data for their chips. For example,
Nvidia provides the nvidia-smi tool, which we describe briefly in Section 5.3.2. Unfortu-
nately, documentation with these tools is often sparse and it is not clear what exactly the
metrics refer to. Sometimes the total board power is measured, but in other cases it is
only the power used by the compute cores. There is also no cross-platform interface to get
power draw data among operation systems.

We decided to use external power measurement utilities in our work. After a brief research
period, we decided on the Voltcraft Energy Logger 4000. The resolution of the recordings
is one data point per minute. The device records the current, amperage, apparent power
and true power usage. The apparent power metric represents the power not doing real
work. It is still necessary to operate the system and will be drawn from the grid. We use
the true power metric in our analysis, which refers to the power doing actual work. The
difference between them is caused by inductors and capacitors in circuits. These two are
power storage elements and the net power consumed by them should be zero. In reality
though, it is a positive number more often than not.

5.2 Benchmarks

Benchmarking heterogenous systems requires generic benchmarks that perform the same
task, preferably in a loop. It is important to perform multiple measurements to catch
outliers and reason about performance consistency. Benchmark implementations should be
comparable, yet a single, shared implementation for all platforms is usually not possible.

In our benchmark setup, we chose to focus on convolutional neural networks. First, these
kind of networks are reasonably understood and implementations are mature. Second, con-
volutions are intrinsically parallel, so they lend themselves well to being run on accelerators
that are made of many simple cores instead of a few complex ones like a CPU. We split
the benchmarks into two categories: microbenchmarks encompass synthetic benchmarks
exploring the boundaries of the hardware. Macrobenchmarks contain real-world neural
networks, which have been used by other authors before. Since those networks solve real
problems like object detection, they usually feature layers not present in synthetic networks
and thus cover a wider range of applications.

All our benchmarks are implemented using the following scheme:

1. Setup

47

Performance and Power Consumption of Neural Networks

2. Run
3. Teardown

Step 1 includes the starting of monitoring tools to acquire CPU, RAM and accelerator
metrics. These tools run for the entire duration of step 2, the main benchmark execution.
In step 3, we stop the monitoring tools and save the recorded metrics. Using this scheme,
we ensure each benchmarks can run stateless and monitoring tools only record data for
the specific benchmark.

We chose to implement all benchmarks using the Google TensorFlow framework where
possible. Some accelerators, such as the Google Cloud TPU required specific edits to the
code so it would run. Others, like the FPGA systems, could not run TensorFlow code.
Luckily, the Intel OpenVino library allowed us to convert TensorFlow models into FPGA
compatible networks and run the network on that engine. In the remainder of this section,
we list the various micro- and macrobenchmarks developed as part of this work and the
tools used to run them and gather the metrics introduced in previous sections.

5.2.1 Microbenchmarks

We designed four main microbenchmarks, each being part of the convolutional neural net-
work (CNN) architecture. The main components of a CNN are the convolutional layer and
the pooling layer. The convolutional layer often incorporates an activation post-processing
step, which introduces non-linearity into the network as explained in chapter 4. The pool-
ing layer reduces the resolution of feature detection outputs. This way, the following layers
loose some of the spatial information, but computational complexity is reduced by a huge
amount. Furthermore, only those cells with low activation scores, as determined during the
activation step in the convolution layer, are dropped. Thus, the important image features
are preserved.

Bicycle
- | /D Car
—
[—
| - Boat
/ .
Bird
1 3 1 3
Input Convolution Pooling Convolution Pooling Output
2 2
Activation Activation

Figure 5.1: CNN microbenchmarks

Figure 5.1 illustrates the basic CNN pipeline. The areas covered by our microbenchmarks
are shaded in gray. The last step, usually a mix of fully connected and flatten layers,
is not covered, as no computation happens here. It is included in our macrobenchmarks
though.

Table 5.6 lists the microbenchmark variants we developed. The parameters W, H, C refer to
the width, height and channel count respectively. For each benchmark, we test a multitude
of varying input sizes. For the conv2d operation, we test single-channel (grayscale) and
multi-channel (RGB) input data. For the maxzpool2d and relu benchmarks, we only tested
multi-channel input since single-channel input exhibited low accelerator exploitation and
business in our testing. The same thinking applies to the chosen parameter sizes. We tested

48

Approach

Table 5.6: Microbenchmarks

ID Name Description Parameters (W x H x C)
Input size Kernel sizes
100x100x1 | 3x3x1, 5x5x1

1000x1000x1 | 3x3x1, 5x5x1
MIB1 conv2d 2D convolution 3000x3000x1 | 3x3x1, bxdHx1
100x100x3 | 3x3x3, 5x5x3
1000x1000x3 | 3x3x3, 5x5x3
3000x3000x3 | 3x3x3, 5xHx3
Input size Kernel sizes
. . 100x100x3 | 3x3x3, 5x5x3
MIB2 | conv2ddep 2D depthwise convolution 1000x1000x3 | 3x3x3, 5x5x3
3000x3000x3 | 3x3x3, 5xHx3
Input size Kernel sizes
. 100x100x3 | 3x3x1, bHxdHx1
MIB3 | maxpool2d 2D max pooling 1000x1000x3 | 3x3x1. 5xbxl
3000x3000x3 | 3x3x1, 5x5x1
Input size
. . . o 100x100x3
MIB4 relu rectified linear unit activation 10005100053
3000x3000x3

the most commonly used filter sizes of 3x3 and 5x5, since these filters cover a symmetric
neighborhood around a single pixel. We vary the filter channel dimension according to
the input data it operates on. In case of the relu benchmark, there are no kernel size
parameters since the activation function operates on single values, not filter patches. For
example, a grayscale input image of size 100x100 requires 100 activation function passes,
one for each pixel value. A three-channel input image thus requires 300 activation function
runs, and so on.

The conv2ddep benchmark performs a 2D depthwise convolution. Each channel of the im-
age is convoluted individually and the output filters have the same number of channels.
Since the operation is more complex than the "regular" convolution, it is more computa-
tionally expensive. Figure 5.2 illustrates the difference between the two operations. We
take a RGB image as input and apply the convolutions to it. For regular convolutions,
the filter depth (3 in this case) has to match the channel count of the input data (RGB,
thus 3). The three dimensional multiplication done as part of each patchwise convolution
yields a scalar value in the output filter. Thus, the output filter is one dimensional. In the
case of depthwise convolution though, the input data and the kernel are split up into n
parts of depth 1. Afterwards, each part of the input is convolved with the corresponding
part of the kernel, yielding three output filters of depth 1 each in our case. The filters are
then stacked on top of each other to form the output filter, which has the same depth as
the input data again.

All of the benchmarks used by us allow for a high degree parallelism in theory. The
convolution and pooling operations are essentially just sliding window operations, where
the result of one pass does not affect the result of the pass over the next patch of pixels.
Similarly, the activation function could be run on all image cells (pixels) in parallel. Since
these functions are very simple, the added overhead of parallelism may not be worth

49

Performance and Power Consumption of Neural Networks

regular convolution depthwise convolution

®

=

|

NN

y
ll

@l

-_—
—

«@@1
A\
o -

|/|
Iﬂ

\

Figure 5.2: Regular vs. depthwise convolution

it in this case. We will come back to looking at the degree of parallelism exploited by
TensorFlow when looking at the results in chapter 7.

5.2.2 Macrobenchmarks

We used two kinds of macrobenchmarks as part of this work. The first kind is a synthetic
convolutional neural network (CNN) we developed in TensorFlow directly. We used that
network for inference and training benchmarks. The second kind is YOLOv3 benchmarks,
a state-of-the-art network developed by Redmon et al. [41]. We create two benchmark
variants, one for the main YOLOv3 network and one for the reduced variant, YOLOv3-
tiny. The latter has fewer layers to reduce the computational demands while maintaining
a high performance (in terms of precision).

Figure 5.3 shows the architecture we chose for the synthetic CNN benchmarks. We de-
signed the network to train and infer on the CIFAR10 dataset, because it is easily accessible
through TensorFlow and widely used in other research works [17] [48] [24] [2]. The network
layers are derived from the TensorFlow example 2!. We originally intended to test various
input sizes other than the default 32x32 pixel images contained in the CIFAR10 dataset.
Unfortunately, resizing the images on the fly would have skewed the results, as each plat-
form would spend a different amount of time on the resizing operation. The alternative
was to resize all images beforehand as a pre-processing step and keep them in RAM. This
resulted in out-of-memory errors on most platforms except for the most powerful servers.
In the end, we decided to explore the alternative input size of 224x224 pixels only for the
inference benchmark, but not for the training benchmark.

Table 5.7 lists the macrobenchmarks we used to evaluate the performance of the heteroge-
nous systems as part of this work. We also state the input sizes we use for testing. Wz H
x C refers to width x height x channels in this table. We mostly keep the recommended
default values of 32x32 for CIFAR10 and 416x416 for YOLOv3. While YOLOv3 can work

*'https://www.tensorflow.org/tutorials/images/cnn?hl=en

50

https://www.tensorflow.org/tutorials/images/cnn?hl=en

Approach

convad maxpool2d convad maxpool2d
Activation: ReLU Kernel size: 2x2 Activation: ReLU Kernel size: 2x2
Filters: 32 Filters: 64
Kernel size: 3x3 Kernel size: 3x3
—> —> >
30x30x32 15x15x32 13x13x64
IN: 32x32x3

l

——)_—>|1024x1 64x1 |—>| OUT: 10x1
13x13x64 6x6x64

conv2d flatten dense dense
Activation: ReLU Units: 64 Units: 10
Filters: 64

Kernel size: 3x3

Figure 5.3: Synthetic CNN layers

with other input sizes such as 224x224 or 608x608, the 416x416 size is used in most real-
world scenarios based on our findings. This is also a case of dimishing returns: according
to Redmon, one of the main YOLOv3 authors, the mean average precision (mAP) scores
listed in table 5.8 were recorded for the varying input sizes [41].

It should be noted that we used the TensorFlow implementation of YOLOv3 provided
by Zhiao Zhang 22. We did not use the "original" reference implementation in Darknet
as developed by the YOLO authors, because the TensorFlow code allowed for better
portability of the benchmark across systems. To ensure the TensorFlow implementation
would not underperform the original code, we tested both variants on the Nvidia Jetson
Nano board. We tested both the full and the tiny network variant for the 416x416 input
size. We ran each implementation in a loop with 100 iterations, then computed the average
FPS. There were close to no outliers during this short test. Furthermore, it is important
to note that we exclude the last layer of YOLO from the benchmark time measurements,
since it could not be quantized to run on FPGA hardware. The last layer excluded by us

is used to compute the bounding boxes and perform non-maximum suppression (NMS) in
YOLO.

As can be seen from the data in table 5.9, the TensorFlow implementation outperforms
the Darknet one by a factor of roughly two.

5.3 Tools

We used various tools to carry out the benchmarking task on the various platforms. Apart
from using Bash and Python to implement our own lightweight, modular benchmarking

https://github. com/zzh8829/yolov3-t£2

o1

https://github.com/zzh8829/yolov3-tf2

Performance and Power Consumption of Neural Networks

Table 5.7: Macrobenchmarks

D Name Description Parameters (W x H x C)
. - Input size
MABI1 cnn-train CNN training on CIFAR10 T 39x39x3
_ Input size
MAB2 cnn-infer CNN inference 32x32x3
224x224x3
]] Input size
MABS3 YOLOv3 YOLOvV3 object detection T A16x416x3
. '] . Input size
MAB4 | YOLOv3-tiny | YOLOv3-tiny object detection T A16x416x3

Table 5.8: YOLOv3 performance

Input mAP5g FPS
320x320 51.5 45
416x416 | 55.3 (+ 7%) | 35 (- 22%)
608x608 | 57.9 (+ 12%) | 20 (- 55%)

framework, we developed and used additional tools to gather the metrics defined in Section
5.1.

5.3.1 perfstat

We developed a new tool to monitor CPU and RAM usage on Linux called perfstat. The
tool is implemented in the safe systems programming language Rust. The motivation for
developing a new tool instead of using existing ones such as "top" are twofold. First, top
always scans all processes and computes statistics. This is unnecessary, as we already know
which process we are interested in - the benchmark itself. Second, top tracks each PID
individually. Our tool, perfstat, allows us to search for a command and track all PIDs
spawned by that command. On each refresh iteration, the tool will scan for new processes
or remove vanished ones from the tracked set. This allows for easy command monitoring
without convoluted post-processing.

// example command name
cmd = "python3.7 benchmark.sh ——timer 600 ——engine CPU"

1
2
3
4|loop {

5 // get the system CPU and RAM load
6

7

8

9

cpu__stats = readicpuistats()
ram_ stats = read__ram__ stats()

// get the command CPU and RAM load

10 cmd__cpu_stats = {}

11 cmd__ram_stats = {}

12

13 // search for processes spawned by a command

14 pids = search_ pids_for command(cmd)

15 // now compute per—process statistics for the command
16 for pid in pids {

17 cmd__cpu_stats += read_ pid_ cpu_ stats(pid)
18 cmd_ram_ stats += read__pid_ram_ stats(pid)
19 }

20 cmd__cpu_ stats /= pids.len()

21 cmd_ram_ stats /= pids.len()

52

Approach

Table 5.9: YOLOv3 TensorFlow vs Darknet

Framework | Variant | FPS (avg)
Full 1.7
Darknet Tiny 70
Full 3.3
TensorFlow Tiny 16.7

23 // output stats to stdout or write to a CSV file
24 dump(..)

Listing 5.4: perfstat monitoring loop pseudocode

The basic perfstat monitoring loop is described in Listing 5.4. The tool tracks both the
system statistics (lines 6 and 7) as well as the command stats (lines 17 and 18). A command
in this case describes a set of processes spawned by a user command. Usually, this will be
the python program that runs the TensorFlow benchmark.

5.3.2 Nvidia-smi

Nvidia provides a user-space tool with their driver stack on Linux called Nvidia-smi. It
allows users to capture GPU device statistics, such as streaming processor clocks, usage,
memory clocks and usage and more. Unfortunately, it does not work on their embedded
boards, such as the Jetson Nano board we used. For that reason, we were not able to
record GPU device usage metrics on the board.

Table 5.10: Nvidia-smi metrics

Key Description Unit Example
timestamp UTC Timestamp - "2021/01/17 02:54:37.791"
index GPU index - 0"
utilization.gpu GPU core utilization % "55"
utilization.memory | GPU memory utilization % "34"
memory.free Amount of free GPU memory | MiB "32480"
memory.used Amount of used GPU memory | MiB "30"
temperature.gpu GPU board temperature °C "37"
power.draw GPU board power draw W "46.67"

Table 5.10 lists the values we captured using the Nvidia-smi tool. We used external power
monitoring devices to measure the power draw for the entire system, but it is certainly
helpful to be able to compare this to just the accelerator power draw. Since the tool directly
accesses the performance counters implemented in hardware on the GPU, the statistics
should be the most accurate. On the other hand, these closed-source vendor-specific tools
were known to contain bugs and report bogus values in the past, so they need to be
observed carefully.

53

Performance and Power Consumption of Neural Networks

6 Setup

In this chapter, we present the various setups on which the experiments were conducted.
The hardware can be categorized into three main classes:

1. Server
2. Desktop
3. Edge

We chose these hardware classes to cover a range of systems which are used to run neural
network applications in real-world environments. With regards to our initial research goals,
we believe this selection will allow us to make meaningful comparisons with regards to raw
performance, performance per watt and performance per Euro.

This work by no means pretends to provide perfect comparison data on an exhaustive
set of platforms. Instead, we seek to provide guidance in choosing the right platform for
projects requiring neural network capabilities.

Most of the systems listed in this chapter was connected to a Voltcraft Energy Logger
EL4000 to facilitate independent power usage monitoring. Additionally, vendor provided
tools were used to measure the power draw of accelerator chips, e.g. the Nvidia GPU or
Intel Arria FPGA.

6.1 Server

We used two very different servers to run our experiments on. The first is a Nvidia DGX-1
Volta GPU server equipped with eight Nvidia Tesla V100 GPUs. The GPU server also
features vast amounts of RAM and the proprietary NVLink technology, which enables di-
rect GPU-to-GPU communications without involving the CPU 3. According to Nvidia 24,
a single Tesla V100 GPU is able to provide 15.7 TeraFLOPS for single-precision and 7.8
TeraFLOPS for double-precision calculations in the NVLink setup. The available band-
width amounts to 32 GB/s for CPU-GPU communication using PCI-Express and 300
GB/s for GPU-GPU communication using NVLink. The exact specifications are listed in
table 6.1.

Table 6.1: Nvidia DGX-1 specifications

S1: DGX-1
CPUs 2x Intel Xeon E5-2698
GPUs 8x Nvidia Tesla V100
RAM 512 GB RDIMM DDR4
Storage 4x 2TB SATA SSD RAID 0
Performance 1 Peta FLOPS
Power Usage max. 3500 W
(O] Ubuntu 18.04 LTS
Cost 84,000 €

The second server is a Dell PowerEdge R740 which is equipped with two Maxeler Maia
dataflow engines (DFE). Each of those DFEs features an Altera Stratix V FPGA and
some RAM. Again, the exact specifications are contained in table 6.2.

https://www.Nvidia.com/de-de/data-center /nvlink/
https://www.Nvidia.com/de-de/data-center /tesla-v100/

54

Setup

Table 6.2: FPGA server specifications

S2: PowerEdge R740
CPUs 1x Intel Xeon Gold 5217
DFEs | 2x Maxeler Maia (Altera Stratix V 5SGSD8 FPGA with 48 GB DDR3)
RAM 96 GB RDIMM DDRA4
Storage SATA SSD
0S Ubuntu 18.04 LTS
Cost 8,000 € (Dell Server) + 11,900 € (DFEs)

Looking at the two servers, one could assume the Nvidia GPU server to perform better for
neural network tasks, given that it was specifically designed for machine learning purposes.
Then again, it is the more powerful and costly choice just by going with the specifications
on paper. However, as explained in earlier chapters, the hardware is only one part of
accelerator technology. Software is the other, arguably more important one. With this in
mind, the servers could not be more different since one is specifically designed for select
purposes like image processing, rasterization and tensor operations. The FPGA server on
the other hand is a general-purpose computation engine.

Apart from the two servers listed above, we also had access to hardware from the Institute
of Microelectronic Systems (IMS) of the Leibniz University Hannover. The systems were
accessible as part of the HAISEM Lab %, a project funded by the German Federal Ministry
of Education and Research (BMBF).

Table 6.3: IMS GPU servers

S3: IMS-P100-16 \ S4: IMS-P100-32
CPUs 2x Intel Xeon E5-2697 v4
GPUs | 2x Nvidia Tesla P100-PClIe 16 GB ‘ 2x Nvidia Tesla V100-PCle 16 GB
RAM 256 GB RDIMM DDR4
0OS Ubuntu 18.04 LTS
Year 2016

Table 6.4: IMS GPU servers (cont.)

S5: IMS-V100-32 S6: IMS-A100-40
CPUs 2x Intel Xeon Gold 6148 v4 2x AMD Epyc 7662
GPUs | 2x Nvidia Tesla V100-SXM2 32 GB | 4x Nvidia Tesla A100-SXM4 40 GB
RAM 384 GB RDIMM DDR4 1000 GB RDIMM DDR4
(0N Ubuntu 18.04 LTS Ubuntu 20.04 LTS
Year 2017 2020

Tables 6.3, 6.4, 6.5 list the specifications of the IMS servers used in our experiments. The
FPGA server is an outlier since its hardware was virtualized for the HAISEM project. The
virtual machine resources are listed in Table 6.5.

Unfortunately, the FPGA server described in Table 6.2 was not useable for our exper-
iments. The data-flow engines (DFE) could only be programmed using the proprietary
Maxeler tools. They offer a C based API and a high-level MaxJ language to program
the DFEs. While a deep-learning library was provided by Maxeler, we could not use it

*http://haisem-lab.de/

95

http://haisem-lab.de/

Performance and Power Consumption of Neural Networks

Table 6.5: IMS FPGA server

S7: IMS-FPGA VM
CPUs | 2x Intel Xeon Gold 6248 v4 5 cores
FPGAs | 4x Intel Arria 10 GX PAC | 4x FPGA
RAM 384 GB RDIMM DDR4 62 GB

OS Ubuntu 20.04 LTS

due to software stack issues. The library did not detect a version of OpenMP, a required
dependency.

We originally planned to conduct our benchmarks on a Google Cloud TPU equipped
machine as well. Since the free tier of the Google Colab service providing TPU accelerated
computing works by sharing a virtual machine between users, we tried to get exclusive
access to a node. As mentioned in Section sec:tpu, we were not legally allowed to buy
exclusive access to a Google Colab instance due to geographical restrictions. We then
contacted Google, asking for access to the TensorFlow Research Cloud (TFRC) 26 where
such access is granted for research purposes. Unfortunately, Google did not respond after
initial contact in December 2020.

6.2 Desktop

Moving on to desktop class hardware, we evaluated an HP Omen 15 gaming laptop from
2019. These models were bought by the University of Hildesheim to be used by students in
various computer science courses. At the same time, it also represents the kind of mobile
hardware used by many machine learning engineers and data scientists. Thus, we think it
makes for a valuable addition to the set of test hardware as part of this work.

Table 6.6: HP Omen 15-dh0007ng specifications

D1: Omen Laptop
CPUs 1x Intel Core i7 9750H
GPUs | 1x Nvidia GeForce RTX 2070 Max-Q
RAM 16 GB SDIMM DDR4
Storage 512 GB NVMe M.2 SSD
(ON) Fedora Workstation 33
Cost 1,800 €

At the end of 2020, the author acquired an Apple Mac Mini machine featuring the com-
pany’s newly developed M1 ARM SoC. The Apple M1 chip is unique in terms of its
architecture compared to other consumer hardware platforms. Traditional x86 SoCs have
been using the same layout since decades: a CPU is connected to off-chip RAM and talks
to accelerators via PCI-Express. The Apple M1 SoC on the other hand features a unified
memory architecture, where CPU, GPU, Neural Engine are all connected to one cache and
one RAM module via fabric, Apple’s new silicon interconnect mechanism.

Table 6.7 lists the specifications for the Mac Mini 2020 model. According to the Apple
website on power draw 27, the Mac Mini M1 2020 has a maximum power draw of 39W for
the entire system. This puts it below the HP Omen Laptop’s Intel CPU, which is rated
for 45W TDP. Since the Apple M1 SoC is also built into the 2020 MacBook Air and Pro

Znttps://www.tensorflow.org/tfrc
*"https://support .apple.com/de-de/HT201897

56

https://www.tensorflow.org/tfrc
https://support.apple.com/de-de/HT201897

Setup

Table 6.7: Apple Mac Mini M1 2020 specifications

D2: Mac Mini M1
CPUs | 1x Apple M1 (4 high power, 4 high efficiency cores)
GPUs 1x Apple M1 (8-core)
RAM 16 GB
Storage 1 TB SSD
(ON) macOS 11.2
Cost 1,500 €

models, it will be interesting to compare the benchmark results to the HP Omen Laptop
in terms of power and efficiency.

6.3 Edge

Edge computing is different from the previous two system classes in many ways. For
one, neural networks are usually not trained on edge devices because they run on a tight
thermal and power budget. Furthermore, they are not built for debugging and profiling or
any development tasks due to their lack of I/O ports and CPU power. Edge devices usually
feature select coprocessors which carry out a particular task in isolation. The CPU, which
can often be a lot weaker in terms of raw compute power, will offload the computation to
that coprocessor at runtime.

For our experiments, we chose to use a Nvidia Jetson Nano Developer Kit 2%. It is a single
board computer (SBC) akin to a Raspberry Pi for example. The printed circuit board
(PCB) packs several I/O pins, an ARM CPU, the Nvidia Maxwell GPU chip, some RAM

and various connectivity options. Table 6.8 lists the specifications according to 2.

Table 6.8: Nvidia Jetson Nano Developer kit specifications

E1: Nvidia Jetson Nano
CPUs 1x ARM A57 SoC (4-core)
GPUs 1x Nvidia Maxwell GPU (128-core)
RAM 4GB LPDDR4
Storage microSD
Performance 472 GFLOPs
Power Usage 5/10 W
Cost 100 €

Nvidia markets the Jetson Nano as a platform for makers, learners and embedded devel-
opers. They especially tout its image classification, object detection and speech processing
capabilities. Thus, we believe it is a good candidate to add to the array of test systems.

“nttps://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://coral.ai/docs/dev-board /datasheet

o7

https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Performance and Power Consumption of Neural Networks

7 Results

In this chapter, we present the results of our benchmark experiments. The data we gathered
is too large to be fully represented here. Thus, we show only the most interesting and
meaningful results. More detailed benchmark results including data for all benchmark
variants is provided in Appendix A.1.

Table 7.1: System matrix

ID Description Variants
S1 DGX-1 CPU, GPU
S3 IMS P100 16 GB GPU
S4 IMS P100 32 GB GPU
S5 IMS V100 GPU
S6 IMS A100 GPU
S7 IMS Arria 10 FPGA

D1 Omen Laptop CPU, GPU
D2 Mac Mini M1 CPU, GPU
E1 Jetson Nano CPU, GPU

Table 7.1 lists the systems used in our experiments and assigns an ID to each. This was
done so we can easily refer to the systems throughout this chapter, without writing out
their names. The IDs are taken from the tables in Chapter 6. The last column of Table 7.1
lists the variants we tested. For example, system S1 features a powerful Intel Xeon CPU
that we tested in isolation from the GPU it has equipped. Throughout this chapter, we
refer to the CPU variant of system S1 like this: S1opy. The same notation is used for all
the other systems and their variants.

In the remainder of this chapter, we first show a full example of all data we recorded
during each benchmark. Second, we list and analyze the microbenchmark results for the
various heterogenous systems in Section 7.2. Afterwards, we present the macrobenchmark
results in Section 7.3. Finally, we discuss the results and compare the system performance
in terms of latency and power usage in Section 7.4.

7.1 Full data example

As stated in the introduction of this chapter, it is not possible for us to show all data gath-
ered through benchmarking and monitoring here. The total data we collected (including
autogenerated plots and statistics) amounts to roughly 50 GB for all systems combined. In
this section, we show a full example of all data for a single benchmark run on one system
variant.

We show a "Busy (%)" metric for the benchmark runs where available. This value describes
the usage of the processors running the test. For CPU variants, this means the CPU usage
across all cores. For GPU variants, the metric refers to the usage of the GPU cores. The
values refer to the Tj metrics as defined in Section 5.1.

We chose to show the 2D max pooling benchmark ("maxpool2d") data from system variant
Slgpy. As a reminder, system S1 features eight Nvidia Tesla V100 GPUs, each rated for
a total board power of 250W according to the specifications V.

30nttps://images.nvidia.com/content/tesla/pdf/Tesla-V100-PCIle-Product-Brief . pdf

58

https://images.nvidia.com/content/tesla/pdf/Tesla-V100-PCIe-Product-Brief.pdf

Results

0.0009 C T T T T T T]
0.0008 T
0.0007 T
0.0006 = T
0.0005 T

0.0004 A

Duration (s)

0.0003 7
0.0002 7

0.0001 A

S o
& &> 00°+
Figure 7.1: S1lgpy maxpool2d benchmark results

Figure 7.1 shows a box plot for the mean benchmark iteration durations ("latencies") of the
parametrized benchmarks. There are several conclusions that can be drawn from the plot.
First, the standard deviation of the latencies is very small. For some tests, e.g. 100x100-5
(which means input size of 100x100 elements and window size of 5x5) it seems virtually
nonexistent. The autogenerated statistics confirm this assumption: for 9073646 benchmark
iterations completed in 600 seconds, the mean value is approx. 5.1 x 10~ seconds while
the standard deviation is approx. 7.1 x 1075 seconds. We observed very small standard
deviations for almost all our benchmark results across all systems, meaning we expect only
few outliers in the data.

We now take a closer look at two benchmark variants, 1000x1000-3 and 3000x3000-3. This
way, we can reason about the effect of the input size on latency, GPU business and power
draw. From Figure 7.1 we can see that e.g. the change in input size from 100x100 to
1000x1000 does not appear to noticeably affect the latency. The first jump comes with the
3000x3000 input size.

Figure 7.2 plots the benchmark iterations completed in 600 seconds for both variants. For
benchmark (a), there were 9392384 iterations performed, while microbenchmark (b) was
run 1668963 times (approx. 82% less). The data in (a) was subject to a standard deviation
of 1.1 x 107, while (b)’s was 1.4 x 1075. One interesting difference between the two result
sets is the position of outliers. In (a), most outliers were caused by higher-than-average
latencies. In (b) however, half of the outliers are below the mean value observed. Overall,
the increase in input size from 100021000 = 1,000,000 to 300023000 = 9,000, 000 (900%
increase) values led to a mean latency change from 0.049 to 0.344 milliseconds (702%
increase).

Figure 7.3 shows the business of the streaming multiprocessing (SM) cores which carry out
GPGPU operations. We can see that GPU 0 is busy about 70% throughout benchmark
(a). Benchmark (b) shows 100% GPU usage, meaning we are using the GPU to its full
capabilities (assuming optimal exploitation by the TensorFlow framework and the CUDA
backend).

99

Performance and Power Consumption of Neural Networks

Duration (ms)
o
o
N
T
+
1

0.38
0.37
0.36 -
0.35
0.34
0.33

Duration (ms)

0.32 b
0.31 b
03 * b
0.29 + i

;\'9 (L‘.QQ (5. b;. (Ij' 6. /\' Qs. Cb'.Q 0‘. \'. q'/
NG N v v v v N4 v v ? ’5 o
GRS o ® ® & %

Time

(b) 3000x3000-3

Figure 7.2: S1gpy maxpool2d GPU benchmark

Figure 7.4 plots the power draw of the GPUs installed in system S1 during the benchmark
runs. Benchmark (a) leads to a GPU power consumption of approx. 250 watts, while
benchmark (b) causes a consistent draw of approx. 300 watts. The idle power draw of each
GPU in the system is about 45 watts, as can be seen in the very beginning of the plots.
Interestingly, the idle power draw of all GPUs increases by a few watts when one GPU is
being used.

For the remainder of this chapter, we only show the reduced data. We still provide detailed
data for system S1 so we can discuss the effect of varying input sizes, kernel sizes etc. for
each particular benchmark.

7.2 Microbenchmarks

In this section, we show our microbenchmark results for the systems listed in Table 7.1.
All the metrics like latency, power usage, cpu usage etc. are mean values. We calculate
the standard deviation for all metrics, but do not display them here for brevity. Excess
standard deviations are explicitly mentioned where necessary. We selected benchmark

60

Results

nvidia-smi

Usage (%)

(a) 1000x1000-3

nvidia-smi

80 1
60 1

Usage (%)

20 1

(b) 3000x3000-3

Figure 7.3: S1gpy maxpool2d GPU usage

variants for system S1 in the CPU and GPU configuration. This way, we can reason about
the general benchmark task characteristics. For all other systems, we only show the most
demanding benchmark variant, since that will exploit the systems’ hardware the most.

Each benchmark was run for 600 seconds. Most systems were able to complete over a
million benchmark iterations during this time. This enables us to argue about the stability
of the results, since only a very small number of outliers was observed.

7.2.1 2D convolution

We ran the 2D convolution benchmarks in a number of variants on each platform. In
total, we test six input sizes and two kernel sizes per input size, so 62 = 36 combinations.
Since we cannot possibly display all of these results here, we decided to only choose three
variants for system S1. First, we show the results for the input size 1000x1000x3 and the
kernel 3x3x3. We follow up with the 3000x3000x3 input size and the same kernel size to be
able to reason about the effect on the results. Finally, we conclude with the 3000x3000x3

61

Performance and Power Consumption of Neural Networks

nvidia-smi
300
250
S 200
& 150
3
&£ 100
50
T e o & o o & o
@ 2 2 @ S @ s
SN NN F & & ¥ ¥ @
Time (s)
GPUO ——
GPU1 ——
GPU 2
GPU 3
GPU 4
GPU5 ——
GPU6 ——
GPU7 ——
(a) 1000x1000-3
nvidia-smi
350 T T T T T T T T T T
300
= 250
=
< 200
[}
z 150
o]
& 100
50
R M-I Iy e
LA S
& ¢ ¢ ¢ ¢ ¢ & & & &
Time (s)
GPUO ——
GPU1 ——
GPU 2
GPU 3
GPU 4
GPU5 ——
GPU6 ——
GPU7 ——

(b) 3000x3000-3

Figure 7.4: Slgpy maxpool2d GPU power

input size again, but this time in combination with the 5x5x3 kernel size, to find out how
changing kernel size affects the result.

Table 7.2 lists the benchmark results. Looking at the results for system S1, the input size
seems to have a larger impact on the latency than the kernel size. The power draw does not
change much between the variants. On system S1, the CPU is not fully saturated, while
the GPU is. If we compare the 1000x1000x3 input size, 5x5x3 kernel size with between
the CPU and GPU runs, we can see that the GPU offers a speedup of roughly 15x, but
an increase in power draw of only approx. 23%.

The Mac Mini M1 (system D2) delivers the most impressing results in this benchmark. It
achieves a mean latency of only 0.4 ms, which is the lowest among all systems. At the same
time, it consumes only 12 watts. Compared to the Nvidia DGX-1 GPU server (system S1),
the Apple device offers a 10x speedup at a power usage decrease of 99%. If we compare
Nvidia’s embedded offering E1 to the server class S1 system, we arrive at a 10x slowdown,
but a power usage decrease of more than 99% as well.

62

Results

Table 7.2: 2D convolution

ID Input Kernel Latency (ms) Busy (%) System Power (W)
Slepy 1000x1000x3 3x3x3 7.9 64 895
3000x3000x3 3x3x3 39.5 84 957
3000x3000x3 5x5Hx3 60.0 84 1007
Slgpy 1000x1000x3 3x3x3 0.3 100 1178
3000x3000x3 3x3x3 2.3 100 1211
3000x3000x3 5x5x3 3.9 100 1235
S3cpru 9.9 100 —
Sdapu 9.5 100 —
Shepu 3000x3000x3 5x5x3 3.9 100 -
S66pu 1.2 100 —
Dlcpy 240.7 99 73
Dilgpu 11.6 100 129
D2 pu 3000x3000x3 5x5Hx3 349 o 15
D20py [0.4] - 12
Elcpy 3255.2 99 6
Elopy 3000x3000x3 5x5Hx3 4045 o 7

During our data analysis, we discovered an interesting behavior pattern for system D2
with regards to the benchmark parameters. When comparing the mean iteration times of
the benchmark variants (varying input and kernel sizes), the system would spend almost
exactly the same amount of time for each iteration.

Figure 7.5 shows a plot of the distribution of all benchmark variants for the 2D convolution
benchmark. While we can clearly see the impact of varying input and kernel sizes for other
systems, the iteration times for system D2 are almost evenly distributed. This was the case
for all microbenchmarks run on the system. We believe that this is an implementation bug
in the Apple TensorFlow port, which is still in alpha state as of early 2021 3!. To ensure
this was not a one-off error, we ran the benchmark suite two more times, but each time
arrived at roughly the same data.

7.2.2 2D depthwise convolution

The depthwise convolution benchmark contains three input sizes and two kernel sizes per
input size. In total, there are 3> = 9 benchmark variants. We again show three combina-
tions for system S1 and the most demanding for the other systems. For some reason, the
benchmark was not executed successfully on system S3, thus there is no data available.

Table 7.3 lists the benchmark results and Figure 7.6 plots the iteration time distribution.
We can immediately recognize a pattern similar to the previous 2D convolution benchmark.
The input size appears to have a bigger effect on the latency than the kernel size again.
Comparing the CPU against the GPU for the tested systems leads to a huge win for the
GPU in terms of latencies. At the largest input size, the GPUs on all systems are fully
utilized.

Again, system D2 wins the benchmark. Compared to the powerful GPU server S1, it offers
a speedup of roughly 2x and a decrease in power usage of approx. 99%. Since the system

3nttps://github. com/apple/tensorflow_macos

63

https://github.com/apple/tensorflow_macos

Performance and Power Consumption of Neural Networks

tf_convad

100x100x1-3x3x1
100x100x1-5x5x1
1000x1000x1-5x5x1
100x100x3-3x3x3
1000x1000x1-3x3x1
1000x1000x3-3x3x3
3000x3000x1-3x3x1
1000x1000x3-5x5x3
3000x3000x1-5x5x1
100x100x3-5x5x3
3000x3000x3-3x3x3
3000x3000x3-5x5x3

QI

0 20 40 60 80 100
Mean iteration time (%)

Figure 7.5: 2D convolution iteration time distribution

closest to D2 in power usage is E1, we take a closer look at the two. Comparing E1 against
D2 unveils a 50x slowdown at a power usage decline of only 41%.

7.2.3 2D max pooling

The 2D max pooling benchmark features three input sizes and two kernel sizes for each,
resulting in 32 = 9 benchmark variants in total. We cover three variants for system S1 and
one for all other systems.

Table 7.4 shows the benchmark results. The iteration time distribution is plotted in Figure
7.7. Similar to the previous two benchmarks, the input size has a bigger impact than the
window size in terms of latency. GPUs beat the CPUs again by a large margin. The
TensorFlow code is able to fully saturate the GPUs, hinting at good parallelization.

The Apple Mac Mini again beats all other systems. It offers a 2x speedup and a 99%
decline in power usage compared to system S1. Compared to a system in its own class,
system D1, D2 still achieves a 16x speedup at 90% less power usage.

7.2.4 ReLU activation

The ReLU benchmark features three distinct input sizes, thus three variants. We show the
two largest for system S1 and the largest for the other systems.

Table 7.5 displays the benchmark results, whereas the iteration time distribution is plotted
in Figure 7.8. Again, GPUs offer a huge speedup compared to CPUs. The level of paral-
lelization allows for full GPU usage, while the CPUs cannot be used to their full potential.
This may be related to the slower RAM accessible to the CPU versus the faster GPU
memory. The results for system E1 support this claim, since the memory access latencies
are hidden by the slower CPU cores.

Like in the other microbenchmark results, system D2 achieves the lowest latency at 0.1
ms. Compared to system S1, it offers a 3x speedup and a 99% decline in power usage.

64

Results

Table 7.3: 2D depthwise convolution

ID Input Kernel Latency (ms) Busy (%) System Power (W)
Slepy 1000x1000x3 3x3x3 4.9 70 922
3000x3000x3 3x3x3 44.6 86 948
3000x3000x3 5x5Hx3 106.3 88 970
Slgpy 1000x1000x3 3x3x3 0.2 37 1023
3000x3000x3 3x3x3 0.6 100 1265
3000x3000x3 5x5Hx3 1.3 100 1246
S3apu — — —
Sdapu 3.6 100 —
Shepy 3000x3000x3 5xHx3 1.3 100 -
S6cpU 0.9 100 —
Dlcpy 515.1 100 69
Dilgpu 4.1 100 130
D2 py 3000x3000x3 5x5Hx3 59.7 o 13
D2¢pu [0.7] — 12
Elcpy 2757.1 99 6
Elapy 3000x3000x3 5x5Hx3 359.0 o 7

Furthermore, even the D2¢opy test variant achieves a 3x speedup compared to Slcpy,
which is a powerful Intel server CPU.

7.3 Macrobenchmarks

Our macrobenchmarks cover training and inference using a synthetic convolutional neural
network (CNN). Additionally, we use the YOLOv3 network to test real-world inference
performance across the systems.

Similar to the microbenchmarks, each benchmark was run for 600 seconds. Depending
on the test variant, most systems were able to complete between a hundred and several
thousand iterations. Given the small standard deviation of the results, this confirms the
stability of our benchmark results.

7.3.1 CNN inference

The CNN inference benchmark features two variants with a varying input size. Due to
software dependency issues, it was not possible to run this benchmark on the Apple Mac
Mini (system D2).

Table 7.6 lists the benchmark results. The iteration time distribution is plotted in Figure
7.9. This time, we can observe low resource utilization on both CPUs and GPUs throughout
the range of test systems. With regards to latency, there is another interesting observation
to be made. On system S1, the CPU outperforms the GPU, something that did not happen
in other benchmarks. On the other systems, e.g. D1 or E1, the contrary is true.

Interestingly, the HP Omen Laptop (system D1) wins this benchmark with a recorded
mean latency of 21.6 ms. This amounts to a speedup of approx. 1.5 and a decrease in
power usage of 90% compared to the Nvidia GPU server (system S1).

65

Performance and Power Consumption of Neural Networks

tf_conv2d_dwise

100x100x3-5x5x3
100x100x3-3x3x3
1000x1000x3-5x5x3
1000x1000x3-3x3x3
3000x3000x3-3x3x3
3000x3000x3-5x5x3

JITE

0 20 40 60 80 100
Mean iteration time (%)

Figure 7.6: 2D depthwise convolution iteration time distribution

7.3.2 CNN training

In our CNN training experiment, we train a model using the architecture presented in
Section 5.2.2. Each benchmark iteration performs a whole training iteration using all
training images from the CIFAR10 dataset. The dataset contains images composed of
32x32 pixels. While the accuracy of the model improves during training, the iteration
times are constant.

The CNN training benchmark exhibited an interesting RAM usage pattern. We show this
by looking at system Sl py, but the same pattern was observed on all systems, regardless
execution engine (CPU or GPU). Figure 7.10 shows the RAM usage of the benchmark
process (PID) and the system during the benchmark. At roughly 15:27:00, there is a sharp
pullback in memory usage.

Interestingly, there is no such anomaly in the CPU usage of either the benchmark process
or the system in general, as can be seen in Figure 7.11.

Looking at a plot of the benchmark iterations in Figure 7.12, there does appear to be an
outlier at roughly 15:27:00. Then again similar outliers are observed around e.g. 15:22:00
or 15:29:00, with no observable RAM usage anomalies.

Table 7.7 shows the benchmark results. Interestingly, the advantage of GPUs over CPUs
is not very large in this benchmark. System S3 is an outlier in this benchmark, as its
average iteration time was 125.9 seconds. We do not know why this is the case. At the
same time, the GPU activity data reveals 24% usage during the benchmark, which only
raises more questions. System E1 crashed due to out-of-memory errors at the beginning
of the benchmark. This happened for both the CPU and the GPU test variant. Perhaps
one could make it work using a different allocation strategy than the one TensorFlow uses
by default.

66

Results

Table 7.4: 2D max pooling

ID Input Kernel Latency (ms) Busy (%) System Power (W)
Slegpy 1000x1000 3x3 52.0 1 790
3000x3000 3x3 511.5 1 786
3000x3000 5XH 1188.1 1 787
Slgpy 1000x1000 3x3 0.05 70 1162
3000x3000 3x3 0.3 100 1234
3000x3000 5xH 0.6 100 1227
S3apu 1.9 100 —
Sdapy 1.9 100 -
Shapy 3000x3000 5Xb 0.6 100 o
S6apyu 0.4 100 —
Dlcpy 846.1 8 50
Dilgpu 1.9 100 128
D2 py 3000x3000 5XH 1141 4 o 18
D2¢pu [0.3] — 12
Elepy 5885.6 25 3
Elepy 3000x3000 5) &) 167.5 B 7

The Nvidia Tesla V100 GPU server (system S1) achieves the best mean iteration times
coming in at 5.3 seconds. Comparing the Apple Mac Mini to this, we find that the server
is not able to show even a 2x speedup, all while drawing 84x more power.

7.3.3 YOLOvV3 inference

In our YOLOv3 benchmarks, we test both the full and the tiny model. We always use a
fixed input size of 416x416, since this is the optimal trade-off between accuracy and speed
according to its authors [41].

Table 7.8 contains the results for the YOLOv3 benchmarks. Again, the advantage of
GPUs over CPUs is obvious, often only consuming a few watts more. On the other hand,
no system is able to fully exploit its hardware capabilities, meaning there is a bottleneck
somewhere in the network architecture. Our microbenchmark results point at memory
latencies, since small input sizes lead to less GPU accelerator usage in the 2D convolution,
pooling and ReLLU benchmarks.

Figure 7.13 shows the iteration time distribution. Unlike the previous benchmarks, this
one does not exhibit the bug we found earlier on system D2. Since we run exactly the
same code on all systems in our benchmark suite, we are not sure why the bug is triggered
only for certain benchmarks. We believe it may be related to explicitly choosing the Apple
MLCompute GPU engine to execute all TensorFlow code.

While it was not possible to measure the power draw for the FPGA system S7, we were
able to measure the total power draw of the FPGA cards. When running the full YOLOv3
model, the FPGA board consumed between 27.5 and 48.5 watts. For the YOLOv3-tiny
variant, we measured a power draw between 27.5 and 30.5 watts. At these levels of energy
consumption, the FPGA server outperforms all other server class machines by far. For
example, a single Nvidia Tesla V100 GPU in system S1 draws about 45 watts in idle state.
When fully loaded, this can go up to roughly 300 watts.

67

Performance and Power Consumption of Neural Networks

tf_max_pool2d

JD 100x100-5
100x100-3

1000x1000-3
3000x3000-3

JD 3000x3000-5

JINE

1l

N

i
B

0 20 40 60 80 100
Mean iteration time (%)

Figure 7.7: 2D max pooling iteration time distribution

We noticed an interesting pattern in the YOLOv3 benchmark latency distributions on
system D2 (Apple M1). When running the benchmark on the GPU, we could observe
outliers starting to form a parabolic shape.

We plotted the YOLOv3-Full 416x416 benchmark results for system D2 in Figure 7.14.
The pink crosses are single iteration results, where each iteration represents a full forward
pass in the YOLOv3 network. We also plotted the mean and the standard deviation for
convenience. While negative durations are not possible, we added the Y axis offset here for
visual clarity of the standard deviation. The parabolic outliers start appearing at roughly
03:21:00. The first data point falling outside of the standard deviation range is the one
at approx. 03:22:35. The last outlier recorded is the one around 03:29:00, taking over 100
seconds to finish the iteration.

For comparison purposes, we plot the YOLOv3-Full 416x416 benchmark results for system
D1 (HP Omen Laptop) as well in Figure 7.15. As can be seen from the plot, the outliers
are distributed as one would expect them to be. There are frequent data points that fall
outside of the standard deviation range. Yet even the outliers are rather close to the mean
and do not form a shape of any particular kind, contrary to the results from system D2.
System D2 was unique in showing this anomaly. We think it may be related to thermal
constraints on the small Apple machine. Unfortunately we had no tool at our disposal to
record the CPU load of the machine during the benchmarks, so detailed monitoring data
is not available.

7.4 Discussion

The data we gathered through benchmarking the heterogenous systems allows us to draw
multiple conclusions about convolutional neural networks on modern heterogenous sys-
tems. First of all, the microbenchmark results in Section 7.2 demonstrate the advantage
of many low-complexity cores over few high-complexity ones (e.g. a CPU). For sufficiently
large input sizes, GPU accelerators are operating at almost 100% core usage. Even for

68

Results

Table 7.5: ReLU

ID Input Latency (ms) Busy (%) System Power (W)
Slepy 1000x1000 0.2 o7 929
3000x3000 11.6 52 843
Slgpy 1000x1000 0.02 95 1089
3000x3000 0.3 100 1082
S3apru 0.4 100 —
S4apu 0.4 100 —
Shepu 3000x3000 0.3 100 -
S6gpU 0.2 100 —
Dlepu 13.6 69 71
Digpy 0.6 100 132
D2 pu 3000x3000 37 o 15
D2¢pu [0.1] — 12
Elcpu 28.8 95 6
Elopy 3000x3000 18.4 o 7

small input sizes, approx. half of the cores are used as is visible in Appendix A.1. The
building blocks of CNNs, convolutional layers, pooling layers and activation functions are
highly parallelizable. Thus, they intrinsically lend themselves well to modern accelerator
architectures such as GPUs, TPUs, or FPGAs.

That being said, there are some remarkable differences between the systems even within
their own accelerator class. For example, the Apple M1 GPU consistently beats the much
larger, much costlier Nvidia GPU server in raw performance. This is a very impressive
result, since the power budget of the M1 system is smaller by more than an order of
magnitude. Although the Apple M1 SoC features dedicated neural network accelerator
cores, they were not used in our benchmarks. Another interesting fact is that the Apple
M1 device was the only system to draw less power while using the GPU than using the
CPU to run the benchmarks.

Looking at systems D1 (the HP Omen Laptop) and E1 (the Nvidia Dev Board), we see that
dedicated accelerator hardware is paramount to competitive neural network performance.
The most powerful Intel/AMD CPUs used in the server systems S1 through S7 already
deliver low performance compared to any kind of modern accelerator chip. But on mobile
or embedded devices, the difference is even more critical. These devices often operate on a
tight power budget, so achieving CPU levels of performance at a much lower power draw
is a desirable trait.

The macrobenchmark results in Section 7.3 are interesting in their own right. System S1
shows better results when running on the CPU instead of the GPU, regardless of input size.
At the same time, the power draw of the system is higher when running the benchmark on
the GPU. This is not the case on e.g. system E1, which is able to profit from the available
GPU accelerator both in terms of benchmark iteration times and power draw. The IMS
GPU servers, systems S3 through S6 show curious behavior as well. Systems S3 and S4 are
equipped with nominally weaker GPUs than S5 and S6, yet they achieve better benchmark
results. Overall, we conclude that the CNN model is not complex enough to exploit the
systems’ capabilities, as the more powerful accelerators show single-digit usage levels.

69

Performance and Power Consumption of Neural Networks

tf_relu

100x100 —
1000x1000 =
3000x3000 ===

0 20 40 60 80 100
Mean iteration time (%)

Figure 7.8: ReLU iteration time distribution

The CNN training benchmarks again indicate better performance for the accelerators
compared to the system’s CPU. The actual hardware usage (and thus the power draw)
remains low though. This benchmark is also one of the first cases where the Apple system,
D2, is severely outperformed by the most powerful server class systems S1 and S6.

Finally, the YOLOv3 benchmarks are mostly in line with the other results. Accelerator
chips are able to reduce the latency by orders of magnitude in most cases compared to
the CPU. System D1 is able to achieve surprisingly good results, given that it is consumer
grade hardware. At a GPU core usage of only 8%, it beats the more powerful GPU server
S1. At the same time, D1 uses only a fraction of the power. The most important data point
in this benchmark is system S7. The Intel Arria 10 FPGA accelerator achieves the lowest
latencies by a large margin. No other system comes close to achieving its sub millisecond
inference latencies for YOLOvV3.

70

Results

Table 7.6: CNN inference

ID Input Latency (ms) Busy (%) System Power (W)
Slepy 32x32 25.8 1 783
224x224 34.6 4 776
Slepy 32x32 45.4 1 905
224x224 45.3 1 894
S3apu 29.1 1 —
Sdapu 29.8 1 -
S5epy 224x224 38.7 1 -
S6cru 36.5 1 -
Dlcpy 27.1 15 52
DIGPU gy 994 [21.6] 8 73
D2¢pu — — —
D2gpu — — —
Elcpy 9229.3 41 4
224x224
Elapy * 189.5 — 3

tf_cnn_inference

32x32 .
224x224

0 20 40 60 80 100
Mean iteration time (%)

Figure 7.9: CNN inference iteration time distribution

71

Performance and Power Consumption of Neural Networks

perfstat mem
200 ——F—————T T T T T T T T T
20000 A
18000 [—
16000 [.
14000 - A
12000 - -
10000 [.
8000 | .
6000 [.
4000 A
200 4——r—"rt—r—t—— e e
R

Memory usage (MiB)

Time (s)

RSS (PID) ——
RSS (System) ——

Figure 7.10: Slocpy RAM stats

perfstat cpu
inmo—— 77 T T T T

D
o
T

|

CPU usage (%)
A
o
1

process
total

Figure 7.11: Slgpy CPU stats

72

Results

Duration (s)

8-95 T T T T T T T T T T
8.9 - ’ + -
885 . i
8.8 [. i
8.75 - i
8.7 :+ *y ., + + L7 +) +)
865 L et 7]
8.6 ’ ' T + o+ + +++ + + ' T
8.55 | ' " ' . t . T i
e T Hr
N S S S P S R N
@(} Sl \(’5(',/ \6% Sl \b% \@(} \"59/ \";L \(’;’b \6% N i
Time -
Figure 7.12: Slgpy benchmark iterations
Table 7.7: CNN training
ID Input Latency (s) Busy (%) System Power (W)
Slepy 32x32 8.7 27 868
Slgpy 32x32 [5.3] 31 919
S3cpu 125.9 24 —
Sdapu 9.2 19 —
S5apu 32x32 8.2 20 —
S6apu 6.9 20 —
Dlcpy 13.1 100 72
Dlgpy 8.3 14 59
D2cpy D232 11.4 — 13
D26py 9.2 — 11
Elcpu — — —
32x32
Elgpy — — —

73

Performance and Power Consumption of Neural Networks

Table 7.8: YOLOv3 inference

ID Variant Input Latency (ms) Busy (%) System Power (W)

Slepy Full 173.8 36 895
Tiny 36.3 27 838
Slgpy ~ Ful 10x416 46.6 27 942
Tiny 10.7 18 923
S3cpy Full 53.2 36 —
Tiny 8.9 33 —
S4G’PU Full 47.9 25 —
Tiny 9.4 20 —
S5¢py Full 34.6 37 —
Tiny 110x410 6.8 25 —
S6apu Full 45.7 18 —
Tiny 7.9 19 —
STrpga Full [0.9] — -
Tiny [0.9] — —
Dicpy Full 265.9 66 70
Tiny 39.6 51 63
Digpy Full 32.7 8 131
Tiny 6.3 8 122
D2opy Full 10x410 401.6 — 13
Tiny 55.1 — 14
D2cpy Full 1214.9 — 12
Tiny 8.9 — 12
Elcpy Full 3877.8 81 6
Tiny 429.9 78 6
Blepy ~ Pul A10x410 1442.7 — 7
Tiny 185.0 33 7

74

Results

Duration (s)

tf_yolov3_inference

full-416
tiny-416

0 20 40 60 80 100
Mean iteration time (%)
Figure 7.13: YOLOv3 inference iteration time distribution
120 T T T T T T T T T T T T T T
+
100 - -
80 - -
60 -
40 - -
+
20 -
+
+ il +

0 m‘m&_—_——-_-—.-—_-—i -
_20 " " 1 1 1 1 1 " " 1 1 1 1 1 " "

Q Q \\} Q Q \\} Q Q \\} Q Q Q Q
& 9% f19° Qﬁ‘g 99}’0 Qﬁbg QP;'Q 0330 Q?’Q £ 935’0 .‘199 be’Q

@ & F PP F PP
Time
Y Stddev
Y Mean
yolov3 inference +

Figure 7.14: D2gpy YOLOv3 benchmark iterations

75

Performance and Power Consumption of Neural Networks

Duration (ms)

T

35.5
35
34.5
34
33.5
33
32.5
32

315 PR N S S N ST T SN SN SN N S SN R S SU S S SU R S S S S S
N

Y Stddev
Y Mean
yolov3 inference

+

Figure 7.15: D1gpy YOLOv3 benchmark iterations

76

Closing thoughts

8 Closing thoughts

In this chapter, we summarize the results of our experiments and strive to answer the
initial research questions. We infer on the performance, efficiency and effectiveness of the
heterogenous systems for neural network applications based on our results. Afterwards,
we touch on lessons learned during this work and state why working with accelerators is
still not as easy as running code on the CPU.

8.1 Conclusions

To reiterate, our initial research questions from Section 1.2 were:

1. which platform is the most performant in terms of iterations per time?
2. which platform is the most efficient in terms of iterations per energy?

3. which platform is the most cost-effective in terms of iterations per money?

We now attempt to answer these questions based on our experimentation results. For
convolutional neural networks, the Apple M1 SoC tested by us dominates the microbench-
mark results, even crushing big and expensive GPU servers. In real-world applications
such as YOLOv3 network inference, the Apple system is still able to compete with the
more powerful systems for the reduced variant, YOLOv3-tiny. With the full model, the
Apple system falls behind. Looking at the neural network training benchmarks, we see the
GPU server class systems beat the desktop class systems by a small margin. This may be
related to the small input image size though as we alluded to before. Unfortunately, we
were only able to test the FPGA system S7 once in the YOLOv3 inference benchmark due
to time constraints and FPGA programming complexity. However, the system dominated
this benchmark effortlessly for all model sizes. This hints at FPGAs being the most capable
accelerators and S7 the best performing heterogenous system. Thus, we answer research
question 1 as follows. System S7 with its FPGA platform is the most performant in our
experiments. For microbenchmarks, where FPGA performance data is missing, the Apple
M1 SoC achieves the best raw performance.

The next research goal involved finding out which platform performs the most efficient.
While we could not monitor the power usage of systems S3 through S6, they are similar
in architecture to S1. Thus, we believe system S1 is representative for GPU server class
power usage metrics. Unfortunately, it was not possible to monitor system S7 using a ded-
icated, independent measurement device either. We strongly believe the FPGA platform
would outperform any GPU-based platform for neural network applications. This claim is
supported by other research as explored in Section 3.2.3. Going by the data we collected in
this work, we answer question 2 as follows. The Apple M1 platform is the most efficient
in our benchmarks. For applications like YOLOv3-tiny inference, it even beats the FPGA
platform since it performs 10x worse, but draws much less than 10% of the power of the
fully assembled FPGA server. Although we do not have the power draw data for system
S7, the Intel CPU alone uses more power than the Apple M1 system we tested.

Research question 3 is easy to answer. The Apple M1 system has no competition at a
price point of approx. 1500 € for the Mac Mini 2020 we tested. No other system we tested
comes close to its price/performance ratio for convolutional neural network applications,
going by our benchmark results. Unfortunately, there is no server class hardware available
from Apple, so the answer is a different one if we restrict ourselves to the enterprise area.
Here, GPUs win over CPUs and FPGAs should win over GPUs as indicated from other
research we cited in Section 3.2.

7

Performance and Power Consumption of Neural Networks

8.2 Lessons learned

Throughout this work, we faced numerous challenges. For example, making the TensorFlow
stack run with hardware acceleration on the various test systems proved to be rather
intimidating. On heterogenous systems with Nvidia GPU accelerators, it involves not only
matching driver and CUDA stack versions, but additional ecosystem libraries as well.
Such libraries include libcudnn, a proprietary library for accelerated neural networks or
libcufft, a proprietary library for fast-fourier transforms. These libraries come in a variety
of versions, which have to be selected carefully to match the rest of the CUDA stack.

Even for hardware such as the Nvidia Jetson Nano Developer Kit, we ran into software
version issues. The software distribution for this board is called "Nvidia Jetpack" and is
currently based on Ubuntu 18.04 LTS. With the Jetpack 4.4 production release that was
available at our time of testing, Nvidia chose to include a preview build of their cuDNN
library, which is a vital part in TensorFlow neural network acceleration. Nvidia them-
selves acknowledged performance issues in this preview release of cuDNN 32, In February
2021, Jetpack 4.5 was released with an updated cuDNN release included. We repeated our
benchmarks and compared them to the results we acquired on the Jetpack 4.4 version. In-
terestingly, there was little to no difference in the results. Still, including preview software
in a production OS release looks like a strange decision.

Running the YOLOv3 benchmarks on the IMS FPGA machine required converting pre-
trained network weights into another format using the Intel OpenVino tool stack. This is
often the case with such accelerators. Instead of directly adding an execution backend to
frameworks like TensorFlow, many silicon vendors build their own proprietary formats and
offer conversion tools. While this allowed us to easily run the YOLOv3 network variants
on the FPGA hardware, it was a hindrance when it came to implementing microbench-
marks or other algorithms. Oftentimes this requires diving into the silicon vendors’ spe-
cific abstraction stack and directly programming the accelerator. Vendors such as Intel
at least provide the heterogenous and open-source OpenCL API for most of their accel-
erators (CPU, GPU, FPGA, Myriad, etc). This way, portable algorithm implementations
are possible, albeit way more complex than using high-level abstractions like TensorFlow
primitives. Many vendors (e.g. Maxeler) only offer their vendor specific programming en-
vironments. This mandates a large amount of domain specific expertise and can ultimately
lead to vendor lock-in situations.

Another problem with accelerators is hardware monitoring. Most vendors offer hardware
performance counters, e.g. Nvidia, AMD and Intel. Unfortunately, there is no vendor-
independent interface definition for performance counters. The metrics can only be read
by vendor specific tools, such as nvidia-smi for Nvidia GPUs or rocm-smi for AMD GPUs.
Oftentimes, various vendor specific performance metrics cannot be understood without
access to documentation that is available under NDA only. The author has multiple years
of experience in working with Intel, Qualcomm and other SoC vendors, so this came as
no surprise. It makes comparing hardware monitoring logs hard between accelerators from
different manufacturers though. The broad term "GPU usage" can refer to different things
for different vendors. The same applies for power usage reporting tools. Oftentimes, it
is not clear whether a tool reports the total board power of an accelerator or just the
processor core power usage. The former would include the consumption of any memory
installed on the chip as well, for example. Thus, the only reliable way to compare power
usage between systems is to measure it externally, the way did in this work.

32https://forums.developer.nvidia.com/t/darknet-slower-using-jetpack-4-4-cudnn-8-0-0-
cuda-10-2-than- jetpack-4-3-cudnn-7-6-3-cuda-10-0/121579/16

78

https://forums.developer.nvidia.com/t/darknet-slower-using-jetpack-4-4-cudnn-8-0-0-cuda-10-2-than-jetpack-4-3-cudnn-7-6-3-cuda-10-0/121579/16
https://forums.developer.nvidia.com/t/darknet-slower-using-jetpack-4-4-cudnn-8-0-0-cuda-10-2-than-jetpack-4-3-cudnn-7-6-3-cuda-10-0/121579/16

Appendix

A Appendix
A.1 Results

The full result data is provided on external storage media along with this work. All of
the recorded data together with generated plots and statistics comes in at roughly 50 GB.
Thus, adding the data to the thesis itself was not feasible.

Table A.1: tf-conv2d

ID Variant Time (s) CPU (%) GPU (%) Power (W)
Dlarr 100x100x1-3x3x1 5e-05 8 39 67
Dlgpy 100x100x1-3x3x1 0.00065 8 — 52
Dlgpy 100x100x1-5x5x1 0.00049 15 — 62
Dl4rr 100x100x3-3x3x3 6e-05 8 39 66
Dlarr 100x100x1-5x5x1 6e-05 8 38 66
Dlgpy 100x100x3-3x3x3 0.00046 15 — 60
Dlepy 100x100x3-5x5x3 0.00043 31 — 69
Dlsrr 1000x1000x1-3x3x1 0.00044 8 98 131
Dlarr 1000x1000x3-3x3x3 0.00077 8 98 125
Dlarr 3000x3000x1-3x3x1 0.00402 8 98 132
Dlepy 3000x3000x3-3x3x3 0.16202 98 — 72
Dlsrr 1000x1000x1-5x5x1 0.00061 8 98 128
Dlarr 100x100x3-5x5x3 6e-05 8 39 108
Dlarr 1000x1000x3-5x5x3 0.00129 8 98 126
Dlgpy 1000x1000x1-3x3x1 0.01353 96 — 69
Dlepy 1000x1000x3-3x3x3 0.01795 96 — 70
Dlgpy 1000x1000x1-5x5x1 0.01947 95 — 70
Dlecpy 1000x1000x3-5x5x3 0.02654 98 — 71
Dlarr 3000x3000x3-3x3x3 0.00691 8 98 126
Dlarr 3000x3000x1-5x5x1 0.00548 8 97 125
Dlarr 3000x3000x3-5x5x3 0.01158 8 97 129
Dlepy 3000x3000x1-3x3x1 0.12193 98 — 70
Dlepy 3000x3000x1-5x5x1 0.173 99 — 70
Dlepy 3000x3000x3-5x5x3 0.24071 99 — 73
D24 100x100x1-3x3x1 0.00037 — — 12
D24r; 100x100x1-5x5x1 0.00037 — — 13
D24rr 100x100x3-3x3x3 0.00037 — — 12
D24rr 100x100x3-5x5x3 0.00037 — — 12
D2cpy 100x100x1-3x3x1 0.00014 — — 11
D2cpy 100x100x3-3x3x3 0.00015 — — 11
D2¢cpy 100x100x1-5x5x1 0.00014 — — 11
D2cpy 1000x1000x1-3x3x1 0.00108 — — 12
D2cpy 1000x1000x3-3x3x3 0.00306 — — 14
D2cpy 3000x3000x1-3x3x1 0.01354 — — 13
D247, 1000x1000x1-3x3x1 0.00037 — — 12
D24rr 3000x3000x1-3x3x1 0.00037 — — 12
D247 1000x1000x1-5x5x1 0.00037 — — 13
D24rr 3000x3000x1-5x5x1 0.00037 — — 12
D247 1000x1000x3-3x3x3 0.00037 — — 12

79

Performance and Power Consumption of Neural Networks

D2arL
D24rr
D2¢cpu
D2¢py
D2cpu
D2¢py
D2¢py
D2arr
D2¢py
Elarr
Elarr
Elarr
Elarr
Elcpu
Elarr
Elarr
Elcpu
Elarr
Elcpu
Elcpu
Elcpu
Elcpu
Elcpu
Elcpu
Elarr
Elcpu
Elcpyu
Elarr
Elarr
Elarr
Elarr
Elcpu
Elcpu
Slarr
Slarr
Slarr
Slarr
Slepu
Slecpu
Slcpu
Slepu
Slcpu
Slepu
Slcpu
Slepu
Slcpu
Slepu
Slarr
Slarr
Slarr
Slarr

3000x3000x3-3x3x3
1000x1000x3-5x5x3
1000x1000x1-5x5x1
3000x3000x3-3x3x3
3000x3000x1-5x5x1
100x100x3-5x5%x3
1000x1000x3-5x5%x3
3000x3000x3-5x5x3
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5%x3
100x100x1-3x3x1
1000x1000x1-3x3x1
1000x1000x3-3x3x3
1000x1000x3-3x3x3
3000x3000x1-3x3x1
3000x3000x1-3x3x1
100x100x1-5xb5x1
1000x1000x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5x3
1000x1000x1-3x3x1
1000x1000x1-5xb5x1
1000x1000x3-5x5%x3
3000x3000x1-5x5x1
3000%3000x3-3x3x3
3000x3000x1-5x5x1
1000x1000x3-5x5%x3
3000x3000x3-5x5x3
3000x3000x3-3x3x3
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5%x3
100x100x1-3x3x1
100x100x3-3x3x3
100x100x1-5x5x1
1000x1000x1-3x3x1
1000x1000x3-3x3x3
3000x3000x1-3x3x1
1000x1000x1-5x5x1
1000x1000x3-5x5%x3
3000x3000x1-5x5x1
100x100x3-5x5x3
1000x1000x1-3x3x1
3000x3000x1-3x3x1
1000x1000x1-5x5x1
3000x3000x3-3x3x3

0.00037
0.00037
0.00142
0.0327
0.01645
0.00017
0.00339
0.00037
0.03486
0.0004
0.00037
0.00043
0.00042
0.00254
0.00823
0.02713
0.18058
0.07643
1.11276
0.00237
0.20401
0.00283
0.00443
0.12536
0.01509
0.37815
1.90908
0.25461
0.13962
0.04367
0.40449
1.68961
3.2552
9e-05
9e-05
0.0001
0.00011
0.00091
0.00063
0.00069
0.00475
0.00793
0.03057
0.00716
0.00976
0.04023
0.00048
0.00015
0.00139
0.00021
0.0023

NN = = =

60

80
66
73
84

= = = =t

N IO J0O00 O Ut Tt IO 0k O U ix i Ot

Ne}
—_

904
908
910
794
778
787
908
895
946
917
920
950
798
1145
1170
1187
1211

80

Slarr
Slarr
Slarr
Slarr
Slepu
Slepu
S3ALL
S3aLL
S3ALL
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
S3ALL
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
Sdarr
S4arr
Sdarr
S5ALL
S5ALL
S5arL
S5ALL
S5aLL
S5aLL
S5ALL
S5aLL
S5aLL
S5ALL
S5aLL
S5ALL
S6arL
S6arr
S6arL
S6arL
S6arL
S6arL
S6arr
S6arL
S6aLL

3000x3000x1-5x5x1
1000x1000x3-3x3x3
1000x1000x3-5x5x3
3000x3000x3-5x5x3
3000x3000x3-3x3x3
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5%3
3000x3000x3-3x3x3
1000x1000x1-3x3x1
1000x1000x3-3x3x3
1000x1000x1-5x5x1
1000x1000x3-5x5x3
3000x3000x1-3x3x1
3000x3000x1-5x5x1
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x1-5x5x1
1000x1000x1-3x3x1
1000x1000x1-5x5x1
3000x3000x3-3x3x3
3000x3000x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5%x3
1000x1000x3-3x3x3
1000x1000x3-5x5x3
3000x3000x1-3x3x1
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x3-3x3x3
100x100x1-5x5x1
1000x1000x1-3x3x1
1000x1000x3-3x3x3
3000x3000x1-3x3x1
1000x1000x1-5x5x1
100x100x3-5x5x3
1000x1000x3-5x5x3
3000x3000x3-3x3x3
3000x3000x1-5x5x1
3000x3000x3-5x5x3
100x100x1-3x3x1
100x100x1-5x5x1
100x100x3-3x3x3
100x100x3-5x5%x3
1000x1000x1-3x3x1
1000x1000x3-3x3x3
3000x3000x1-3x3x1
1000x1000x1-5x5x1
1000x1000x3-5x5x3

0.0019
0.00025
0.00045
0.00394
0.03946
0.06007
8e-05
0.00011
0.00011
9e-05
0.00623
0.00044
0.0007
0.00057
0.00111
0.00391
0.00514
0.00995
9e-05
9e-05
0.00031
0.00046
0.00546
0.00431
0.00012
9e-05
0.00051
0.00103
0.00291
0.00947
5e-05
6e-05
7e-05
0.00016
0.00026
0.0014
0.00021
6e-05
0.00045
0.0023
0.00191
0.00395
7e-05
7e-05
7e-05
7e-05
7e-05
0.0001
0.00024
7e-05
0.00014

—_ = =

oo 00
[

SO OO O OO OO RF FNWFRFNDNDWDND WNNDNDDNDDNDFDNDDNDDNDD DN DNDDNDDNDNDDNDNDDNDDNDND W

98
98
98
98

22
19
24
37
98
97
98
98
98
98
98
98
19
20
98
98
97
98
20
32
97
98
98
98
31
35
26
97
97
97
97
38
97
97
97
97
19
23
31
39
45
98
98
78
98

81

Performance and Power Consumption of Neural Networks

S64r;, 3000x3000x3-3x3x3 0.00086 0 98 —
S6arr, 3000x3000x1-5x5x1 0.00044 0 98 —
S64rr 3000x3000x3-5x5x3 0.00123 0 98 —
Table A.2: tf-conv2d-dwise
ID Variant Time (s) CPU (%) %) Power (W)
Dl 100x100x3-3x3x3 0.00012 —) 87
Dlarr 100x100x3-5x5%x3 0.00012 — 9 83
Dlgpy 100x100x3-3x3x3 0.00107 — — 58
Dlgpy 100x100x3-5x5%x3 0.00279 — — 59
Dl 1000x1000x3-3x3x3 0.00017 — 98 126
Dlarr 3000x3000x3-3x3x3 0.00179 — 98 130
Dlgpy 1000x1000x3-3x3x3 0.02237 — — 69
Dl 1000x1000x3-5x5x3 0.00044 — 98 125
Dlegpy 3000x3000x3-3x3x3 0.20519 — 0 69
Dlgpy 1000x1000x3-5x5x3 0.05805 — — 69
Dlazr 3000x3000x3-5x5x3 0.00413 — 98 130
Dlgpy 3000x3000x3-5x5x3 0.51513 — — 69
D247 100x100x3-3x3x3 0.00072 — — 12
D2¢py 100x100x3-3x3x3 0.0002 — — 11
D2¢py 100x100x3-5x5x3 0.00022 — — 11
D2¢py 1000x1000x3-3x3x3 0.00459 — — 13
D24rr 100x100x3-5x5%x3 0.00072 — — 12
D24 1000x1000x3-3x3x3 0.00072 — — 12
D2¢py 3000x3000x3-3x3x3 0.04486 — — 13
D24 1000x1000x3-5x5x3 0.00072 — — 12
D2¢py 1000x1000x3-5x5x3 0.00621 — — 13
D247, 3000x3000x3-3x3x3 0.00071 — — 12
D2¢cpy 3000x3000x3-5x5x3 0.0597 — — 13
D247 3000x3000x3-5x5x3 0.00071 — — 12
Elsrr 100x100x3-3x3x3 0.00087 — —)
Elarr 100x100x3-5x5%x3 0.00081 — — 5
Elgpy 100x100x3-3x3x3 0.00472 — —)
Elcpy 100x100x3-5x5%x3 0.01002 — — 4
Elgpy 1000x1000x3-3x3x3 0.13268 — — 6
Elgpy 3000x3000x3-3x3x3 1.19578 — — 6
Elgpy 1000x1000x3-5x5x3 0.30221 — — 6
El . 1000x1000x3-3x3x3 0.01467 — — 7
Elarr 3000x3000x3-3x3x3 0.14098 — — 7
El . 1000x1000x3-5x5x3 0.03869 — — 7
Elarr 3000x3000x3-5x5x3 0.359 — — 7
Elgpy 3000x3000x3-5x5x3 2.75709 — — 6
Slarrz 100x100x3-3x3x3 0.00018 — 2 915
Slepy 100x100x3-3x3x3 0.00142 — 0 787
Slepy 100x100x3-5x5x3 0.00352 — — 781
Slepy 1000x1000x3-3x3x3 0.00498 — — 922
Slepy 3000x3000x3-3x3x3 0.0446 — — 948
Slepy 1000x1000x3-5x5x3 0.01234 — — 942

82

Slarr 100x100x3-5x5%x3 0.0002 — 4 915
Slarr, 1000x1000x3-3x3x3 0.00018 — 34 1023
Slarr 1000x1000x3-5x5x3 0.00018 — 70 1158
Slarr 3000x3000x3-3x3x3 0.00058 — 97 1256
Slepy 3000x3000x3-5x5x3 0.10628 — — 970
Slarr 3000x3000x3-5x5x3 0.00125 — 97 1246
S3arr 100x100x3-3x3x3 0.0002 — 3 —
S3arr, 100x100x3-5x5%x3 0.0002 — 7 —
S3arr, 1000x1000x3-3x3x3 0.00018 — 97 —
S34rr, 1000x1000x3-5x5x3 0.00042 — 97 —
S4arr, 100x100x3-3x3x3 0.00019 — 2 —
S44r;, 3000x3000x3-3x3x3 0.00174 — 97 —
S44rr, 100x100x3-5x5x3 0.00018 — 4 —
S44r; 1000x1000x3-3x3x3 0.00018 — 40 —
S44r;, 1000x1000x3-5x5x3 0.00035 — 97 —
S4arr, 3000x3000x3-5x5x3 0.00355 — 98 —
S5arr, 100x100x3-3x3x3 0.00012 — 4 —
Sharr 100x100x3-5x5%x3 0.00012 — 7 —
S5arr, 1000x1000x3-3x3x3 0.00012 — 49 —
S5arr, 3000x3000x3-3x3x3 0.00059 — 97 —
S5arr, 1000x1000x3-5x5x3 0.00013 — 97 —
S5arr, 3000x3000x3-5x5x3 0.00126 — 98 —
S6arr, 100x100x3-3x3x3 0.00012 — 5 —
S64r;, 100x100x3-5x5%x3 0.00012 — 8 —
S64rr, 1000x1000x3-3x3x3 0.00012 — 39 —
S64r;, 3000x3000x3-3x3x3 0.00039 — 97 —
S64rr, 1000x1000x3-5x5x3 0.00012 — 86 —
S64r;, 3000x3000x3-5x5x3 0.00098 — 97 —
Table A.3: tf-max-pool2d
D Variant Time (s) CPU (%) GPU (%) Power (W)
Dlarz 100x100-3 3e-05 8 16 73
Dlgpy 100x100-3 0.00042 8 — 48
Dlepy 100x100-5 0.00091 8 — 51
Dl4rr 100x100-5 3e-05 8 28 65
D14y;, 1000x1000-3 0.00012 8 98 122
Dl4rz 1000x1000-5 0.00022 8 98 128
Dlgpy 1000x1000-3 0.04099 8 — 49
Dlepy 1000x1000-5 0.09254 8 — 49
D14r;, 3000x3000-3 0.00113 8 98 133
Dlepy 3000x3000-3 0.38979 8 0 51
Dl4rr, 3000x3000-5 0.002 8 97 128
Dlepy 3000x3000-5 0.84608 8 — 50
D2¢py 100x100-3 0.00014 — — 11
D2¢py 100x100-5 0.00139 — — 16
D2¢cpy 1000x1000-3 0.00276 — — 15
D245, 100x100-3 0.00029 — — 12
D24rr 100x100-5 0.00029 — — 12

83

Performance and Power Consumption of Neural Networks

D2arL
D24rr
D2cpu
D2arr
D2¢cpu
D2arr
D2¢py
Elarr
Elcpu
Elarr
Elcpu
Elcpu
Elarr
Elarr
Elcpu
Elarr
Elcpu
Elarr
Elcpu
Slcpu
Slepu
Slcpu
Slarr
Slarr
Slarr
Slarr
Slepu
Slarr
Slcpu
Slarr
Slcpu
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
S3aLL
Sdarr
Sdarr
S4arr
Sdarr
S4arr
Sdarr
S5arL
S5ALL
S5aLL
S5aLL
S5aLL
S5aLL
S6arL
S6aLL

1000x1000-3
1000x1000-5
1000x1000-5
3000x3000-3
3000x3000-3
3000x3000-5
3000x3000-5
100x100-3
100x100-3
100x100-5
100x100-5
1000x1000-3
1000x1000-3
1000x1000-5
1000x1000-5
3000x3000-3
3000x3000-3
3000x3000-5
3000x3000-5
100x100-3
100x100-5
1000x1000-3
100x100-3
100x100-5
1000x1000-3
1000x1000-5
1000x1000-5
3000x3000-3
3000x3000-3
3000x3000-5
3000x3000-5
100x100-3
100x100-5
1000x1000-3
1000x1000-5
3000x3000-3
3000x3000-5
100x100-3
100x100-5
1000x1000-3
1000x1000-5
3000x3000-3
3000x3000-5
100x100-3
100x100-5
1000x1000-3
1000x1000-5
3000x3000-3
3000x3000-5
100x100-3
100x100-5

0.00029
0.00029
0.1263
0.00029
0.0264
0.00029
1.14141
0.00018
0.0028
0.00018
0.00627
0.28908
0.01093
0.01871
0.64538
0.09898
2.64793
0.16747
5.88563
0.00055
0.00127
0.05205
5e-05
5e-05
5e-05
6e-05
0.12708
0.00034
0.51154
0.00061
1.18815
5e-05
5e-05
0.00012
0.00021
0.00118
0.00197
4e-05
5e-05
0.00011
0.0002
0.00087
0.0019
3e-05
3e-05
4e-05
7e-05
0.00035
0.00062
3e-05
3e-05

O OO T DN DNDNDNDNDNDDNDNDDNDDNDNN - = = = = =

84

Appendix

S64arr, 1000x1000-3 3e-05 0 7 —
S64rr, 1000x1000-5 5e-05 0 98 —
S6arr, 3000x3000-3 0.00023 0 97 —
S64rr, 3000x3000-5 0.00044 0 98 —
Table A.4: tf-relu
D Variant Time (s) CPU (%) GPU (%) Power (W)
Dlarr 100x100 1e-05 8 17 78
Dlgpy 100x100 le-05 8 — o1
Dlcpy 1000x1000 0.00111 86 — 62
Dlarr 1000x1000 6e-05 8 98 125
Dlarr 3000x3000 0.00063 8 98 132
Dlcpy 3000x3000 0.01357 69 — 71
D24z, 100x100 0.00012 - - 12
D2cpy 100x100 4e-05 - - 11
D2cpy 1000x1000 0.00041 - - 14
D247, 1000x1000 0.00012 — — 12
D247, 3000x3000 0.00012 — — 12
D2cpy 3000x3000 0.00371 — — 15
Elarp 100x100 0.0001 31 — 4
Elcpy 100x100 7e-05 26 — 3
Elarr 1000x1000 0.00198 29 — 7
Elcpy 1000x1000 0.00248 89 — 6
Elarr, 3000x3000 0.01835 28 — 7
Elcpy 3000x3000 0.02877 95 — 6
Slarr 100x100 2e-05 1 9 904
Slepy 100x100 2e-05 1 — 798
Slepy 1000x1000 0.00021 57 0 929
Slarr 1000x1000 2e-05 1 93 1089
Slarr, 3000x3000 0.00026 1 97 1082
Slepy 3000x3000 0.01161 52 — 843
S3arr, 100x100 2e-05 2 9 —
S34arr, 1000x1000 4e-05 2 98 —
S3arr, 3000x3000 0.00041 2 97 —
S44rr, 100x100 2e-05 2 9 —
S44rr, 1000x1000 4e-05 2 98 —
S44rr, 3000x3000 0.00036 2 97 —
Sbarr, 100x100 le-05 1 16 —
Sbarr, 1000x1000 3e-05 1 98 —
Sbarr, 3000x3000 0.00027 1 97 —
S64arr, 100x100 1e-05 0 20 —
S64rr, 1000x1000 1e-05 0 46 —
S6arr, 3000x3000 0.00016 0 98 —

Table A.5: tf-cnn-inference

85

Performance and Power Consumption of Neural Networks

ID Variant Time (s) CPU (%) GPU (%) Power (W)
Dlarr 224x224 0.02157 8 3 73
Dlepy 224x224 0.02706 15 — 52
Dlarr 32x32 0.02111 8 1 72
Dlcpy 32x32 0.02049 9 0 44
Elarr 224x224 0.1895 26 — 4
Elcpy 224x224 0.2293 41 — 4
Elarr 32x32 0.16821 28 — 3
Elgpy 32x32 0.16007 28 — 3
Slapr 224x224 0.04531 1 1 894
Slopy 224x224 0.0346 4 0 776
Slarr, 32x32 0.04535 1 — 905
Slepy 32x32 0.02578 1 — 783
S3arr, 224x224 0.02851 2 2 —
S3arr 32x32 0.02913 2 — —
S, 224x224 0.02982 2 1 —
Sdarr 32x32 0.029 2 0 —
SSharr 224x224 0.03866 1 1 —
SSarr 32x32 0.03781 1 0 —
S6arr 224x224 0.03653 0 1 —
S6arr, 32x32 0.03631 0 — —
Table A.6: tf-cnn-train
ID Variant Time (s) CPU (%) GPU (%) Power (W)
Dlarr 32x32 8.31664 14 24 59
Dlepy 32x32 13.14728 64 — 72
D2arr, 32x32 9.22301 — — 11
D2cpy 32x32 11.39815 — — 13
Slarr, 32x32 5.34824 2 26 919
Slepy 32x32 8.6568 27 0 868
S3arr 32x32 125.86583 0 2 —
S, 32x32 9.21191 2 15 —
SSarr 32x32 8.24562 2 16 —
S6arr, 32x32 6.96886 1 17 —
Table A.7: tf-yolov3-inference
ID Variant Time (s) CPU (%) GPU (%) Power (W)
D14pp full-416 0.03269 8 75 131
Dlepy full-416 0.26587 66 0 70
Dlarr tiny-416 0.00633 8 46 122
Dlgpy tiny-416 0.03963 51 0 63
D2r; full-416 1.21497 — — 12
D2cpy full-416 0.40159 - - 13
D24r; tiny-416 0.1763 — — 12

86

Appendix

D2¢pu
Elarr
Elecpy
Elarr
Elcpu
Slarr
Slcpu
Slarr
Slcpu
S3aLL
S3aLL
Sdarr
Sdarr
S5aALL
S5ALL
S6arr
S6arL

tiny-416
full-416
full-416
tiny-416
tiny-416
full-416
full-416
tiny-416
tiny-416
full-416
tiny-416
full-416
tiny-416
full-416
tiny-416
full-416
tiny-416

0.05508
1.44267
3.87777
0.185
0.42994
0.04655
0.17416
0.01066
0.03633
0.05322
0.0089
0.04798
0.00939
0.03464
0.00679
0.04572
0.00786

(\) w N W 0o W
N~ O = 00O O

O O W NN

87

Performance and Power Consumption of Neural Networks

Bibliography

1]

[11]

[12]

H. Andrade, L. E. Lwakatare, I. Crnkovic, and J. Bosch. Software challenges in
heterogeneous computing: A multiple case study in industry. In 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pages 148—
155, 2019.

Maneesh Ayi and Mohamed El-Sharkawy. Rmnv2: Reduced mobilenet v2 for ci-
far10. In 2020 10th Annual Computing and Communication Workshop and Confer-
ence (CCWCQC), pages 0287-0292. IEEE, 2020.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano. Benchmark analysis of repre-
sentative deep neural network architectures. IEEE Access, 6:64270-64277, 2018.

Egbert J.W. Boers and Herman Kuiper. Biological metaphors and the design of

modular artificial neural networks, 1992.

André Brodtkorb, Christopher Dyken, Trond Hagen, Jon Hjelmervik, and Olaf
Storaasli. State-of-the-art in heterogeneous computing. Scientific Programming, 18:1—
33, 10 2010.

S. Cass. Taking ai to the edge: Google’s tpu now comes in a maker-friendly package.
IEEE Spectrum, 56(5):16-17, 2019.

S. Chatterjee and S. Sen. Cache-efficient matrix transposition. In Proceedings Sixth In-
ternational Symposium on High-Performance Computer Architecture. HPCA-6 (Cat.
No.PR00550), pages 195-205, 2000.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 44-54, 2009.

E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip heterogeneous comput-
ing: Does the future include custom logic, fpgas, and gpgpus? In 2010 483rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 225-236, 2010.

Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shaochong
Zhang. Understanding performance differences of fpgas and gpus. pages 93-96, 04
2018.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable hetero-
geneous computing (shoc) benchmark suite. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, GPGPU-3, page 6374,
New York, NY, USA, 2010. Association for Computing Machinery.

R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi. Caffeinated
fpgas: Fpga framework for convolutional neural networks. In 2016 International Con-
ference on Field-Programmable Technology (FPT), pages 265-268, 2016.

88

Bibliography

[13]

[21]

22]

[24]

[25]

[26]

Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable part model. In 2008 IEEE conference on computer

vision and pattern recognition, pages 1-8. IEEE, 2008.

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21(9):948-960, 1972.

Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, and Amit Bawaskar.
Gpgpu processing in cuda architecture. arXiv preprint arXiv:1202.4347, 2012.

Daniel Graupe. Principles of artificial neural networks, volume 7. World Scientific,
2013.

Tien Ho-Phuoc. Cifarl0 to compare visual recognition performance between deep

neural networks and humans. arXiv preprint arXiv:1811.07270, 2018.

Bodun Hu and Christopher J. Rossbach. Mirovia: A benchmarking suite for modern
heterogeneous computing. CoRR, abs/1906.10347, 2019.

A. K. Jain, Jianchang Mao, and K. M. Mohiuddin. Artificial neural networks: a
tutorial. Computer, 29(3):31-44, 1996.

M. Johnson. Superscalar microprocessor design. In Prentice Hall series in innovative
technology, 1991.

Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi Electric
Research Lab TR-20003-96, 3(14):2, 2003.

A. Karki, C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow, G. Madhukeshwar
Hegde, and H. Jeon. Tango: A deep neural network benchmark suite for various
accelerators. In 2019 IEEFE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 137-138, 2019.

Peter Kogge, S. Borkar, Dan Campbell, William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, and
Robert Lucas. Exascale computing study: Technology challenges in achieving exas-

cale systems. Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Techinal Representative, 15, 01 2008.

Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10.
Unpublished manuscript, 40(7):1-9, 2010.

Jens Kriiger and Riidiger Westermann. Linear algebra operators for gpu implemen-
tation of numerical algorithms. ACM Trans. Graph., 22(3):908916, July 2003.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu vs.

cpu myth: An evaluation of throughput computing on cpu and gpu. In Proceedings of

89

Performance and Power Consumption of Neural Networks

[27]

the 87th Annual International Symposium on Computer Architecture, ISCA ’10, page
451460, New York, NY, USA, 2010. Association for Computing Machinery.

Juliane Liepe, Chris Barnes, Erika Cule, Kamil Erguler, Paul Kirk, Tina Toni, and
Michael P.H. Stumpf. ABC-SysBio-approximate Bayesian computation in Python
with GPU support. Bioinformatics, 26(14):1797-1799, 06 2010.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollar. Focal
loss for dense object detection. CoRR, abs/1708.02002, 2017.

Q. Mao, H. Sun, Y. Liu, and R. Jia. Mini-yolov3: Real-time object detector for
embedded applications. IFEE Access, 7:133529-133538, 2019.

Chris McClanahan. History and evolution of gpu architecture a paper survey. 2011.

Sparsh Mittal and Jeffrey S. Vetter. A survey of cpu-gpu heterogeneous computing
techniques. ACM Comput. Surv., 47(4), July 2015.

C. Murphy and Y. Fu. Xilinx all programmable devices : A superior platform for

compute-intensive systems gpu origins and target workloads. 2015.
Michael A Nielsen. Neural networks and deep learning, volume 2018.

Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,
Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Sub-
haschandra, and Guy Boudoukh. Can fpgas beat gpus in accelerating next-generation
deep neural networks? In Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA 17, page 514, New York, NY,
USA, 2017. Association for Computing Machinery.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
CoRR, abs/1511.08458, 2015.

Kalin Ovtcharov, Olatunji Ruwase, J. Kim, Jeremy Fowers, K. Strauss, and E. Chung.

Accelerating deep convolutional neural networks using specialized hardware. 2015.

Abel Paz and Antonio Plaza. A new morphological anomaly detection algorithm for

hyperspectral images and its gpu implementation. volume 8157, 09 2011.

Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 09, page 873880, New York, NY, USA, 2009.

Association for Computing Machinery.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242, 2016.

90

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

[48]

[49]

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley, S. Gu-
rumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers. Achieving exascale
capabilities through heterogeneous computing. IEEE Micro, 35(4):26-36, 2015.

Jacob T. Schwartz. The new connectionism: Developing relationships between neu-
roscience and artificial intelligence. Daedalus, 117(1):123-141, 1988.

Sagar Sharma. Activation functions in neural networks. Towards Data Science, 6,
2017.

Alfred Spector and David Gifford. The space shuttle primary computer system.
Commun. ACM, 27(9):872900, September 1984.

Stephan Spitz. Neue mobiltelefone: Geldborse und bankfiliale zugleich. Datenschutz
und Datensicherheit-DuD, 36(3):185-188, 2012.

S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data
objects to scratchpad for energy reduction. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’02, page 409, USA, 2002. IEEE

Computer Society.

Vignesh Thakkar, Suman Tewary, and Chandan Chakraborty. Batch normalization
in convolutional neural networksa comparative study with cifar-10 data. In 2018 fifth
international conference on emerging applications of information technology (EAIT),
pages 1-5. IEEE, 2018.

Dimitrios Tsifakis, Alistair P. Rendell, and Peter E. Strazdins. Cache oblivious matrix
transposition: Simulation and experiment. In Marian Bubak, Geert Dick van Albada,
Peter M. A. Sloot, and Jack Dongarra, editors, Computational Science - ICCS 2004,
pages 1725, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystify-
ing gpu microarchitecture through microbenchmarking. In 2010 IEEE International
Symposium on Performance Analysis of Systems Software (ISPASS), pages 235246,
2010.

S. Zafeiriou, C. Zhang, and Zhengyou Zhang. A survey on face detection in the wild:
Past, present and future. Comput. Vis. Image Underst., 138:1-24, 2015.

Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee,
Bianca Schroeder, and Gennady Pekhimenko. TBD: benchmarking and analyzing
deep neural network training. CoRR, abs/1803.06905, 2018.

91

	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Goals
	Structure

	Related Work
	Heterogenous Computing
	Neural Networks

	Heterogenous Computing
	History
	CPU
	GPU

	Accelerators
	GPU
	TPU
	FPGA

	Heterogenous Architectures
	Offloading
	Parallelism
	Memory Hierarchy

	Programming Stacks
	CUDA
	OpenCL
	TensorFlow

	Challenges

	Neural Networks
	The Neuron
	Biological Inspiration
	Mathematical Model

	Artificial Neural Networks
	Convolutional Neural Networks
	YOLO

	Approach
	Metrics
	Latency
	CPU
	RAM
	Accelerator
	Power

	Benchmarks
	Microbenchmarks
	Macrobenchmarks

	Tools
	perfstat
	Nvidia-smi

	Setup
	Server
	Desktop
	Edge

	Results
	Full data example
	Microbenchmarks
	2D convolution
	2D depthwise convolution
	2D max pooling
	ReLU activation

	Macrobenchmarks
	CNN inference
	CNN training
	YOLOv3 inference

	Discussion

	Closing thoughts
	Conclusions
	Lessons learned

	Appendix
	Results

	Bibliography

