
Masterarbeit im Studiengang
Angewandte Informatik

Variability-aware Software Defect
Prediction

Chris Wieczorek

259109

wieczo@uni-hildesheim.de

Betreuer:
Prof. Dr. Klaus Schmid, SSE

M.Sc. Sascha El-Sharkawy, SSE

Arbeitsgruppe Software Systems Engineering • Institut für Informatik
Universität Hildesheim • Universitätsplatz 1 • D-31134 Hildesheim

Eigenständigkeitserklärung

Erklärung über das selbstständige Verfassen von "Variability-aware Software
Defect Prediction"

Ich versichere hiermit, dass ich die vorstehende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der obigen Arbeit, die
anderen Werken dem Wortlaut oder dem Sinn nach entnommen wurden, habe ich in jedem
Fall durch die Angabe der Quelle bzw. der Herkunft, auch der benutzten Sekundärliter-
atur, als Entlehnung kenntlich gemacht. Dies gilt auch für Zeichnungen, Skizzen, bildliche
Darstellungen sowie für Quellen aus dem Internet und anderen elektronischen Text- und
Datensammlungen und dergleichen. Die eingereichte Arbeit ist nicht anderweitig als Prü-
fungsleistung verwendet worden oder in deutscher oder einer anderen Sprache als Veröf-
fentlichung erschienen. Mir ist bewusst, dass wahrheitswidrige Angaben als Täuschung
behandelt werden.

Hildesheim, den July 10, 2020

Chris Wieczorek

Abstract
Software defects can cause tremendous costs at several stages of a software project due
to the necessary time to find and correct the issues [JB11]. This issue can affect the flaw-
lessness or even the success of a software project due to exceeded time limits, budgets, or
just poor usability due to yet present bugs. Previous research has shown that especially
method-level software defect prediction is the most meaningful approach to support the
developers in charge and contribute to a reduction of defects and consequently the arising
costs [SHAJ12]. This study aims to investigate the suitability of a variety of 692 static
code metrics for method-level software defect prediction on the case of the Linux kernel.
The used metrics include multiple novel variability-aware code metrics, which aim to pro-
vide useful approximations of the code’s complexity that arose by implemented variability.
Furthermore, additional variability metrics are used in order to weight some of the defined
code metrics with respect to involved variability variables. A conducted literature review
has shown that neither the use of variability-aware code metrics nor the use of variability
metrics were applied and evaluated as input features for software defect prediction so far.
This study examines the usefulness of the provided software metrics, but it also provides
a comprehensive comparison of achieved prediction capabilities across the different types
of software metrics. Guided by studied literature on software defect prediction research,
two sets of experiments were conceptualized, performed, and precisely analyzed. The first
set of experiments has built meaningful feature subsets of the provided software metrics
according to their variability-awareness and whether they utilize an additional weighting
by variability metrics or not. These feature subsets were used to evaluate the suitabil-
ity of the individual types of metrics for software defect prediction. The second set of
experiments was built upon the results and experimental environment of the first set of
experiments. It aimed to combine the defined feature subsets in all possible ways to find
the overall best predictions capabilities. In addition to finding the most suitable software
metric combination for prediction purpose, these results served as a base to analyze and
extract univariate information about particularly important software metrics for the pre-
diction. The results indicate that measures of code variability are much better predictors
for defects than traditional metrics like LoC or McCabe’s Cyclomatic Complexity. Based
on these findings, it is recommended that existing approaches of defect prediction should
consider additional measures of code variability to improve their results. Common cod-
ing guidelines should pay additional attention to regulate and simplify implemented code
variability in order to reduce the risk of software defects. Further research is necessary to
develop new ways of measuring code variability across different programming languages
and cross-validate the findings of this thesis on other software projects.

i

Contents

Contents
List of Figures vi

List of Tables vi

Source code index viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Thesis Structure . 3

2 Background 4
2.1 CRISP-DM Methodology . 4
2.2 Regression and Classification . 5
2.3 Bias, Variance, Over- & Under-fitting . 5
2.4 Naive Bayes . 8
2.5 Decision Tree . 9
2.6 Random Forest . 11
2.7 Gradient Boosting Trees . 11
2.8 Artificial Neural Networks . 12
2.9 Performance Metrics . 15

2.9.1 Confusion Matrix . 15
2.9.2 Accuracy . 15
2.9.3 Precision . 16
2.9.4 Recall . 16
2.9.5 F1-Score . 17
2.9.6 AUC-ROC . 17

3 Related Work 19
3.1 General Software Defect Prediction . 19
3.2 Method-level Software Defect Prediction . 21

4 Business Understanding 24

5 Data Understanding 26
5.1 Software Metrics . 27

5.1.1 Code Metrics . 27
5.1.1.1 Lines and Statement Counts of Code 27
5.1.1.2 Software-Features per Function 28
5.1.1.3 Number of Code Blocks . 28
5.1.1.4 Tangling Degree . 28
5.1.1.5 Cyclomatic Complexity . 29
5.1.1.6 Nesting Depth . 29
5.1.1.7 Fan-In/-Out . 29
5.1.1.8 Recursive Fan-In/-Out . 31
5.1.1.9 Undisciplined Pre-Processor Usage 31

5.1.2 Variability Metrics . 32
5.1.2.1 Scattering Degree . 32
5.1.2.2 Software-Feature Size . 32
5.1.2.3 Software-Feature Definition Distance 32

iii

Variability-aware Software Defect Prediction

5.1.2.4 Cross-Tree Constraint Usage 33
5.1.2.5 Connectivity of Software-Feature 33
5.1.2.6 Software-Feature Types . 34
5.1.2.7 Software-Feature Hierarchies 34

5.2 Data Aggregation . 34
5.2.1 Cleaning of the Defects . 34
5.2.2 Cleaning of the Baseline . 35
5.2.3 Merging both Datasets . 35

5.3 Data Exploratory Analysis . 36
5.3.1 Class Balance . 36
5.3.2 Correlation & Data Distribution . 36
5.3.3 Locations . 39

6 Software Metric Subset Comparison Experiments 42
6.1 Goal . 42
6.2 Concept . 43
6.3 Pre-Processing . 47

6.3.1 High Number of Features . 47
6.3.1.1 The Problem . 47
6.3.1.2 The proposed Solutions . 47
6.3.1.3 Considered Alternatives . 49

6.3.2 Imbalanced Class Distribution . 50
6.3.2.1 The Problem . 50
6.3.2.2 The proposed Solutions . 51
6.3.2.3 Considered Alternatives . 52

6.3.3 Different Feature Scales . 52
6.3.3.1 The Problem . 52
6.3.3.2 The proposed Solutions . 54
6.3.3.3 Considered alternatives . 54

6.4 Model Construction . 55
6.4.1 Fully Connected Network . 55
6.4.2 Naive Bayes Classifier . 57
6.4.3 Random Forest Classifier . 58
6.4.4 Gradient Boosting Classifier . 58

6.5 Implementation . 59
6.5.1 Preparation Pipeline . 59
6.5.2 Recursive Feature Elimination . 60
6.5.3 Validation Routine . 65

6.6 Analysis . 68
6.6.1 Comparison of Feature Subsets . 68
6.6.2 Non-Variability-Awareness vs. Variability-Awareness 69
6.6.3 Local Scope vs. Global Scope . 70
6.6.4 Comparison of Classification Algorithms 71
6.6.5 RFE vs. normal Feature Subsets . 72
6.6.6 Comparison of Resampling Methods 73
6.6.7 Training Durations . 73
6.6.8 Interpreting the Models Performance 74
6.6.9 Interpreting the AUC-ROC Measure 77
6.6.10 Interpreting the Precision-Recall-Curve 78

6.7 Experimental Environment . 79

iv

Contents

7 Software Metric Subset Combination Experiments 80
7.1 Goal . 80
7.2 Concept . 80
7.3 Data Pre-Processing . 81
7.4 Model Construction . 82
7.5 Implementation . 82
7.6 Analysis . 82

7.6.1 General Performance Analysis . 82
7.6.2 Feature Subset Combination Ranking 86
7.6.3 Interpretation of best-performing Configuration 87
7.6.4 Analysis of individual Software Metrics’ Importances 88

7.7 Experimental Environment . 91

8 Discussion 92
8.1 Answering the Research Questions . 92
8.2 Aligning the results with reviewed literature 94
8.3 Limitations . 94
8.4 Threats to Validity . 95

9 Conclusion 97
9.1 General Conclusion . 97
9.2 Recommendation & Outlook . 97
9.3 Contribution . 98

A Appendix 99

Bibliography 120

v

Variability-aware Software Defect Prediction

List of Figures
2.1 CRISP-DM process model. 4
2.2 Graphical explanation of bias and variance. 6
2.3 Graphical explanation of the bias-variance-trade-off. 7
2.4 Differently fitted decision boundaries. 8
2.5 Schematic structure of a decision tree. 10
2.6 Schematic structure of a random forest. 12
2.7 Schematic structure of a gradient boosting classifier using decision trees. . . 13
2.8 Single neuron neural network with bias. 13
2.9 FCN architecture. 14
2.10 Confusion matrix of a binary classification problem. 16
2.11 ROC-curve. 18

5.1 Venn-diagram of the provided data. 36
5.2 Class distribution of the dataset . 36
5.3 Heatmaps of the correlations among the software metrics. 37
5.4 Kernel density estimates of the strongest related input features to the target

variable. 40
5.5 Defective rates within locations. 41

6.1 Refined procedure of Data Preparation and Modeling. 42
6.2 Usage of the dataset. 45
6.3 k-fold Cross-Validation. 46
6.4 Single neuron neural network. 52
6.5 Optimized FCN architecture. 56
6.6 Loss curves of the constructed FCN at different learning rates. 57
6.7 Optimization of the number of trees within the RF model. 58
6.8 The results of the RFE algorithm for each feature subset. 64
6.9 Validation routine setup. 68
6.10 Confusion matrices of the best-performing configurations. 76
6.11 ROC-curves of the best-performing configurations. 77
6.12 PR-curves of the best-performing configurations. 79

7.1 Confusion matrix and PR-Curve of the configuration that achieved the high-
est maximal F1-score. 88

List of Tables
3.1 Median performances achieved in [PPB18]. 21
3.2 Static code metrics for SDP used in [PPB18]. 22

5.1 Lines and Statement Counts of Code. 28
5.2 Software-Features per Function variants. 28
5.3 Number of Code Blocks variants. 29
5.4 Tangling Degree variants. 29
5.5 Cyclomatic Complexity variants. 29
5.6 Nesting Depth variants. 30
5.7 Fan-In/-Out variants. 30

vi

List of Tables

5.8 Undisciplined Pre-Processor Usage variants. 31
5.9 Scattering Degree variants. 32
5.10 Software-Feature Size variants. 33
5.11 Software-Feature Definition Distance variants. 33
5.12 Cross-Tree Constraint Usage variants. 33
5.13 Connectivity of Software-Feature variants. 33
5.14 Software-Feature Hierarchies variants. 34
5.15 Descriptive statistics of the most related metrics to the target variable. . . . 38

6.1 Zero-importance features. 60
6.2 Software metrics in the LNV_RFE feature subset. 65
6.3 Software metrics in the LPV_RFE feature subset. 65
6.4 Software metrics in the LCV_RFE feature subset. 65
6.5 Software metrics in the GPV_RFE feature subset. 66
6.6 Software metrics in the GCV_RFE feature subset. 66
6.7 Software metrics in the ALL_RFE feature subset. 66
6.8 Best achieved validation scores of each feature subset. 68
6.9 Local-scoped non-variability-awareness vs. all others. 69
6.10 Global-scoped pure-variability-awareness vs. all others. 70
6.11 Local-scoped vs. global-scoped. 70
6.12 Best achieved validation scores per classification algorithm. 71
6.13 Original vs. RFE-reduced feature subsets. 72
6.14 Best achieved validation scores per resampling method. 73
6.15 Average validation durations. 74
6.16 Top ten models according to achieved F2-scores. 75

7.1 Achieved validation scores of the second set of experiments. 83
7.2 Achieved validation scores of the second set of experiments (initial F1-scores). 86
7.3 Achieved validation scores of the second set of experiments (optimized F1-

scores). 86

A.1 Perfectly Spearman-correlated input features. 100
A.2 Fifty highest Pearson-correlated software metrics to the target variable. . . 102
A.3 Defective rates within the locations on the second level of hierarchy. 103
A.4 Software metrics in the LNV feature subset. 104
A.5 Software metrics in the LPV feature subset. 104
A.6 Software metrics in the LCV feature subset. 104
A.7 Software metrics in the GPV feature subset. 105
A.8 Software metrics in the GCV feature subset. 108
A.9 Achieved validation scores of the first set of experiments. 117

vii

Variability-aware Software Defect Prediction

Source code index
5.1 Nested function header in a CPP-condition. 27
5.2 Interrupted C-code control structure by a CPP-condition. 32
5.3 Interrupted C-code statement by a CPP-condition. 32

viii

Introduction

1 Introduction
This chapter gives a general introduction to the topic of software defect prediction (SDP)
and the content of this thesis.

SDP aims to explore patterns in software code that indicate high risks of software defects
based on a certain number of specific observations. These observations might be static
code metrics (SCM) or other information about a software module of arbitrary size. Soft-
ware modules could be methods, functions, classes, files, or any other logically separated
parts of a software project. The terms method and function depend on the type of used
programming language. Method or member function is commonly used for functions that
are associated to an object of a certain class. The term function is typically used for pro-
cedures that are not associated with an object like static code functions. Recent research
in the area of SDP has primarily used the terminology of method-level SDP because it
mostly examined software projects based on object-oriented programming languages. The
data provided to this study is based on C-code, and hence it contains only functions. Even
though the terminology is different, both describe a similar level of granularity. Thus,
sometimes the term method is used in the context of other research or SDP in general,
but the term function is used when referencing the content of data provided to this study.
Both basically describe the same.

A software defect, fault, bug, or error describes any flaw or imperfection in a software
product. The focus of this SDP study is on clear compilation errors. A code section is
considered as buggy or defective if it contains code that causes the program, system, or
application to behave incorrectly or unexpectedly.

1.1 Motivation
SDP is a powerful tool in software engineering, which can help to improve the quality
of code. High numbers of software defects cause a high amount of expensive finding and
correcting work, and hence increase the costs of a software project. Jones & Bonsignour
reported that rising costs due to finding and fixing defects are even one of the most ex-
pensive activities in a software development project [JB11]. Shihab et al. reported that
method-level software defect prediction is the most suitable approach to support develop-
ers because of its fine-grained granularity-level [SHAJ12]. Other approaches that predict
defects on source-file-level or commit-level granularity, do not reduce the necessary ef-
fort to finally locate a defect significantly [SHAJ12]. Furthermore, Menzies et al. reported
that defect prediction approaches may achieve higher probabilities to detect a defect than
manually performed code review [MMT+10].

Even though research has found that method-level SDP can provide significant benefits to
the software development process, it also stated that the status quo of defect prediction
on method-level is an unsolved problem and severely needs further research to achieve
groundbreaking results [LBMP08] [PPB18].

The software defect prediction approach in this thesis uses a variety of novel SCMs on
method-level. Most of the used metrics are variability-aware and consider implemented
code variability within functions. The Linux kernel was selected as a project to analyze
because of its large size and the high amount of applied code variability due to its product
line nature. Prior literature review has shown a severe gap in method-level defect pre-
diction using such variability-aware code metrics. The majority of studies that conducted
experiments of method-level defect prediction used traditional code metrics like McCabe’s
Cyclomatic Complexity [McC76], Halstead measures [H+77], or additional process metrics.

1

Variability-aware Software Defect Prediction

According to the best of my knowledge, an approach using measures of contained code
variability in a software product line as input features for SDP has not been examined so
far.

1.2 Goals
This section defines and describes the research questions of this thesis. The research ques-
tions are used to achieve the main goal of research while also investigating some specific
assumptions and achieve clear answers to them.

The general aim of the study is to investigate the suitability of a variety of 692 software
metrics. These metrics contain multiple novel variability-aware code metrics, which may
provide useful approximations of code complexity due to considering and analyzing imple-
mented code variability. The following paragraphs provide definitions and explanations of
the examined research questions.

[RQ1] Does the utilization of variability-aware code metrics achieve significantly better
results than non-variability-aware code metrics?

The first research question aims to examine the assumption that implemented code vari-
ability could increase the code complexity, and hence it could increase the difficulty for a
developer to create new bug-free code. The provided metrics have to be partitioned into
groups according to their variability-awareness to evaluate these groups individually. The
variability-awareness indicates whether a code metric considers C-Pre-Processor (CPP)
code or other methods to measure code variability. Any statistical superiority has to be
validated byWelch-tests. The results relate to a certain set of suitable performance metrics,
whereas one of these is considered as the primary metric. The most suitable performance
metric will be ascertained as part of the literature review and further research. There are
many possible metrics available, but not all are suitable for this sort of prediction task.

[RQ2] Does the weighting of code metrics by additional variability metrics achieve signifi-
cantly better results than non-weighted code metrics?

This second research question aims to examine the assumption that an additional weighting
of code metrics by variability metrics provides more accurate approximations of the code’s
complexity, and hence these metrics could produce more expressive input features than
non-weighted ones. The provided metrics must be separated into groups according to
their use of variability metrics to evaluate the different types of variability-awareness
individually.

[RQ3] Which software metrics are most suitable for software defect prediction?

This third research question aims to extract univariate information about particularly
important code metrics as input features for SDP on the Linux kernel. The ulterior motive
of such information is to derive clear recommendations for common coding guidelines
contributing to the reduction of software defects. The method of how to measure a code
metric’s suitability will be elaborated as part of the research.

[RQ4] What is the best-performing configuration in this software defect prediction task?

The final research question aims for the optimal configuration in this case of SDP. A
complete configuration includes any steps of pre-processing, the choice of classification al-
gorithm itself, and any algorithm-specific hyperparameters. Finally, it also includes the se-
lection of input features. The performance of a model is measured by performance metrics.

2

Introduction

These describe the prediction capability of a model from different perspectives. Depending
on the prediction task, the optimal performance metric can vary.

1.3 Thesis Structure
The next Chapter 2 provides a variety of essential knowledge for this thesis. It is divided
into multiple sections. The first section introduces the applied methodology in this study.
The following sections introduce some fundamental terminology, concepts, algorithms, and
evaluation methods of machine learning and data science. This chapter covers any neces-
sary knowledge to understand the subsequent chapters of theoretical and practical work.
Chapter 3 gives a summary of the conducted literature review, which was the first step
of diving into the research area of SDP. The chapter starts with a very general introduc-
tion to the topic and becomes more specific afterward. It introduces some important and
influential papers and discusses their findings and claims. It ends up with a summary of
learned lessons from the review. A variety of information could be extracted from previ-
ous research, which helped to work properly in this thesis. The next Chapter 4 is the very
first step of the applied project methodology. The chapter is meant to ensure a complete
understanding of the use case and purpose of the project to be performed. Hence, it gives
additional information about the reason, purpose, and environment of this study. Chapter
5 gives a detailed analysis of the provided data. The chapter is divided into three sec-
tions. The first section describes the content of the data. In this case, the data primarily
contains a large set of software metrics. All these metrics are described in this section to
ensure a clear understanding of what data are used in this study. The subsequent section
describes the process of cleaning and aggregating the provided data to get a single useful
dataset for further analyses and experiments. The final part of Chapter 5 is a summary of
a conducted data exploratory analysis. Such an analysis is a common first step of a data
science project to examine the data from a more data science point of view and reveal
obstacles and helpful or problematic properties of the data. The next Chapter 6 describes
the complete first set of experiments. This description includes any important information
about the aimed goals, the concept of how to achieve them, the elaboration of necessary
steps of pre-processing as well as details of the model construction, optimization, and final
implementation. This first set of experiments is aimed to gain the necessary information
to answer [RQ1], [RQ2], and [RQ3]. The last part of Chapter 6 is a comprehensive analysis
of the results to prepare them in order to clearly answer the research questions later. The
analysis sections typically end up with a list summarizing all important findings of the
current analysis subsection concisely. Chapter 7 builds upon the findings of the previous
set of experiments and follows the same schema as Chapter 6. It is aimed to gain the
necessary information to answer [RQ3] and [RQ4]. Chapter 8 shows the final discussion of
the results and findings of the previous work. It catches up on the findings of the analysis
sections and puts them into the context of the defined research questions. It provides clear
answers to the questions as well as some further interpretations and concerns about the
findings. Furthermore, this chapter provides an aligning of own findings with the claims of
other research. The last two parts of Chapter 8 describe the limitations and threats to the
validity of this study. These are parts of research that were beyond the scope of this thesis
and could not be covered in this study. The threats to validity are typical threats that arise
with empirical research, the use of data collected from a certain number of experiments,
and the application of statistical methods and tests.

3

Variability-aware Software Defect Prediction

2 Background
This chapter introduces some general background knowledge about the used terms and
concepts within this thesis. The first section introduces the applied methodology of CRISP-
DM, which served as a baseline to accomplish this data science project. The next sec-
tions provide a brief introduction to some fundamental terms, concepts, and algorithms
of machine learning. These include explanations of the general types of prediction tasks
addressed by supervised learning algorithms, the theory, and terminology of bias and vari-
ance as well as over- and under-fitting. The explained algorithms correspond to the applied
classification algorithms in this study. These explanations only describe the general work-
ing of the algorithms on a top-level and do not cover detailed descriptions of special cases
or all recent advances. References are given for more detailed descriptions and definitions.
The final section provides an introduction to several performance metrics being relevant
in this thesis.

2.1 CRISP-DM Methodology

CRISP-DM1 (Cross Industry Standard Process for Data Mining) is a standardized method-
ology for structured accomplishments of data mining projects. It was developed in 1996
by an incorporation of multiple enterprises. The methodology is one of the most widely
used models in this domain. It consists of six different phases, which will be introduced
in the following paragraphs. Figure 2.1 shows the complete process model of CRISP-DM.
This process model does not proceed sequentially but can include multiple repetitions of
certain phases.

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment Data

Figure 2.1: CRISP-DM process model.

The first phase of the model is Business Understanding and focuses on defining and un-
derstanding the project’s objectives, purposes, and requirements. This knowledge can be
used to form a coarse-grained preliminary project plan on how to achieve those objectives.

1Detailed information about CRISP-DM available under: http://www.CRISP-DM.eu

4

http://www.CRISP-DM.eu

Background

The second phase is called Data Understanding and includes processes meant to get fa-
miliar with the data. Those processes are a comprehensive interpretation of the meaning
of the data and a first data exploration. The previous interpretation and understanding
of the meaning can help to formulate hypotheses and assumptions to examine as part of
the data exploration. The next phase of Data Preparation covers any activities meant to
construct but also improve the quality of the dataset. Those activities can include data
aggregation, data cleaning as well as other methods of data pre-processing like resampling
or normalization. Hence, many of those activities are strongly related to the subsequent
phase of Modeling. This phase consists of any activities meant to build models like model
construction or hyperparameter optimization but also a subsequent model validation. The
validation is realized by a defined set of experiments, which is conducted according to a
certain strategy. The modeling is followed by the phase of Evaluation, which covers any
kind of reviewing activities based on the results of conducted experiments. The final stage
is the Deployment, which differs from project to project. It could either include a final
implementation to run a certain model on live data or just the preparation of a project
report.

2.2 Regression and Classification
The two most common types of problems addressed by supervised learning algorithms are
regression and classification problems. At first, supervised learning describes a group of
algorithms used to learn patterns from a set of labeled samples. The problems differ in the
type of their target variables y ∈ Y . The target variable is also called label, dependent vari-
able, or in the case of classification, class. In classification, as well as in regression tasks, a
set of input features, an input vector, predictors, or independent variables are denoted as
x = (x1, ..., xn). They are used to predict the corresponding target variable y. Any algo-
rithm utilizes a certain approach in order to learn or train a decision boundary or mapping
function f(x). The prediction of a model is denoted as ŷ and computed by ŷ = f(x). A
model learned according to any algorithm is typically called regressor, classifier, model, or
estimator. In the case of a regression task, the target variables y are typically considered
as continuous values Y ⊂ R. In the case of classification, the labels are either nominal or
ordinal categorical values Y ⊂ N0. The most algorithms provide continuous values even in
classification tasks. Those continuous values typically correspond to probabilities that a
sample belongs to a certain class. They must be converted into discrete numbers in order
to provide final label predictions. Those conversions are typically performed by applying
a simple threshold function.

2.3 Bias, Variance, Over- & Under-fitting
This section introduces the terms of bias and variance. Both are properties a model can
have. These terms are helpful to better understand the subsequent theory of over- and
under-fitting. Both concepts play an important role across several parts of this thesis.

As a first step, the total error of a prediction model is defined as given in Equation 2.1.

Errortotal = Errorbias + Errorvariance + Errorirreducible (2.1)

The Errorbias and the Errorvariance are considered as reducible errors, which are primarily
caused by poor modeling. The Errorirreducible cannot be reduced. It is like a measure of
included noise in the data. If Errorbias and Errorvariance approach zero, there are only
miss-classifications due to data issues left (e.g. anomalies or wrong-labeled samples).

5

Variability-aware Software Defect Prediction

Low
Bias

High
Bias

Low
Variance

High
Variance

Figure 2.2: Graphical explanation of bias and variance [FR12].

Errorbias basically means errors due to an oversimple model. A very high Errorbias could
be caused by a model utilizing only a small number of input features but having many
general assumptions about the underlying pattern. The result is a rather bad performance
at training time due to an under-complex decision boundary. This under-complexity is
caused by the high number of assumptions without considering the actual input features
of a sample. If the training performance is already bad, the testing performance cannot
become any better, but also not much worse (i.e. the performance does not vary much).
A model having low bias does not have many assumptions about the data, it really pays
attention to the input. Figure 2.2 illustrates the result of high and low biases. The red
dot in the middle corresponds to the true label of a test sample. The several blue dots
correspond to multiple predictions for the same test sample from a similar model trained
on slightly different training data. The predictions of a model of high Errorbias shift away
from the true label because of their poor mapping functions due to its oversimplicity caused
by the high number of assumptions. The common conceptual definition of the Errorbias

is:

The error due to bias is taken as the difference between the expected prediction
of a model and the true label which one is trying to predict. [FR12]

The Errorvariance can be interpreted as the error caused by a model’s sensitivity to train-
ing data. A very high Errorvariance could happen when a model utilizes a large number of
input features and does not make any assumptions about the data. This can cause signif-
icant changes in learned patterns depending on the provided training samples. The result
of not making any assumptions is a good performance on training data but a sharp drop
in performance on testing data. This happens due to over-complex recognized patterns
that are barely generalizable. This over-complexity could be caused by high attention to
a high number of input features. A model of low Errorvariance does not learn significantly
different patterns when trained on slightly different training samples. The over-complex
recognized patterns also cover several types of noise. A model could have considered un-
informative or even misleading features, paid attention to anomalies (i.e. samples that are
not representative for the underlying pattern) or considered confusing errors of measure-
ments. An over-complex model strongly relies on the exact data it gets, even though these
data are not of high quality. A high variance of predictions is illustrated as the dispersion
of the blue dots in Figure 2.2. In the case of such a high variance, the dots are far apart,
whereas, in the case of low variance, the dots are very close to each other. The common
conceptual definition of Errorvariance is:

6

Background

The error due to variance is taken as the variability of a model’s predictions
for a given test sample. [FR12]

Prediction
Error

Model
Complexity

over-fittingunder-fitting

optimal model

Errorvariance
Errorbias

Errortotal

Figure 2.3: Graphical explanation of the bias-variance-trade-off [FR12].

The Bias-Variance-Trade-Off describes the interplay of both types of errors. Figure 2.3
illustrates this. A high Errorbias typically comes along with a low Errorvariance because
if a model makes many assumptions about an underlying pattern, it acts quite insensitive
to the details of a sample (i.e. it is biased). Hence, it does not react with heavy changes in
the recognized patterns if the exact training data changes. A high Errorvariance typically
comes along with a low Errorbias because if the model pays much attention to the actual
input of a sample, it does not need to make any oversimplified assumptions about the
data. This means there is an obvious interplay between both properties. A low Errorbias

means a model is not oversimple due to allowing some assumptions about the data. A
low Errorvariance means a model has not learned over-complex patterns, which are barely
generalizable. Hence, the amount of Errorbias and Errorvariance depends on the complexity
of learned patterns.

This paragraph introduces the terms over-fitting and under-fitting. Over-fitting basically
means that a model has learned over-complex patterns and has lost its generalization abil-
ity (i.e. it has decreased its Errorbias while it has increased its Errorvariance). The model
has moved away from being a good predictor of unseen data to an expert in the inter-
polation of seen data. The model has not recognized the general underlying pattern and
does not have well-suited assumptions. This leads to an (almost) zero-biased model. The
fundamental reason is that the model has become too complex. A model can also under-
fit, which means it oversimplifies the underlying pattern. This results in poor predictions
for seen and unseen data. The reason is that the model has become too simple. Figure
2.4a and 2.4b show how over-fitted and under-fitted decision boundaries could look like in
two-dimensional feature space. The appropriate decision boundary shown in Figure 2.4c
pays attention to its input features but does also make necessary assumptions about the
data to keep it simple. This allows the model to recognize the underlying pattern by the
input features while ignoring non-representative samples contrary to its assumptions.

The Bias-Variance Dilemma happens when trying to minimize theErrorbias and Errorvariance

simultaneously because they affect each other. Both properties start to induce a reducible
error at a certain point but also contribute to improving the testing performance. The

7

Variability-aware Software Defect Prediction

(a) Over-fitting (b) Under-fitting (c) Appropriate fitting

Figure 2.4: Differently fitted decision boundaries.

Dilemma is the process of finding the right balance between both properties while mini-
mizing the Errortotal.

A perfect model has minimized its Errorbias and its Errorvariance with respect to the
Errortotal on testing data. This results in making a few assumptions about the data (i.e.
low bias) while considering only important signals (i.e. low variance) of a sample. This
could also be described as a model that is not learning an oversimple decision boundary (i.e.
not under-fitted) while also not learning an over-complex decision boundary (i.e. not over-
fitted). Hence, both terminologies describe a similar state of a model from different per-
spectives. An over-fitted model has a very low Errorbias but a high Errorvariance because
it has learned an over-complex decision boundary for a simple problem. An under-fitted
model has a low Errorvariance but a high Errorbias because it has learned an oversimple
decision boundary.

Typical reasons for high Errorbias or high Errorvariance are given in the following list:

• Inappropriate number of input features A model might have insufficient im-
portant features available (i.e. it is forced to make many assumptions due to lacking
information), or a model might have too many poor features available (i.e. a model
does not make any well-suited assumptions but pays attention to noisy input).

• Inappropriate algorithmic complexity A problem might require a non-linear
decision boundary of a high polynomial degree, but the used classifier provides only
linear capabilities (i.e. it is forced to make many assumptions due to lacking capabil-
ities). On the other side, an algorithm could be provided with too high complexity
that it learns unnecessarily complicated boundaries for simple problems (i.e. a model
does not need to make any well-suited assumptions because it can learn over-complex
boundaries).

• Inappropriate training time A model could have learned good patterns, but con-
stant fine-tuning led to over-complexity over time (i.e. a model had good assumptions
initially but discarded them later). On the other side, a model’s training could be
aborted before it has learned a proper decision boundary (i.e. a model was changing
from oversimple assumptions to good patterns but was interrupted too early).

2.4 Naive Bayes
Naive Bayes (NB) is a supervised learning algorithm that makes predictions based on prior
probabilities and likelihoods (i.e. conditional probabilities). In contrast to other machine
learning algorithms, NB does not need to learn for multiple iterations. The name naive
Bayes stems from the naive assumption about conditional independence of all features
x = (x1, ..., xn). This assumption allows the classifier to ease the computation of posterior

8

Background

probabilities because P (xi | y, x1, ..., xi−1, xi+1, ..., xn) is naively considered as P (xi | y).
The algorithm applies Bayes’ Theorem to compute posterior probabilities for all labels
y ∈ Y given a feature vector x. The final prediction ŷ corresponds to the highest computed
posterior probability of label y ∈ Y . Hence, it follows the classification rule given in
Equation 2.2.

ŷ = argmax
y

P (y | x1, ..., xn) (2.2)

The posterior probability P (y | x1, ..., xn) can be computed using the Bayes’ Theorem
given in Equation 2.3. It gives a probability estimation according to Equation 2.4.

P (A | B) = P (A ∩ B)
P (B) = P (A) · P (B | A)

P (B) (2.3)

P (y | x1, ..., xn) = P (y) · P (x1, ..., xn | y)
P (x1, ..., xn) (2.4)

Considering the naive assumption of feature independence, Equation 2.4 can be simplified
to the final Equation 2.5.

P (y | x1, ..., xn) = P (y) ·
∏n

i=1 P (xi | y)
P (x1, ..., xn) (2.5)

In order to determine the likelihood of continuous features x where x ∈ Rn, a Gaussian
kernel is applied and assumes a normal distribution, which is shown in Equation 2.6,
where exp denotes the exponential function x→ ex. σy and µy denote mean and standard
deviation of a continuous variable xi ∈ x for a given target y ∈ Y . The abbreviation NBG
denotes the NB algorithm applying the Gaussian kernel.

P (xi | y) = 1√
2πσ2

y

· exp
(
−(xi − µy)2

2σ2
y

)
(2.6)

2.5 Decision Tree
Decision trees are another group of supervised learning algorithms to come from a set
of input features x = (x1, ..., xn) to a prediction of the corresponding target variable y.
Decision trees are applicable to regression and classification problems. One of the most
common algorithms of decision tree learning is CART (Classification And Regression Tree)
[BFSO84]. Other common learning approaches are ID3 [Qui86], C4.5 [Qui14], or MARS
[Fri91].

A decision tree is typically structured from upside down and starts at its root node as shown
in Figure 2.5. The following nodes are considered as internal nodes that are connected to
other nodes above and below. The lowest nodes are considered as leaf nodes and correspond
to the final predictions of a tree. The connections between nodes are named as branches.
Each non-leaf node applies a test on a certain feature at a certain value (e.g. x3 <= 30).
Each branch corresponds to the outcome of a nodes test. Whereas the root node yet
contains the entire dataset, and any nodes below contain only subsets of the data depending

9

Variability-aware Software Defect Prediction

on the performed tests above. Hence, any node and any performed test divides the data
until the algorithm converges.

Level 0:
root-node

Level 1:
internal-node

Level 2:
leaf-node

Figure 2.5: Schematic structure of a decision tree.

Multiple algorithms are used to learn decision trees. All share a similar approach of (1)
propose multiple splits, (2) evaluate all of them considering a certain splitting criterion,
(3) select the best split, and (4) repeat until convergence. The individual algorithms differ
in their approaches to create potential splits to evaluate, their applied splitting criteria,
and their definition of the point where the algorithm converges. The following paragraph
describes how a decision tree is learned using Gini Impurity.

The Gini Index is applied as the splitting criterion in order to enforce the tree to minimize
the likelihood that a randomly chosen sample of a node would be wrongly classified, if the
classification would be done randomly, according to the class distribution of the node’s
subset [RS04]. This means the algorithm strives to achieve as many pure leaf nodes as
possible because the likelihood of wrong classifications on randomly chosen samples is zero
on pure nodes. Hence, the likelihood of wrong classification corresponds to (1− likelihood
of correct classification), which is given in Equation 2.7, where pi denotes the probability
that a sample belongs to a certain class i, and Y represents all possible labels within the
dataset.

Gini Index = 1−
Y∑

i=1
(pi)2 (2.7)

Gini Index yields values between zero and one, where zero denotes the best possible value
(i.e. zero likelihood of the wrong classification for randomly chosen samples) and a pure
leaf node. A value of one would denote a subset of randomly distributed samples of various
classes. A value of 0.5 denotes a node of equally distributed samples of multiple classes.
The final prediction of a tree typically corresponds to the probability of a certain label
equal to the class distribution of the final leaf node. The computation of the Gini Index is
an important part of the Gini Impurity approach, but the algorithm includes some further
steps that are shown in Algorithm 1.

In the case of learning a regression tree, the algorithm works quite similarly. The splitting
criterion changes to a certain loss or error function like MSE (Mean Squared Error) or
MAE (Mean Absolute Error) as shown in Equation 2.8 and 2.9, where k denotes the total
number of samples within a node’s subset.

10

Background

Algorithm 1 Classification tree learning using Gini Impurity
1: for all proposedsplits do
2: for all branches do
3: nodeSize ← number of samples in this branch’s node

number of samples in parent node
4: Gini Index ← Compute Gini Index of this branch’s node
5: Weighted Gini Index ← Gini index · nodeSize
6: end for
7: Σ weighted Gini Index ←

∑
weighted Gini Index each branch

8: end for
9: Best split ← argmin Σ weighted Gini Index

MSE(y, ŷ) = 1
k

k∑
j=1

(yj − ŷj)2 (2.8)

MAE(y, ŷ) = 1
k

k∑
j=1
|yj − ŷj | (2.9)

The prediction ŷ becomes the average of all labels of the samples contained in a leaf node.
The best split is always considered as the one providing the lowest error measure.

2.6 Random Forest
Random Forest (RF) [Bre01] is an advanced ensemble technique based on decision trees.
Instead of learning a single tree, it learns plenty of uncorrelated trees, lets all of them
make predictions, and takes advantage of the simple concept of trusting the majority. The
RF algorithm applies two key concepts to learn multiple uncorrelated decision trees. On
the one hand, all learned trees use a randomly selected input feature subset, and on the
other hand, all trees are learned on a randomly selected subset of training samples. These
two concepts are the reason why it is called random forest. The random sampling of data
points is also known as subsampling with replacement or bootstrapping. The procedure of
bootstrapping the data, learning multiple models, and averaging the individual predictions
in order to form a final ensemble prediction is known as bootstrap aggregating or bagging.
Hence, RF is a bagging algorithm, but it even extends this concept by randomly selected
input feature subsets. These concepts provide RFs to be more robust to outliers and noise,
and less prone to over-fitting [Bre01].

Figure 2.6 shows a simplified diagram of the RF algorithm. On the first level, (1) the entire
training dataset is bootstrapped to provide training data for the individual trees of the
ensemble. (2) Each of these trees utilizes a random selection of features to learn according
to the algorithm described in Section 2.5. Once the trees are learned, (3) each tree makes
predictions on the testing data. The final step is that (4) all predictions are averaged to
the final ensemble prediction. Figure 2.6 illustrates that all trees of the forest are arranged
horizontally, and hence there are no dependencies among the trees. This leads to a high
parallelizability allowing a very efficient computation.

2.7 Gradient Boosting Trees
Gradient Boosting (GB) [Fri01] [Fri02] is another approach typically utilizing decision
trees to form an ensemble and improve the prediction capability of a classifier. It is an ad-
vancement of the first boosting algorithm AdaBoost (Adaptive Boosting) [FS+96] [FS95],

11

Variability-aware Software Defect Prediction

entire dataset

subset 1 subset 2 subset j...

majority voting

final prediction

Step 1:
Bootstrapping

Step 2:
Learn trees on
random features

Step 4:
Ensemble prediction

Step 3:
Individual predictions

Le
ar
ni
ng

P
re
di
ct
in
g

Figure 2.6: Schematic structure of a random forest.

which allows the use of a variety of loss functions to compute the residuals. The learned
trees within a GB ensemble are called weak learners.

In contrast to the previously described RF approach, GB does not use bagging but boosting.
Boosting basically means learning an ensemble of multiple models but in a sequential
manner. Boosting generally tries to build new models that learn from the previous model’s
mistakes, which are called residuals and are computed as given in Equation 2.10. This is
the reason why GB-based models are badly parallelizable by nature.

residual = actual y − current prediction (2.10)

Figure 2.7 shows a simplified diagram of the GB algorithm. It basically consists of five
steps. At first, (1) train a single decision tree, (2) apply the learned tree to predict training
samples and (3) calculate the tree’s residual and define it as the new target. (4) This
procedure is repeated multiple times. Once all trees of the ensemble are learned, it is able to
make predictions. Therefore, (5) all testing samples pass the entire ensemble sequentially,
and the last tree outputs the final prediction. Hence, the ensemble is built by adding trees
that are learned in order to rectify the mistakes made by the previous tree. Due to this, the
ensemble needs to use regression trees instead of classification trees because the targeted
residuals of a previous tree are real values and no discrete class labels anymore.

2.8 Artificial Neural Networks
The term artificial neural network (NN) encompasses plenty of networks based on a similar
concept. This section introduces the fully connected network (FCN), feedforward network,
or multilayer perceptron, which was initially proposed in [Ros58]. NNs generally consist

12

Background

entire dataset

residual entire dataset

residual entire dataset

final prediction

Step 1:
Learn tree

Step 2:
Predict on train

data

Step 3:
Calculate residual
& set as target

Step 5:
Testing data passes entire
ensemble sequentially to

get final prediction

Step 4:
Repeat Step 1-3
multiple times

Figure 2.7: Schematic structure of a gradient boosting classifier using decision trees.

of many simple units called neurons. These are interconnected by weighted links to form
complex structures.

A single neuron works quite simple. It sums up the arriving weighted inputs and processes
this sum by an additional function called activation function. Figure 2.8 shows a single
neuron fed by three inputs x1, x2, x3, and weighted by corresponding coefficients, denoted
as w1, w2, w3.

ŷ

x1

x2

x3

w1

w2

w3

b

Figure 2.8: Single neuron neural network with bias.

Furthermore, an additional bias value b1 is added to the sum. This value allows the neuron
to better fit any pattern without exclusively relying on the neuron’s inputs. The resulting
sum is processed by the activation function ϕ and computes the final output, which is
denoted as ŷ. Equation 2.11 and 2.12 describe the computation of the neuron’s output.

Σ =
j∑

i=1
xiwi + b (2.11)

ŷ = ϕ(Σ) (2.12)

The use of activation functions enables the network to learn non-linear decision boundaries.
Two commonly used activation functions are the sigmoid function and the ReLu function.
Both are defined as shown in Equation 2.13 and 2.14.

13

Variability-aware Software Defect Prediction

sigmoid(x) = σ(x) = 1
1 + e−(x) (2.13)

ReLu(x) = max(0, x) (2.14)

The sigmoid function provides values ∈ [0, 1], which makes it useful when predicting
probabilities (e.g. in a classification task), and Relu provides values ∈ [0,∞], which makes
it useful in the case of a regression task. In the case that the regression task requires
negative values as well, a linear function is applicable.

FCNs typically contain multiple layers with multiple neurons each layer to learn complex
decision boundaries. Figure 2.9 shows a small FCN architecture of a single input layer, a
single hidden layer, and a single output layer.

x1

x2

x3

wij

wjk

ŷk

Input Layer ∈ Ri Hidden Layer ∈ Rj Output Layer ∈ Rk

Figure 2.9: FCN architecture.

Any of the shown neurons works as described previously. The used activation functions can
differ across the layers. The network is considered as fully connected because any neuron
from a previous layer is connected to any neuron on an immediately subsequent layer.

In order to train the FCN, a loss function is used. Loss functions compare the actual
networks output ŷ with the ground truth y, and provide a measure of distance. The
network is adjusting all its weights to minimize a certain loss function. In the case of
binary classification, the loss function to minimize is binary cross-entropy, which is defined
as shown in Equation 2.15, where m denotes the number of all available training samples
in this training iteration and ŷn is the network’s prediction for a sample n.

LBCE(y, ŷ) =
m∑

n=1
yn log(ŷn)− (1− yn) log(1− ŷn) + λR(w) (2.15)

The latter term λR(w) adds a regularization term to the loss function, which would lead to
an increased loss once the learned weights become too high. This term forces the model to
keep its weights as low as possible in order to avoid over-fitting and enforce simplicity.

In order to minimize the loss function, the FCN applies an algorithm called stochastic
Gradient Descent (SGD) and derives gradients for all of its weights. These gradients can
be interpreted as pointing in the direction where the given loss function increases most
rapidly. Hence, the negative gradients point in the direction where the given loss function

14

Background

decreases most rapidly. All weights are moved in the computed directions in order to
minimize the overall loss. Each derivation uses a subset of samples that are applied to
the loss function, and hence each training iteration or training step changes the weights
to better fit the provided set of samples. This set of samples is called batch or mini-
batch. Equation 2.16 shows the update rule of a single training iteration according to the
vanilla gradient descent algorithm, where α denotes the learning rate. This learning rate
determines the step size to move in the direction of the negative gradients.

wi = wi−1 − α
∂L

∂w
(2.16)

SGD considers only a subset of samples in a training iteration to simplify the computation
and reduce memory consumption by a lot. This also lets the algorithm conducting multiple
training iterations within one single epoch. One epoch is defined as one complete pass of the
entire training data. An NN is commonly trained for many epochs, and hence the network
sees all training samples multiple times. On each training iteration, the algorithm changes
its weights to better fit the targetted labels of the current mini-batch. Nowadays, FCNs
are typically trained using more sophisticated optimizers like Adam [KB14] or RMSProp2.
An optimizer basically means the applied update rule for a single training iteration.

2.9 Performance Metrics
This section provides definitions of the most common performance metrics and evaluation
methods in machine learning and statistics.

2.9.1 Confusion Matrix

The confusion matrix is not a performance metric but a common evaluation method to get
insight into a model’s prediction capability. It provides precise information about how a
model predicts, what it is capable of, and what type of samples cause difficulties. In the case
of a binary classification problem, the matrix looks like Figure 2.10. The confusion matrix
is the foundation for some further measures like accuracy, precision, recall, or F1-scores.
The four different abbreviations in Figure 2.10 mean true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN). False positives are also considered as
type I errors, and the false negatives are also considered as type II errors. The meaning of
these values is straightforward, e.g. if a model predicted an actual defect as a defect, the
prediction is true on a positive sample, hence it hits a true positive. The remaining values
follow the same schema, respectively.

2.9.2 Accuracy

The perhaps most common performance metric is accuracy. Accuracy provides a measure
of correctly predicted labels. It only provides the proportion of true predictions among the
overall number of classifications. The accuracy does not indicate specific weaknesses or
strengths of a model. To get a deeper insight, further measures are necessary. The metric
is computed according to the formula given in Equation 2.17.

accuracy = TP + TN

TP + FP + FN + TN
(2.17)

2RMSProp is an unpublished adaptive optimizer proposed by Geoff Hinton in his lecture. Available under:
https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf

15

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Variability-aware Software Defect Prediction

TP FP

FN TN

defective healthy

de
fe
ct
iv
e

he
al
th
y

actual class

pr
ed

ic
te
d
cl
as
s

Figure 2.10: Confusion matrix of a binary classification problem.

Accuracy does not serve as a robust measure in the case of imbalanced class distribution. If
a test set contains only 100 positive samples but 10,000 negative samples, accuracy could
lead to wrong conclusions about prediction capabilities. The model could simply predict
a negative label for any sample and would achieve an accuracy of about 99%. This value
would mean an almost perfect model although it is clearly not.

2.9.3 Precision

Precision is another metric, which is based on the confusion matrix. It provides informa-
tion about what proportion of all positive predictions is correct. A high precision could
indicate that a model found one very reliable pattern to recognize positive samples. This
does not necessarily imply a good capability in recognizing positives generally. A model
could behave very reserved and predict only positive labels for a minor share of all positive
samples. This could lead to a very high precision even though the model has only consid-
ered a minority of positive samples. Hence, precision is only a single perspective on the
performance and does not indicate any prediction capability if considered solely. Further
measures are necessary to get an accurate idea about the model’s performance. Precision
is computed as shown in Equation 2.18.

precision = TP

TP + FP
(2.18)

2.9.4 Recall

Recall or sensitivity is an important addition to precision. As already mentioned, the
precision does not provide sufficient information to get an idea about the model’s capability
if applied solely. The combination of precision and recall provides much better insight. The
recall is the proportion of overall found positive samples and is computed according to
Equation 2.19.

recall = TP

TP + FN
(2.19)

This measure is necessary to assess precision the right way and vice versa. It is not hard
to achieve a high precision regardless of the recall. The classification threshold could be
set to 0.99, which would cause the model to only predict a positive label when it is quite
sure about this. This is likely to achieve high precision at the expense of recall. Only the
consideration of recall as an addition to the precision would reveal the poor performance.

16

Background

On the other side, a model is likely to achieve a high recall if the classification threshold
would be set to 0.01. This would cause a model predicting a positive label if it would have
the slightest indication for that. This, in turn, would increase the recall at the expense
of precision. Again, only the consideration of both, precision and recall, would reveal the
poor performance. As a conclusion, precision and recall are poor performance indicators
if used alone, but they provide a good insight into prediction capability if they are used
in combination.

2.9.5 F1-Score

The F1-score, F-measure, or Fβ-score is a performance metric based on achieved measures
of recall and precision. The previous subsection already pointed out the trade-off between
precision and recall and the importance of considering both values at the same time. The
F1-score is the harmonic mean of precision and recall, and it is a specialization of the more
generic Fβ-score. The F1-score is computed as given in Equation 2.20, which corresponds
to an Fβ-score using β = 1. The more general measure of Fβ-score is defined as given in
Equation 2.21.

F1 -score = 2 · precision · recall
precision+ recall

(2.20)

Fβ-score = (1 + β2) · precision · recall
(β2 · precision) + recall

(2.21)

While the F1-score gives equal priority to precision and recall, the Fβ-score can shift the
priority in favor of one of both measures. The β denotes the more-importance of recall
over precision, which can be meaningful depending on the purpose of a certain classifier.
If β = 2, the recall would get twice the amount of importance than precision.

2.9.6 AUC-ROC

The AUC-ROC (Area Under the Curve - Receiver Operating Characteristics) [HM82] is
a non-threshold-dependent performance metric. While all previously introduced metrics
depend on the defined classification threshold, the AUC-ROC does not. It considers a va-
riety of thresholds and tries to approximate the overall prediction capability. AUC simply
means the computation of an integral below a function. ROC corresponds to a plot of
a model’s True Positive Rates (TPR) against its False Positive Rates (FPR) while con-
sidering multiple thresholds. Hence, the ROC-curve is a graphical evaluation method. An
example plot is shown in Figure 2.11.

TPR and FPR are computed as given in Equation 2.22 and 2.23.

TPR = recall = TP

TP + FN
(2.22)

FPR = FP

FP + TN
(2.23)

TPR is equal to the previously introduced measure of recall. FPR indicates how much
a model tends to produce false alarms. Hence, there is a clear interplay between TPR
and FPR. This interplay is illustrated by the ROC-curve. The AUC-ROC is computed to
provide an easier interpretable measure of the curve itself.

17

Variability-aware Software Defect Prediction

Figure 2.11: ROC-curve.

Figure 2.11 shows a typical ROC-plot of an arbitrary model. The plot will be generated
by computing TPR and FPR on a range of different thresholds. These resulting points
will be interpolated to get the final curve. A random prediction in the case of binary
classification would result in a straight diagonal as shown in the plot. A diagonal line
would result in an AUC-ROC of 0.5. A perfect classifier would achieve a TPR of 1.0 at
an FPR of 0.0 at any threshold. Such a curve results in an AUC-ROC value of 1.0. An
optimal threshold configuration, according to the ROC-curve, maximizes the TPR while
minimizing the FPR. This means a value as large as possible on the y-axis and a value as
low as possible on the x-axis.

The next chapter provides a summary of the conducted literature review. The gained infor-
mation from this process served as a baseline to design appropriate experiments described
in the following chapter.

18

Related Work

3 Related Work
This chapter provides an overview of the research in the area of SDP. The first section
starts with a very general introduction to different aspects and areas of SDP. The following
section provides a more in-depth analysis of method-level SDP. Both sections provide a
review of several influential and related research papers. The final part of this chapter is
a summary of the learned lessons from the literature review.

3.1 General Software Defect Prediction
An early and important case study about SDP was conducted by Lessmann et al. [LBMP08].
The paper provided a comprehensive framework for SDP research and implemented 22
classifiers applied to multiple publicly available datasets from the NASA3 repository. This
repository contains ten different datasets of a variety of SCMs or product metrics. All
these datasets belong to software products of different sizes. The metrics include the most
traditional ones like lines of code, Halstead attributes, or McCabe’s Cyclomatic Complex-
ity, among others. All these metrics were generated on a module-level granularity. The
sizes of datasets range from very small (125 modules) to moderate (9,537 modules). The
shares of defective samples range from 0.51% to 48.8%. As a result of this case study, Less-
mann et al. recommended using AUC-ROC as an evaluation metric because it separates
the predictive performance from class and cost distributions, which are project-specific
characteristics that may be unknown or change. They also concluded the suitability of
metric-based SDP and emphasized the need for further research in the area of software
metrics and other explanatory variables to extract more useful information from software
products. They also stated that the best-performing models seemed to be RFs, support-
vector-machines (SVMs), and NNs.

One year later, Catal and Diri provided another comprehensive overview [CD09] about
SDP and how it is tackled nowadays. They conducted a systematic literature review and
put some facts straight. The review was mainly focused on the type of applied software
metrics, software metrics’ granularity and the type of used datasets (i.e. whether they are
publicly available, private, or unknown). They categorized the software metrics and predic-
tion experiments according to their scopes or granularity-levels as follows: method-level,
class-level, component-level, file-level, process-level, and quantitative-level. Quantitative-
level metrics mean measurements like CPU utilization or disk usage during runtime. They
considered 74 papers in their review, and none of them utilized any kind of variability-
aware software metrics. Because many of the reviewed papers used private datasets, it is
not easy to keep track of the number of contained software product lines at this point. It
is rather unlikely that the datasets did not contain any software product line since papers
like [KCH+90] [KJD02] from 1990 had driven the research and development of software
product lines by a lot. This was of interest because software product lines typically make
use of code-variability on a large scale.

In 2012 Hall et al. conducted another systematic literature review [HBB+12] and con-
sidered 208 defect and fault prediction studies. The number of comprehensively reviewed
studies was 36 because many papers did not provide sufficient information about their
applied approaches. In addition to [CD09], Hall et al. reported about the achieved per-
formances of implemented algorithms in the reviewed papers. The review made use of
precision, recall, and F1-score to report the achieved prediction capabilities. They also
reported AUC-ROC as a performance metric partially. Whereas the majority of papers
treated SDP as a classification problem, they also reviewed a small number of case studies

3Available under: http://promise.site.uottawa.ca/SERepository/datasets-page.html

19

http://promise.site.uottawa.ca/SERepository/datasets-page.html

Variability-aware Software Defect Prediction

treating SDP as a regression problem. Those papers predicted numbers of defects con-
tained in a module, and hence they used error measures like MAE or MSE. Due to that,
it was not possible to convert those results into comparable measures of classification ap-
proaches. Hence, in order to achieve comparable results, it is recommended to treat SDP
as a classification task. Hall et al. analyzed the applied prediction algorithms, the used
sort, size, and maturity of datasets and the considered software metrics as input features
in the studies. They provided a very comprehensive overview of the reviewed papers and
gave a good insight into the ongoing research on this topic. They categorized the metrics
of the case studies in product metrics (i.e. traditional SCMs about size and complexity
of code sections), process metrics (i.e. information about previous changes and defects in
modules within the repository), developer metrics (i.e. socio-technical metrics to profile
developers in charge) and the use of the text of source code itself. The source code was used
to extract additional properties (e.g. the number of used &&-operators in a module). The
best results were achieved by approaches using combinations of SCMs, process metrics,
and source code text by Shivaji et al. [SWJAK09]. These experiments were performed on
file-level granularity. Models that applied only SCMs performed worse [CBK09] [DP02]
[KM08] [KS04] [MK10] [MPS08], which seemed to corroborate the superiority of process
metrics. The use of socio-technical metrics about developers could partially improve the
performance of models [BNG+09]. Papers that applied feature selection algorithms im-
proved their results as well in most cases [SWJAK09] [KGS10] [BNG+09]. Hall et al.
also concluded that at this point, relatively simple models like NB or logistic regression
performed best [HBB+12]. This is a bit contrary to the findings of Lessmann et al. in
[LBMP08]. Hall et al. reported that SVM-based models and NNs performed worse than
expected [HBB+12]. These two techniques achieved the second and third best predictive
performances in [LBMP08]. This could be caused by the fact that these more complex
models are highly dependent on the selected hyperparameters. Hence, they strongly suf-
fer from bad configurations. Provided comparisons and achieved values are not presented
here because they seem to be too far-fetched and not comparable due to major differ-
ences in the tasks and taken approaches. The reviewed papers differ from this thesis in
terms of their prediction-granularities, types of applied software metrics, sizes, qualities,
and balances of the datasets. Anyway, Hall et al. stated that there is basically no general
answer to the question about the right modeling technique [HBB+12]. It depends on the
individual problem in terms of data, the developer’s expertise in modeling, and the effort
spent on hyperparameter optimization. They also stated that they did not find any evi-
dence about a correlation between the granularity-level of predictions and performances.
Hence, method-level defect prediction seems to be a meaningful approach. Finally, they
concluded that some papers did not treat the imbalance of the dataset optimally. This
might have harmed the training processes as well as the reported results. The entire lit-
erature review does only contain a single paper applying defect prediction on the Linux
kernel [KB08]. This paper treated SDP as a regression problem and was aimed towards
defect prediction in software versioning. So neither the results nor the use case is com-
parable to this thesis. Furthermore, the literature review did not mention a single paper
utilizing variability-aware software metrics for defect prediction.

Most of the papers performing and analyzing SDP are focused on a coarse-grained prediction-
granularity like class-level or even higher. Many papers achieved good results in SDP and
found important and generally applicable information, e.g. the correlation of complexity
metrics and software defects [ZPZ07]. But there is a severe need for more fine-grained
SDP research [PPB18]. The study from Shihab et al. [SHAJ12] found that the research in
SDP has got a little off track because developers, as potentially supported actors by SDP,
consider class or module-level defect prediction as way too coarse-grained for practical

20

Related Work

usage. In the case of such high granularity predictions the prone sections are too large to
significantly reduce the amount of examination effort to ensure a module does not contain
any defect [GDPG12]. Owed to the fact that large classes and modules are more likely to
be bug-prone [KDPGA12], the effort to identify the particularly prone code sections inside
a module is moderate to high [BBM96] [GFS05] [OWB05].

Finally, none of the reviewed papers applied variability-aware software metrics to SDP.

3.2 Method-level Software Defect Prediction
This section provides a review of literature explicitly addressing method-level SDP. This
thesis aims for method-level SDP, and hence further investigation in this area could provide
valuable information. These information can help in the conceptualization and evaluation
of experiments as part of this thesis.

The first papers that were focused on fine-grained SDP on a method-level granularity are
[MGF06] and [TBTM10]. Papers like [HMK12] [GDPG12] and finally [PPB18] deepened
the research on this granularity-level. Hata et al. [HMK12] primarily focused on process
metrics, whereas Giger et al. [GDPG12] used an additional set of product metrics in com-
bination with process metrics. Giger et al. reported very good performances like achieved
F1-scores of 0.86 and AUC-ROC values of 0.86 as well. They found a superiority of process
metrics over product metrics and claimed that the use of only product metrics does not
provide adequate results. Pascarella et al. criticized the applied validation approach in
[GDPG12] and reproduced the experiments in order to validate the results. Additionally,
Pascarella et al. conducted all experiments with a more realistic evaluation approach. The
defect prediction experiments were applied to 22 Java projects. The results of Pascarella
et al. show that the achieved performances by process metrics drop immediately as soon
as their reworked and realistic validation strategy was applied. The achieved performances
were very similar across product metrics, process metrics, and the combination of both.
Table 3.1 shows achieved performances from Pascarella et al., where S indicates the use
of SCMs, P indicates the use of process metrics, and S & P the combination of both.

Table 3.1: Median performances achieved in [PPB18].

Algorithm F1-score AUC-ROC

S P S & P S P S & P
Baysian Network .59 .60 .61 .53 .52 .53
J48 .62 .62 .63 .51 .51 .51
Random Forest .64 .61 .63 .52 .51 .52
SVM .62 .58 .62 .53 .53 .53

The results of conducted experiments by Pascarella et al. disproved any superiority of pro-
cess metrics over product metrics. Even the combination of both did only achieve minimally
better results. Hence, Pascarella et al. stated that method-level bug prediction is a non-
solved area that requires further research [PPB18]. In terms of pre-processing, Pascarella
et al. applied smote-resampling to cope with the imbalanced dataset and correlation-based
feature selection [Hal99] to reduce multicollinearity among the data. Any comparisons
across different datasets must be done carefully. Especially the F1-score strongly depends
on the class balance of the test dataset. Generally, performances should be only compared
among predictions using the same data. The applied SCMs in the research of Giger et al.
and Pascarella et al. are shown in Table 3.2. All but three of them are also contained within
the provided data of this study. The research did not report any particular importance of
a metric.

21

Variability-aware Software Defect Prediction

Table 3.2: Static code metrics for SDP used in [PPB18].

Metric Description

FanIN # of methods that reference a given method
FanOUT # of methods referenced by a given method
LocalVar # of local variables in the body of a method
Parameters # parameters in the declaration
CommentToCodeRatio Ratio of comments to source code (line based)
CountPath # of possible paths in the body of a method
Complexity # McCabe’s Cyclomatic Complexity of a method
execStmt # of executable source code statements
maxNesting Maximum nested depth of all control structures

Lessons learned The following list provides a summary of the most important findings
of the literature review. These should be considered while designing experiments as part
of this study.

a) Prediction-granularity The method-level defect prediction might be the most
supportive and efficient prediction-granularity for software developers because of
the significantly reduced effort when reviewing prone code sections [HMK12].

b) Type of prediction task It is recommended to treat SDP as a classification task
in order to achieve easier interpretable results. Especially in the case of more fine-
grained defect predictions like method-level SDP, it makes much more sense to treat
the task as a classification because it is rather unlikely that functions contain multiple
errors.

c) Software metrics Traditional SCMs seemed to perform poorly when they were
applied solely. The use of variability-aware code metrics for SDP seems to be a novel
approach and could provide further improvements to SCM-based method-level SDP.

d) Prediction algorithms There is no general answer to the question about the best
classification algorithm or modeling technique. Hence, a variety of well-established
algorithms should be selected and validated.

e) Performance metrics Most performance metrics are poor indicators of a model’s
performance if considered solely. A good approach is to select a set of recommended
performance metrics. All of them should be recorded, reported, and analyzed in order
to get a good insight into a model’s prediction capability. The set of evaluation met-
rics should include precision, recall, F1-score, and AUC-ROC measure. Additional
metrics could be considered as well. The recording of multiple performance metrics
could also allow a better comparison to other experiments.

f) Availability of the dataset It is highly recommended to apply SDP on publicly
available datasets. In the case of self-mined data, the data should be published to
ensure availability. Several papers did not provide the used data, which has prevented
further research or external validation of these projects.

g) Data preparation It is essential to comprehensively describe and explain all steps
of cleaning and pre-processing. These information are important for the external
validation of the results and the taken approach.

h) Class imbalance The highly imbalanced class distribution of the dataset is an issue
that should be addressed in most cases. The appropriate method depends on the
actual classification algorithm. Some algorithms suffer more from that than others.

22

Related Work

Pascarella et al. and Giger et al. applied smote-resampling [CBHK02] according to
the recommendations of [Cha09] to cope with this class imbalance. The use of smote-
resampling provided promising results and should be considered within this study
as well.

i) Validation Consider recommendations of [TMHM16] in order to perform an ap-
propriate k-fold Cross-Validation (k-fold CV) using ten folds. 10-fold CV is the
most widely used method of validation in the reviewed literature [GDPG12] [Gra12]
[HMK12] [PD07] [JPT16] [WSS14] [SMWO10] [SWHJ14].

The next chapter gives an additional introduction to the business case of this project. It
provides further information about the environment and purpose of this study and is the
first stage of the applied CRISP-DM methodology.

23

Variability-aware Software Defect Prediction

4 Business Understanding
This chapter provides additional information to the business case of this project. The
following paragraphs briefly describe a part of the ongoing research of the SSE group of
the University of Hildesheim. Furthermore, the goal, purpose, and project environment is
described more precisely.

The SSE research group examines several aspects of software product line engineering,
among others. One particular characteristic of a software product line is the fact that it
realizes code variability on a large scale. In order to implement this variability, a variety
of techniques can be applied (e.g. parametric polymorphism, make-file-based variability, or
conditional compilation). The different techniques take into account at different binding
times (e.g. configuration time, compilation time, or run time) and provide different kinds of
variability-granularity (e.g. make-file-based variability is a more coarse-grained technique
than the conditional compilation of a single statement).

Ongoing research of SSE addresses how the complexity of code can be measured and how
this complexity relates to code proneness. The focus of this research is on software product
lines. There are various approaches to measure or approximate the complexity of a piece
of code. One way of assigning code complexity is to use software metrics. There are a lot
of well-established software metrics available that are used to measure specific complexity
characteristics of a certain code section.

The main goal of this thesis is to examine the suitability of a variety of novel variability-
aware code metrics. The assumption is that the high amount of code variability contributes
to an increased code complexity, which in turn could contribute to an increased defect
proneness. The complexity increases because developers need to consider and understand
code, which is variable and depends on several variability variables. There might be func-
tions that work differently under certain circumstances or variables that are only available
conditionally. Hence, a developer has to implement new code while considering existing
code under multiple conditions. Thus, sophisticated measures of this variability could pro-
vide useful approximations of the complexity and may serve as meaningful predictors in
SDP.

As mentioned, one approach to realize code variability is conditional compilation. In the
case of C-based projects, the CPP is used to analyze the code prior to the C-compiler.
The CPP-directives are implemented using special CPP-code. These directives are used to
include libraries or decide about what parts of source code to compile. Traditional SCMs
basically ignore this kind of code and only analyze compiler code.

Hence, the measured source code does not really correspond to the conditionally com-
piled source code. Thus, some software metrics do not provide proper measures and only
give poor approximations of the actual complexity of the source code. These metrics are
not variability-aware. The provided data contain multiple metrics, which measure the
contained variability within code exclusively, but it also contains metrics that provide
combined measures of complexity due to variability and traditional complexity measures.
The present software metrics in the provided data are a part of the metrics defined in
[ESKS19].

The number of metrics within the provided data is 692. The number of totally defined
metrics in [ESKS19] is about 23,000. All metrics were mined from the Linux kernel by

24

Business Understanding

MetricHaven4. The Linux kernel serves as an ideal showcase due to its large size, the high
number of developers, and the high amount of implemented code variability.

One reason why it is worth examining the correlation of code complexity and code prone-
ness is to provide guidelines or recommendations for developers about what to avoid or
obey in order to reduce the number of defects. There are already tools available that
work as part of an IDE and continuously estimate the current risk of a defect in a certain
code section. This shall help developers to keep their code simple and reduce the risk of
defects.

The correcting of software defects is a very time-consuming and expensive activity of a
software development project. Jones & Bonsignour reported it is one of the most expensive
ones [JB11]. Particularly when considering that the costs for correcting a defect drastically
increase with the project’s progress. While the costs for a bug-fix are quite low at the
prototyping stage, it becomes way more expensive at a later time in a project. This happens
because the fix of a fundamental software defect could imply major changes in additional
components based on that. Hence, it is worth spending the right amount of effort and
attention on the emerging complexity of code in order to reduce the high costs due to
finding and correcting defects.

In order to assess the suitability of the provided metrics, SDP experiments will be con-
ducted. A good performance can be used as an indicator of the provided input features’
suitability. Subsequent analyses of achieved results shall provide insights into the useful-
ness of certain subsets of metrics.

The next chapter gives a first introduction to the data. The first part introduces the
meaning of the metrics, and the subsequent part provides a data exploratory analysis
revealing some interesting characteristics.

4Available under: https://github.com/KernelHaven/MetricHaven

25

https://github.com/KernelHaven/MetricHaven

Variability-aware Software Defect Prediction

5 Data Understanding
This chapter introduces the used dataset in this study. In the first part of the chapter,
the software metrics being part of the dataset are explained. The second part explains the
procedure of aggregating, cleaning, and merging the data to prepare one useful dataset for
all further analyses and experiments. The third part of this chapter provides the results
of a data exploratory analysis, which is meant to reveal interesting characteristics of the
dataset.

In the area of software engineering and especially on the domain of software product line
engineering, the term feature typically means a configurable property of an application or a
software system. A feature typically corresponds to a certain code variability at a variation
point. As introduced in Section 2.2, the term feature also relates to the input features or
observations that are provided to a model in order to make predictions. Hence, the meaning
of feature differs between the domain of data science and software engineering.

In order to avoid any confusion due to ambiguous terminology, this paragraph defines
the meaning of important terms distinctly. A configurable property of an application is
considered as variability. Each variability of code is denoted as a variation point that
considers at least one variability variable in the corresponding CPP-condition. A feature
always describes a measurement belonging to a single data point or sample. The terms
data point and sample are used synonymously and refer to a record of the dataset, which
corresponds to a code function. If the term feature in the context of code variability could
not be avoided (e.g. due to referencing names from other papers), it is distinctly denoted
as a software feature. A collection of samples is always denoted as a subset or dataset.

A good understanding of the meaning of data is always an essential first step in each data
science project. It helps the scientist to identify potential for faults or risks within the data
but also in revealing any latent potential for further information. For instance, a times-
tamp or source path could provide meaningful information. In order to make features like
timestamps or source paths useful, they need to be converted previously. This conversion
assumes some sort of expert knowledge about the data to be aware of the interesting part
of the raw feature. In the case of a timestamp, this could be an extracted weekday or
year. In the case of a source path, this could be the name of a folder on a specific level of
hierarchy. Hence, a good data understanding and domain knowledge are beneficial to ex-
tract the important fraction of information while discarding any useless or even confusing
information. An important step in getting domain knowledge is presented by Section 5.1.
Section 5.3 provides an exploratory analysis meant to reveal important properties of the
dataset.

The provided data for this thesis consists of two different datasets. The first dataset is
denoted as the baseline and encompasses all 692 software metrics generated for all functions
of the entire Linux kernel V4.9.211. All functions were measured, and hence the samples
are neither labeled as healthy nor defective at this point.

The entire Linux kernel encompasses around 89,000 commits, 56,000 source files, 475,000
functions and 22,000,000 lines of code. Due to the consideration of implemented conditional
compilation, realized by CPP-code, the dataset contains 479,199 samples. It also contains
redundant samples. These are samples that show the same function name but different
software metrics. These redundant samples can occur since the header of a function can
be nested within conditionals of CPP-code. Listing 5.1 illustrates this. As a result, the
dataset would contain two samples referring functionA and may show different software
metrics.

26

Data Understanding

1 #IFDEF ASINTEGER
2 int functionA(int a)
3 #ELIF ASFLOAT
4 float functionA(float a)
5 #ENDIF
6 {
7 ...
8 }

Listing 5.1: Nested function header in a CPP-
condition.

5.1 Software Metrics
This section provides explanations about all software metrics contained in the dataset.

The software metrics count 692 different variants of nine different code metric families.
These families are Lines and Statement Counts of Code, Features per Function, Number
of Code Blocks, Tangling Degree, Cyclomatic Complexity, Nesting Depth, Fan-In/Out, Re-
cursive Fan-In/Out and Undisciplined Pre-Processor Usage. Any metric can be clearly
assigned to one of these families. Code metric families share the same method of measure-
ment but can consider different parts of a function. For instance, the traditional lines of
code (LoC) metric counts any line of C-code in a function. The lines of feature code (LoF)
metric counts any line of C-code, which is surrounded by at least one CPP-condition. It
counts all conditionally compiled lines of C-code. Both metrics utilize the same method
of measurement but have different views on the function. Any CPP-directive is indicated
by a leading #.

The majority of code metrics that consider CPP-code can be combined with global vari-
ability metrics. These additional variability metrics try to approximate the associated
complexity of a certain variability variable in a specific way. Therefore, individual weights
are computed for any occurring variability variable involved in a measurement. Hence, any
considered variability variable is weighted individually depending on a certain variability
metric. Each of these variability metrics represents a property of a variability variable
on a global scope. This means in order to get a single weight, it is necessary to analyze
the entire project according to a specific variability metric and with respect to a single
variability variable.

The following subsections introduce the code metrics at first and the global variability
metrics subsequently.

5.1.1 Code Metrics

This section provides descriptions of used code metrics based on the GitHub-repository of
MetricHaven. Additional details can be found in [ESKS19]. The code metric variants are
grouped by their metric families. The term function to analyze (FTA) denotes a certain
function that is analyzed by MetricHaven.

5.1.1.1 Lines and Statement Counts of Code

LoC and Statements Counts of Code (SCoC) are likely to be part of the most common
software metrics overall. These metrics measure the size and correspond to the number of
lines of code of a specific code section. The dataset includes six different variants of this
metric family. The variants differ in terms of the considered types of code they measure.
Table 5.1 provides an overview of the individually implemented metric variants.

27

Variability-aware Software Defect Prediction

Table 5.1: Lines and Statement Counts of Code.

Metric Variant Description
SCoC Measures the number of statements of C-code within the FTA. No matter

if they are surrounded or not by any CPP-condition

SCoF Measures the number of statements of C-code within the FTA only if they
are surrounded by any CPP-condition

PSCoF SCoC
SCoF

LoC Measures the number of lines of C-code within the FTA. No matter if they
are surrounded or not by any CPP-condition

LoF Measures the number of lines of C-code within the FTA only if they are
surrounded by any CPP-condition

PLoF LoF
LoC

5.1.1.2 Software-Features per Function

This metric family measures the number of used variability variables within a specific
scope. The five different variants of this metric family consider different scopes of code
and try to assess the configuration complexity of a code module. The original name of this
metric is features per function and was modified to avoid any confusion due to ambigu-
ous terminology. Table 5.2 provides an overview of the individually implemented metric
variants.

Table 5.2: Software-Features per Function variants.

Metric Variant Description
INTERNAL Measures the number variability variables inside the FTA

EXTERNAL Measures the number variability variables outside of the FTA but inside
the source file

ALL Measures the number of variability variables inside the source file of the
FTA

EXTERNAL +
BUILD

Measures the number of variability variables outside the FTA but inside
the source file plus the used variability variables during the build process

ALL + BUILD Measures the number of variability variables inside the source file of the
FTA plus the used variability variables during the build process

5.1.1.3 Number of Code Blocks

This metric family measures the number of variation points (VPs) inside an FTA. VPs
are exclusively available for CPP-code and describe any sort of construct to implement
code variability. This typically means conditional compilation implemented by arbitrary
#IFDEF statements. There are two variants implemented which differ in the method of
counting. Table 5.3 provides an overview of both metric variants.

5.1.1.4 Tangling Degree

This metric family measures the number of variability variables used in CPP-code within
the FTA. If a variability variable appears multiple times in VPs, each one increments the
tangling degree. This is the difference between tangling degree and variability variables per

28

Data Understanding

Table 5.3: Number of Code Blocks variants.

Metric Variant Description
Block as One Measures all connected sub-parts of a block (i.e. #IFDEF, #ELIF or #ELSE)

as one single block

Separate Partial
Blocks

Measures all connected sub-parts of a block (i.e. #IFDEF, #ELIF or #ELSE)
individually

function. If any contained CPP-code only tests a single variability variable, the tangling
degree equals to the number of Code Blocks x Separate Partial Blocks. Table 5.4 provides
an overview of the individually implemented metric variants.

Table 5.4: Tangling Degree variants.

Metric Variant Description
TDAll Measures all used variability variables in CPP-code within the FTA, even

if they appear multiple times

TDV isible Measures all used variability variables in CPP-code within the FTA, even
if they appear multiple times, plus #ELSE statements

5.1.1.5 Cyclomatic Complexity

The Cyclomatic Complexity metric family is based on McCabe’s Cyclomatic Complexity
and measures the linearly independent control flow paths of the control flow graph within
the FTA. The implemented variants consider different types of code, either only C-code,
CPP-code, or a combination of both. Table 5.5 provides an overview of the individually
implemented metric variants.

Table 5.5: Cyclomatic Complexity variants.

Metric Variant Description
McCabe Measures the number of control structures of C-Code within the FTA

while ignoring any CPP-code. This is equal to the original metric de-
fined in [McC76]

CC on VP Measures the number of control structures of CPP-code within the FTA
while ignoring any C-code

McCabe + CC on VP Measures the number of control structures while considering C-code
and CPP-code within the FTA

5.1.1.6 Nesting Depth

This metric family measures the depth of nested code elements within the FTA. There are
six different variants implemented, which differ in the parts of code they consider and in
the methods of counting. Table 5.6 provides an overview of the individually implemented
metric variants.

5.1.1.7 Fan-In/-Out

This metric family measures different types of interaction between functions and tries to
approximate the coupling of a function by analyzing its invocations. The metric family
contains multiple metrics that differ in the call directions, variability scopes, and localities.
The call direction distinguishes between in-going and out-going. The variability scope
indicates what type of code is considered (i.e. only C-code or C-code and CPP-code)

29

Variability-aware Software Defect Prediction

Table 5.6: Nesting Depth variants.

Metric Variant Description
NDCode,max Measures the maximal nesting depth of C-code within the FTA while ig-

noring any CPP-code

NDCode,avg Measures the average nesting depth of C-code within the FTA while ig-
noring any CPP-code. The average is computed by summing up all C-code
statements nesting depth and divide it by the number of statements (SCoC)
within the FTA

NDV P,max Measures the maximal nesting depth of C-code within the FTA while con-
sidering only CPP-code

NDV P,avg Measures the average nesting depth of C-code within the FTA while con-
sidering only the CPP-code. The average is computed by summing up all
C-code statements nesting depth and divide it by the number of statements
(SCoC) within the FTA

NDCode∪V P,max Measures the maximal nesting depth of C-code while considering C-code
and CPP-code

NDCode∪V P,avg Measures the average nesting depth of C-code while considering C-code and
CPP-code. The average is computed by summing up all C-code statements
nesting depth and divide it by the number of statements (i.e. SCoC) within
the FTA

under certain circumstances. The locality determines the extent of code to analyze in
order to measure the metric (i.e. only the source file or the entire software project). Table
5.7 provides an overview of the individually implemented metric variants.

Table 5.7: Fan-In/-Out variants.

Metric Variant Description
Classical Fan-In
locally

Measures how often the FTA is invoked from inside of its source file while
ignoring any CPP-conditions

Classical Fan-In
globally

Measures how often the FTA is invoked from anywhere in the code while
ignoring any CPP-conditions

Classical Fan-
Out locally

Measures how many functions of the same source file the FTA invokes while
ignoring any CPP–conditions

Classical Fan-
Out globally

Measures how many other functions of the entire code the FTA invokes
while ignoring any CPP-conditions

Conditional Fan-
In locally

Measures how often the FTA is invoked from inside its source file while
only considering function calls nested in CPP-conditions

Conditional Fan-
In globally

Measures how often the FTA is invoked from anywhere in the code while
only considering function calls nested in CPP-conditions

Conditional Fan-
Out locally

Measures how many functions of the same source file the FTA invokes while
only considering function calls nested in CPP-conditions

Conditional Fan-
Out globally

Measures how many functions of the entire code the FTA invokes while
only considering function calls nested in CPP-conditions

Degree Centrality
Fan-In locally

Measures the number of variability variables (+ 1) of surrounding CPP-
conditions when the FTA is invoked from another function inside the same
source file

30

Data Understanding

Degree Centrality
Fan-In globally

Measures the number of variability variables (+ 1) of surrounding CPP-
conditions when the FTA is invoked from another function anywhere in
the code

Degree Centrality
Fan-Out locally

Measures the number of variability variables (+ 1) of surrounding CPP-
conditions for invocations of functions from inside the same source file

Degree Centrality
Fan-Out globally

Measures the number of variability variables (+ 1) of surrounding CPP-
conditions for invocations of functions from anywhere in the code

Degree Central-
ity Fan-Out No
Stubs

Corresponds to previously described degree centrality variants while ignor-
ing invocations of empty function stubs (i.e. functions with empty body)

Degree Centrality
Fan-Out Ignore
External VPs

Corresponds to previously described degree centrality variants while ignor-
ing invocations surrounded by external #IFDEFs

5.1.1.8 Recursive Fan-In/-Out

This metric family provides recursive variants of the Fan-In/-Out metrics shown in Table
5.7. While the non-recursive variants only count all invocations, the recursive variants
introduce additional weights for each invocation. This means the simple variants only
measure the invocations of or by the FTA on the very top-level. The recursive variants
analyze any invocation of or by the FTA to the full depth. Hence, an invocation of a
function, which also makes multiple invocations, adds a higher value to Recursive Fan-
Out than an invocation of a function, which does not invoke any functions itself. The
assumption is that modifications in functions have higher risks of a defect when these
functions are used in multiple parts of the project. Modifications of functions that are
only used in a single part of code could be less prone to defects since it is less likely that
they cause negative side effects due to unconsidered dependencies.

5.1.1.9 Undisciplined Pre-Processor Usage

This metric family measures undisciplined usage of the Pre-Processor (UPU) according
to [MRG+17]. This means C-code statements that are interrupted by CPP-code. Listing
5.2 shows an example of UPU where a C-code control structure is interrupted by a CPP-
condition. A second example is shown in Listing 5.3. In this case, a return-statement is
interrupted by a CPP-condition.

Table 5.8: Undisciplined Pre-Processor Usage variants.

Metric Variant Description
Undisciplined
Pre-Processor
Usage

Measures any interrupted C-code control-structure (i.e. as shown in Listing
5.2) and any interrupted C-code statement (i.e. as shown in Listing 5.3)

31

Variability-aware Software Defect Prediction

1 #IFDEF CONDITION
2 if (var > 0) {
3 #ENDIF
4 action1();
5 #IFDEF CONDITION
6 } else {
7 #ENDIF
8 action2();
9 }

Listing 5.2: Interrupted C-
code control structure by a
CPP-condition.

1 ...
2 return
3 #IFDEF NEGATION
4 -1 *
5 #ENDIF
6 result;
7

8

9

Listing 5.3: Interrupted
C-code statement by a CPP-
condition.

5.1.2 Variability Metrics

This section provides an overview of the additionally applied variability metrics. These
variability metrics serve as weights, which are used for a subset of previously introduced
code metrics. These variability metrics are computed by an analysis of the entire code or
variability models. A variability metric is always related to a certain variability variable.

5.1.2.1 Scattering Degree

This metric measures the scattering of a certain variability variable. The assumption is that
those variability variables that control very scattered parts of code could cause higher risks
of defects because a developer needs to keep in mind very scattered parts of a project. It is
easier to implement code using variability variables that exclusively control code sections
in the current source file. It is more complex to implement code using variability variables
that control multiple parts of code, scattered over the entire project. Table 5.9 provides
an overview of the individually implemented metric variants.

Table 5.9: Scattering Degree variants.

Metric Variant Description
SDV P Measures the number of VPs that have at least one reference to the current

variability variable

SDF ile Measures the number of different source files that have at least one VP
using the current variability variable

5.1.2.2 Software-Feature Size

This metric is computed in a similar way as the scattering degree. Whereas the scattering
degree measures the number of VPs or files using a certain variability variable, the software-
feature size measures the number of statements (i.e. ScoC) that are controlled by a certain
variability variable. The original name of this metric is feature size and was modified to
avoid any confusion due to ambiguous terminology. Table 5.10 provides an overview of the
individually implemented metric variants.

5.1.2.3 Software-Feature Definition Distance

This metric measures the distance on file-level between a variability variable used in the
FTA and the variability model, which has defined it. The assumption is similar to the
scattering degree’s. The risk of a defect may increase when dependencies become further
apart. In this metric, the distance between a variability variables definition and its usage is
measured. This metric tries to approximate the coherence of a certain variability variable.
Low values indicate high coherence. The original name of this metric is feature definition

32

Data Understanding

Table 5.10: Software-Feature Size variants.

Metric Variant Description
Positive Size Measures the number of statements (i.e. SCoC) controlled by a certain vari-

ability variable while ignoring any negated appearances of the variability
variable

Total Size Measures the number of statements (i.e. SCoC) controlled by a certain
variability variable while considering any negated appearances of the vari-
ability variable

distance and was modified to avoid any confusion due to ambiguous terminology. Table
5.11 provides an overview of the individually implemented metric variants.

Table 5.11: Software-Feature Definition Distance variants.

Metric Variant Description
Software-Feature
Definition Dis-
tance

Measures the length of the shortest path from the location of the variability
model defining a certain variability variable to the location of the FTA. If
the variability model is in the same folder as the FTA a value of zero is
returned

5.1.2.4 Cross-Tree Constraint Usage

This metric measures the number of associated constraints of a certain variability variable.
Therefore, the defining variability model is analyzed. This metric also tries to approximate
the coherence of a certain variability variable, while low values indicate high coherence.
Table 5.12 provides an overview of the individually implemented metric variants.

Table 5.12: Cross-Tree Constraint Usage variants.

Metric Variant Description
Incoming Con-
nections

Measures the number of variability variables defining a constraint of a
certain variability variable

Outgoing Con-
nections

Measures the number of references of a certain variability variable in any
constraints

All Connections Incoming Connections + Outgoing Connections

5.1.2.5 Connectivity of Software-Feature

This metric measures associations of a certain variability variable to others. These asso-
ciations are based on different properties that are extracted from the defining tree-based
variability model of a variability variable. The original name of this metric is connectivity
of feature and was modified to avoid any confusion due to ambiguous terminology. Table
5.13 provides an overview of the individually implemented metric variants.

Table 5.13: Connectivity of Software-Feature variants.

Metric Variant Description
Children Measures the number of direct children (i.e. variability variables under-

neath) of a certain variability variable

CoC Measures the number of associated variability variables while considering
parents (i.e. variability variables above), children and other variability vari-
ables associated by any constraint of a certain variability variable

33

Variability-aware Software Defect Prediction

5.1.2.6 Software-Feature Types

This metric measures variability variables according to their data type. Therefore, a set of
pre-defined weights for each data type must be defined. The original name of this metric
is feature types and was modified to avoid any confusion due to ambiguous terminology.
There are no different variants defined for this metric.

5.1.2.7 Software-Feature Hierarchies

This metric measures the hierarchical level of definition within the variability model that
defines a certain variability variable. A pre-defined set of weights is applied to consider
the individual types differently. The different types of levels are separated into top-level
(i.e. no parent variability variable), intermediate-level (i.e. parent and children variability
variable), and leaf-level (i.e. no children variability variable). The original name of this
metric is feature hierarchies and was modified to avoid any confusion due to ambigu-
ous terminology. Table 5.14 provides an overview of the individually implemented metric
variants.

Table 5.14: Software-Feature Hierarchies variants.

Metric Variant Description
Hierarchy Types Measures a certain type of hierarchy-level of a certain variability variable

within its defining variability model

Nesting Level Measures the nesting depth of a certain variability variable within its defin-
ing variability model

5.2 Data Aggregation

This section describes the procedure of building a meaningful and cleaned dataset to be
used in the exploratory analysis of Section 5.3. The provided data consist of two different
datasets. A part of the data is spread into multiple small files that must be aggregated.

5.2.1 Cleaning of the Defects

The initially provided data consists of two different datasets. This section describes the
process of cleaning the dataset of defects. These data are provided as 55 individual CSV-
files. All these files contain subsets of samples corresponding to the occurred compilation-
problems of a certain month. The months range from March 2013 to December 2017,
which is about five years. The raw dataset is available under https://github.com/SSE-
LinuxAnalysis/MetricResults. Each of these samples is described by all selected software
metrics and some additional information indicating the type of occurred problem, a times-
tamp and the location of the function.

Step 1 After reading all CSV-files containing defects, a dataset of 13,661 samples and
699 features was built. In the first step of cleaning, all samples that were not of type ERROR
have been removed. This included the removal of 2,700 samples of type WARNING, 1,453
samples of type SPARSE, 944 samples of type NOTE, and 308 samples of type UNKNOWN. The
resulting dataset contained 8,256 samples of type ERROR yet.

34

https://github.com/SSE-LinuxAnalysis/MetricResults
https://github.com/SSE-LinuxAnalysis/MetricResults

Data Understanding

Step 2 The second step of cleaning has removed all unnecessary information from the
dataset. This included the removal of Type, Line No., Commit, Repository, Date,
and the addition of a feature, which indicates the class label y. All samples in this dataset
got label one, which indicates a defect. Afterward, the dataset contained 694 features and
the class label y. The features include 692 software metrics, Source File, and Element.
The Source File denotes the location, and the Element denotes the name of the func-
tion.

Step 3 The third step of cleaning has removed all duplicated samples based on the
remaining features. It resulted in a dataset containing 6,231 samples. These are the final
samples of defects used for any further analysis and predictions.

5.2.2 Cleaning of the Baseline

In contrary to the defects, the baseline was provided as a single CSV-file containing all
data. Those data represented all functions of the entire Linux kernel at a certain point in
time.

Step 1 The provided CSV-file contained 432,518 samples and 695 features. The features
contained 692 software metrics, Source File, Line No., and Element. The first step of
cleaning removed all unnecessary features. This only included the removal of Line No.
Furthermore, the label y was added. At this temporary step, all contained samples got
value zero as their label.

Step 2 The second step of cleaning has removed all duplicated samples based on the
remaining features. The final dataset contained 432,235 samples.

5.2.3 Merging both Datasets

Both previously cleaned datasets were merged into one large dataset containing all relevant
samples. In order to build a meaningful overall dataset, some steps of preparation were
necessary. This procedure is described in the following paragraphs.

Figure 5.1 shows an abstract Venn-diagram of the two datasets. The baseline was much
larger than the defects data. At this time, the baseline contained not only the healthy
samples but also a part of defects, and all were temporarily labeled as healthy. In the
first step of merging, all samples that appeared in the baseline and in the defects were
removed from the baseline. This intersection included 3,693 samples. These samples could
be distinctly identified using Source File and Element.

The defects are not a proper subset of the baseline because the data contain defects from
more than only one point in time. There are defects from about five years. Hence, the
defects contain functions that caused problems in the past but were totally removed from
the project in the meantime. Hence, these samples were not part of the baseline anymore,
but they are still informative for the purpose of SDP. Thus, these samples were kept in
the dataset. The number of defects that were not part of the baseline is 2,538.

After the intersection was removed, both datasets were finally merged. The resulting
dataset contains all relevant samples and corresponds to the set described by Equation
5.1. It finally contains 434,773 samples in total.

Final Dataset = (Baseline \ (Baseline ∩Defects)) ∪Defects (5.1)

35

Variability-aware Software Defect Prediction

Baseline Defects

Figure 5.1: Venn-diagram of the provided data.

5.3 Data Exploratory Analysis

This section provides and discusses the results of the performed exploratory analysis of
the data. This process was meant to get a first idea and discover important properties of
the dataset. Those information helped in constructing adequate model configurations.

5.3.1 Class Balance

A common first step of data exploration is to examine the class balance. A class imbalance
is a typical problem in SDP, but there are many possible approaches to address such an
issue. Figure 5.2 illustrates the class distribution of this dataset. There are 428,542 samples
labeled as healthy and 6,231 samples labeled as defective. This is a severe imbalance of
roughly 1:69. The problem of imbalance will be discussed in detail in Chapter 6.

Figure 5.2: Class distribution of the dataset

5.3.2 Correlation & Data Distribution

Another basic step of data exploration is to examine the presence of correlation among the
input features. A high amount of correlation among features can complicate the interpreta-
tion of feature importances because it can lead to shared (and hence reduced) importance
values extracted by algorithms [GMSP17]. Furthermore, perfectly correlated features do

36

Data Understanding

not contribute to a model’s performance because the information is redundantly avail-
able. Thus, those correlated features can be removed from the data because one feature
is only a linear projection of another. This only applies for perfectly correlated features
according to the Pearson correlation, which measures the collinearity of features. Corre-
lation is present if two features move in the same or opposing directions by a consistent
(linear) amount. Two features moving in the same direction indicate a positive correla-
tion, and two features moving in opposing directions indicate a negative correlation. A
second correlation measure is the Spearman correlation. While the Pearson correlation is
meant to be used for continuous features, the Spearman correlation is also applicable to
ordinally scaled discrete values. It measures the monotonic relationship between variables.
Hence, the Spearman correlation is less restrictive and is already satisfied if two variables
move in the same or opposing direction monotonically regardless of a consistent amount
of increase or decrease. In contrary to the Pearson correlation, a perfectly correlated fea-
ture, according to Spearman, could still provide additional information to its counterpart
feature.

Figure 5.3 shows two heatmaps representing the absolute correlations among all features.
Figure 5.3a shows a heatmap using Pearson correlation and 5.3b shows a heatmap using
Spearman correlation.

(a) Heatmap of Pearson correlation. (b) Heatmap of Spearman correlation.

Figure 5.3: Heatmaps of the correlations among the software metrics.

The absolute correlation coefficients are shown in the figure because it is less important
whether a correlation is positive or negative, but its magnitude matters. Hence, providing
the absolute values simplifies the diagram without omitting any important information.
Both heatmaps show a significant amount of correlation among the features. The labels
were omitted due to the high number of features. As supposed, the Spearman correla-
tion tends to show higher and even more correlations among features than the Pearson
correlation. This is owed to the less restrictive correlation criterion. In general, both cor-
relations show similar results. The rectangular box pattern within both heatmaps along
the diagonal correspond to features of the same metric family. This makes sense because
the software metrics within one family only differ slightly. They generally share the same
method of measurement. In order to identify redundant information among features, the
Pearson correlation is more meaningful. In fact, there are 7,830 highly correlated unique
feature combinations with a correlation coefficient r > 0.9. The total number of unique

37

Variability-aware Software Defect Prediction

Table 5.15: Descriptive statistics of the most related metrics to the target variable.

Mean Median Mode Max
Class H D H D H D H D

LoC 26.12 52.02 16 29 4 4 5127 4431
SCoC 14.36 27.80 8 16 1 1 2764 2146
McCabe + CC on VPs x
Feature distance

3.72 6.56 2 4 1 1 301 191

feature combinations is 239,432 (Number of features2

2). Furthermore, there are 47 perfectly
correlated unique feature combinations (r = 1.0). These combinations are shown in Table
A.1 in the Appendix.

Besides the correlation among input features, it is a common step in an exploratory anal-
ysis to examine the correlation between features and the target variable. This is quite a
meaningful and straightforward analysis in the case of regression problems (i.e. numerical
target variable), but it becomes complicated in the case of classification tasks. Such cor-
relation analyses try to approximate the importance and suitability of available features
as predictors in a univariate fashion.

In the case of binary classification, the outcome is limited to two labels: healthy and de-
fective. These labels can be represented as zero and one. It is also possible to interpret a
numerical meaning to these numbers, the number of defects. This fact allows computing
correlations in a partially meaningful manner. Considering that the Pearson correlation
tests the presence of collinearity between two variables, an absolute correlation coeffi-
cient of one is certainly not possible when testing input features and the target variable.
Nevertheless, it is a common practice to compute the Pearson correlation for continu-
ous input features and target variables (presumed the labels are at least ordinally scaled).
Even though the resulting correlation coefficients are not clearly interpretable, the ranking
of correlation coefficients is. Hence, the correlation does not provide precise information
about the amount of association between a feature and the label. Still, it points to fea-
tures that are worth to be examined in more depth. Table A.2 in the Appendix provides
an overview of the 50 highest achieved univariate correlations between the input features
and the target variable. LoC, SCoC, and McCabe + CC on VPs x Feature distance show
the strongest relation to the target variable. Thus, Figure 5.4 shows the data distributions
of these metrics. The distributions are illustrated by kernel density estimates and a prior
removal of outliers according to the robust Z-score method [IH93] using medians instead of
means. The use of medians is generally more robust in the presence of outliers, and hence
it has provided the best suitable method of outlier detection.

The kernel density estimations show very similar distributions once visualized. Especially
Figure 5.4a and 5.4b look very similar. This is owed to the fact that LoC and SCoC metrics
are highly correlated (r ≈ 0.905). Both metrics show higher densities at lower values on
healthy samples than on defect samples. This suggests LoC and SCoC tend to have higher
values on defects. Table 5.15 shows some additional descriptive statistics, whereas the
higher values of both classes are highlighted in bold.

The means and medians of LoC and SCoC are higher on defects, which would strengthen
the mentioned assumption. The mode of both metrics is equal for both classes. This means
that both metrics have the same most occurring values in both classes. This fact relatives
the significance of the initially mentioned assumption about higher LoC and SCoC values
on defects. Furthermore, the table shows that the healthy samples have a higher maximum
value than the defects, which finally comprises the assumption.

38

Data Understanding

Figure 5.4c shows the density estimate of McCabe + CC on VPs x Feature distance.
The distribution of the healthy samples looks like a one-sided normal distribution (with
gaps due to only integers and a small range of values), whereas the defective samples
show an almost uniform distribution with only a very slight decrease to the right side.
Even though both class’ density estimates look quite differently, this metric also shows
the same properties as the previous two. Higher mean and median on defects but same
mode values and a higher maximum value on healthy samples. Finally, neither the plots
nor the descriptive statistics could exhibit some clear and reliable differences. Both classes
show differences, but it is questionable that they have any causality or statistical relevance.
Hypothesis tests were not considered as meaningful at this point due to the imbalance of
classes, the presence of outliers, and noisy distributions.

The univariate examination of relations between input features and the target variable did
not yield any clear information. The question about more or less important features must
be addressed by methods of machine learning.

5.3.3 Locations

The last part of the data exploration examines the locations of functions. Location means
the place in the project where the source file of a function is stored. This location can
be extracted from the Source File column of each record. The aim of this analysis is to
examine whether there are locations having higher defective rates than others.

On the top level of the hierarchy, the Linux kernel is structured into 17 different locations
(drivers: 64.34 %, arch: 13.12 %, fs: 6.26 %, net: 6.19 %, sound: 5.07 %, kernel: 2.19 %,
remaining: < 1 %). Only the kernel location shows an increased defective rate of 4.10 %
(defective rate overall: 1.43 %, drivers: 1.27 %, arch: 1.71 %, fs: 1.28 %, net: 1.25 %, sound:
1.03 %, kernel 4.10 %, remaining: statistically irrelevant due to insufficient samples).

If locations are extracted on a lower level, there are multiple locations with increased
defective rates. Analysis on a lower level means that the location is extracted from the
Source File path till the second level of the hierarchy. Statistically irrelevant locations
due to insufficient samples (< 1,000) have been merged and were denoted as Others. Figure
5.5 shows the defective rates of the remaining 92 locations. The dashed line shows the
overall defective rate. The figure suggests that there are many locations being significantly
more or less prone to defects than others. This information could contribute to prediction
performance in later experiments. A detailed overview of the defective rates within the
locations is shown in Table A.3 in the Appendix.

The following chapter describes the first set of experiments contributing to answering
[RQ1], [RQ2], and [RQ3] partially. The experiments test the prediction capabilities of
several feature subsets to assess the suitability of individual types of software metrics. The
precisely defined goal, the concept, the models’ construction, and implementation details
as well as the final analysis of results are part of the next chapter.

39

Variability-aware Software Defect Prediction

(a) Kernel density estimation of LoC.

(b) Kernel density estimation of SCoC.

(c) Kernel density estimation of McCabe + CC on VPs x Feature distance.

Figure 5.4: Kernel density estimates of the strongest related input features to the target
variable.

40

Data Understanding

Figure 5.5: Defective rates within locations.

41

Variability-aware Software Defect Prediction

6 Software Metric Subset Comparison
Experiments

This chapter provides a detailed description of the first set of experiments. The repetitive
phases of Data Preparation and Modeling were refined to provide a more suitable guideline
to describe and document this procedure step-by-step. The phases of Data Preparation
and Modeling were subdivided into six sub-phases. In order to examine the given research
questions, two sets of experiments had to be performed. These sets of experiments aimed
for certain sub-goals contributing to answering the superior research questions. Each set
of experiments was designed, performed, and evaluated according to the sub-phases shown
in Figure 6.1.

Conceptuali-
zation

Pre-Processing Model
Construction

Validation Analysis

Data Preparation Modeling

Definition of
Sub-goals

Figure 6.1: Refined procedure of Data Preparation and Modeling.

The first phase is the definition of sub-goals. The subsequent phase of conceptualization
defines and elaborates the approach of how to achieve these goals. The third phase of pre-
processing includes an examination of present data issues or obstacles and the proposal
of the most suitable solutions on how they can be overcome. Once the required steps of
pre-processing are addressed, the model construction phase can start. This phase includes
the typical steps of building an architecture and optimizing hyperparameters. As soon as
the models are constructed, the validation phase begins. This includes the execution of
the defined experiments, which means training and testing plenty of models under a pre-
defined set of configurations. The final phase of analysis presents and reviews the results
but does not include final answers to research questions or derivations of conclusions yet.
The subsequent Chapters 8 and 9 put the results in the context of the research questions
and derive conclusions from that.

This chapter is structured analogously to the introduced stages of the previous paragraph,
whereas Section 6.5 provides additional information and details on how the pre-processing,
the models, and the validation routine were implemented.

6.1 Goal
The first set of experiments aimed to evaluate the prediction capabilities of different soft-
ware metric subsets. The definition and description of these metric subsets used as in-
put features will be given in Section 6.2. The metrics were grouped according to their
variability-awareness and scope. All feature subsets were validated using the same set of
pre-defined hyperparameters in order to improve the comparability. The entire procedure
of validating all feature subsets is denoted as the validation routine. The obtained results
from this validation routine served as the foundation for addressing [RQ1] and [RQ2].
Research question [RQ3] was partially addressed by this set of experiments because the
software metrics were not assessed individually but in a coarse-grained manner using met-
ric groups.

42

Software Metric Subset Comparison Experiments

The hyperparameters are divided into general hyperparameters and algorithm-specific hy-
perparameters. The general hyperparameters can be applied to any sort of algorithm and
basically address steps of pre-processing. Algorithm-specific hyperparameters are only ap-
plicable to one sort of algorithm and basically contain a classifier’s architecture, applied
kernel, or other settings. A complete selection of hyperparameters is denoted as config-
uration. Subsequently to the model construction stage, a single shared and meaningful
algorithm-specific configuration was defined for each applied classification algorithm. This
configuration was shared over all feature subsets. The definition of a meaningful but shared
configuration might not lead to the best possible results but to an applicable and compa-
rable compromise. The use of uniform algorithm-specific configurations was also owed to
limited computational capacities.

6.2 Concept
This section provides a detailed description of the followed approach to achieve the de-
sired results. This includes explanations and justifications of all decisions. The following
paragraphs will describe the approach in detail and focus on certain parts of the concept.

Feature Subsets Research questions [RQ1] and [RQ2] require information about any su-
periority of one type of software metric over another. Hence, a variety of feature subsets
was defined according to the software metrics’ types. These types depend on the met-
rics’ variability-awareness and scope. Section 5.1 has already introduced code metrics that
consider variability as well as code metrics that ignore any variability. Any code variabil-
ity is realized by the utilization of CPP-code and variability models in this case. Code
metrics that consider variability are denoted as variability-aware. Code metrics that do
not consider variability are denoted as non-variability-aware. The variability-aware metrics
were further subdivided into pure-variability-aware metrics and combined-variability-aware
metrics. The pure-variability-aware metrics focus on describing only the variability and
ignore any C-code, whereas combined-variability-aware metrics consider CPP-code and C-
code for measurements. Finally, all introduced code metrics of Section 5.1.1 can be clearly
assigned to one of these three feature subsets according to its variability-awareness.

Besides the variability-awareness of metrics, the different scopes must be examined as well.
Therefore, two different scopes were defined. At first, the local scope, which means that a
code metric does not utilize any variability metrics, which were introduced in Section 5.1.2.
These variability metrics weight any considered variability variable individually. Once a
code metric utilizes those variability metrics, the entire software project must be analyzed.
Therefore, the use of an additional weighting by variability metrics is considered as the
global scope. Obviously, only variability-aware metrics can utilize variability metrics.

Consequently, all the provided software metrics, including those that utilize additional
variability metrics, can be assigned to the following five metric subsets:

• Local-scoped non-variability-aware metrics (LNV)

• Local-scoped pure-variability-aware metrics (LPV)

• Local-scoped combined-variability-aware metrics (LCV)

• Global-scoped pure-variability-aware metrics (GPV)

• Global-scoped combined-variability-aware metrics (GCV)

43

Variability-aware Software Defect Prediction

All contained software metrics in the feature subsets are shown in Tables A.4, A.5, A.6,
A.7 and A.8. A special case of the global-scoped metrics must be considered. The global-
scoped feature subsets are not disjointly separable from the local-scoped ones. In case
there is no global-scoped version of a code metric available (i.e. the code metric cannot
be weighted by additional variability metrics), the local-scoped version of this metric is
included in the corresponding global-scoped subset anyway. The reason is that [RQ2] aims
to test for a potential improvement due to the extension of the scope (i.e. from local-
scoped to global-scoped). Hence, discarding one sort of code metric entirely due to the
lack of a global-scoped version would omit one specific perspective (i.e. realized by a certain
code metric) on the functions. Thus, it is possible that a model performs worse due to
omitting this perspective. This case of missing an important metric entirely could result
in a decreased performance. If the performance is negatively affected for that reason, it is
not possible anymore to clearly recognize an improvement or deterioration caused by the
extended scope. The extend of the scope could have increased the model’s performance,
while the absence of a certain code metric could have decreased it. Rather than discarding
the local-scoped metric (that has no corresponding global-scoped version), it is included as
well. This allows to still assess changes in performance with regards to an extended scope.
The model does not lack any perspectives on functions, and hence any in- or decrease in
performance can be ascribed to the extended scope.

Classification Algorithms One of the most general hyperparameters to determine was
the selection of meaningful algorithms used to perform defect prediction. The reviewed
literature, which was presented in Section 3.2 and the performed data exploratory analysis
of Section 5.3, served as the foundation for this decision. The reviewed literature reported
different types of algorithms as the best choices for classification in SDP. Nevertheless,
no consensus could be recognized. Hence, a variety of different classification algorithms
was considered. This allowed a direct comparison of each classifier and the finding of the
most suitable solutions for this specific problem. For that purpose, the following collec-
tion of algorithms was selected and considered as promising due to recommendations of
the reviewed literature, personal experience, and additional research on state-of-the-art
classification approaches on tabular data.

• Fully Connected Network (FCN)

• Random Forest Classifier (RF)

• Gradient Boosting Classifier (GB)

• Naive Bayes Classifier (NB)

Hyperparameter Optimization Before any other data processing, an outer validation
dataset of 10% of the samples was separated. This outer validation dataset was used for
any sort of model construction and hyperparameter optimization purposes. The usage
and separation of the initial dataset are illustrated in Figure 6.2. The Holdout-strategy
was chosen for the sake of computational cost. A more extensive approach using a cross-
validation-based grid- or random-search was considered as infeasible. The high number of
algorithms and feature subsets as well as the large size of the dataset combined with multi-
ple general and algorithm-specific hyperparameters to consider would exceed the available
computational resources. The initial model construction and hyperparameter optimiza-
tion led to a single architecture and model-specific set of hyperparameters each algorithm.

44

Software Metric Subset Comparison Experiments

Besides the algorithm-specific hyperparameters, a set of meaningful general hyperparam-
eters was selected. All these general hyperparameters were validated extensively by the
final validation routine. Section 6.3 provides detailed explanations about any considered
general hyperparameters in terms of pre-processing steps. The individual subsections of
Section 6.4 provide details about all selected algorithm-specific hyperparameters.

dataset

Data Exploratory
Analysis

training

Model Construction
& Hyperparameter

Optimization

outer validation

10-fold CV

Validation

out

2 3 ... 9 101

Figure 6.2: Usage of the dataset.

Performance Measures Before any model could be constructed or optimized, a reason-
able measure of performance had to be defined. This metric was used for any sort of model
validation. The foundation of the decision about a suitable set of performance metrics was
the literature review presented in Section 3.2 as well as some additional research. A variety
of performance metrics was selected in order to allow the best possible comparability and
insight into a model’s prediction capability.

The literature has reported the importance of providing results in a comprehensive manner.
Hence, all recorded performance metrics will be presented for any model validation. This
is a record of AUC-ROC, F1-score, recall, and precision. Even though all of these metrics
are reported continuously, the F1-score served as the primary performance indicator for
the model construction and optimization. All other metrics served as essential parts to
better understand a model’s prediction capability.

Validation Strategy The k-fold CV strategy was selected to provide robust and less
biased results. The goal of this set of experiments was to obtain information about the
general suitability of pre-defined feature subsets (i.e. software metric subsets). Hence, a
Holdout-strategy on a randomly selected test set would not be sufficiently reliable be-
cause the performance strongly depends on the selected test samples. This bias can either
produce optimistic or pessimistic results. The CV-approach provides multiple results of
different test sets. These results can be combined to one robust measure, which is less bi-
ased to any of the specific test sets. The number of folds k was set to ten, and the number
of CV repetitions was set to one. Due to increasing computationally costs, the number
of repetitions could not be increased. A higher number of repetitions could still improve
the robustness of the final validation score of a configuration. The CV approach was also

45

Variability-aware Software Defect Prediction

performed in multiple previous papers that examined SDP [GDPG12] [Gra12] [HMK12]
[PD07] [JPT16] [WSS14] [SMWO10] [SWHJ14].

A stratified CV approach was selected to retain the original class balance and achieve a
realistic final validation score. Because most performance metrics are strongly affected by
the class distribution, the subsequent combining of obtained metrics under different distri-
butions would entirely mess up the scores. The evaluation of each inner 10-fold iteration
was based on a single changing fold for testing purposes (Leave-One-Out strategy). The
outer validation dataset was removed prior to this validation. This also contributes to the
avoidance of optimistic results because the models were built and specifically optimized
with respect to the performance on this outer validation dataset.

A set of defined seeds ensured the same pseudo-random fold splits across all configurations
to validate. This did not affect the randomness of a particular inner 10-fold iteration at all.
It just allowed providing the same circumstances to all configurations. Each configuration
to validate used the same ten different fold splits. Without this, a comparison across any
configurations of models would mean comparing different models, which were trained and
tested on different data. Hence, such a comparison would not provide meaningful results.
Section 6.5.3 describes the implementation of the applied validation strategy in detail.

Figure 6.3 illustrates the composition of training and testing data according to a k-fold CV
approach. The value of k determines the number of created folds, which in turn determines
the number of needed iterations to include all possible training and testing compositions.
The gray diagonal shows how the currently applied testing fold in the inner iterations
changes step-wise. A stratified CV approach ensures each fold of each iteration has the
same class distribution as the unified dataset. Hence, regardless of the k-fold iteration, any
composition has also the same class distribution as the unified dataset. Because the training
and testing composition changes in each iteration and steps of pre-processing are typically
based on only training data, a CV approach also implies a repetitive pre-processing of data
at each single inner k-fold iteration. Any processing prior to k-fold splitting would violate
the indispensable separation of training and testing data and compromise any results.

...

testing training

testingtraining

Iteration 1

Iteration 2

Iteration 3

Iteration k

...

21 k3 54 ...

21 k3 54 ...

21 k3 54 ...

21 k3 54 ...

Figure 6.3: k-fold Cross-Validation.

46

Software Metric Subset Comparison Experiments

6.3 Pre-Processing
This section describes the individual issues of the data that need to be addressed in order
to achieve adequate results from the validation. The necessary steps of pre-processing
differ from project to project and depend on the classification algorithm and the original
condition of the data. Commonly, the raw dataset has some properties that could prevent
algorithms from learning effective patterns. In the case of these data, these issues are
primarily a high class imbalance, a very high number of input features, and different feature
scales. The following subsections address each of these problems, explain them, and present
the proposed solution to overcome them. Each subsection is structured in a first paragraph
describing the problem and a second one describing the proposed solution. The solutions
approach is at first described on a conceptual level, and subsequent paragraphs explain
the chosen techniques in detail. The last part of each subsection provides a brief overview
of considered alternatives that were implemented and tested but did not offer promising
results.

6.3.1 High Number of Features

The high number of features can cause algorithms to perform worse than on a lower
number. The bias and variance theory of Section 2.3 introduced information about how
and why this can happen.

6.3.1.1 The Problem

It is likely that multiple features contain noisy and non-representative information. These
features can cause the model to learn over-complex and barely generalizable patterns,
which makes the model very sensitive to its training data. These things can finally re-
sult in over-fitted models and decrease the prediction capabilities due to an increased
Errorvariance. The provided data have a severe risk of over-fitting.

6.3.1.2 The proposed Solutions

A variety of measures was applied to address the risk of over-fitting. The risk of an inappro-
priate algorithmic complexity and an inappropriate number of input features are strongly
related to each other and were primarily addressed by model-specific sorts of regulariza-
tion and a dimensionality reduction. The chosen approach of dimensionality reduction is
Recursive Feature Elimination via random forests. An appropriate algorithmic complex-
ity can make an algorithm more robust to over-fitting caused by high numbers of input
features, and hence it is a kind of preventative measure. The dimensionality reduction
directly addresses the number of features and try to reduce it without losing something
useful.

Dimensionality Reduction Classification algorithms are differently prone to over-fitting.
Ideally, a dataset should only contain important features to reduce the risk of over-fitting
and computational costs. In practice, it is not trivial to analyze which features are the
important ones. The importance of features in a multi-variate manner depends on other
included features. Hence, it is not necessarily meaningful to assess the importance of
features in a univariate fashion. Methods of dimensionality reduction were considered to
reduce the number of input features and the emerging risk of over-fitting. Dimensionality
reduction encompasses different techniques to reduce the number of features. It is divided
into two different sub-groups. On the one hand, feature selection approaches and, on the
other hand, feature extraction approaches.

47

Variability-aware Software Defect Prediction

Feature Selection The feature selection approaches try to select the best-suited feature
subset for a specific prediction problem. The group of feature selection approaches is
again subdivided into three further groups [GE03]. The first group is considered as the
filter methods. They work independently from the classification algorithm and are applied
prior to the classification algorithm (e.g. by examining the correlation of features with
the target variable). Filter methods apply a certain method to estimate the suitability
of given features and remove those who seem to not contribute to the predictions. This
leads to the problem that it does not remove features that harm the performance because
they contribute. Hence, approximating the importance according to the contribution is
not necessarily advantageous. The second type is considered as wrapper methods. These
are applied in combination with a classification algorithm and allow more complexity in
the assessment of importances. Standard approaches of wrapper methods are forward-
or backward-selection. Wrapper methods are the most expensive approaches because they
include repetitive evaluations by the classification algorithms. The third type of feature
selection is considered as embedded methods. These techniques act as integrated parts of
the classification algorithms (e.g. L1-regularization), which makes them rather cheap in
terms of computational cost. They are more expensive than filter methods because they
are a constant part of the algorithm but much cheaper than wrapper methods. Embedded
methods are not available for all classification algorithms.

Feature Extraction Feature extraction approaches do not examine the actual features
and decide about to use or discard them. They derive new synthetic features intended
to be more informative and non-redundant while not losing important information. In
some cases, even a loss of information can lead to an improved performance (e.g. due
to an additional removal of noise). Common methods of feature extraction are Principal
Component Analysis (PCA) or Auto-Encoders (AE).

Regularization Regularization means manifold methods used to prevent models from
learning over-complex patterns. This can be achieved either by limiting algorithmic com-
plexity or by penalizing high complexity. The first approach decreases the models’ ca-
pability of learning complex decision boundaries, whereas the latter approach enforces a
model only to increase the complexity if it provides a major benefit. Applied techniques
of regularization will be described in the respective classifier’s subsection of Section 6.4.
The term regularizing effect is commonly used for any measures taken in order to reduce
the final model’s complexity. This can be also achieved by modifying the provided data.
Hence, any type of dimensionality reduction has a regularizing effect.

Recursive Feature Elimination via Random Forests The technique of Recursive Fea-
ture Elimination (RFE) was introduced by Guyon et al.[GWBV02]. The authors have
originally developed the RFE algorithm utilizing feature importances based on learned
coefficients from SVMs. The algorithm works straightforward in a few steps. The first step
is (1) the training of a classifier considering the current feature subset. Afterward, (2)
the computed feature importances serve to rank the features according to their contribu-
tion. As the last step of each iteration, (3) the algorithm removes the n least important
features from the provided subset and repeats this procedure until no features are left. A
continuous performance validation after each training process allows a subsequent analysis
of the performance progression throughout the entire RFE algorithm. The most suitable
feature subset can be chosen based on the obtained performances during the procedure.
This basic concept of successively removing the least important features is similar to a

48

Software Metric Subset Comparison Experiments

Backward-search algorithm and can easily be modified in order to utilize any sort of fea-
ture ranking method, for instance, RFs. They were also successfully applied as part of
RFE in [GMSP17]. Even though feature importances can show noisy information when
extracted from highly correlated features [TL11] [GMSP17], RFE seemed to provide the
most meaningful results of dimensionality reduction methods anyway. The error of feature
importance approximation due to highly correlated features is considered as the feature
correlation bias [GMSP17]. RF was chosen as the baseline classification algorithm for
RFE because it seemed to outperform other algorithms already at model construction
and optimization stages, and no other algorithm is immune to the feature correlation bias
either.

The alternative Non-Recursive Feature Elimination algorithm was not considered due to its
much higher proneness to the feature correlation bias [GMSP17]. The feature importance
values of correlated features are pessimistically biased because they partially share the
importance value over all correlated features [GMSP17]. When considering this on the
actual dataset, this could cause that at some point, an informative feature ζ could be
removed because of its least importance. This importance may have been assessed too low
because another feature that is highly correlated to ζ is still present and got the lion’s
share of importance. Once there are no highly correlated features left, the importance is not
shared anymore. The presence of feature correlation bias must be considered anytime when
analyzing feature importances. The removal of an informative feature would cause a drop in
the model’s validation performance, which would be recognized in the subsequent analysis
of the RFE algorithm. Only this analysis is decisive for the resulting reduced feature
subset. Hence, the risk of discarded informative features in the resulting reduced feature
subsets can be considered as rather low due to the manual inspection of the results.

The RFE algorithm was applied in the early stages of model construction and optimization.
It was utilized to create additional feature subsets that might provide better performances
as the original ones. Hence, RFE was executed on all defined feature subsets introduced
in Section 6.2. This produced five additional features subsets, one RFE-version for each
original feature subset. Additionally, RFE was also applied on all features (i.e. denoted as
ALL feature subset) and has provided an additional ALL_RFE feature subset. All emerged
RFE feature subsets correspond to the manually selected best-performing feature subset
during the RFE algorithm. This exact procedure will be explained in Section 6.5.2. The
main goal of the algorithm was to reduce the number of features (and hence the risk of
over-fitting and high Errorvariance) successively until the performance shows any drop. A
performance drop indicates the removal of important information from the data. Besides
just reducing the number of features without having performance decreases, an improve-
ment of performance was expected. Some algorithms have mechanics that work better
when there is no or less correlation present. It was also expected that at some point, the
performance drops because the algorithm was forced to remove the least important feature
continuously, even if all unimportant features were already discarded.

6.3.1.3 Considered Alternatives

A variety of multiple approaches were considered, implemented, and tested in order to
improve the performance and reduce the risk of over-fitting. AE- and PCA-based feature
extraction approaches were tested as part of the pre-processing. These approaches were
used to provide a more meaningful feature representation to be used in the subsequent clas-
sification algorithms. Vanilla AEs [Kra91] and special Denoising AEs [VLBM08] [VLL+10]
for tabular data were implemented and evaluated. Besides AE-based approaches, PCA was
evaluated to reduce the number of features while also removing any feature correlation.

49

Variability-aware Software Defect Prediction

Furthermore, correlation-based feature selection was tested to identify high correlated fea-
tures and discard one of the pairs. Anomaly Detection via AEs was also evaluated in order
to identify samples that do not follow the meaningful pattern of training data and con-
fuse the prediction algorithms. Those samples were removed before the data was fed to
the supervised classifiers. None of these implementations provided sufficiently promising
improvements to take place in the extensive validation run.

6.3.2 Imbalanced Class Distribution

This section addresses the problem of the highly imbalanced dataset. The first part ex-
plains why this can prevent models from learning meaningful patterns, and the subsequent
sections propose solutions how this issue can be overcome. The final section lists alternative
solutions that were considered.

6.3.2.1 The Problem

A high class imbalance can prevent some algorithms from learning a balanced decision
boundary. Sometimes a class imbalance can lead to an algorithm being biased to the
majority class due to its superior prior probability [JK19]. In these cases a model is not
able to learn how to recognize the minority class. Some algorithms are more prone to
this than others. The following paragraphs describe the effects of class imbalance on the
individual classification algorithms.

The NN or FCN suffers the most from an imbalanced training dataset. An NN is trained
using a certain cost or loss function. This means the algorithm adjusts its weights in order
to minimize this loss with respect to the currently provided training samples (i.e. the mini-
batch). The optimization algorithm computes gradients of the loss function with respect
to every single weight.

The magnitudes of adjustments are substantially determined by how large the gradients
are. The magnitudes of gradients are strongly determined by the amount of computed loss
in the actual training batch. If the current training batch was predicted quite well, the loss
becomes small, which in turn leads to small gradients. This is intuitive because a low loss
typically indicates good predictions and just the need for some fine-tuning. Considering a
case of a class imbalance of about 1:69 as it is in this dataset, the gradients become very
small far before the model has learned a meaningful pattern to recognize the minority
class. The very high loss at the beginning of training due to randomly initialized weights
forced the model very quickly to predict the right labels for samples of the majority class.
As soon as the model predicts the correct labels for the majority class (≈ 99% of samples),
the gradients diminish immediately. Hence, the model stops its effective training, although
it has not learned any useful pattern to recognize the minority samples yet. The minority
class has a too small impact on the losses, and hence the model always tends to be biased
towards the majority class. This class is accountable for the way larger proportion of the
loss. If the model trains continuously in order to learn the pattern of the minority class, it
is likely to over-fit before it has learned such a pattern (i.e. inappropriate training time).
Anand et al. have examined and shown this inferiority of the minority class’s gradients
when training networks [AMMR93]. If a model would utilize a single-sample SGD, the
result would be the same. The NN adjusts its weights 69 times to better fit the majority
class and a single time to fit the minority class. The model is again likely to over-fit before
it has learned any useful pattern to recognize minority class labels.

Tree-based models tend to behave more robust to imbalanced class distributions but are
not immune to that at all. A learned model on highly imbalanced data is likely to be biased
to the majority class. But in contrary to an NN-based model, a tree-based algorithm is not

50

Software Metric Subset Comparison Experiments

completely unable to learn meaningful patterns. The effect of imbalance or corresponding
countermeasures has to be analyzed in detail. It depends on the applied splitting criteria
and precise training data.

Naive Bayes is robust to class imbalance. It applies prior probabilities to make predictions.
These prior probabilities basically correspond to the number of training samples having a
certain feature value, divided by the number of all samples of this certain class. Hence, the
computations are made, based on only the priors of a single class. The prior probabilities
of the classes are never combined or mixed, and hence the majority class does not mess
up the computation or priors of the minority class.

6.3.2.2 The proposed Solutions

Potential solutions to overcome the issues caused by an imbalanced class distribution are
resampling approaches or cost modifications. Resampling approaches try to even out the
class balance by either adding samples to the minority class or removing samples from the
majority class. Those resampling approaches are only applied to the training data in order
to enable the model to learn a more balanced decision boundary. The test data always
remains in its original condition because the test data are used to test the model under
realistic circumstances. The resampling approaches can be subdivided into over-sampling
and under-sampling approaches. Over-sampling approaches do either replicate available
samples or create additional synthetic samples. Under-sampling approaches risk dropping
meaningful information from the training data, which can harm the training process.
Random over-sampling of available data risks to over-fit a model because it learns from
the same samples multiple times. The approach of cost modifications does not change
the samples. Still, it aims to force the model to pay more attention to the minority class
by inducing additional weight to miss-classifications of these samples. The resampling
approach was selected to address the issue of class imbalance because multiple papers
reported positive results using this method. Furthermore, resampling is very generic and
can be applied to arbitrary algorithms the same way (even though not all algorithms
benefit from all resampling approaches).

Random Over-sampling The first selected resampling technique was random over-sampling.
This method selects samples from the minority class randomly and duplicates them. The
duplication of samples is performed until a particular class distribution has been reached.
This desired distribution is variable and must be treated as a hyperparameter. Early
model validations have shown the most positive effect when classes were utterly balanced.
Several other publications reported positive results using over-sampling [PD07] [Tan15]
[KMM+07].

Smote-resampling The second selected resampling technique is Synthetic Minority Over-
sampling Technique (smote) [CBHK02]. The primary difference between smote-resampling
and random over-sampling is that it adds additional synthetic samples instead of just
replicating existing samples. The algorithm tries to produce other samples following the
same pattern as the original ones. Therefore, (1) the algorithm selects a random sample
from the minority class. Afterward, (2) it computes this sample’s k nearest neighbors,
while k is typically set to five. In the next step, (3) the algorithm selects one of these
neighbors randomly, and finally (4) it creates a synthetic sample at a random point on the
line (i.e. in feature space) between both samples. Therefore, both samples are considered as
feature vectors corresponding to certain points in a multidimensional space. This approach

51

Variability-aware Software Defect Prediction

was applied multiple times in SDP [WLT16] [KMM+07] [PD07]. Especially Pelayo & Dick
reported very successful results owed to smote-resampling[PD07].

6.3.2.3 Considered Alternatives

A variety of different class distributions was considered while evaluating the resampling
techniques. Equal size of both classes after resampling has performed best reliably. Be-
sides over- and smote-sampling, under-sampling was also tested. It performed constantly
worse than both other approaches. This might be caused by the information loss due to
discarding about 98% of samples of the majority class. Under-sampling has been reported
as applied technique in multiple publications [GBD+10] [Gra12] [YLX+15] [SMWO11]
[WSS14] [Tan15] [KMM+07]. It is likely that under-sampling can provide reasonable re-
sults if applied on datasets with a less severe class imbalance. Finally, multiple hybrid
resampling configurations were tested. Hybrid means that over- and under-sampling meth-
ods were combined to achieve a little less extreme resampling. For instance, the utilization
of under-sampling to shrink the majority class a bit and then over-sample the minority
class until an even distribution has been reached.

6.3.3 Different Feature Scales

This section describes the problem of different feature scales. It follows the same struc-
ture as the previous sections. The first subsection explains the problem and the potential
consequences. The second section provides a description of the proposed solution on how
to overcome the issue, and the final one provides an overview of other considered alterna-
tives.

6.3.3.1 The Problem

Different feature scales are a common issue of tabular datasets. In real-life data, individual
features measure different observations, typically based on different feature scales. The
number of LoC ranges from one to 5,127, whereas the values of the LoC Comment Ratio
range from zero to one. Depending on the classification and optimization algorithm, this
can lead to dominating features. Especially distance-based algorithms suffer from different
feature scales. This happens because two values of an arbitrary feature x1 showing values
between zero and one are likely to have less distance than two values of a feature x2,
which shows values between one and 5,127. If those distances contribute to the prediction
or learning, it is likely that some features dominate others.

ŷ

x1

x2

x3

w1

w2

w3

Figure 6.4: Single neuron neural network.

Another prominent algorithm that suffers badly from different feature scales is the NN.
Figure 6.4 shows a single neuron network with three input features x = (x1, x2, x3) and
corresponding weights w = (w1, w2, w3). The neurons input Σ is computed as shown in
Equation 6.1.

Σ =
∀xi∈x∑

i=1
xiwi (6.1)

52

Software Metric Subset Comparison Experiments

Hence, the feature scales have a direct impact on the neuron’s input sum Σ. The weights
are typically randomly initialized following the same distribution. Thus, if a feature x2 has
larger values in magnitude, its contribution to Σ dominates others. In order to achieve an
equal contribution to Σ, some weights must move dramatically. This compensation leads
to learned weights on different scales. This is a severe problem because larger weights lead
to high sensitivity to input data, which can contribute to over-fitting. Furthermore, differ-
ent weight scales prevent any interpretation of coefficients in terms of feature importance
assessments, and it also prevents the model from applying a balanced and appropriate
regularization. This problem applies to regularization methods, which are based on addi-
tional regularization terms as part of the cost function to minimize as shown in Equation
6.2.

J(y, ŷ) = L(y, ŷ) + λR(w) (6.2)

These are, for example, L1-, L2- or L1-L2-regularization. The problem is that the regu-
larization term forces the model to avoid high magnitudes of weights and try to keep all
weights as low as possible. If weights on different feature scales are necessary in order to
just even out the contribution to a neurons input Σ caused by different feature scales,
the weights become regularized to different degrees. This could simply prevent the model
from learning the right value of a certain weight just because it would lead to a too high
regularization term of a certain high-scaled input feature.

Furthermore, Equation 6.3 shows that the vanilla SGD update rule learns the weights
using a uniform learning rate α to control the step size of all weights equally.

wnew
i = wold

i − α ∂J
∂wi

(6.3)

This presumes that the gradients of all weights are roughly the same size. Considering that
the gradient of a weight ∂J

∂wi
is computed as shown in Equation 6.4 and the final gradient

∂Σ
∂wi

is computed as shown in Equation 6.5, the input feature scales have direct impact on
the magnitude of any weight’s gradients.

∂J

∂wi
= ∂J

∂ŷ
· ∂ŷ
∂ϕ
· ∂ϕ
∂Σ ·

∂Σ
∂wi

(6.4)

∂Σ
∂wi

= xi (6.5)

If the input features are on different feature scales, the gradients become differently large
as well. This would require multiple learning rates α to control the step size of all weights
individually. NNs are prone to suffer from different feature scales because the scales have
a significant impact on the optimization algorithm and predictions itself.

The positive effects of input normalization were also empirically studied by Lecun et
al.[LBOM12]. Normalization is always reported as positively affecting the performance
and decreasing the converging time of the optimization algorithm in the domain of deep
learning. The use of normalization was even extended to approaches that constantly nor-
malize the network’s activations on each layer called batch normalization [IS15].

53

Variability-aware Software Defect Prediction

Tree-based models and NB behave scaling-invariant. Trees are split based on sample sizes
and resulting class distributions. The different feature scales or the certain splitting values
do not affect the prediction or optimization algorithm directly. NB does also not suffer
from different feature scales. It makes predictions based on prior probabilities. The proba-
bilities are not affected by the scaling of features because each feature’s prior is computed
individually. Whereas the feature’s distribution does affect the algorithm, the features
scaling does not.

6.3.3.2 The proposed Solutions

The issue of different feature scales will be addressed by applying normalization before
fitting the data. Several normalizations and standardization techniques were tested at
model construction and optimization stages. The L2-normalization method seemed to
work best on NNs. NBs and tree-based models did not show significant changes. For a
more unified setup across the models, normalization was applied to all algorithms. Even
though it did not improve the models, it did not harm them either.

L2-Normalization L2-normalization computes the L2-norm for each feature based on
the appearances of values in the training data. The computation of the norm is shown in
Equation 6.6.

‖xm‖2 =

√√√√ j∑
i=1

x2
m,i (6.6)

Where xm is an arbitrary feature of the feature vector x = (x1, x2, x3, ..., xn), and n is the
number of totally contained features. The index i iterates all training samples until the
total number of samples j has been reached. Once the feature norms were computed, any
samples’ feature values are divided by the corresponding L2-norm as shown in Equation
6.7.

x′m = xm

‖xm‖2
(6.7)

Hence, the normalization outputs a vector x′m which is one if all samples’ values of feature
xm are squared and summed as shown in Equation 6.8.

j∑
i=1

x′2m,i = 1 (6.8)

The normalized values of x′m,i are in a range of [0, 1].

6.3.3.3 Considered alternatives

Besides L2-normalization, L1-normalization, MinMax-scaling, and standardization were
tested as well. L1-normalization works the same way as L2-normalization as given in 6.7,
but it uses the L1-norm as defined in Equation 6.9.

‖xm‖1 =
j∑

i=1
|xm,i| (6.9)

54

Software Metric Subset Comparison Experiments

MinMax-scaling rescales all values of a feature to [0, 1] where the highest original value of
the features is scaled to one, and the lowest value is scaled to zero. This sort of rescaling
is computed as given in Equation 6.10.

x′m = xm −min(xm)
max(xm)−min(xm) (6.10)

Standardization shifts the values of xm to have zero mean and unit variance. Therefore, the
mean x̄m is subtracted from the original xm and finally divided by the standard deviation
σxm as shown in Equation 6.11.

x′m = xm − x̄m

σxm

(6.11)

6.4 Model Construction
This section describes the process of model construction. This includes the finding of
suitable architectures and other algorithm-specific hyperparameters. The explanations of
chosen configurations are limited to the most important hyperparameters.

6.4.1 Fully Connected Network

The first model that was built is the FCN. FCNs are the prominent choice for non-
time-series-based NNs on tabular data. The present prediction task is a standard binary
classification problem. This implies the use of binary cross-entropy or log loss as the loss
function. The architecture and other algorithm-specific hyperparameters were tuned using
the outer validation set and the ALL feature subset as input features. This was done
to ensure that the found architecture is sufficiently complex for any of the pre-defined
feature subsets. A uniform architecture never provides the best possible results, but it
led to a manageable computational effort. It is a compromise to find an architecture that
is not under-complex for any feature subset. The optimization of the architecture was
performed manually. The architecture was initialized with a single layer and just a very
few neurons. At first, the number of neurons was successively increased until no further
performance improvement could be achieved anymore. In the next step, a new layer was
added. The neurons of this layer were again successively increased until the performance
has stopped improving. This procedure was followed until neither additional layers nor
additional neurons provided any further performance advantage.

The best performance and a reasonable amount of computational costs were achieved at
512 neurons on the input layer and on the first hidden layer. A single neuron on the output
layer was defined because the final prediction is a single value. The required prediction
is a probability that a sample belongs to the positive class (i.e. is a defect). This implies
the use of the sigmoid activation function on the output layer because it gives outputs in
the range of [0, 1]. The activation functions on input and hidden layers were changed from
an initially used sigmoid function to ReLu functions. This change has provided additional
improvements in performance and convergence speed. The final architecture is shown in
Figure 6.5.

The applied optimization algorithm is the enhanced mini-batch SGD variant called Adam
(Adaptive Momentum Estimation) [KB14]. The main advances of Adam compared to
vanilla SGD are the use of momentum and adaptive learning rates. Momentum tries to
minimize the risk of overshooting and slow convergence. It allows to change the weights
fast if dramatic adjustments are needed, but it also reduces the learning rate if the weights

55

Variability-aware Software Defect Prediction

Input layer ∈ R512 Hidden layer ∈ R512 Output layer ∈ R1

ReLu ReLu

Sigmoid

Figure 6.5: Optimized FCN architecture.

get close to the targeted local minimum of the cost function. Furthermore, the algorithm
allows learning individual learning rates for each weight. The initial learning rate was
set to alpha= 1e-4. The exponential momentum decays and the stability constant were
chosen according to recommendations in [KB14] with β1 = 0.9, β2 = 0.999 and ε = 1e-7.
Several other parameters were considered during hyperparameter optimization. Besides
Adam, RMSProp5 and vanilla SGD were considered, but Adam has outperformed them
reliably. The batch size was set to 128. A variety of other values was tested because
the batch size has a major impact on the convergence speed and hence the runtime of
the optimization algorithm. The batch size determines how many training samples are
considered at a single training iteration within an epoch. Hence, a smaller batch size
implies the need for more iterations to complete a single epoch. A larger batch size is
desired to reduce the training time, but this also requires a higher amount of memory.
This is due to the fact that the gradients’ computation becomes more complex if more
samples are considered at once. Larger batch sizes led to decreased performances, while
smaller batch sizes did not lead to further improvements but longer training durations.
Considered sizes were 32, 64, 256, 512, 1024, 2048, but 128 seemed to perform best and
show a reasonable trade-off between performance and convergence speed. L2-regularization
was chosen as a regularization method on all layers. The regularization term’s coefficient
was set to λ = 0.01. Besides L2-regularization, L1-, L1-L2-regularization, and Dropout
[SHK+14] were considered but did not provide further improvements. A fixed number of
epochs to train a network was chosen because the training process did not seem to converge
smoothly, and hence an early stopping strategy was not an appropriate choice. Figure 6.6
shows the history of a training process under continuous validation on the outer validation
dataset.

While Figure 6.6a shows the smoothly decreasing training error of two different learning
rates (α = 1e-4 and α = 1e-5), Figure 6.6b shows the two heavily oscillating testing
errors of the same training run. The oscillation also happened when the learning rate
was decreased by magnitudes. Figure 6.6b shows that the decreased learning rate did not
stabilize the training process but led to a worse achieved testing performance even if it was
trained for twice the number of epochs. The horizontal dashed lines indicate the minimal
loss values.

5RMSProp is an unpublished adaptive optimizer proposed by Geoff Hinton in his lecture. Available under:
https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf

56

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Software Metric Subset Comparison Experiments

(a) Training errors of the FCN.

(b) Testing errors of FCN.

Figure 6.6: Loss curves of the constructed FCN at different learning rates.

The network was implemented that it reports the best achieved AUC-ROC measure and
F1-score of the entire training run. Both values can be reported independently of each
other. This means the network can report its best AUC-ROC measure from training
epoch 200 while it also reports its best achieved F1-score from epoch 350. In contrary
to that, the best achieved F1-score determines the reported values of precision and recall.
These measures are associated with its F1-score, and hence it is not meaningful to provide
maximized values of these measures independently. The implementation was done using
TensorFlow 2.1. The general hyperparameters provided to the FCN in the final validation
routine are L2-normalization and over- as well as smote-resampling. The FCN was not val-
idated without using a resampling approach because this led to very poor performances.
Reasons for that were given in Section 6.3.2.

6.4.2 Naive Bayes Classifier

The NB classifier is a simple probabilistic technique to predict labels. Due to its strong
assumption of independence, the computations are quite simple. The algorithm does not
require many algorithm-specific hyperparameters. A Gaussian kernel was applied as de-
scribed in Equation 2.6 in order to compute prior probabilities of the numerical features.
One additional hyperparameter named var_smoothing had to be set. It supported the
computation stability for variances and was set to its default value of 1e-9. Despite the
robustness of NB to imbalanced class distributions, the algorithm was validated using
over- and smote-resampling as well as without any resampling. This was done to simply
observe the effect of resampling manually. The applied implementation is based on the
sklearn library.

57

Variability-aware Software Defect Prediction

6.4.3 Random Forest Classifier

The RF classifier is an ensemble technique based on a number of uncorrelated decision
trees that perform a majority voting about which class to assign. In order to perform
this majority voting, a set of trees must be learned. All trees are learned by a randomly
selected subset of features and samples. The trees are learned in an ordinary fashion as
described in Section 2.6. Decision trees come up with several hyperparameters determining
the size and the shape of a tree. Furthermore, an ensemble technique comes along with
additional hyperparameters controlling the composition of the ensemble itself. Finally, an
RF ends up with plenty of different hyperparameters to be defined. The majority of these
were kept on their default values according to sklearn. Considered hyperparameters at the
model construction stage were the number of estimators, the splitting criterion, and the
maximal depth of learned trees. The number of trees was set to 500. Figure 6.7 shows the
changes in performance and runtime durations on an increasing number of estimators.

Figure 6.7: Optimization of the number of trees within the RF model.

Lower numbers of estimators seem to show slightly more fluctuations in performance,
whereas the performance remains quite stable once the number of 500 trees is exceeded.
This number also shows a reasonable runtime duration. A high number of estimators does
generally not contribute to over-fitting but just stops improving the prediction capability at
some point. Even a number of 5,000 estimators did not harm the performance at all but led
to unreasonable runtime durations. The used training data for this plot were resampled by
smote and used the ALL feature subset. This combination provides the highest complexity
of data. Hence, the number of 500 estimators should be sufficiently high for any other
feature subset or resampling approach.

The Gini Impurity was defined as the splitting criterion for all learned trees. The maximal
depth of trees was not limited. The model optimization stage has shown that any tested
limitation decreased the performance. The final validation routine of this algorithm con-
sidered over- and smote-resampling as well as no resampling. The applied implementation
is based on the sklearn library.

6.4.4 Gradient Boosting Classifier

GB is the second tree-based classification algorithm and also the second ensemble tech-
nique. It provides the same hyperparameters as other tree-based models as well as some

58

Software Metric Subset Comparison Experiments

additional ensemble specific hyperparameters. One of the most important hyperparame-
ters to tune is the maximal depth of learned trees. In contrary to RF, a limitation of the
maximal depth set to ten provided the best results. A possible reason for that is that RFs
are very robust to over-fitting due to its bootstrap aggregating approach, which learns all
estimators using random subsets of features and samples. Hence, the trees are already sig-
nificantly less complex than they would be if learned using all samples and features. This
is how GB works, and hence it requires additional measures of regularization (like limiting
the trees’ depths). Another important hyperparameter of GB is the number of estimators.
This parameter is strongly associated with another hyperparameter denoted as early stop-
ping. The early stopping criterion is realized by a number of allowed iterations (i.e. adding
further estimators to the ensemble) without recognized improvement. It seemed to be a
good combination to set the number of estimators rather high while preventing the model
from over-fitting by the definition of such an early stopping criterion. The maximal number
of estimators was set to 150, and the number of allowed iterations without improvements
was set to ten. This allowed the algorithm to keep learning for many iterations but stop on
convergence and before over-fitting happens. The learning rate of the GB algorithm was
set to 0.1. The final validation routine considered over- and smote-resampling as well as
no resampling for the GB algorithm. The applied implementation is based on the sklearn
library.

6.5 Implementation
This section provides a detailed description of the implementation of the preparation
pipeline, the RFE algorithm, and the final validation routine. The preparation pipeline is
the component that takes the raw data, performs all configured steps of pre-processing,
and returns the prepared data to be used as input in the classification algorithms. The RFE
algorithm makes use of the preparation pipeline to provide additional feature subsets. The
final validation routine takes all feature subsets and remaining configuration parameters
and validates all of them according to the defined validation strategy introduced in Section
6.2.

6.5.1 Preparation Pipeline

The first implemented component is the preparation pipeline because it is used by the
RFE algorithm as well as the final validation routine. The preparation pipeline takes the
raw data as input and applies all defined steps of pre-processing according to Section 6.3.
The pipeline contains the steps of (1) selecting the desired feature subset, (2) normalizing
all data based on the training data, (3) removing zero-important features, (4) applying
resampling and finally (5) returning the training and testing dataset in the appropriate
data type. These steps must be performed in the proper sequence in order to preserve the
validity of results and do not harm the prediction performance.

The pipeline is provided with a training and testing dataset, which in turn is returned by
the 10-fold CV component. The first part of the pipeline extracts the desired feature subset
from the provided data. Once the feature subset was selected from training and testing
data, the normalization method is fitted. In the case of L2-normalization, this means
the L2-norm is computed based on only the training data. Once the norm is computed,
the normalization is applied to both, training and testing data. The pipeline takes a
parameter that determines the desired sort of normalization method. Even though only
L2-normalization is used within the validation routine, the implementation was done in
a parametric fashion. An additional step of pre-processing, which was considered within
the preparation pipeline, is the subsequent removal of zero-important features. These are
features that turned out to be useless. Early investigations at model construction and

59

Variability-aware Software Defect Prediction

optimization stages have shown that some of the features show a minimal variance. In
fact, the entire dataset has 434,772 samples that show the value zero in these features,
and only a single sample that has value one. Obviously, these are no meaningful information
to learn any patterns from. The affected features are listed in Table 6.1.

Table 6.1: Zero-importance features.

Metric

ALL_WITH_BUILD_VARS Vars per Function x Feature Type(hex=1)
Visible-TD x Feature Type(hex=1)
ALL Vars per Function x Feature Type(hex=1)
VP ND_Avg x Feature Type(hex=1)
EXTERNAL Vars per Function x Feature Type(hex=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(hex=1)
Full-TD x Feature Type(hex=1)
INTERNAL Vars per Function x Feature Type(hex=1)
VP ND_Max x Feature Type(hex=1)
CC on VPs x Feature Type(hex=1)

The pipeline takes a parameter determining whether these features shall be removed or not.
Another parameter determines the resampling method to be used in this validation. It is
essential that the resampling happens after the split into training and testing data and after
the normalization. If the resampling would happen before the data were split, this could
lead to similar samples in both subsets. This would severely compromise any results. The
performances would become too optimistic because a model would be trained and tested
on partly the same samples. Furthermore, the resampling happens after normalization
because smote-resampling utilizes feature spaces and distances. Hence, different feature
scales would severely affect this computation. The resampling is only applied on training
data, whereas the testing data remain in its original shape. The testing data mimic a real
case. If these data would be resampled to a synthetically equilibrated distribution, the
performance measures would not provide meaningful real case estimations. The final step
of the preparation pipeline is the execution of some minor implementation-specific data
type conversions. It outputs completely prepared data which can be fed to the classification
algorithm.

6.5.2 Recursive Feature Elimination

This section describes the implementation of the RFE algorithm in detail. RFE is orig-
inally considered as greedy wrapping feature selection method utilizing any supervised
classification algorithm. The algorithm was used to produce additional feature subsets,
which were also validated extensively as part of the final validation routine. This made
the RFE algorithm acting like a filter-based feature selection method. The RFE algorithm
makes use of the preparation pipeline in order to pre-process the data for the classifica-
tion algorithm. The basic RFE algorithm was previously introduced in Section 6.3.1. This
RFE implementation utilizes RF as its classification algorithm, which makes the result
slightly biased in favor of RFs. Algorithm 2 shows the logical implementation of it. The
subsequent analysis of all collected results of this algorithm served as a baseline to define
the additional RFE feature subsets.

The algorithm used the same training and testing data, which were already used at model
construction. The algorithm was applied on all pre-defined feature subsets described in
Section 6.2 (i.e. LNV, LPV, LCV, GPV, GCV) and additionally on the ALL feature subset,
which includes all software metrics. The algorithm iterates all provided feature subsets
sequentially and reduces each feature subset until only a single feature is left. Any kind of

60

Software Metric Subset Comparison Experiments

Algorithm 2 Recursive Feature Elimination via random forest classification
1: train ← dataset \ outerV alidationSet
2: test ← outerV alidationSet
3:
4: for all featureSubsets do
5: featureSubset_ ← featureSubset
6: while len(featureSubset_) > 1 do
7: train_, test_ ← PreparationPipeline(train, test, featureSubset_, params)
8: RF _ ← initialize(hps).train(train_)
9:

10: saveResults(evaluate(RF _.predict(test_)))
11: saveFeatureImportances(RF _.getFeatureImportances())
12:
13: featureSubset_ ← featureSubset_.removeLeastImportantFeature()
14: end while
15: end for

temporary object within the algorithm is denoted by a tailing _. In the first step of each
inner iteration, the algorithm utilizes the preparation pipeline to pre-process the data. The
params argument provided to the preparation pipeline includes any hyperparameters deter-
mining the desired steps of pre-processing. The RFE algorithm applied L2-normalization
and no resampling. No resampling was used in order to avoid inducing an additional bias
towards any resampling technique. Furthermore, the RFE algorithm does not aim for best
performance but towards revealing insights into the performance history throughout the
algorithm. RF was used as the classification algorithm because it behaves more robust
to imbalanced class distribution than other algorithms and achieved meaningful results
at reasonable computational costs at the model construction stage. After the data were
prepared by the pipeline, a fresh RF classifier is initialized in each iteration. This RF
model is trained on the prepared training data and predicts on testing data subsequently.
The performance results are saved persistently for each iteration. Furthermore, the feature
importances are extracted and stored on each iteration as well. The final step of each inner
iteration is to analyze the feature importances and remove the least important one.

RFE Results This section presents the results of the performed RFE algorithm. Each
plot shows the performance history of all recorded performance metrics throughout the
entire algorithm. The vertical dashed grey line in each plot shows the iteration of the
highest F1-score. This point of each plot determines the resulting RFE feature subset to
be validated extensively. Two plots show an additional purple vertical line, which was
defined manually because the point of the highest F1-scores did not seem to be the most
promising one.

The first Figure 6.8a shows the performance history of the LNV feature subset. The plot
shows a quite constant performance history. The point of the highest F1-score seems to
be a good choice because, at this point, no performance metric has decreased yet. The
next Figure 6.8b shows the performance history of the LPV feature subset. The plot shows
an initially constant performance history but a slight decrease in AUC-ROC before the
point of the highest F1-score has been reached. Hence, the decisive iteration for the RFE
feature subset was manually adjusted to a previous point in order to omit the decrease
in AUC-ROC within the resulting subset. The next Figure 6.8c shows the performance
history of the LCV feature subset. The plot shows a rather constant history, and the point
of the highest F1-score has been reached before the algorithm shows the slightest decrease
in AUC-ROC measure. Hence, the point of the highest F1-score was considered as a
meaningful choice. Figure 6.8d shows the performance history of the GPV feature subset.

61

Variability-aware Software Defect Prediction

The plot shows quite constant performances. The point of the highest F1-score has been
reached rather early, while no considerable changes happened at this point. No significant
increase happened before this point, and no decrease happened after this point. Hence,
the decisive iteration for the RFE feature subset was manually moved some iterations
further. This iteration shows a very similar performance than all previous ones and a
significant decrease in performance afterward. Hence, it seems that this iteration provides
an as-small-as-possible feature subset of a reasonable performance without any necessary
information lost yet. Figure 6.8e shows the performance history of the GCV feature subset.
The plot shows a quite constant, perhaps a slightly increasing performance while removing
many features. The iteration of the highest F1-score is considered as meaningful because
the subsequent iteration shows a significant drop in AUC-ROC and F1-score as well.
Figure 6.8f shows the performance history of the ALL feature subset. The plot shows a
considerable increase while constantly removing features. On a very late iteration, the
plot shows a significant performance increase of F1-score and AUC-ROC measure. This
sharp increase is followed by a sharp drop. The iteration of the highest F1-score seems
to provide a significantly improved performance and a dramatic decrease in the number
of features. The application of the RFE algorithm could reduce the number of contained
features by a lot while it kept up or even improved the achieved performances. In order to
validate the generalizability of these results, the final analyses of this set of experiments
consider a comparison of achieved performance improvements at this point and achieved
performance improvements at the extensive validation routine. The contained features of
each RFE feature subset are shown in Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7.

The computation of feature importances The used sklearn library implemented the
feature importance as described in [BFSO84]. The feature importance of a learned tree
is calculated as the total decrease in a node’s impurity, weighted by the probability of
reaching that node. This probability is approximated by the proportion of samples reaching
the node. Hence, a feature becomes more important if it is used on very top-level splits
that hit a large part of all samples. In the case of an ensemble like RF, the importances
are computed on each tree and are finally averaged over all.

Preliminary Findings

1. The achieved F1-score of the LNV feature subset was improved by 11.68% with 3 out
of 15 features (80% of features were removed).

2. The achieved F1-score of the LPV feature subset was improved by 6.65% with 5 out
of 20 features (75% of features were removed).

3. The achieved F1-score of the LCV feature subset was improved by 14.78% with 9 out
of 28 features (68% of features were removed).

4. The achieved F1-score of the GPV feature subset was improved by 1.26% with 20 out
of 200 features (90% of features were removed).

5. The achieved F1-score of the GCV feature subset was improved by 38.57% with 9 out
of 442 features (98% of features were removed).

62

Software Metric Subset Comparison Experiments

(a) Results of the LNV feature subset.

(b) Results of the LPV feature subset.

(c) Results of the LCV feature subset.

(d) Results of the GPV feature subset.

63

Variability-aware Software Defect Prediction

(e) Results of the GCV feature subset.

(f) Results of the ALL feature subset.

Figure 6.8: The results of the RFE algorithm for each feature subset.

64

Software Metric Subset Comparison Experiments

6. The achieved F1-score of the ALL feature subset was improved by 112.11% with 9
out of 692 features (99% of features were removed).

Table 6.2: Software metrics in the LNV_RFE feature subset.

Metric

EV Classical Fan-In(global)
EV Classical Fan-In(local)
EV Classical Fan-Out(global)

Table 6.3: Software metrics in the LPV_RFE feature subset.

Metric

ALL_WITH_BUILD_VARS Vars per Function
EV VP Fan-In(global)
EV VP Fan-In(local)
EV VP Fan-Out(global)
EV VP Fan-Out(local)

Table 6.4: Software metrics in the LCV_RFE feature subset.

Metric

Combined ND_Avg
DC Fan-Out(global x No Stubs)
EV DC Fan-In(global)
EV DC Fan-In(local)
EV DC Fan-Out(global x No Stubs)
EV DC Fan-Out(global x No ext. VPs)
EV DC Fan-Out(global)
EV DC Fan-Out(local x No Stubs x No ext. VPs)
EV DC Fan-Out(local)

6.5.3 Validation Routine

This section describes the procedure of the final validation routine. It implements the
validation strategy introduced in Section 6.2. It conducts the validation of all defined
classification algorithms, feature subsets, and remaining hyperparameters like resampling
methods. The validation routine stores any performance metrics of each learned and vali-
dated model. The resulting validation scores are the averages over all of the ten iterations
of a single 10-fold CV run. The term 10-fold CV iteration or inner 10-fold CV iteration
denotes one out of ten training and testing passes of a model on the different fold com-
positions. The term 10-fold CV run or outer 10-fold CV iteration encompasses all inner
iterations.

The validation routine aimed to obtain reliable, robust, and non-biased information about
the suitability of individual configurations. This suitability is measured by the pre-defined
variety of performance metrics. The 10-fold CV strategy was defined as the most mean-
ingful approach. The implementation of the validation routine is described by Algorithm
3.

As a first step of the algorithm, the outer validation set must be removed because it
was already used to optimize the algorithms. The use of these data as part of the vali-
dation routine would provide too optimistic results. The routine iterates all pre-defined

65

Variability-aware Software Defect Prediction

Table 6.5: Software metrics in the GPV_RFE feature subset.

Metric

ALL_WITH_BUILD_VARS Vars per Function x ALL_CTCR
ALL_WITH_BUILD_VARS Vars per Function x COC
ALL_WITH_BUILD_VARS Vars per Function x Hierarchy Levels
ALL_WITH_BUILD_VARS Vars per Function x INCOMIG_CONNECTIONS
ALL_WITH_BUILD_VARS Vars per Function x NUMBER_OF_CHILDREN
ALL_WITH_BUILD_VARS Vars per Function x OUTGOING_CONNECTIONS
ALL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
ALL_WITH_BUILD_VARS Vars per Function x SD_FILE
ALL_WITH_BUILD_VARS Vars per Function x SD_VP
ALL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES
EV VP Fan-In(global)
EV VP Fan-In(local)
EV VP Fan-Out(global)
EXTERNAL_WITH_BUILD_VARS Vars per Function x ALL_CTCR
EXTERNAL_WITH_BUILD_VARS Vars per Function x COC
EXTERNAL_WITH_BUILD_VARS Vars per Function x INCOMIG_CONNECTIONS
EXTERNAL_WITH_BUILD_VARS Vars per Function x NUMBER_OF_CHILDREN
EXTERNAL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
EXTERNAL_WITH_BUILD_VARS Vars per Function x SD_VP
EXTERNAL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES

Table 6.6: Software metrics in the GCV_RFE feature subset.

Metric

EV DC Fan-In(local) x Feature distance
EV DC Fan-In(local) x Hierarchy Types(0-0-1)
EV DC Fan-In(local) x Hierarchy Types(0-1-0)
EV DC Fan-In(local) x NUMBER_OF_CHILDREN
EV DC Fan-In(local) x OUTGOING_CONNECTIONS
EV DC Fan-In(local) x POSITIVE_SIZES
EV DC Fan-In(local) x SD_FILE
EV DC Fan-In(local) x TOTAL_SIZES
EV DC Fan-Out(global) x Feature distance

Table 6.7: Software metrics in the ALL_RFE feature subset.

Metric

ALL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
ALL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES
EV DC Fan-In(local) x Feature distance
EV DC Fan-In(local) x NUMBER_OF_CHILDREN
EV DC Fan-In(local) x POSITIVE_SIZES
EXTERNAL_WITH_BUILD_VARS Vars per Function x COC
EXTERNAL_WITH_BUILD_VARS Vars per Function x INCOMIG_CONNECTIONS
EXTERNAL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
EXTERNAL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES

66

Software Metric Subset Comparison Experiments

Algorithm 3 The feature subset comparison experimental routine
1: dataset ← dataset \ outerV alidationSet
2:
3: for all predictionAlgorithms do
4: for all featureSubsets do
5: for all samplingMethods do
6: for 0, n do # outer 10-fold iterations
7: k-folds ← StratifiedKFold(k, dataset)
8: for all train_fold, test_fold in k-folds do # inner 10-fold iterations
9: train, test ← PreparationPipeline(train_fold, test_fold, featureSubset,

params)
10:
11: model ← predictionAlgorithm.initialize(hps).train(train)
12: saveResults(evaluate(model.predict(test)))
13:
14: if model is tree-based then
15: saveFeatureImportances(model.getFeatureImportance())
16: end if
17: end for
18: end for
19: end for
20: end for
21: end for

hyperparameters in a grid-based fashion. The implementation allows setting an additional
parameter n, which determines the number of outer 10-fold CV iterations to perform on
each configuration. However, this number had to be set to one. A higher number of outer
10-fold CV iterations would exceed the computational resources. In each of the outer 10-
fold CV iterations, the provided dataset is split into ten folds according to the stratified
approach described in Section 6.2. These folds provide ten different training and testing
data compositions to validate. The first step of each validation starts with the applica-
tion of the preparation pipeline in order to perform all necessary steps of pre-processing.
The subsequent step is the initialization and training of the respective classifier. Each
classification algorithm was built and optimized to have a single set of algorithm-specific
hyperparameters, which were described in Section 6.4. Those parameters are applied and
shared over all configurations for each classifier. Once the model was trained, it can be
evaluated, and all performance metrics, as well as some other information about the con-
figuration, are saved persistently. In the case that the actual classification algorithm is a
tree-based one, the feature importances are extracted and saved as well.

Figure 6.9 shows a schematic summary of the implementation. It wraps up how the val-
idation was performed and which parameters were validated. The outer cycle represents
the grid-based iteration of the given hyperparameters. The intermediate cycle represents
the n = 1 outer 10-fold iterations, and the innermost cycle shows the inner k = 10-fold
iterations. Every single iteration trains and tests a certain configuration, and the final
validation scores are provided as averaged measures for each outer cycle (i.e. for each
configuration).

Any configuration to validate used L2-normalization and the removal of zero-important
features. NB-, RF- and GB-based configurations were validated on over- and smote-
resampling as well as without resampling. NN-based configurations were only validated
using over- and smote-resampling. The final validation scores are defined as arithmetic
means of each performance metric over all k = 10 iterations. In the case of a value n > 1,
the validation scores are defined as the arithmetic mean over all k inner iterations and all
n outer iterations.

67

Variability-aware Software Defect Prediction

Fold 10

Fold 1

grid-based
configuration
iterations

outer 10-fold CV
iterations

inner 10-fold CV
iterations

Fold 2

Validation Scores

Algorithms: NB, NN, RF, GB
Feature Subsets: LNV, LPV,
LCV, GPV, GCV, ALL
+ all RFE feature subsets
Resampling: Smote, Over, Off
Normalization: L2
Remove Zero-important
features: On

Preparation
Pipeline

Training &
Testing

...

Configurations

Figure 6.9: Validation routine setup.

6.6 Analysis

This section provides and discusses the results of the first set of experiments. Table A.9
in the Appendix shows all achieved validation scores of each recorded performance met-
ric. The table is ordered according to achieved F1-scores. Those scores are based on the
arithmetic mean (ø) over all iterations of a respective configuration. The duration is the
summation (Σ) over all inner 10-fold iterations each configuration. It includes the training
and testing time each iteration.

6.6.1 Comparison of Feature Subsets

This section shows a particular view on the results in order to address the question about
the superiority of specific feature subsets over others. Table 6.8 presents an overview of the
best achieved performances and its corresponding configuration for each feature subset.
The best performance was determined by the highest achieved F1-score.

Table 6.8: Best achieved validation scores of each feature subset.

Precision Recall F1 AUC-ROC
Subset Model Sampling ø ø ø ø

GPV_RFE RF Off 0.977432 0.506960 0.667468 0.959948
GPV RF Off 0.973382 0.501605 0.661919 0.960251
ALL_RFE RF Off 0.976596 0.422435 0.589675 0.955442
ALL GB Over 0.355559 0.600401 0.446027 0.924765
GCV_RFE RF Smote 0.417775 0.313305 0.357548 0.734410
LPV_RFE RF Off 0.891265 0.174754 0.291786 0.744306
LPV GB Off 0.731670 0.169583 0.274936 0.723002
GCV RF Off 0.897166 0.155492 0.264803 0.820075
LCV_RFE RF Off 0.854152 0.142116 0.243438 0.765221
LNV_RFE RF Off 0.939705 0.133560 0.233659 0.747704
LNV RF Smote 0.339268 0.159770 0.216925 0.705323
LCV RF Off 0.845451 0.110912 0.195932 0.765334

68

Software Metric Subset Comparison Experiments

Table 6.9: Performance comparison between local-scoped non-variability-awareness
(LNV_RFE) and all others.

± Precision ± Recall ± F1 Welch-test ± AUC-ROC
From To F1

LNV_RFE LPV_RFE - 5.15% + 30.84% + 24.88% 3 - 0.45%
LNV_RFE LCV_RFE - 9.10% + 6.41% + 4.19% 7 + 2.34%
LNV_RFE GPV_RFE + 4.01% + 279.57% + 185.66% 3 + 28.39%
LNV_RFE GCV_RFE - 55.54% + 134.58% + 54.02% 3 - 1.78%

The GPV and GPV_RFE feature subsets surpassed all others. Both achieved an approximately
12.25% higher F1-score than the ALL_RFE feature subset. The ALL_RFE feature subset
achieved an about 32% higher F1-score than its original version. Below the GPV and ALL
versions, GCV_RFE achieved the next highest F1-score. The original version of LPV and GCV
reached a quite similar F1-score. Hence, the local-scoped pure-variability-aware metrics
produced similar performances as the global-scoped combined-variability-aware metrics.
The lowest F1-scores were achieved by the LNV and LCV feature subsets, whereas the LNV
subset also shows the worst AUC-ROC measure. The best feature subset of GPV_RFE
performed about 240% better than the worst feature subset of LCV.

6.6.2 Non-Variability-Awareness vs. Variability-Awareness

This section shows a certain view on the results in order to address the question about
the superiority of variability-awareness over non-variability-awareness. Table 6.9 presents
a comparison of achieved performances of the best non-variability-aware feature subset
(LNV_RFE) and all others.

The second Table 6.10 presents a comparison of the feature subset that achieved the overall
best validation scores (GPV_RFE) and all others. In order to provide a more robust insight
and less cherry-picked results, the best version of each feature subset was chosen in all cases
(i.e. either the RFE feature subset or the original one). In order to provide statistically
validated results about superiority or inferiority of variability-awareness, Welch’s t-tests
were performed.

Welch’s t-test for unequal variances The Welch’s t-test for unequal variances or simply
Welch-test was selected because it does not assume the same variances of both samples
under comparison. Even in the case of very similar variances performs the Welch-test as
robust as the Student’s t-Test [Rux06]. The Welch-tests were applied to the F1-scores of
the models. The level of significance α was set to 0.05. The null hypothesis H0 states the
means of given samples are equal. If a computed p-value was ≤ α, the null hypothesis was
rejected. If H0 was rejected, it means the validation scores of given samples are statistically
unequal, and therefore one sample is either significantly better or worse than the other.
This is indicated by a positive or negative difference between both samples as shown in
the comparison tables. Whether H0 could be rejected is indicated by a 3. If a Welch-test
was not passed, and H0 could not be rejected; this is indicated by an 7.

The results of experiments show that variability-awareness does not necessarily improve
the prediction performance. The non-variability-aware software metrics achieved similar
F1-scores as combined-variability-aware metrics on a local scope (LNV_RFE vs. LCV_RFE;H0
not rejected with p-value≈ 0.267). The non-variability-aware metrics achieved significantly
worse F1-scores than pure-variability-aware metrics on a local (LNV_RFE vs. LPV_RFE; H0
rejected with p-value ≈ 5.19e-05) and on a global scope (LNV_RFE vs. GPV_RFE; H0 rejected

69

Variability-aware Software Defect Prediction

with p-value ≈ 1.79e-19). The combined-variability-aware metrics achieved significantly
higher F1-scores only on a global scope (LNV_RFE vs. GCV_RFE; H0 rejected with p-value
≈ 5.75e-11).

Table 6.10: Performance comparison between global-scoped pure-variability-awareness
(GPV_RFE) and all others.

± Precision ± Recall ± F1 Welch-Test ± AUC-ROC
From To F1

GPV_RFE LNV_RFE -3.86% - 73.65% - 64.99% 3 - 22.11%
GPV_RFE LPV_RFE - 8.82% - 65.53% - 56.28% 3 - 22.46%
GPV_RFE LCV_RFE - 12.61% - 71.97% - 63.53% 3 - 20.29%
GPV_RFE GCV_RFE - 57.26% - 38.20% - 46.43% 3 - 23.49%

Table 6.10 shows that the global-scoped pure-variability-aware metrics surpassed any other
metric subset. This finding was validated by Welch-tests in all cases. This metric subset
achieved higher F1-scores than non-variability-aware metrics (GPV_RFE vs. LNV_RFE; H0
rejected with p-value ≈ 1.16e-18), pure-variability-aware metrics on a local scope (GPV_RFE
vs. LPV_RFE; H0 rejected with p-value ≈ 2.34e-15) and combined-variability-aware metrics
on a local (GPV_RFE vs. LCV_RFE; H0 rejected with p-value ≈ 9.15e-22) as well as on a
global scope (GPV_RFE vs. GCV_RFE; H0 rejected with p-value ≈ 4.06e-18).

Findings

1. Non-variability-awareness did not outperform any variability-aware feature subset.

2. Pure-variability-awareness on a global scope outperformed any other variability-awareness
on any scope significantly.

6.6.3 Local Scope vs. Global Scope

This section shows a certain view on the results in order to address the question about the
superiority of global scopes over local scopes. Table 6.11 shows the improvements achieved
by changing from local-scoped to global-scoped metrics.

Table 6.11: Performance comparison between local- and global-scoped software metrics.

± Precision ± Recall ± F1 Welch-Test ± AUC-ROC
From To F1

LPV_RFE GPV_RFE + 9.66% + 190.10% + 128.75% 3 + 28.97%
LCV_RFE GCV_RFE - 51.09% + 120.46% + 46.87% 3 - 4.03%

Because only variability-aware software metrics can be collected on a global scope, there
is no global version of the non-variability-aware software metrics subset available. As in
previous analyses, it was always the better version of each feature subset used (i.e. either
the RFE feature subset or the original one). Welch-tests were performed as previously
described in Section 6.6.2.

The performance of pure-variability-aware software metrics increased by about 129%
(LPV_RFE vs. GPV_RFE; H0 rejected with p-value ≈ 2.34e-15) in the achieved F1-score.
The performance of combined-variability-aware software metrics increased by about 47%
(LCV_RFE vs. GCV_RFE; H0 rejected with p-value ≈ 4.68e-11) in terms of F1-score. Hence,
the extension of the scopes led to significantly improved results in all cases.

70

Software Metric Subset Comparison Experiments

Findings

3. Changing the scope from local to global improved the achieved F1-scores in all cases
significantly.

6.6.4 Comparison of Classification Algorithms

This section shows a certain view on the results in order to address the question about any
superiority of certain classification algorithms over others. The ulterior motive was that
the removal of poor-performing classification algorithms could decrease the computational
costs of subsequently performed experiments. Table 6.12 presents an overview of the best
achieved performances of each applied classification algorithm, regardless of configurations.
It is difficult to assess the general suitability of an algorithm because it always depends
on all applied hyperparameters. Hence, basically no classification algorithm is generally
superior over others, but it is likely that depending on a certain task and available data, one
algorithm is able to achieve better results than others. Every algorithm made predictions
for any considered configuration of the remaining hyperparameters. This allowed assessing
the suitability of the algorithms in this specific task using the pre-defined algorithm-specific
and general hyperparameters.

Table 6.12: Best achieved validation scores per classification algorithm.

Precision Recall F1 AUC-ROC
Model Subset Sampling ø ø ø ø

RF GPV_RFE Off 0.977432 0.506960 0.667468 0.959948
GB GPV_RFE Off 0.878049 0.477176 0.617969 0.910329
NN ALL Smote 0.224262 0.262657 0.239804 0.756442
NBG LNV Off 0.038435 0.125534 0.058670 0.635658

The results show that NB-based models performed worst. No configuration using the
Bayesian algorithm achieved an F1-score above 0.06 (best F1-score of a Bayesian model
is 0.05867 on the LNV feature subset without resampling). NNs did not perform well in
this task either. They only achieved about half as good F1-scores as GBs and RFs. The
RF algorithm performed best overall. It even surpassed the second-best algorithm GB
significantly. This was validated by a Welch-Test according to the description given in
Section 6.6.2 (H0 rejected with p-value ≈ 2.1e-05).

Table 6.8, which shows the best configurations of each feature subset, only contains RF
models (10 models) and GB models (2 models). There is no NN or Bayesian model that
performed better than RFs or GBs on any feature subset. Hence, all models applying NNs
or Bayesian approaches did not really contribute to the analysis.

The results suggest that the RF models performed particularly well if applied on small-
or moderate-sized feature subsets. RFs surpassed GBs on ten out of 12 feature subsets as
shown in Table 6.8. The GB algorithm seems to handle the high amount of correlation
among the ALL feature subset better than the RF algorithm. A reason for this could be that
the strength of RFs arises with the majority voting of as many as possible uncorrelated
decision trees. A high correlation among a feature subset increases the correlation between
the learned trees, which reduces the reliability of the final majority voting. This could have
happened because the contained trees within the RF ensemble utilized similar information
(due to correlated features) for their predictions even though they picked random features.
Once the ALL feature subset was reduced by the RFE algorithm, RF achieved higher F1-
scores than GB on it.

71

Variability-aware Software Defect Prediction

Findings

4. Random forests performed best on the vast majority of feature subsets.

5. Random forests achieved the best validation performance overall.

6. Bayesian models and neural networks did not achieve any meaningful validation
performances.

6.6.5 RFE vs. normal Feature Subsets

This section presents a certain view on the results in order to address the question of
whether the RFE algorithm could improve the final validation performances similarly to
the improvements at the Modeling stage. Table 6.13 shows a comparison of all original
feature subsets and their corresponding RFE feature subsets. In order to validate any
performance changes, Welch-tests were performed as described in Section 6.6.2.

Table 6.13: Performance improvements from the original to the RFE-reduced feature sub-
sets.

± Precision ± Recall ± F1 Welch-Test ± AUC-ROC ± Number of
From To F1 Features

LNV LNV_RFE + 176.98% - 16.40% + 7.71% 7 + 6.01% - 80%
LPV LPV_RFE + 21.81% + 3.05 % + 6.13% 3 + 2.95% - 75%
LCV LCV_RFE + 1.03% + 28.13% + 24.25% 3 - 0.01% - 68%
GPV GPV_RFE + 0.42% + 1.07% + 0.84% 7 - 0.03% - 90%
GCV GCV_RFE - 53.43% + 101.49% + 35.02% 3 - 4.03% - 98%
ALL ALL_RFE + 174.67% - 29.64% + 32.21% 3 + 3.32% - 99%

The achieved F1-scores of the LNV (LNV vs. LNV_RFE; H0 not rejected with p-value ≈ 0.051)
and GPV (GPV vs. GPV_RFE; H0 not rejected with p-value ≈ 0.38) feature subsets did not
improve significantly. The achieved F1-scores of the LPV (LPV vs. LPV_RFE; H0 rejected
with p-value ≈ 0.15), LCV (LCV vs. LCV_RFE; H0 rejected with p-value ≈ 8.6e-06), GCV (GCV
vs. GCV_RFE; H0 rejected with p-value ≈ 1.1e-08) and ALL (ALL vs. ALL_RFE; H0 rejected
with p-value ≈ 1.68e-13) feature subsets improved significantly.

The results show that the RFE algorithm could significantly improve the F1-scores in four
cases. The RFE algorithm led to improved F1-scores on LNV and GPV feature subsets, but
this could not be validated by Welch-tests, and hence it is not statistically significant. Not
a single feature subset achieved a decreased F1-score on its corresponding RFE feature
subset. In order to assess the benefit of the applied RFE algorithm, the high number
of removed features has to be taken into account as well. Hence, even a non-significant
improvement is an advantage when considering that the number of contained features was
reduced by 80% (LNV to LNV_RFE) and 90% (GPV to GPV_RFE) respectively. The statistically
improved feature subsets achieved higher scores while also reducing the number of features
up to 99% (ALL to ALL_RFE). The high number of removed features by the RFE algorithm
allows an easier interpretation regarding the software metrics’ importances.

Findings

7. The RFE algorithm provided significantly improved F1-scores while considering up
to 99% fewer features.

8. The RFE algorithm provided significant improvements in F1-scores in four out of
six cases.

72

Software Metric Subset Comparison Experiments

9. The RFE algorithm did not provide any inferiority due to reduced features in any
case.

6.6.6 Comparison of Resampling Methods

This section presents a certain view on the results in order to address the question about
the superiority of one sampling method over another. The highest achieved F1-score overall
did not utilize any resampling. Table 6.8 shows that no resampling was used in nine out
of twelve of the best-performing configurations of each feature subset. Table 6.14 shows
the overall best achieved F1-scores of each applied resampling method. The best achieved
F1-score using no resampling is significantly higher than the one of smote-resampling (H0
rejected with p-value ≈ 1.96e-11) and over-sampling. Smote-resampling did not achieve a
significantly higher F1-score than over-sampling (H0 not rejected with p-value ≈ 0.08).

Table 6.14: Best achieved validation scores per resampling method.

Precision Recall F1 AUC-ROC
Sampling Model Subset ø ø ø ø

Off RF GPV_RFE 0.977432 0.506960 0.667468 0.959948
Smote RF GPV 0.403128 0.638015 0.493644 0.941005
Over RF ALL_RFE 0.452437 0.494298 0.471758 0.915004

10. Training without resampling led to the significantly best performance overall.

6.6.7 Training Durations

This section presents a certain view on the results in order to assess the efficiency and
overall computational costs of the models. For the sake of simplicity, the computational
costs were defined as the average duration time needed for training and testing a single
model within the validation routine (i.e. a single inner 10-fold iteration).

The needed time for model validation differed across the classification algorithms, feature
subsets, and resampling approaches. Table 6.15 shows averaged durations for individual
configurations of this first set of experiments. All durations were up-rounded to full num-
bers of minutes. Even though the computational costs should not become a first priority
concern, it is worth observing these parameters because, in the case of a grid-based valida-
tion routine, a single additional algorithm to validate can lead to a substantially increased
overall duration time.

The RF models constantly show short durations for validation. The RF approach benefited
from its highly parallelizable nature and the high number of available CPU cores of the
experimental environment, which will be described in Section 6.7. This led to a maximal
averaged training and testing duration of six minutes, which gives a total of 60 minutes
for an entire 10-fold CV run of a single configuration. The RF durations increased slightly
according to the number of features within a feature subset. The non-RFE feature subsets
show longer durations than the corresponding RFE versions generally. Smote- and over-
sampling caused the algorithm to take significantly longer for training and testing. This
is probably owed to the fact that both resampling methods lead to twice the number of
training samples to analyze while learning the trees. RFs have shown constantly reasonable
durations. In contrary to the tree-based classifier, NNs show rather constant durations over
all feature subsets. This is probably caused by the fact that each NN was trained for a fixed
number of epochs, regardless of the number of input features. The increased durations of
the NNs for ALL, ALL_RFE, and GCV feature subsets were caused by the fact that these had
to be validated on different machines than the other feature subsets. The longer durations

73

Variability-aware Software Defect Prediction

Table 6.15: Average validation durations of single inner 10-fold CV iterations in minutes.

Algorithm GB NBG NN RF
Sampling Off Over Smote Off Over Smote Over Smote Off Over Smote
Feature Subset

ALL 130 1000 1102 1 1 1 225 201 3 5 5
ALL_RFE 6 22 27 1 1 1 114 116 1 1 1
GCV 62 843 917 1 1 1 166 150 3 5 6
GCV_RFE 2 22 28 1 1 1 76 62 1 2 2
GPV 44 149 172 1 1 1 69 70 1 2 2
GPV_RFE 8 34 41 1 1 1 62 62 1 1 1
LCV 4 59 63 1 1 1 60 59 1 2 2
LCV_RFE 1 14 25 1 1 1 60 59 1 1 2
LNV 2 41 45 1 1 1 52 52 1 1 1
LNV_RFE 1 10 12 1 1 1 59 59 1 1 1
LPV 3 21 24 1 1 1 60 59 1 1 1
LPV_RFE 1 7 8 1 1 1 56 61 1 1 1

happened on machines that did not have GPUs available. The shortest averaged training
and testing duration of an NN-based model was about 52 minutes, which is still nine times
longer than the longest averaged learning and testing duration of the RF-based models.
The GB-based models show by far the longest durations. This is probably caused by their
sequential nature and still enforced by high numbers of input features. The exact longest
duration of a single entire 10-fold CV run was 660,620 seconds and is shown in Table A.9.
This corresponds to approximately seven and a half days of computational time. This is an
approximately 218 times longer duration than the longest RF-based validation duration.
Any NB-based model shows negligible durations of less than one minute. The tree-based
models also show longer durations on smote-resampled training data than on over-sampled
training data. This could be caused by more complex data, which is likely to require the
algorithm to perform more splits until convergence. This entire set of experiments took
over 1,311 hours of computation overall. This computation effort was parallelized as much
as possible and finally took approximately seven days for one pass.

Findings

11. Random forests achieved the best performances overall while also showing the best
trade-off between performance and computational time.

6.6.8 Interpreting the Models Performance

This section provides a more practical analysis of the achieved performance metrics. The
use of performance metrics is essential in order to evaluate and compare the quality of
models. Still, those numbers do not really provide a clear understanding of a model’s
prediction capability under deployed circumstances. The performances of a few meaningful
models were analyzed, and corresponding confusion matrices were reconstructed in order
to achieve a more understandable performance interpretation. The confusion matrix, as
described in Section 2.9, provides clear numbers regarding the different types of mistakes
made by a model.

In the case of SDP, it might be more important to find as many prone functions as possible.
It is not that problematic if a reasonable number of healthy functions were miss-classified
as defects. The final classification of a model basically corresponds to the output of a
simple threshold function for a passed continuous value. This continuous value could be
considered as the actual model’s prediction, which can be interpreted as a probability. In

74

Software Metric Subset Comparison Experiments

the case of SDP, this probability could be interpreted as the "risk of a defect". Hence, a
test sample that is actually labeled as healthy could still indicate a high risk of a defect.
Thus, the False Positive Rate is rather negligible, and a high recall could be considered
as preferable. Only considering recall as performance metric would lead to poor classifiers
since simply classifying anything as defective would achieve perfect recall measures. A
meaningful solution to prioritize the recall, but still exclude dumb classifiers, is to adjust
the F1-score. The F1-score can be generalized to the Fβ-score as described in Section 2.9.5.
The Fβ-score allows to increase or decrease the weight of recall according to the value of
β. Table 6.16 shows the top ten models in terms of achieved F2-scores. The F2-score was
computed according to Equation 6.12.

F2 -score = (1 + 22) · precision · recall
(22 · precision) + recall

(6.12)

Table 6.16: Top ten models according to achieved F2-scores.

Precision Recall F1 F2 AUC-ROC
Model Subset Sampling ø ø ø ø ø

RF GPV_RFE Smote 0.357662 0.674045 0.467152 0.572497 0.946616
GPV Smote 0.403128 0.638015 0.493644 0.570993 0.941005
GPV_RFE Off 0.977432 0.506960 0.667468 0.560897 0.959948
GPV Off 0.973382 0.501605 0.661919 0.555400 0.960251

GB ALL Over 0.355559 0.600401 0.446027 0.527076 0.924765
GPV_RFE Off 0.878049 0.477176 0.617969 0.524988 0.910329
GPV Off 0.874358 0.474130 0.614222 0.521666 0.906361

RF GPV Over 0.349952 0.576320 0.435383 0.510206 0.928854
GPV_RFE Over 0.326170 0.587555 0.419393 0.506300 0.928519

GB GPV Over 0.230018 0.684737 0.344278 0.490570 0.926524

The use of F2-score allows to assess the prediction capability of a model considering
achieved recall and precision but prefer models in favor of high recall values. Table 6.16
shows that the use of the F2-score would provide another best-performing configuration. As
explained earlier, the use of resampling forces a model to learn a more balanced pattern.
This does not necessarily lead to a finally better performance in any measure, but it
typically ends up in a totally different way of making predictions. The RF-based models
using smote-resampling have learned a more balanced pattern, which led them to achieve
higher recalls but for the expense of precision.

All models were validated by the 10-fold CV approach described in Section 6.2 and 6.5.3.
The overall data used for the final validation routine included 391,295 samples. It contained
385,687 healthy and 5,608 defective samples. In order to apply the 10-fold validation on
any model, the used data were partitioned into ten different folds in a stratified manner.
This gave ten distinct folds of about 38,568 healthy and 560 defective samples each. Nine
of these folds were merged, perhaps resampled, and used for training. The single remaining
fold served as testing data. Hence, all performance metrics are based on testing sets of
about 39,128 samples.

The following paragraphs show an inspection of the model of the highest achieved F1-
score and the model of the highest achieved F2-score. The model of the highest F1-score
used the GPV_RFE feature subset, no resampling, and the RF algorithm. It achieved a
precision of 0.977432, a recall of 0.506960, an F1-score of 0.667468, and an F2-score of
0.560897. The formulas that are shown in Equations 6.13 to 6.14 were derived and applied
to reconstruct the confusion matrices of Figure 6.10. The model of the highest achieved

75

Variability-aware Software Defect Prediction

F1-scores found 283 (TPR ≈ 50%) of the 560 defects. The model predicted a defective
label for 7 healthy functions and did not recognize 277 actual defects. The model predicted
a correct healthy label for 38,561 (TNR ≈ 99.9%) out of 38,568 healthy functions in total.
The corresponding confusion matrix is shown in Figure 6.10a.

283 7

277 38,561

defective healthy

de
fe
ct
iv
e

he
la
th
y

actual class

pr
ed

ic
te
d
cl
as
s

(a) Confusion matrix of the configuration
that achieved the highest F1-score
(RF, GPV_RFE and no resampling).

378 679

182 37,889

defective healthy

de
fe
ct
iv
e

he
al
th
y

actual class

pr
ed

ic
te
d
cl
as
s

(b) Confusion matrix of the configuration
that achieved the highest F2-score
(RF, GPV_RFE and smote-resampling).

Figure 6.10: Confusion matrices of the best-performing configurations.

TP = number of defective samples · recall (6.13)

FN = number of defective samples− TP (6.14)

precision = TP

TP + FP
⇔ FP = −precision · TP + TP

precision
(6.15)

TN = number of healthy samples− FP (6.16)

The model performed well in recognizing healthy functions but had problems in identifying
defects. It has only found roughly half the number of all defects within the test data.
Hence, the matrix suggests that it is easier for the model to recognize healthy functions
than to recognize defects. It seems that the model found a reasonable pattern to recognize
many defects, but this pattern only covers a part of all defects. Thus, it has very high
precision but only a recall of about 0.5. Furthermore, it seems that the model behaves
strongly biased towards the majority class. This is probably owed to the lack of applied
resampling. Anyway, it achieved the best performance in terms of F1-score as well as the
AUC-ROC measure.

The application of a complex smote-resampling approach to even out the classes led to
a completely different performance and the model of the highest achieved F2-score. It
achieved a precision of 0.357662, a recall of 0.67405, an F1-score of 0.467152, but an
F2-score of 0.572497. Figure 6.10b shows the corresponding confusion matrix of this con-
figuration. The model found 378 (TPR ≈ 67%) of the 560 defects, and it miss-classified
679 healthy functions as defects. The model did not recognize 182 defects and classified
them as healthy. Finally, the model found 37,889 (TNR ≈ 98%) out of the 38,568 healthy
functions. This model is less biased towards the majority class, which led to its signifi-
cantly higher recall but also to its significantly higher number of FPs. While the first model
behaved more reserved at recognizing defects, the second model did not. As a result, it
could find way more defects but at the expense of precision. The previous model tended
to classify a sample as healthy in doubt and predicted defect labels only if it was very sure
about its prediction.

76

Software Metric Subset Comparison Experiments

6.6.9 Interpreting the AUC-ROC Measure

This section provides some more interpretation and discussion about the meaning and
implications of the AUC-ROC measures. The AUC-ROC metric is a single-value measure
based on the ROC-curve, and it corresponds to its computed integral. A performance
metric in terms of a plotted curve is neither easy comparable nor interpretable. Hence, the
area under the curve is computed and presented as a performance metric.

In order to obtain analyzable plots and measures, fresh models were trained and tested
as part of this analysis. Those models were configured as stated in the text. They used
one randomly chosen inner 10-fold CV iteration of the original validation routine as the
baseline for the applied training and testing data.

(a) ROC-curve of the configuration
that achieved the highest F1-score
(RF, GPV_RFE and no resampling).

(b) ROC-curve of the configuration
that achieved the highest F2-score
(RF, GPV_RFE and smote-resampling).

Figure 6.11: ROC-curves of the best-performing configurations.

Figure 6.11a shows the corresponding ROC-curve to the previously analyzed model of
the highest achieved F1-score. Figure 6.11b shows the corresponding ROC-curve to the
previously analyzed model of the highest achieved F2-score. The plots show that at a
certain point, any increase in the TPR is accompanied by an increase in FPR. The closer
a curve follows the left and top border, the better is the model’s prediction capability.
Both curves move quite close to the desired borders. The orange squares illustrate the
models’ initially chosen classification thresholds of 0.5. The left plot shows that the initial
threshold could be easily moved in order to increase the TPR without any major increases
in the FPR. The right plot shows that any further movement of the threshold in order
to increase the TPR would be accompanied by an increase in FPR. These might be the
consequences of learning a tree based on a balanced training dataset or a skewed training
dataset. The green square in each plot illustrates the optimal threshold to maximize the
performance according to Equation 6.17 and 6.18. It maximizes the TPR while considering
the FPR.

77

Variability-aware Software Defect Prediction

Optimal thresholdROC = argmax
i ∈ thresholds

(Sensetivityi + Specificityi) (6.17)

⇔ Optimal thresholdROC = argmax
i ∈ thresholds

(TPRi − FPRi) (6.18)

The optimal classification threshold of Figure 6.11a is 0.029 and would achieve a precision
of 0.2711, a recall of 0.8196, an F1-score of 0.4075, and an F2-score of 0.5835. This would
be a significantly decreased F1-score but an increased F2-score. The optimal classification
threshold of Figure 6.11b is 0.03 and would achieve a precision of 0.0716, a recall of 0.0939,
an F1-score of 0.1331, and an F2-score of 0.2744. This would be a significantly decreased
F1- and F2-score. Hence, this threshold optimization method might not be suitable in this
case. The problem is that optimization according to TPR and FPR implicitly assumes
equal distribution of both classes. A TPR of 0.5 encompasses 280 miss-classifications while
an FPR of 0.5 encompasses 19,284 miss-classification. Hence, this kind of optimization is
not meaningful because it gives the same weight to both rates, even though the number
of affected samples differs significantly.

6.6.10 Interpreting the Precision-Recall-Curve

This section provides an additional analysis of the models’ precision and recall values.
These values can be computed for a variety of different classification thresholds of a single
learned classifier. These multiple measures can be plotted to a curve in order to achieve
good insight into a model’s prediction capability. Like ROC-curves, those plots are also
commonly used in order to spot optimization potential by adjustments of the classification
threshold. Such a curve is called precision-recall-curve (PR-curve). Because models basi-
cally predict probabilities instead of discrete labels, it is possible to compute performance
metrics for plenty of thresholds without performing any re-training.

Figure 6.12 shows PR-curves of the best-performing configurations. Both plots show col-
ored squares illustrating the optimized thresholds with respect to a particular metric.
The green and the red square show optimized thresholds according to Equation 6.19 and
β-values of one and two, respectively.

Optimal thresholdP R = argmax
i ∈ thresholds

(1 + β2) · precisioni · recalli
(β2 · precisioni) + recalli

(6.19)

The initial threshold of Figure 6.12a is strongly skewed to a high precision, while the initial
threshold of Figure 6.12b is a little more skewed to the a high recall. This illustrates the
consequences of balancing by resampling approaches as already described in Section 6.6.8.
Optimization of the first model could increase its F1-score by 9.54% from 0.6753 to 0.7397.
An optimization of this model with respect to the F2-score could increase this measure
by 22.09% from 0.5753 to 0.7024. The optimization of the right plot could increase the
achieved F1-score by 37.42 % from 0.4562 to 0.6269 or its F2-score by 7.81 % from 0.5737
to 0.6185. After optimization, the left model (without resampling) would outperform the
other (smote-resampled) in both F-measures. The purple square in both plots illustrates
the performance when optimizing the threshold according to the previously introduced
method of Equation 6.17 or 6.18. In both cases, this threshold is strongly skewed to a high
recall. These analyses have shown that some sort of threshold optimization can provide
further potential to improve a model’s testing performance.

78

Software Metric Subset Comparison Experiments

(a) PR-curve of the configuration
that achieved the highest F1-score
(RF, GPV_RFE and no resampling).

(b) PR-curve of the configuration
that achieved the highest F2-score
(RF, GPV_RFE and smote-resampling).

Figure 6.12: PR-curves of the best-performing configurations.

Findings

12. The optimization of the classification thresholds provides further potential for im-
provements in F1- and F2-scores.

6.7 Experimental Environment
The experiments were performed on multiple machines in parallel. Two virtual machines
provided by the University of Hildesheim and several virtual machines based on Google-
Cloud6 were utilized. The two virtual machines provided by the University have 40 and
46 CPU cores and 315GB and 373GB RAM, respectively. Both ran Ubuntu 16.04.6 LTS
OS, Python 3.6, and TensorFlow 2.1.

The Google-Cloud-based machines provided individual hardware resources on demand.
They were primarily used for the deep learning tasks because of available GPUs. In order
to train the majority of NNs, machines of four CPU cores, 24 GB RAM, and an NVIDIA
Tesla T4 GPU were used. All machines ran an optimized version of Debian 9 and came with
pre-installed Python 3.5 and TensorFlow 2.1. Up to four Google-Cloud-based machines
were used in parallel to speed up the entire validation routine.

The next chapter provides a comprehensive description of the second set of experiments
aimed to answer [RQ3] and [RQ4]. The chapter is structured like this and provides infor-
mation on all parts of the experiments.

6Google Cloud or Google Cloud Platform is a suite of multiple cloud computing services. Among others,
it offers specialized computing engines for machine and deep learning. https://cloud.google.com/

79

https://cloud.google.com/

Variability-aware Software Defect Prediction

7 Software Metric Subset Combination
Experiments

This chapter provides a detailed description of the second set of experiments. The chap-
ter is structured according to the previously introduced refined methodology of Section
6. The first Section 7.1 defines and explains the aimed goal of this set of experiments.
The subsequent Section 7.2 describes and introduces the general concept, which was fol-
lowed to achieve the defined goal. Section 7.3 provides a description of the applied steps
of pre-processing. Section 7.4 describes the applied models and their algorithm-specific
hyperparameter configurations. Section 7.5 gives some additional details on the exact im-
plementation of the introduced concept, and Section 7.6 provides a comprehensive anal-
ysis of the experiments’ results in order to address [RQ3] and [RQ4]. The final Section
7.7 provides details about the experimental environment, which was used to conduct the
experiments.

7.1 Goal
The second set of experiments aimed to find the most suitable software metric combination
for SDP in this case. This set of experiments has validated all possible combinations based
on the pre-defined software feature subsets, which were introduced in Section 6.2. A more
fine-grained validation of all possible software metric combinations was not possible due to
computational infeasibility. Such a grid-based approach to validate all combinations of the
692 software metrics would include 2692 combinations. 2692 gives approximately 2.05e+208,
which would mean about 3.9e+202 (or 3.9e+178 quadrillion) years of computation when
considering one minute for training and testing of a complete 10-fold CV run. The most
suitable feature subset combinations served as baseline for a more in-depth analysis of
the individual importance of contained software metrics. The obtained results from this
validation and the subsequent analysis served as the baseline to answer [RQ3] and [RQ4].

7.2 Concept
This section provides a detailed description of the chosen approach to achieve the desired
results. This includes explanations of the general decisions. The following paragraphs de-
scribe the approach in detail and focus on a certain aspect.

Feature subsets The applied feature subsets were reused from the previous set of experi-
ments. A detailed description and definition were given in Section 6.2. The feature subsets
are groups of software metrics defined according to each metric’s variability-awareness and
scope. In addition to the five originally pre-defined feature subsets, corresponding RFE
feature subsets were also included. Furthermore, the ALL_RFE feature subset was included
as well. The including of the ALL feature subset would not be meaningful because it cor-
responds to the union of all others and would not change when combined with any other
feature subset. This gave a final set of the following eleven feature subsets: LNV, LNV_RFE,
LPV, LPV_RFE, LCV, LCV_RFE, GPV, GPV_RFE, GCV, GCV_RFE, ALL_RFE.

Combinations This set of experiments considered any possible feature subset combina-
tion based on the previously defined ones. Because some of the software metric groups
are subsets of other groups (e.g. LNV_RFE ⊂ LNV), a mechanism was developed in order
to avoid redundant validations. For instance, the considered eleven feature subsets would
give 211 = 2048 possible combinations. A validation of LNV x LNV_RFE is not necessary

80

Software Metric Subset Combination Experiments

because it would give the same feature subset as LNV. This mechanism could have reduced
the number of combinations from 2048 to 377.

Classification Algorithms RF was selected as the only applied classification algorithm
because of its good performances in previous experiments and its good computational
efficiency. The RF-based models achieved the best validation results on the most feature
subsets and still have shown reasonable runtimes. The high amount of computational
costs, emerging by the combination of feature subsets, did not allow to validate more than
a single classification algorithm. It would not have been feasible to apply a GB-based
algorithm on this high number of experiments.

Hyperparameter Optimization No additional hyperparameter optimization was per-
formed for this set of experiments. The algorithm-specific configuration of the RF al-
gorithm was reused from the previous set of experiments. This configuration was already
optimized and achieved reasonable performances on a variety of feature subsets as de-
scribed in Section 6.6.

Performance Measures All of the previously selected performance metrics were recorded
on this set of experiments. This includes the recording of recall, precision, F1-score, and
AUC-ROC. The Maximal F1-score and the corresponding maximal F1 precision and max-
imal F1 recall were recorded additionally. The maximal F1-score is computed as described
in Section 6.6.10.

Validation Strategy In order to compute robust and reliable performance metrics, the
same stratified 10-fold CV strategy was applied as in the previous set of experiments. This
approach was considered due to its superiority over a simple hold-out strategy and was
already applied in a variety of other SDP research papers. Additional details were given
in Sections 6.2 and 6.5.3.

7.3 Data Pre-Processing

The same dataset as in the previous set of experiments was used. Hence, the data have
shown the same issues to address. These issues were the high number of features that are
also highly correlated, the imbalanced class distribution, and different feature scales. The
reduced RFE feature subsets were considered to address the issue of the high number of
features. The imbalance of class distribution was addressed by the selection of RF as the
classification algorithm because it is more robust to this imbalance than other classifiers
and the application of over-, and smote-resampling. The previous set of experiments has
shown that resampling caused the RF algorithm to learn a more balanced and less bi-
ased pattern, but learning without resampling still achieved the best validation scores.
No general superiority of one resampling method over the other was recognized. As the
result, over-, smote-, and no resampling were considered in the validation routine. L2-
normalization was applied to all experiments.

81

Variability-aware Software Defect Prediction

7.4 Model Construction
This section provides details about the chosen classification algorithm. This primarily
means the description of algorithm-specific hyperparameters. No additional hyperparame-
ter optimization was applied as part of this set of experiments. The optimized configuration
from the previous set of experiments was completely reused. The RF algorithm was ap-
plied with the following hyperparameters: The number of trees within the ensemble was
set to 500. No maximal depth of the trees was defined. The Gini Impurity was used as the
splitting criterion. A detailed overview of evaluated parameters as well as explanations of
the mentioned parameters was given in Section 6.4.3.

7.5 Implementation
This section provides some details about the implementation of the mechanism used to
avoid redundant feature subset validations. Any other components, like the preparation
pipeline or the validation routine itself, were reused from the previous set of experiments.
Algorithm 4 shows how the unique feature subsets were built.

Algorithm 4 Building of unique feature subset combinations
1: featureSubsets ← LNV, LNV_RFE, LPV, LPV_RFE, LCV, LCV_RFE, GPV, GPV_RFE, GCV,

GCV_RFE, ALL_RFE
2: powerset ← getPowerSet(featureSubsets)
3: uniqueF eatureSubsetsList ← ∅
4:
5: for all set in powerset do
6: if set is not equal to any set in uniqueF eatureSubsetList then
7: uniqueF eatureSubsetList.append(set)
8: end if
9: end for

The algorithm works straightforward and starts with generating the powerset of the
provided featureSubsets. This powerset contains all 2048 combinations of the feature
subsets including the empty set. The empty set is not considered as meaningful fea-
ture subset and is removed immediately. In the next step, an empty list denoted as
uniqueFeatureSubsetsList is initialized to store the unique feature subset combinations.
Then the algorithm starts to iterate all contained combinations in the powerset and con-
tinuously tests if the uniqueFeatureSubsetList already contains a similar feature subset.
If it does not, the current set is appended to the uniqueFeatureSubsetList. Once the al-
gorithm was performed successfully, it reduced the number of feature subset combinations
from 2048 to 377.

7.6 Analysis
This section provides an analysis of the obtained results from this set of experiments.
The first analysis examines all achieved performances of the feature subset combinations
and provides some first findings. The subsequent subsection provides a specific analysis
in order to rank the combinations. The third subsection provides some more detailed and
interpretable insights into the achieved performances, and the final analysis provides the
findings with regards to an individual assessment of the software metrics.

7.6.1 General Performance Analysis

This set of experiments validated all possible combinations of the six provided pre-defined
feature subsets. This process included 377 combinations after the reduction, which was
described in Section 7.5. All combinations were validated on three different resampling

82

Software Metric Subset Combination Experiments

methods and used the 10-fold CV strategy. This ended up with learning and evaluating
11,310 RFs. An overview of the best achieved performances of each feature subset com-
bination is shown in Table 7.1. Only the record of the sampling method, which achieved
the highest F1-score, is presented for each feature subset combination. This was done for
the sake of clarity. The S column indicates the applied resampling method, where an N
means no resampling, S means smote-resampling, and an O means over-sampling. The last
column, called n, indicates the number of contained software metrics in the feature subset.
The columns Prec and Rec show the configurations precision and recall measures. The
shown max_F1 values were computed at runtime and follow the optimization approach
described in Section 6.6.10. The table only shows RFE-based feature subset combinations.
Previous analyses described in Section 6.6.5 have shown that the RFE feature subsets per-
formed significantly better than their corresponding non-RFE feature subsets in four out
of six cases. The RFE feature subsets performed similarly to the original feature subsets
in the remaining two cases. Hence, discarding the non-RFE feature subset combinations
from Table 7.1 maintained the clarity of the table without cherry-picking or discarding any
findings. The entire record of results is provided digitally. The table is ordered descending
by the achieved initial F1-scores.

Table 7.1: Achieved validation scores of all RFE-based feature subset combinations of the
second set of experiments.

Prec Rec F1 max_F1 AUC n
-ROC

Subset S ø ø ø ø ø

LPV_RFE x GPV_RFE N 0.975 0.507 0.666 0.728 0.960 22
GPV_RFE N 0.975 0.506 0.666 0.728 0.961 20
LPV_RFE x GPV_RFE x ALL_RFE N 0.990 0.479 0.646 0.740 0.967 25
GPV_RFE x ALL_RFE N 0.990 0.477 0.643 0.740 0.968 23
LNV_RFE x LPV_RFE x GPV_RFE N 0.984 0.472 0.638 0.733 0.966 25
LNV_RFE x GPV_RFE x ALL_RFE N 0.991 0.465 0.633 0.744 0.968 26
LNV_RFE x GPV_RFE N 0.985 0.466 0.632 0.731 0.966 23
LNV_RFE x LPV_RFE x GPV_RFE x ALL_RFE N 0.992 0.461 0.629 0.741 0.969 28
LNV_RFE x GPV_RFE x GCV_RFE S 0.629 0.624 0.627 0.644 0.953 32
LNV_RFE x LPV_RFE x GPV_RFE x GCV_RFE S 0.636 0.616 0.626 0.639 0.952 34
GPV_RFE x GCV_RFE N 0.990 0.451 0.620 0.742 0.968 29
LPV_RFE x GPV_RFE x GCV_RFE N 0.990 0.450 0.619 0.740 0.968 31
ALL_RFE N 0.975 0.424 0.591 0.677 0.955 9
LPV_RFE x ALL_RFE S 0.573 0.609 0.590 0.639 0.936 14
LPV_RFE x LCV_RFE x GPV_RFE x ALL_RFE S 0.609 0.554 0.580 0.629 0.949 34
LNV_RFE x LCV_RFE x GPV_RFE x ALL_RFE S 0.590 0.562 0.575 0.630 0.950 35
LCV_RFE x GPV_RFE x ALL_RFE S 0.582 0.565 0.572 0.634 0.950 32
LNV_RFE x LPV_RFE x ALL_RFE N 0.991 0.401 0.571 0.695 0.960 17
LNV_RFE x LPV_RFE x LCV_RFE x GPV_RFE
x GCV_RFE

S 0.576 0.557 0.566 0.618 0.951 43

LPV_RFE x LCV_RFE x GPV_RFE S 0.577 0.556 0.566 0.622 0.947 31
LNV_RFE x LCV_RFE x GPV_RFE x GCV_RFE S 0.568 0.562 0.565 0.624 0.952 41
LCV_RFE x GPV_RFE S 0.565 0.564 0.564 0.625 0.947 29
LNV_RFE x LCV_RFE x GPV_RFE S 0.568 0.558 0.562 0.624 0.947 32
LCV_RFE x GPV_RFE x GCV_RFE S 0.558 0.568 0.562 0.627 0.952 38
LPV_RFE x LCV_RFE x GPV_RFE x GCV_RFE S 0.567 0.557 0.562 0.621 0.951 40
LNV_RFE x LPV_RFE x LCV_RFE x GPV_RFE
x ALL_RFE

S 0.568 0.556 0.561 0.622 0.950 37

LNV_RFE x LPV_RFE x LCV_RFE x GPV_RFE S 0.567 0.555 0.560 0.619 0.947 34
LPV_RFE x GCV_RFE x ALL_RFE N 0.989 0.382 0.551 0.683 0.959 20
GCV_RFE x ALL_RFE S 0.533 0.561 0.546 0.606 0.922 15
LNV_RFE x ALL_RFE N 0.986 0.376 0.545 0.677 0.955 12

Continued on next page

83

Variability-aware Software Defect Prediction

Prec Rec F1 max_F1 AUC n
-ROC

Subset S ø ø ø ø ø

LNV_RFE x LPV_RFE x GCV_RFE x ALL_RFE N 0.991 0.356 0.524 0.675 0.958 23
LNV_RFE x GCV_RFE x ALL_RFE N 0.985 0.355 0.522 0.662 0.953 18
LPV_RFE x LCV_RFE x ALL_RFE S 0.438 0.502 0.467 0.543 0.931 23
LPV_RFE x LCV_RFE x GCV_RFE x ALL_RFE S 0.430 0.511 0.466 0.540 0.933 29
LNV_RFE x LPV_RFE x LCV_RFE x ALL_RFE S 0.433 0.507 0.466 0.537 0.932 26
LNV_RFE x LPV_RFE x LCV_RFE x GCV_RFE
x ALL_RFE

S 0.427 0.507 0.463 0.535 0.932 32

LCV_RFE x GCV_RFE x ALL_RFE S 0.378 0.486 0.425 0.507 0.924 24
LNV_RFE x LCV_RFE x GCV_RFE x ALL_RFE S 0.372 0.489 0.422 0.508 0.925 27
LNV_RFE x LCV_RFE x ALL_RFE S 0.366 0.483 0.416 0.507 0.922 21
LCV_RFE x ALL_RFE S 0.348 0.485 0.405 0.503 0.923 18
LNV_RFE x LPV_RFE x GCV_RFE N 0.981 0.248 0.395 0.499 0.857 17
LNV_RFE x GCV_RFE S 0.508 0.315 0.389 0.404 0.738 12
LPV_RFE x GCV_RFE N 0.987 0.239 0.384 0.495 0.857 14
GCV_RFE S 0.426 0.311 0.359 0.386 0.733 9
LNV_RFE x LPV_RFE x LCV_RFE x GCV_RFE N 0.965 0.219 0.356 0.464 0.851 26
LPV_RFE x LCV_RFE x GCV_RFE N 0.973 0.215 0.352 0.464 0.852 23
LNV_RFE x LCV_RFE x GCV_RFE N 0.959 0.197 0.326 0.428 0.834 21
LNV_RFE x LPV_RFE N 0.972 0.191 0.319 0.413 0.807 8
LNV_RFE x LPV_RFE x LCV_RFE N 0.936 0.192 0.318 0.398 0.817 17
LCV_RFE x GCV_RFE N 0.955 0.191 0.318 0.421 0.832 18
LPV_RFE x LCV_RFE N 0.915 0.176 0.295 0.372 0.807 14
LPV_RFE N 0.889 0.175 0.292 0.336 0.745 5
LNV_RFE x LCV_RFE N 0.912 0.156 0.267 0.335 0.788 12
LCV_RFE N 0.853 0.141 0.242 0.304 0.765 9
LNV_RFE N 0.942 0.133 0.232 0.314 0.745 3

The results that are shown in Table 7.1 corroborate the ranking of non-combined feature
subsets as described in Section 6.6.1. The feature subset that achieved the highest F1-
scores if applied solely is again GPV_RFE. The second-best is ALL_RFE, followed by GCV_RFE,
and the worst F1-scores were achieved by LPV_RFE, LCV_RFE, and LNV_RFE. The slight
superiority in the overall ranking of LPV_RFE x GPV_RFE over GPV_RFE can be considered
as noise (LPV_RFE x GPV_RFE vs. GPV_RFE; H0 not rejected with p-value ≈ 0.9502). Hence,
the results of the table suggest that the application of the GPV_RFE leads to the overall
best initial F1-scores (without any subsequent classification threshold optimization). It
statistically surpassed the next best feature subset combination of LPV_RFE x GPV_RFE x
ALL_RFE (GPV_RFE vs. LPV_RFE x GPV_RFE x ALL_RFE; H0 rejected with p-value ≈ 4.97e-
03).

Besides the initially achieved F1-scores, the table shows maximal achievable F1-scores once
the classification thresholds were optimized. While the GPV_RFE feature subset achieved
higher initial F1-scores than LPV_RFE x GPV_RFE x ALL_RFE and GPV_RFE x ALL_RFE,
its maximal F1-score is lower. The same applies to AUC-ROC measures. This could mean
that additional metrics from the mentioned combinations provided the model with addi-
tional capabilities but led to a slight over-fitting, which reduced its initial F1-score. The
additional capabilities could be utilized once the classification thresholds were optimized.
This acted as a post-training countermeasure against over-fitting. Because the vast ma-
jority of examined literature described in Chapter 3 applied and reported achieved results
on default thresholds, the initial F1-scores remains the primary performance metric used
to assess prediction capability.

All combinations from the top of Table 7.1 to the ALL_RFE feature subset solely, utilized
the GPV_RFE feature subset. This strongly suggests that these metrics are quite essential

84

Software Metric Subset Combination Experiments

to achieve the best possible performances. This assumption is corroborated by presented
initial F1-scores, maximal F1-scores, and AUC-ROC measures. No combination achieved
an initial F1-scores ≥ 0.6 or a maximal F1-score ≥ 0.7 without containing the GPV_RFE
features. On the other side, there is no feature subset combination containing the GPV_RFE
feature subset and achieved an initial F1-score ≤ 0.56 or a maximal F1-score ≤ 0.6. These
observations also corroborate the strong assumption of the best prediction capabilities by
GPV_RFE.

There are many combinations that do not contain the GPV_RFE feature subset but the
ALL_RFE feature subset and achieved reasonable results. Table 6.7 in the previous Sec-
tion 6.5.2 shows all contained software metrics in the ALL_RFE feature subset. It contains
six out of 20 software metrics of the GPV_RFE feature subset. These include variants of
EXTERNAL_WITH_BUILD_VARS and ALL_WITH_BUILD_VARS. Hence, the GPV_RFE only differs
from ALL_RFE in that it contains some further variants of EXTERNAL_WITH_BUILD_VARS and
ALL_WITH_BUILD_VARS as well as EV VP Fan-In(global), EV VP Fan-In(local) and EV
VP Fan-Out(global). This suggests that the probably second-best prediction capability
of ALL_RFE could be primarily owed to the contained global-scoped pure-variability-aware
metrics. These global-scoped pure-variability-aware metrics within the ALL_RFE feature
subset were selected by the RFE algorithm. Hence, the RFE algorithm determined them
as one of the most meaningful metrics overall. This also corroborates the strong assump-
tion about the best prediction capabilities of the GPV_RFE features. The remaining features
within the ALL_RFE feature subset are three metrics from the GCV_RFE feature subset.
Hence, the ALL_RFE feature subset contains the perhaps most suitable metrics of GPV_RFE
and GCV_RFE. This could easily lead to the assumption that ALL_RFE should be superior to
GPV_RFE and GCV_RFE, but the results show the opposite. GPV_RFE is superior to ALL_RFE
(H0 rejected with p-value ≈ 2.11e-09). This demonstrates nicely that the use of the RFE
algorithm as a feature selector does not find the globally optimal features. Still, it only
optimizes iteratively in a local (i.e. greedy) fashion. The lowest F1-scores were achieved
by combinations without either ALL_RFE and GPV_RFE.

The best local-scoped feature subset combination was LNV_RFE x LPV_RFE. It achieved an
initial F1-score of 0.318921 and a maximal F1-score of 0.412602. This is still significantly
worse than any global-scoped feature subset solely (LNV_RFE x LPV_RFE vs. GPV_RFE; H0
rejected with p-value ≈ 1.71e-15) (LNV_RFE x LPV_RFE vs. GCV_RFE; H0 rejected with
p-value ≈ 6.18e-03).

Findings

13. No arbitrary local-scoped feature subset combination achieved meaningful results (ini-
tial F1-score ≥ 0.4).

14. The GPV_RFE feature subset surpassed all feature subset combinations (according
to the achieved initial F1-scores) significantly.

15. The RFE algorithm has selected a mix of global-scoped pure- and combined-variability-
aware code metrics. It did not select any local-scoped or non-variability-aware metric.

85

Variability-aware Software Defect Prediction

7.6.2 Feature Subset Combination Ranking

This section presents the findings of additional analyses meant to rank the feature subset
combinations and describes why such a ranking was finally considered as not meaningful.
Tables 7.2 and 7.3 provide simplified overviews of all RFE-based combinations without
LPV_RFE, LCV_RFE, and ALL_RFE. These subsets were discarded because pure-variability-
awareness and combined-variability-awareness are still represented by their superior global-
scoped versions, and the ALL_RFE feature subset does not represent a specific type of
software metrics. Table 7.2 shows the best records according to achieved initial F1-scores
for each feature subset and is ordered by F1-scores descending. Table 7.3 shows the best
records according to achieved maximal F1-scores for each feature subset and is ordered by
maximal F1-scores descending.

Table 7.2: Best achieved validation scores each RFE-based feature subset combination
according to achieved initial F1-scores and without ALL_RFE, LPV_RFE and
LCV_RFE.

Precision Recall F1 max_F1 AUC n
-ROC

Subset S ø ø ø ø ø

GPV_RFE N 0.975 0.506 0.666 0.728 0.961 20
LNV_RFE x GPV_RFE N 0.985 0.466 0.632 0.731 0.966 23
LNV_RFE x GPV_RFE x GCV_RFE S 0.629 0.624 0.627 0.644 0.953 32
GPV_RFE x GCV_RFE N 0.990 0.451 0.620 0.742 0.968 29
LNV_RFE x GCV_RFE S 0.508 0.315 0.389 0.404 0.738 12
GCV_RFE S 0.426 0.311 0.359 0.386 0.733 9
LNV_RFE N 0.942 0.133 0.232 0.314 0.745 3

Table 7.3: Best achieved validation scores each RFE-based feature subset combination
according to achieved optimized F1-scores and without ALL_RFE, LPV_RFE
and LCV_RFE.

Precision Recall F1 max_F1 AUC n
-ROC

Subset S ø ø ø ø ø

GPV_RFE x GCV_RFE N 0.990 0.451 0.620 0.742 0.968 29
LNV_RFE x GPV_RFE x GCV_RFE N 0.991 0.438 0.607 0.737 0.968 32
LNV_RFE x GPV_RFE N 0.985 0.466 0.632 0.731 0.966 23
GPV_RFE N 0.975 0.506 0.666 0.728 0.961 20
LNV_RFE x GCV_RFE N 0.975 0.225 0.365 0.453 0.840 12
GCV_RFE N 0.976 0.214 0.351 0.439 0.834 9
LNV_RFE N 0.942 0.133 0.232 0.314 0.745 3

Table 7.2 corroborates all previous assumptions about the superiority of GPV_RFE, but
Table 7.3 does not. Even though the GPV_RFE feature subset achieved the highest initial
F1-score, it did not achieve the highest maximal F1-score. While it is listed as the top
subset in Table 7.2, it is listed as the fourth-best subset in Table 7.3. The order of Table
7.3 would remain the same if the AUC-ROC measure would be used as the index. This
means that depending on the applied performance metrics, the best feature subset com-
bination differs. Anyway, both tables confirm the significant superiority of combinations
containing the GPV_RFE feature subset and the inferiority of GCV_RFE and LNV_RFE. This
is highlighted by a sharp drop in any performance metric once the GPV_RFE feature subset
is entirely excluded from a combination (i.e. the three bottom records of both tables). A
generally valid ranking of combinations is not meaningful due to the dependence of the

86

Software Metric Subset Combination Experiments

applied performance metric. The tables suggest that more comprehensive feature subset
combinations lead to reduced initial F1-scores but an increased maximal F1-score and
AUC-ROC measure. This hypothesis could not be validated by a complete analysis of all
results.

While GPV_RFE and LPV_RFE x GPV_RFE achieved the highest initial F1-score of the shown
combinations, GPV_RFE x GCV_RFE significantly outperformed GPV_RFE according to their
maximal F1-scores (H0 rejected with p-value ≈ 0.037) and AUC-ROC measures (H0
rejected with p-value ≈ 2.81e-04). LNV_RFE x GPV_RFE x GCV_RFE significantly outper-
formed GPV_RFE according to their AUC-ROC measures (H0 rejected with p-value ≈
1.73e-03) but not according to maximal F1-scores (H0 not rejected with p-value ≈ 0.188).
GPV_RFE x GCV_RFE and LNV_RFE x GPV_RFE x GCV_RFE achieved similar results in max-
imal F1-score (H0 not rejected with p-value ≈ 0.306) and AUC-ROC measure (H0 not
rejected with p-value ≈ 0.834).

LNV_RFE x GPV_RFE x ALL_RFE achieved the highest maximal F1-score overall with a
value of 0.744235. GPV x LNV_RFE x ALL_RFE achieved the highest AUC-ROC measure
overall with a value of 0.968735. LNV_RFE x LPV_RFE x GPV_RFE x ALL_RFE achieved the
second-best AUC-ROC measure overall and the best AUC-ROC measure over all RFE-
based feature subset combinations with a value of 0.968589. The complete record of all
results is provided digitally.

Findings

16. LPV_RFE x GPV_RFE and GPV_RFE achieved the highest initial F1-scores over-
all.

17. LNV_RFE x GPV_RFE x ALL_RFE achieved the highest maximal F1-score over-
all.

18. LNV_RFE x LPV_RFE x GPV_RFE x ALL_RFE achieved the highest AUC-ROC
measure over all RFE-based feature subsets.

7.6.3 Interpretation of best-performing Configuration

This section provides a brief analysis of the model’s performance that achieved the highest
maximal F1-score. The goal of this analysis is to provide a better understanding of the
achieved prediction capability as it was introduced in Section 6.6.8 of the previous set of
experiments.

As previously mentioned in Section 7.6.1, the highest maximal F1-score overall was achieved
by LNV_RFE x GPV_RFE x ALL_RFE, and hence this model was selected for some further
analyses. Figure 7.1a shows the reconstructed confusion matrix of this model. The recon-
struction was performed according to the explanation of Section 6.6.8 and the formulas of
Equations 6.13, 6.14, 6.15, and 6.16. This matrix was computed based on the 10-fold inner
iteration that achieved the median maximal F1-score of this configuration. It achieved a
maximal F1-score of 0.741803 in iteration two of the 10-fold CV run. The maximal F1-
score was achieved on a classification threshold of 0.17. The corresponding precision is
0.872289, and the recall is 0.645276.

The confusion matrix shows significantly improved predictions compared to both confusion
matrices of Figure 6.10 in Section 6.6.8. Figure 7.1b shows the PR-curve of this model
and illustrates that it is capable of achieving decent precision and recall values on certain
thresholds. The green square on the blue line indicates the maximal F1-score, and the

87

Variability-aware Software Defect Prediction

361 52

199 38,516

defective healthy
de

fe
ct
iv
e

he
la
th
y

actual class
pr
ed

ic
te
d
cl
as
s

(a) Confusion matrix.

(b) PR-curve.

Figure 7.1: Confusion matrix and PR-Curve of the configuration that achieved the high-
est maximal F1-score (RF, LNV_RFE x GPV_RFE x ALL_RFE and no
resampling).

orange square indicates the initially achieved F1-score at a threshold of 0.5. The squares
on the curve show again that omitting a resampling method induces a strong bias towards
healthy labels, but a post-training adjustment of the classification threshold can lead to
more balanced predictions. The model found 361 out of 560 defects. It predicted a defective
label for 52 healthy functions and did not recognize 199 actual defects. The model predicted
a correct healthy label for 38,516 healthy functions in total.

7.6.4 Analysis of individual Software Metrics’ Importances

This section provides an analysis of individual feature importances. Decision trees and
other tree-based algorithms are considered to be well interpretable. Machine learning li-
braries provide functions to obtain individual feature importances of learned tree-based
models based on a feature’s impurity decrease as described in Section 6.5.2. Feature im-
portances were stored over all sets of experiments of any single tree-based model. While
these feature importance values have served as baseline for the RFE algorithm, which was
used to successively remove the least important features, it is not hesitatingly useful for a
precise assessment of importances or rankings of features. The reason for that is the fea-
ture correlation bias due to the high multicollinearity among the data, which was already
described in Section 6.3.1.2. The RFE algorithm has already made use of this kind of com-
puted feature importances, but it only removed the single feature of least importance on
each iteration. It did not utilize more sophisticated information from that. Furthermore,
any decision made by the algorithm was verified on a subsequent validation on the outer
validation dataset. Hence, the RFE algorithm utilized these feature importances despite
the present feature correlation bias. The fact that it only extracted a quite simple informa-
tion (i.e. what was the least important feature in this RFE iteration) and the continuous
validation have made the algorithm to perform quite robust though the presence of fea-
ture correlation bias. Hence, the extracted feature importances were sufficiently robust to
be used in the RFE algorithm but not to be used for precise and individual importance
assessments of contained features within the final RFE feature subsets.

88

Software Metric Subset Combination Experiments

The GPV_RFE feature subset contains 20 code metrics that stem from only two different code
metric families. These are several types of ALL_WITH_BUILD_VARS Vars per Function
and EXTERNAL_WITH_BUILD_VARS Vars per Function as well as EV VP Fan-In(global),
EV VP Fan-In(local), and EV VP Fan-Out(global). The first two metrics belong to the
Software-Feature per Function metric family described in Section 5.1.1.2 and the second
three metrics belong to the Recursive Fan-In/-Out metric family described in Section
5.1.1.8. Code metric variants typically share the same method of measurement, and hence
they are correlated to a certain degree. This prevents from a reliable assessment of the
metrics’ importance within one code metric family, and it does not allow a reliable assess-
ment of the importance of the different variability metrics either. The feature correlation
bias falsifies the importance values too much.

Even though a detailed importance assessment within the feature subsets was not possible
without further ado, the RFE algorithm has already provided a variety of information.
The following paragraphs will take up the results and findings of Sections 6.5.2 and 6.6.5
and provide some additional analyses aimed to get some insights into the suitability of
individual code metrics. The complete lists of contained code metrics within the RFE
feature subsets were shown in Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7.

The LNV feature subset originally contained 15 different code metrics of five different code
metric families. After the RFE reduction, the resulting LNV_RFE feature subset only con-
tained three code metrics of one single code metric family. The RFE algorithm and the sub-
sequent analysis of the results yielded EV Classical Fan-Out(global), EV Classical
Fan-In(global), and EV Classical Fan-In(local) as the most meaningful metrics to
be used in the RFE feature subset.

The LPV feature subsets originally contained 20 metrics of seven different code metric
families in total. After the RFE reduction, the resulting LPV_RFE feature subset only
contained five code metrics of two different metric families. The RFE algorithm yielded all
four variants of EV VP Fan-In/-Out (local and global) and ALL_WITH_BUILD_VARS Vars
per Function as the most meaningful metrics. Hence, the algorithm found all variants
of the recursive VP Fan-In/-Out metrics more important than the non-recursive variants.
Furthermore, the algorithm kept all available variants of this specific metric family. This
happened only in this feature subset.

The LCV feature subset originally contained 28 metrics of six different code metric families
in total. After the RFE reduction, the resulting LCV_RFE feature subset only contained nine
code metrics of three code metric families. The RFE algorithm yielded recursive variants
of DC Fan-In/-Out (local and global) as part of the most meaningful features. Besides six
recursive DC Fan-In/-Out variants, the subset contains a single non-recursive DC Fan-Out
variant as well as Combined ND_Avg as single nesting depth metric. The algorithm kept
specific variants of the recursive DC Fan-In, DC Fan-Out locally and globally but due to the
feature correlation bias, the exact selection of the variants (i.e. EV DC Fan-In (global)
or EV DC Fan-In (global x No Stubs), etc.) should not be considered as reliable.

The GPV feature subset originally contained 200 code metrics of seven code metric fami-
lies in total. These metrics include a variety of variability-aware code metrics, which were
weighted by 19 different variability metrics. The RFE algorithm yielded a feature subset
of 20 metrics of two different families. The metrics contain three out of four recursive
VP Fan-In and Fan-Out variants. Only EV VP Fan-Out (global) was not kept by the
algorithm. Furthermore, multiple weighted variants of the ALL_WITH_BUILD_VARS Vars
per Function and EXTERNAL_WITH_BUILD_VARS Vars per Function were kept. The al-
gorithm’s decision about which weighted variants too keep should not be considered as

89

Variability-aware Software Defect Prediction

reliable due to the feature correlation bias. These metrics have led to one of the best
prediction performances overall. The LPV feature subset had all these recursive variants
of VP Fan-In and VP Fan-Out available. In contrast to the GPV feature subset, the LPV
feature subset does not contain any weighted variants of the ALL_WITH_BUILD_VARS Vars
per Function or EXTERNAL_WITH_BUILD_VARS Vars per Function metrics available but
the unweighted ones. The original GPV as well as the GPV_RFE feature subset achieved a
much better performance than LPV and LPV_RFE, which was validated in Section 6.6.3.
Table 6.11 has shown the significant improvements in prediction capabilities of pure-
variability-aware code metrics once the scope was extended to global. This paragraph
shows that this improvement is likely owed to the application of variability metrics on
ALL_WITH_BUILD_VARS Vars per Function and EXTERNAL_WITH_BUILD_VARS Vars per
Function because these are the only difference between LPV_RFE and GPV_RFE. Further-
more, the algorithm preferred the metric variants that also considered variability variables
during the build process (i.e. _WITH_BUILD_VARS) over the others in all cases.

The GCV feature subset originally contained 442 metrics of six code metric families in total.
The metrics also include a variety of variability-aware code metrics, which were weighted by
19 different variability metrics. The RFE algorithm yielded a feature subset of nine metrics
of a single code metric family. The feature subset only contains eight weighted variants
of EV DC Fan-In(local) and a single weighted variant of EV DC Fan-Out(global). The
GCV_RFE feature subset was also considered as superior over the LCV and LCV_RFE feature
subset as described by Section 6.6.3. Still, the improvement was not that large as the one
of pure-variability-aware code metrics. Nevertheless, the weighting of the recursive DC
Fan-In and DC Fan-Out metrics improved the achieved F1-scores significantly.

The ALL feature subset originally contained 692 metrics of all nine code metrics fam-
ilies. The RFE algorithm yielded a feature subset of only nine metrics of two metric
families. The feature subset contains six metrics that also appear in the GPV_RFE fea-
ture subset. These are weighted variants of ALL_WITH_BUILD_VARS Vars per Function
and EXTERNAL_WITH_BUILD_VARS Vars per Function. The remaining three metrics of
ALL_RFE also appear in the GCV_RFE feature subset and are weighted variants of EV DC
Fan-In(local). All metrics contained in the ALL_RFE feature subset are also contained in
another RFE feature subset, which corroborates the findings of the RFE algorithm.

Further analyses and the mentioning of the variability metrics which were kept by the
RFE algorithm were omitted on purpose. The high correlation among different variability
metrics on a certain code metric variant made this kind of decision insufficiently reliable.
The exact weighted metric variants that were kept by the RFE algorithm can be obtained
from Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7. The RFE algorithm chose the POSITIVE_SIZES
variability metric in six out of seven cases where this metric was available. It also selected
TOTAL_SIZES as variability metric in five out of seven cases. These variability metrics have
the highest occurrence, but this still cannot be considered as solid findings due to the high
feature correlation bias.

Findings

19. Recursive variants of all Fan-In/-Out metrics were generally preferred over the non-
recursive variants by the RFE algorithm.

20. The weighting by additional variability metrics on Software-Features per Function
metrics improved the entire prediction capability significantly.

90

Software Metric Subset Combination Experiments

21. The Software-Features per Function metrics that additionally consider used variabil-
ity variables of the build process, were generally preferred by the RFE algorithm.

22. Weighted variants of EXTERNAL_WITH_BUILD_VARS Vars per Function and
ALL_WITH_BUILD_VARS Vars per Function have strongly contributed to the
overall best achieved prediction performances.

23. Weighted variants of code metrics were generally preferred over non-weighted ones
by the RFE algorithm.

24. The RFE algorithm has selected only global-scoped pure- and combined-variability-
aware code metrics from ALL feature subset. It did not select any local-scoped or
non-variability-aware metric.

7.7 Experimental Environment
This set of experiments was exclusively performed on the two virtual machines provided by
the University of Hildesheim. No other machines were employed. Because only RF-based
models were trained and tested in this set of experiments, the virtual machines provided
optimal conditions with their high number of CPU cores. A more detailed description of
both machines was given in Section 6.7.

The next Chapter provides the final discussion of the results and findings. This chapter is
meant to put all findings in context to the defined research questions. Furthermore, the
discussion aligns the findings of this study with the findings of the reviewed literature and
describes the limitations and potential threats to validity.

91

Variability-aware Software Defect Prediction

8 Discussion
This chapter provides a final discussion about the findings of this thesis and gives clear
answers to the defined research questions. Furthermore, the findings of this thesis are
aligned with the results of other reviewed literature. The final parts of this chapter describe
the limitations and threats to the validity of the findings.

8.1 Answering the Research Questions
The main goal of this thesis was to gain information about the suitability of different
types of SCMs for the application of SDP. The ulterior motive behind SDP is to support
developers in producing bug-free code and reduce the number of defects in a software
project. Software defects cause costs due to expensive troubleshooting. Consequently, this
amount of costs can be reduced if the number of defects is reduced.

Previous research has produced a large variety of novel SCMs [ESKS19]. A subset of these
metrics was applied and collected from the Linux kernel and finally provided as data to
this work. This dataset was the baseline for the analysis of the metrics’ suitability. Four
research questions were defined and investigated in order to assess and understand the
suitability of the provided data. The defined research questions of Section 1.2 are finally
addressed and answered in this section. These answers are based on the elaborated and
summarized findings of prior analysis sections of Chapters 6 and 7. The analysis sections
already presented and interpreted the results of the conducted experiments precisely. Each
subsection of the analyses was summarized by a listing of the concrete findings at the end
of each subsection. At this point, the listed findings are used to finally address the research
questions and provide clear answers.

[RQ1] Does the utilization of variability-aware code metrics achieve significantly better
results than non-variability-aware code metrics?

[RQ1] was addressed by the first set of experiments. Section 6.6.2 presented a clear compar-
ison of the achieved performances of non-variability-aware and variability-aware metrics.
The section clearly found that non-variability-aware code metrics did not outperform any
other feature subset, whereas three out of four variability-aware feature subsets outper-
formed non-variability-aware code metrics significantly. Furthermore, Section 6.6.2 has
shown that pure-variability-aware code metrics achieved by far the best results overall.

The ulterior motive of [RQ1] was to investigate the assumption that implemented code
variability could increase the complexity of code, and hence it could increase the diffi-
culty of creating bug-free code. Thus, a lot of metrics were defined to measure the code
variability because this variability might be a useful indicator to recognize defects. The
results of conducted experiments have confirmed this assumption, and show that measures
of code variability are very suitable as features used to predict software defects. The use
of traditional SCMs, as in the local-scoped non-variability-aware feature subset, was not
able to achieve reasonable performances if applied solely.

[RQ2] Does the weighting of code metrics by additional variability metrics achieve signifi-
cantly better results than non-weighted code metrics?

[RQ2] was also addressed by the first set of experiments. Section 6.6.3 presented a clear
comparison of the achieved performances of local-scoped (i.e. no additional weighting by
variability metrics) and global-scoped (i.e. additional weighting by variability metrics)
metrics. The results show that the utilization of variability metrics improved the per-
formances of all variability-aware metric subsets significantly. Furthermore, the applied

92

Discussion

feature selection algorithm generally preferred the weighted code metrics over the non-
weighted metrics.

The ulterior motive of [RQ2] was to investigate the assumption that an additional weight-
ing of code metrics by variability metrics could provide a more accurate approximation
of the code’s complexity. The results of the conducted experiments have confirmed this
assumption. The additional weighting provided better results in SDP in all cases. The
weighted code metrics are considered as the best suitable features in this SDP study. The
use of unweighted variability-aware code metrics did not achieve significantly better results
than non-variability-aware metrics. Only the weighting by variability metrics made them
superior over traditional SCMs.

[RQ3] Which software metrics are most suitable for software defect prediction?

[RQ3] was partially addressed by the feature selection algorithm, the first and the second
set of experiments. The question requires concrete information regarding the suitability of
specific code metrics. This is not trivial to answer because the question aims for univari-
ate information and methods of machine learning typically learn multivariate patterns.
Hence, a univariate evaluation of input features becomes difficult in most cases. Even
though tree-based algorithms provide techniques to extract precise feature importances,
the strong presence of multicollinearity among the data did not allow a sufficiently reliable
extraction of them. Instead, Section 7.6.4 provided an analysis aimed for such an individual
feature evaluation based on the results of the applied feature selection algorithm and other
obtained validation scores. This analysis found that especially recursive variants of condi-
tional Fan-In/-Out (i.e. EV VP Fan-In/-Out) and Degree Centrality Fan-In/-Out (i.e. EV
DC Fan-In/-Out) as well as weighted variants of Software-Features per Function metrics
considering variability variables at the build process (i.e. ALL_WITH_BUILD_VARS Vars per
Function and EXTERNAL_WITH_BUILD_VARS Vars per Function) primarily contributed
to the best achieved prediction capabilities. The non-weighted variants of variability-aware
code metrics did not provide sufficient information to achieve reasonable results in con-
ducted experiments. Traditional non-variability-aware SCMs like LoC or McCabe’s Cy-
clomatic Complexity did not provide sufficient information to achieve reasonable results
either.

[RQ4] What is the best-performing configuration in this software defect prediction task?

[RQ4] aimed for the most suitable model configuration of this SDP task. The complete
configuration of a model includes multiple hyperparameters. These are algorithm-specific
hyperparameters as well as general hyperparameters. The most suitable general hyperpa-
rameters that achieved the best results are the use of RF as the classification algorithm,
the use of L2-normalization, and no use of prior resampling methods on the training data.
These settings turned out to perform well in the first set of experiments, and thus they
were also applied on the second set of experiments. The detailed algorithm-specific hyper-
parameters were optimized and precisely explained in Section 6.4.3. Another important
hyperparameter is the selection of the applied features to the classification algorithm. The
second set of experiments aimed to find the most suitable feature subset combination
overall. The analysis of these experiments corroborated that the metrics of GPV_RFE are
essential to achieve the best possible performances. Further combinations of these met-
rics with local-scoped non-variability-aware metrics or global-scoped combined-variability-
aware code metrics could still improve the prediction capabilities a bit. The very detailed
analysis of results is given in Sections 7.6.1 and 7.6.2.

93

Variability-aware Software Defect Prediction

8.2 Aligning the results with reviewed literature

This section aligns and compares the results of this work to the findings and claims of the
previously reviewed literature, which was presented in Chapter 3. Lessmann et al. found in
their early research about SDP that RFs and NNs performed best [LBMP08]. The results
of this study match their findings partially. While RFs also performed best in this case,
NNs did not achieve any reasonable results. This is a little contrary to the findings of
Lessmann et al. In fact, the suitability of classification algorithms is difficult to generalize.
The used datasets vary much, although they are on a similar domain of SDP.

Furthermore, RFs are a very common choice for real tabular datasets because they are
quite robust to over-fitting and not that hard to tune. NNs are more like the opposite
of this. They are quite prone to over-fitting if no countermeasures are considered, and
they are hard and costly to tune. Hence, especially NNs are strongly dependent on the
spent effort in optimization and the condition of provided data. A generalization of the
suitability of NNs in a certain case of tabular data, is not meaningful. Hall et al. found
that especially simple models like NB and Linear Regression achieved good performances.
The results of this thesis contradict this claim entirely. Simple models like NB achieved
no adequate performances at all. This fact is probably also owed to the condition of
the provided dataset. Ultimately, it is not meaningful to recommend a certain algorithm
based on only the domain of a classification task. Algorithms and steps of pre-processing
always depend on provided data. Even though the results of the research from Giger et
al. [GDPG12] were criticized and their finding of the superiority of process metrics over
product metrics were revised by Pascarella et al. [PPB18], both papers reported that the
use of only SCMs is not suitable to perform adequate SDP. This finding is partially in
line with the results of this thesis because the used SCMs in their research are similar to
the applied local-scoped non-variability-aware code metrics in this study. The analyses of
Sections 6.6.2 and 7.6.1 have shown exactly this. The application of only local-scoped non-
variability-aware code metrics is not suitable to perform adequate SDP. On the other side,
the results of this thesis contradict to the general claim that SCMs are not suitable for
SDP because any metric of this study is an SCM. But a variety of the used metrics of this
study are variability-aware and have an extended scope due to the additional weighting
by variability metrics. In fact, all the used metrics are static ones, and some of them
achieved reasonable results, presumed more than only local-scoped non-variability-aware
code metrics were applied. Any comparisons of reported performances from other research
and the results of this thesis are not considered as meaningful. The datasets differ too
much, and hence achieved performances are not reliably comparable.

8.3 Limitations

This section describes the limitations of this study. These limitations could not be covered
at this point within this study. Most of them will be taken up again in the next chapter’s
outlook section.

Though the thesis answered the defined research questions and provided meaningful in-
formation and results to the research of SDP, there are several limitations of this study.
The generalizability of the results is limited by the fact that most variability-aware code
metrics used in this study are based on analyzed CPP-code. Hence, most of these metrics
are only available for C-based software projects, which prevents to test this approach on
non-C-based software projects. Most studies of the reviewed literature performed SDP on
Java-based projects.

94

Discussion

It was not possible to compare the findings and results of this thesis with other studies
on the same software project. Such a comparison would require other method-level SDP
experiments applied to the Linux kernel. The found and reviewed literature included only
a single study that performed SDP on the Linux kernel but with a too different purpose,
and hence it was not comparable.

The study explained and analyzed all conducted experiments, and the obtained results,
very comprehensively. Due to that, it was possible to provide several findings and draw
conclusions about the suitability of certain types of metrics. In addition to that, this study
has found some information about the suitability of specific software metrics. A detailed as-
sessment of all metrics was not possible because of the strong presence of multicollinearity
and the resulting feature correlation bias. The interpretability of sophisticated classifica-
tion algorithms is an ongoing research topic called interpretable machine learning and is
not trivial. A clear interpretation of machine learning models is a challenging task even
on simple datasets but rather more on complex ones. The same applies to the assessment
of variability metrics. The analysis sections of the experiments were designed reserved
regarding the assessment of individual variability metrics purposely. This decision was
made to avoid speculation, over-interpretation, or the presentation of unreliable results.
The high feature correlation bias did not allow to extract sufficiently reliable information
about an individual assessment of variability metrics.

The last limitation of this study is owed to typical computational limitations. A limited
amount of time and computational power did not allow a more extensive hyperparameter
optimization, especially on very costly algorithms like NNs or GBs. The NN-based experi-
ments were primarily conducted on costly Google-Cloud machines. Hence, the rising costs
were a clear limiting factor to this.

8.4 Threats to Validity
This section provides a brief description of potential threats to the validity of this study.
These threats are typical statistical risks that could invalidate the findings of this study.
The following paragraphs describe those risks and give a short estimate of the severity.

One factor, which was already raised in Section 8.3, is that only a single software project
was analyzed. Hence, the findings of this study are not yet cross-project-validated by
additional software projects besides the Linux kernel. This does not invalidate the findings,
but an additional cross-project-validation could still corroborate them. Nevertheless, the
Linux kernel is an extensive software project and is continuously developed by plenty of
different software developers. Furthermore, the collected defects of the dataset stem from
a period of about five years. These factors shrink the risk of a biased sample to a minimum
but do not exclude it.

A substantial part of this thesis was based on the results of the RFE feature selection
algorithm. The results of this greedy algorithm were not extensively cross-validated due to
limited computational resources. Even though the procedure was repeated multiple times
and the suitability of resulting RFE feature subsets were validated by an appropriate
hold-out validation strategy, a 10-fold CV approach on every single iteration of the RFE
algorithm could still have increased its reliability. This was not considered because such
an approach would still have increased the amount of computational costs and durations
beyond the limit of available resources.

The applied validation routine of both sets of experiments has performed 10-fold CVs in
order to provide reliable results. This approach could have been extended to an n times
10-fold CV strategy. The conducting of multiple repetitions of the entire 10-fold CV run

95

Variability-aware Software Defect Prediction

could still have increased the reliability of results but also the computational costs. These
increasing computational costs would have been beyond the limits of this study.

Any important findings were validated by performed Welch-tests. These tests applied a
significance threshold α in order to reject the null hypothesis. This threshold was set to
0.05, which is a commonly used and appropriate value. Nevertheless, a lower value of α
would still have increased the necessary confidence to reject the null hypothesis.

96

Conclusion

9 Conclusion

This chapter provides the conclusion of this thesis and is divided into three sections. The
first section points out the final fundamental conclusion based on the findings of this
thesis. The second section gives some practical recommendations and an outlook of future
research based on the conclusion of this work. The last section wraps up the research
contribution of this study.

9.1 General Conclusion

The study aimed to evaluate the suitability of a variety of novel variability-aware SCMs.
Besides the general analysis of the metrics’ suitability, a comparison between the novel
variability-aware code metrics and traditional non-variability-aware metrics was of spe-
cial interest. Based on the conducted experiments and the subsequent analyses of results,
it can be concluded that especially global-scoped pure-variability-aware code metrics are
superior to any local-scoped or non-variability-aware code metrics. The extension of the
variability-aware metrics’ scope by an additional weighting via variability metrics improved
the expressiveness regarding software defects significantly. The measures of implemented
code variability by pure-variability-aware code metrics achieved constantly best perfor-
mances and were a substantial component to achieve reasonable prediction capabilities. A
few individual global-scoped variability-aware code metrics turned out to be most useful in
this SDP study. The results have shown the usefulness and suitability of variability-aware
SCMs for method-level SDP. The addition of metrics to measure code variability provides
the potential to set new benchmarks in SDP because the approximated complexity due
to variability serves as a suitable indicator for defects. Hence, existing approaches of SDP
should pay more attention to measures of code variability than on traditional measures of
code complexity. The most reasonable classification algorithm was an RF classifier using
500 estimators.

9.2 Recommendation & Outlook

Based on the findings and conclusions of this study, ongoing research in the area of SDP
should consider additional measures of code variability in their studies. A variety of pa-
pers were reviewed and summarized as part of the related work chapter. The majority of
them strived to improve their achieved SDP performances by considering further process
metrics, socio-technical metrics, or other techniques that analyze the source code itself.
None of them has clearly examined the usefulness of software metrics that measure the
present code variability. This research has shown that exactly these metrics could pro-
vide further improvements to many existing SDP approaches. This study has primarily
analyzed the usefulness of variability-aware code metrics based on the conditional compi-
lation by the CPP. Further research should investigate additional possibilities to measure
the present code variability within the source code of other languages than C-based ones.
Another important topic of future research should aim towards more interpretable meth-
ods of machine learning to derive precise and univariate recommendations or guidelines
for developers. These guidelines could provide additional potential to reduce the risk and
number of software defects within a software project, which in turn provides a further
reduction of costs. At this point, the conclusions of this study indicate that it would be
meaningful to shift the focus of existing guidelines from dictating the style and standards
of normal source code to regulating and guiding the implemented code variability.

97

Variability-aware Software Defect Prediction

9.3 Contribution
This study has contributed to filling a gap in method-level SDP research using variability-
aware code metrics. The related work chapter has shown that there was a severe lack of this
consideration. This research clearly shows the superiority of variability-aware code metrics
over traditional non-variability-aware metrics. This should point future research to con-
sider such metrics in their approaches. While several papers have claimed that method-level
SDP is still a non-solved task and severely requires further research [LBMP08] [PPB18],
this study has contributed to exactly this research area and pointed out a new potential for
existing approaches. The consideration of metrics like the used SCMs in this thesis could
provide further improvements to existing SDP approaches, which in turn could contribute
to the reduction of software defects. This finally ends up in a small contribution to the
industrial successes of software projects.

98

Appendix

A Appendix

99

Variability-aware Software Defect Prediction

Ta
bl
e
A
.1
:P

er
fe
ct
ly

Sp
ea
rm

an
-c
or
re
la
te
d
in
pu

t
fe
at
ur
es
.

Fe
at
ur
e
C
om

bi
na

tio
ns

A
LL

Va
rs

pe
r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

A
LL

_
W

IT
H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
he
x=

1)
V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

A
LL

Va
rs

pe
r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
A
LL

_
W

IT
H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
A
LL

Va
rs

pe
r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

A
LL

_
W

IT
H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

A
LL

_
W

IT
H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
he
x=

1)
V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
he
x=

1)
V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

D
C

Fa
n-
In
(g
lo
ba

l)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
In
(g
lo
ba

l)
D
C

Fa
n-
In
(lo

ca
l)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
In
(lo

ca
l)

D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
St
ub

s)
x
Fe

at
ur
e
T
yp

e(
he
x=

1)
D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
St
ub

s
x
N
o
ex
t.

V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
ex
t.
V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
O
ut
(g
lo
ba

l)
D
C

Fa
n-
O
ut
(g
lo
ba

l)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
O
ut
(g
lo
ba

l)
D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
ex
t.
V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
St
ub

s)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
St
ub

s
x
N
o
ex
t.
V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
ex
t.

V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
O
ut
(lo

ca
l)

D
C

Fa
n-
O
ut
(lo

ca
l)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
la
ss
ic
al

Fa
n-
O
ut
(lo

ca
l)

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
ex
t.

V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
St
ub

s)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
St
ub

s
x
N
o
ex
t.
V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(g
lo
ba

l)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(g
lo
ba

lx
N
o
ex
t.

V
P
s)

x
Fe

at
ur
e
T
yp

e(
he
x=

1)
E
V

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
St
ub

s)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
St
ub

s
x
N
o
ex
t.

V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(lo

ca
l)
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
V

D
C

Fa
n-
O
ut
(lo

ca
lx

N
o
ex
t.
V
P
s)

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

E
X
T
E
R
N
A
L
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
E
X
T
E
R
N
A
L_

W
IT

H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)

C
on

tin
ue

d
on

ne
xt

pa
ge

100

Appendix

Fe
at
ur
e
C
om

bi
na

tio
ns

E
X
T
E
R
N
A
L
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

E
X
T
E
R
N
A
L_

W
IT

H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

IN
T
E
R
N
A
L
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

A
LL

Va
rs

pe
r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

A
LL

_
W

IT
H
_
B
U
IL
D
_
VA

R
S
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

IN
T
E
R
N
A
L
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
in
te
ge
r=

1,
in
t=

1)
IN

T
E
R
N
A
L
Va

rs
pe

r
Fu

nc
tio

n
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

C
C

on
V
P
s
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
st
rin

g=
1)

V
P

N
D
_
M
ax

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

Fu
ll-
T
D

x
Fe

at
ur
e
T
yp

e(
he

x=
1)

V
is
ib
le
-T

D
x
Fe

at
ur
e
T
yp

e(
he

x=
1)

101

Variability-aware Software Defect Prediction

Table A.2: Fifty highest Pearson-correlated software metrics to the target variable.

Input feature Correlation Coefficient

LoC 0.078877
SCoC 0.070451
McCabe + CC on VPs x Feature distance 0.066771
McCabe + CC on VPs x Hierarchy Levels 0.066494
McCabe + CC on VPs x Feature Type(bool=1) 0.064626
McCabe + CC on VPs 0.064625
McCabe + CC on VPs x Hierarchy Types(0-0-1) 0.064081
McCabe + CC on VPs x Hierarchy Types(0-1-0) 0.063661
McCabe + CC on VPs x Hierarchy Types(1-0-0) 0.063385
McCabe + CC on VPs x Feature Type(tristate=1) 0.063298
McCabe 0.063197
McCabe + CC on VPs x Feature Type(hex=1) 0.063197
McCabe + CC on VPs x Feature Type(string=1) 0.063196
McCabe + CC on VPs x Feature Type(integer=1, int=1) 0.063195
McCabe + CC on VPs x NUMBER_OF_CHILDREN 0.062995
McCabe + CC on VPs x OUTGOING_CONNECTIONS 0.062312
Combined ND_Max x Feature distance 0.056348
Combined ND_Max x Hierarchy Levels 0.055466
Combined ND_Max x Feature Type(bool=1) 0.051720
Combined ND_Max 0.051387
Combined ND_Max x Hierarchy Types(0-0-1) 0.050458
Combined ND_Max x Hierarchy Types(0-1-0) 0.048920
Combined ND_Max x Hierarchy Types(1-0-0) 0.048032
Combined ND_Max x Feature Type(tristate=1) 0.047978
Classic ND_Max 0.047487
Combined ND_Max x Feature Type(hex=1) 0.047486
Combined ND_Max x Feature Type(string=1) 0.047485
Combined ND_Max x Feature Type(integer=1, int=1) 0.047478
Visible-TD 0.045217
Full-TD 0.044288
Visible-TD x Feature Type(bool=1) 0.044218
No. int. blocks x BLOCK_AS_ONE 0.044088
CC on VPs 0.044040
CC on VPs x Feature Type(bool=1) 0.043716
No. int. blocks x SEPARATE_PARTIAL_BLOCKS 0.043697
Full-TD x Feature Type(bool=1) 0.043040
INTERNAL Vars per Function 0.042797
DC Fan-Out(local) 0.041465
INTERNAL Vars per Function x Feature Type(bool=1) 0.041376
DC Fan-Out(local) x Feature Type(bool=1) 0.041217
DC Fan-Out(local) x Hierarchy Types(0-0-1) 0.040926
DC Fan-Out(local x No Stubs) 0.040657
DC Fan-Out(local x No Stubs) x Feature Type(bool=1) 0.040411
DC Fan-Out(local) x Feature distance 0.040201
DC Fan-Out(local x No Stubs) x Hierarchy Types(0-0-1) 0.040174
DC Fan-Out(local x No ext. VPs) 0.040019
DC Fan-Out(local x No ext. VPs) x Feature Type(bool=1) 0.039833
Visible-TD x Feature distance 0.039602
DC Fan-Out(local) x Hierarchy Types(1-0-0) 0.039599
DC Fan-Out(local x No ext. VPs) x Hierarchy Types(0-0-1) 0.039573

102

Appendix

Table A.3: Defective rates within the locations on the second level of hierarchy.

Location up to level 2 Defective rate Location up to level 2 Defective rate

drivers/base 5.079156 fs/Others 1.208934
kernel/Others 5.015353 drivers/spi 1.155751
mm/Others 5.000000 net/sched 1.114413
mm 4.957176 drivers/md 1.103931
arch/arm64 4.761905 arch/Others 1.099580
arch/tile 4.446064 net/netfilter 1.009749
drivers/gpio 4.320666 drivers/s390 1.005587
kernel 4.301458 drivers/tty 0.999345
lib 4.032258 drivers/media 0.912896
drivers/pci 3.518164 security/Others 0.909526
fs/btrfs 3.429061 drivers/net 0.901534
drivers/mmc 3.341794 drivers/power 0.850547
drivers/irqchip 3.290130 drivers/mfd 0.828609
drivers/iommu 3.184282 drivers/crypto 0.796813
arch/sparc 2.946200 drivers/regulator 0.764526
net/core 2.915082 drivers/scsi 0.728563
Others 2.815013 fs/nfs 0.727691
block 2.748585 drivers/input 0.684199
sound/soc 2.551574 drivers/ata 0.662879
drivers/Others 2.499774 drivers/platform 0.654253
fs 2.338308 fs/xfs 0.637233
drivers/dma 2.308239 arch/s390 0.629178
arch/x86 2.229878 arch/m68k 0.616197
drivers/i2c 2.007205 drivers/watchdog 0.609081
arch/mips 1.996458 drivers/infiniband 0.595877
crypto 1.853035 sound/core 0.587372
drivers/block 1.816557 sound/Others 0.575080
net/ipv6 1.755379 arch/alpha 0.573301
drivers/usb 1.677187 arch/ia64 0.568475
drivers/pinctrl 1.671542 fs/nfsd 0.494234
drivers/mtd 1.656196 net/bluetooth 0.486914
arch/arm 1.634646 lib/Others 0.420168
drivers/gpu 1.528685 drivers/rtc 0.375134
drivers/staging 1.506148 drivers/hwmon 0.373349
crypto/Others 1.503759 drivers/target 0.373134
drivers/char 1.484938 net/sunrpc 0.334225
arch/powerpc 1.417411 drivers/video 0.285055
drivers/iio 1.392405 drivers/edac 0.278035
drivers/clk 1.387283 arch/sh 0.272331
drivers/hid 1.380898 fs/ocfs2 0.225734
drivers/misc 1.374964 drivers/ide 0.172563
kernel/trace 1.368363 sound/pci 0.080537
net/mac80211 1.361032 block/Others 0.000000
drivers/acpi 1.341782 sound/isa 0.000000
net/ipv4 1.273101 drivers/isdn 0.000000
net/Others 1.223266 virt/Others 0.000000

103

Variability-aware Software Defect Prediction

Table A.4: Software metrics in the LNV feature subset.

Metric Metric

Classic ND_Avg EV Classical Fan-Out(global)
Classic ND_Max EV Classical Fan-Out(local)
Classical Fan-In(global) LoC
Classical Fan-In(local) LoC Comment Ratio
Classical Fan-Out(global) McCabe
Classical Fan-Out(local) SCoC
EV Classical Fan-In(global) SCoC Comment Ratio
EV Classical Fan-In(local)

Table A.5: Software metrics in the LPV feature subset.

Metric Metric

ALL Vars per Function INTERNAL Vars per Function
ALL_WITH_BUILD_VARS Vars per Function No. int. blocks x BLOCK_AS_ONE
CC on VPs No. int. blocks x SEPARATE_PARTIAL_BLOCKS
EV VP Fan-In(global) VP Fan-In(global)
EV VP Fan-In(local) VP Fan-In(local)
EV VP Fan-Out(global) VP Fan-Out(global)
EV VP Fan-Out(local) VP Fan-Out(local)
EXTERNAL Vars per Function VP ND_Avg
EXTERNAL_WITH_BUILD_VARS Vars per Function VP ND_Max
Full-TD Visible-TD

Table A.6: Software metrics in the LCV feature subset.

Metric Metric

Combined ND_Avg EV DC Fan-Out(global x No Stubs)
Combined ND_Max EV DC Fan-Out(global x No ext. VPs)
DC Fan-In(global) EV DC Fan-Out(global)
DC Fan-In(local) EV DC Fan-Out(local x No Stubs x No ext. VPs)
DC Fan-Out(global x No Stubs x No ext. VPs) EV DC Fan-Out(local x No Stubs)
DC Fan-Out(global x No Stubs) EV DC Fan-Out(local x No ext. VPs)
DC Fan-Out(global x No ext. VPs) EV DC Fan-Out(local)
DC Fan-Out(global) LoF
DC Fan-Out(local x No Stubs x No ext. VPs) McCabe + CC on VPs
DC Fan-Out(local x No Stubs) PLoF
DC Fan-Out(local x No ext. VPs) PSCoF
DC Fan-Out(local) SCoF
EV DC Fan-In(global) Undisciplined CPP
EV DC Fan-In(local)
EV DC Fan-Out(global x No Stubs x No ext. VPs)

104

Appendix

Table A.7: Software metrics in the GPV feature subset.

Metric

ALL Vars per Function x ALL_CTCR
ALL Vars per Function x COC
ALL Vars per Function x Feature Type(bool=1)
ALL Vars per Function x Feature Type(hex=1)
ALL Vars per Function x Feature Type(integer=1, int=1)
ALL Vars per Function x Feature Type(string=1)
ALL Vars per Function x Feature Type(tristate=1)
ALL Vars per Function x Feature distance
ALL Vars per Function x Hierarchy Levels
ALL Vars per Function x Hierarchy Types(0-0-1)
ALL Vars per Function x Hierarchy Types(0-1-0)
ALL Vars per Function x Hierarchy Types(1-0-0)
ALL Vars per Function x INCOMIG_CONNECTIONS
ALL Vars per Function x NUMBER_OF_CHILDREN
ALL Vars per Function x OUTGOING_CONNECTIONS
ALL Vars per Function x POSITIVE_SIZES
ALL Vars per Function x SD_FILE
ALL Vars per Function x SD_VP
ALL Vars per Function x TOTAL_SIZES
ALL_WITH_BUILD_VARS Vars per Function x ALL_CTCR
ALL_WITH_BUILD_VARS Vars per Function x COC
ALL_WITH_BUILD_VARS Vars per Function x Feature Type(bool=1)
ALL_WITH_BUILD_VARS Vars per Function x Feature Type(hex=1)
ALL_WITH_BUILD_VARS Vars per Function x Feature Type(integer=1, int=1)
ALL_WITH_BUILD_VARS Vars per Function x Feature Type(string=1)
ALL_WITH_BUILD_VARS Vars per Function x Feature Type(tristate=1)
ALL_WITH_BUILD_VARS Vars per Function x Feature distance
ALL_WITH_BUILD_VARS Vars per Function x Hierarchy Levels
ALL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(0-0-1)
ALL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(0-1-0)
ALL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(1-0-0)
ALL_WITH_BUILD_VARS Vars per Function x INCOMIG_CONNECTIONS
ALL_WITH_BUILD_VARS Vars per Function x NUMBER_OF_CHILDREN
ALL_WITH_BUILD_VARS Vars per Function x OUTGOING_CONNECTIONS
ALL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
ALL_WITH_BUILD_VARS Vars per Function x SD_FILE
ALL_WITH_BUILD_VARS Vars per Function x SD_VP
ALL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES
CC on VPs x ALL_CTCR
CC on VPs x COC
CC on VPs x Feature Type(bool=1)
CC on VPs x Feature Type(hex=1)
CC on VPs x Feature Type(integer=1, int=1)
CC on VPs x Feature Type(string=1)
CC on VPs x Feature Type(tristate=1)
CC on VPs x Feature distance
CC on VPs x Hierarchy Levels
CC on VPs x Hierarchy Types(0-0-1)
CC on VPs x Hierarchy Types(0-1-0)
CC on VPs x Hierarchy Types(1-0-0)
CC on VPs x INCOMIG_CONNECTIONS
CC on VPs x NUMBER_OF_CHILDREN
CC on VPs x OUTGOING_CONNECTIONS
CC on VPs x POSITIVE_SIZES
CC on VPs x SD_FILE
CC on VPs x SD_VP
CC on VPs x TOTAL_SIZES

Continued on next page

105

Variability-aware Software Defect Prediction

Metric

EV VP Fan-In(global)
EV VP Fan-In(local)
EV VP Fan-Out(global)
EV VP Fan-Out(local)
EXTERNAL Vars per Function x ALL_CTCR
EXTERNAL Vars per Function x COC
EXTERNAL Vars per Function x Feature Type(bool=1)
EXTERNAL Vars per Function x Feature Type(hex=1)
EXTERNAL Vars per Function x Feature Type(integer=1, int=1)
EXTERNAL Vars per Function x Feature Type(string=1)
EXTERNAL Vars per Function x Feature Type(tristate=1)
EXTERNAL Vars per Function x Feature distance
EXTERNAL Vars per Function x Hierarchy Levels
EXTERNAL Vars per Function x Hierarchy Types(0-0-1)
EXTERNAL Vars per Function x Hierarchy Types(0-1-0)
EXTERNAL Vars per Function x Hierarchy Types(1-0-0)
EXTERNAL Vars per Function x INCOMIG_CONNECTIONS
EXTERNAL Vars per Function x NUMBER_OF_CHILDREN
EXTERNAL Vars per Function x OUTGOING_CONNECTIONS
EXTERNAL Vars per Function x POSITIVE_SIZES
EXTERNAL Vars per Function x SD_FILE
EXTERNAL Vars per Function x SD_VP
EXTERNAL Vars per Function x TOTAL_SIZES
EXTERNAL_WITH_BUILD_VARS Vars per Function x ALL_CTCR
EXTERNAL_WITH_BUILD_VARS Vars per Function x COC
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(bool=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(hex=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(integer=1, int=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(string=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature Type(tristate=1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Feature distance
EXTERNAL_WITH_BUILD_VARS Vars per Function x Hierarchy Levels
EXTERNAL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(0-0-1)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(0-1-0)
EXTERNAL_WITH_BUILD_VARS Vars per Function x Hierarchy Types(1-0-0)
EXTERNAL_WITH_BUILD_VARS Vars per Function x INCOMIG_CONNECTIONS
EXTERNAL_WITH_BUILD_VARS Vars per Function x NUMBER_OF_CHILDREN
EXTERNAL_WITH_BUILD_VARS Vars per Function x OUTGOING_CONNECTIONS
EXTERNAL_WITH_BUILD_VARS Vars per Function x POSITIVE_SIZES
EXTERNAL_WITH_BUILD_VARS Vars per Function x SD_FILE
EXTERNAL_WITH_BUILD_VARS Vars per Function x SD_VP
EXTERNAL_WITH_BUILD_VARS Vars per Function x TOTAL_SIZES
Full-TD x ALL_CTCR
Full-TD x COC
Full-TD x Feature Type(bool=1)
Full-TD x Feature Type(hex=1)
Full-TD x Feature Type(integer=1, int=1)
Full-TD x Feature Type(string=1)
Full-TD x Feature Type(tristate=1)
Full-TD x Feature distance
Full-TD x Hierarchy Levels
Full-TD x Hierarchy Types(0-0-1)
Full-TD x Hierarchy Types(0-1-0)
Full-TD x Hierarchy Types(1-0-0)
Full-TD x INCOMIG_CONNECTIONS
Full-TD x NUMBER_OF_CHILDREN
Full-TD x OUTGOING_CONNECTIONS
Full-TD x POSITIVE_SIZES
Full-TD x SD_FILE

Continued on next page

106

Appendix

Metric

Full-TD x SD_VP
Full-TD x TOTAL_SIZES
INTERNAL Vars per Function x ALL_CTCR
INTERNAL Vars per Function x COC
INTERNAL Vars per Function x Feature Type(bool=1)
INTERNAL Vars per Function x Feature Type(hex=1)
INTERNAL Vars per Function x Feature Type(integer=1, int=1)
INTERNAL Vars per Function x Feature Type(string=1)
INTERNAL Vars per Function x Feature Type(tristate=1)
INTERNAL Vars per Function x Feature distance
INTERNAL Vars per Function x Hierarchy Levels
INTERNAL Vars per Function x Hierarchy Types(0-0-1)
INTERNAL Vars per Function x Hierarchy Types(0-1-0)
INTERNAL Vars per Function x Hierarchy Types(1-0-0)
INTERNAL Vars per Function x INCOMIG_CONNECTIONS
INTERNAL Vars per Function x NUMBER_OF_CHILDREN
INTERNAL Vars per Function x OUTGOING_CONNECTIONS
INTERNAL Vars per Function x POSITIVE_SIZES
INTERNAL Vars per Function x SD_FILE
INTERNAL Vars per Function x SD_VP
INTERNAL Vars per Function x TOTAL_SIZES
No. int. blocks x BLOCK_AS_ONE
No. int. blocks x SEPARATE_PARTIAL_BLOCKS
VP Fan-In(global)
VP Fan-In(local)
VP Fan-Out(global)
VP Fan-Out(local)
VP ND_Avg x ALL_CTCR
VP ND_Avg x COC
VP ND_Avg x Feature Type(bool=1)
VP ND_Avg x Feature Type(hex=1)
VP ND_Avg x Feature Type(integer=1, int=1)
VP ND_Avg x Feature Type(string=1)
VP ND_Avg x Feature Type(tristate=1)
VP ND_Avg x Feature distance
VP ND_Avg x Hierarchy Levels
VP ND_Avg x Hierarchy Types(0-0-1)
VP ND_Avg x Hierarchy Types(0-1-0)
VP ND_Avg x Hierarchy Types(1-0-0)
VP ND_Avg x INCOMIG_CONNECTIONS
VP ND_Avg x NUMBER_OF_CHILDREN
VP ND_Avg x OUTGOING_CONNECTIONS
VP ND_Avg x POSITIVE_SIZES
VP ND_Avg x SD_FILE
VP ND_Avg x SD_VP
VP ND_Avg x TOTAL_SIZES
VP ND_Max x ALL_CTCR
VP ND_Max x COC
VP ND_Max x Feature Type(bool=1)
VP ND_Max x Feature Type(hex=1)
VP ND_Max x Feature Type(integer=1, int=1)
VP ND_Max x Feature Type(string=1)
VP ND_Max x Feature Type(tristate=1)
VP ND_Max x Feature distance
VP ND_Max x Hierarchy Levels
VP ND_Max x Hierarchy Types(0-0-1)
VP ND_Max x Hierarchy Types(0-1-0)
VP ND_Max x Hierarchy Types(1-0-0)
VP ND_Max x INCOMIG_CONNECTIONS

Continued on next page

107

Variability-aware Software Defect Prediction

Metric

VP ND_Max x NUMBER_OF_CHILDREN
VP ND_Max x OUTGOING_CONNECTIONS
VP ND_Max x POSITIVE_SIZES
VP ND_Max x SD_FILE
VP ND_Max x SD_VP
VP ND_Max x TOTAL_SIZES
Visible-TD x ALL_CTCR
Visible-TD x COC
Visible-TD x Feature Type(bool=1)
Visible-TD x Feature Type(hex=1)
Visible-TD x Feature Type(integer=1, int=1)
Visible-TD x Feature Type(string=1)
Visible-TD x Feature Type(tristate=1)
Visible-TD x Feature distance
Visible-TD x Hierarchy Levels
Visible-TD x Hierarchy Types(0-0-1)
Visible-TD x Hierarchy Types(0-1-0)
Visible-TD x Hierarchy Types(1-0-0)
Visible-TD x INCOMIG_CONNECTIONS
Visible-TD x NUMBER_OF_CHILDREN
Visible-TD x OUTGOING_CONNECTIONS
Visible-TD x POSITIVE_SIZES
Visible-TD x SD_FILE
Visible-TD x SD_VP
Visible-TD x TOTAL_SIZES

Table A.8: Software metrics in the GCV feature subset.

Metric

Combined ND_Avg x ALL_CTCR
Combined ND_Avg x COC
Combined ND_Avg x Feature Type(bool=1)
Combined ND_Avg x Feature Type(hex=1)
Combined ND_Avg x Feature Type(integer=1, int=1)
Combined ND_Avg x Feature Type(string=1)
Combined ND_Avg x Feature Type(tristate=1)
Combined ND_Avg x Feature distance
Combined ND_Avg x Hierarchy Levels
Combined ND_Avg x Hierarchy Types(0-0-1)
Combined ND_Avg x Hierarchy Types(0-1-0)
Combined ND_Avg x Hierarchy Types(1-0-0)
Combined ND_Avg x INCOMIG_CONNECTIONS
Combined ND_Avg x NUMBER_OF_CHILDREN
Combined ND_Avg x OUTGOING_CONNECTIONS
Combined ND_Avg x POSITIVE_SIZES
Combined ND_Avg x SD_FILE
Combined ND_Avg x SD_VP
Combined ND_Avg x TOTAL_SIZES
Combined ND_Max x ALL_CTCR
Combined ND_Max x COC
Combined ND_Max x Feature Type(bool=1)
Combined ND_Max x Feature Type(hex=1)
Combined ND_Max x Feature Type(integer=1, int=1)
Combined ND_Max x Feature Type(string=1)
Combined ND_Max x Feature Type(tristate=1)
Combined ND_Max x Feature distance
Combined ND_Max x Hierarchy Levels

Continued on next page

108

Appendix

Metric

Combined ND_Max x Hierarchy Types(0-0-1)
Combined ND_Max x Hierarchy Types(0-1-0)
Combined ND_Max x Hierarchy Types(1-0-0)
Combined ND_Max x INCOMIG_CONNECTIONS
Combined ND_Max x NUMBER_OF_CHILDREN
Combined ND_Max x OUTGOING_CONNECTIONS
Combined ND_Max x POSITIVE_SIZES
Combined ND_Max x SD_FILE
Combined ND_Max x SD_VP
Combined ND_Max x TOTAL_SIZES
DC Fan-In(global) x ALL_CTCR
DC Fan-In(global) x COC
DC Fan-In(global) x Feature Type(bool=1)
DC Fan-In(global) x Feature Type(hex=1)
DC Fan-In(global) x Feature Type(integer=1, int=1)
DC Fan-In(global) x Feature Type(string=1)
DC Fan-In(global) x Feature Type(tristate=1)
DC Fan-In(global) x Feature distance
DC Fan-In(global) x Hierarchy Levels
DC Fan-In(global) x Hierarchy Types(0-0-1)
DC Fan-In(global) x Hierarchy Types(0-1-0)
DC Fan-In(global) x Hierarchy Types(1-0-0)
DC Fan-In(global) x INCOMIG_CONNECTIONS
DC Fan-In(global) x NUMBER_OF_CHILDREN
DC Fan-In(global) x OUTGOING_CONNECTIONS
DC Fan-In(global) x POSITIVE_SIZES
DC Fan-In(global) x SD_FILE
DC Fan-In(global) x SD_VP
DC Fan-In(global) x TOTAL_SIZES
DC Fan-In(local) x ALL_CTCR
DC Fan-In(local) x COC
DC Fan-In(local) x Feature Type(bool=1)
DC Fan-In(local) x Feature Type(hex=1)
DC Fan-In(local) x Feature Type(integer=1, int=1)
DC Fan-In(local) x Feature Type(string=1)
DC Fan-In(local) x Feature Type(tristate=1)
DC Fan-In(local) x Feature distance
DC Fan-In(local) x Hierarchy Levels
DC Fan-In(local) x Hierarchy Types(0-0-1)
DC Fan-In(local) x Hierarchy Types(0-1-0)
DC Fan-In(local) x Hierarchy Types(1-0-0)
DC Fan-In(local) x INCOMIG_CONNECTIONS
DC Fan-In(local) x NUMBER_OF_CHILDREN
DC Fan-In(local) x OUTGOING_CONNECTIONS
DC Fan-In(local) x POSITIVE_SIZES
DC Fan-In(local) x SD_FILE
DC Fan-In(local) x SD_VP
DC Fan-In(local) x TOTAL_SIZES
DC Fan-Out(global x No Stubs x No ext. VPs) x ALL_CTCR
DC Fan-Out(global x No Stubs x No ext. VPs) x COC
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(bool=1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(hex=1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(integer=1, int=1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(string=1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(tristate=1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Feature distance
DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Levels
DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(0-0-1)
DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(0-1-0)

Continued on next page

109

Variability-aware Software Defect Prediction

Metric

DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(1-0-0)
DC Fan-Out(global x No Stubs x No ext. VPs) x INCOMIG_CONNECTIONS
DC Fan-Out(global x No Stubs x No ext. VPs) x NUMBER_OF_CHILDREN
DC Fan-Out(global x No Stubs x No ext. VPs) x OUTGOING_CONNECTIONS
DC Fan-Out(global x No Stubs x No ext. VPs) x POSITIVE_SIZES
DC Fan-Out(global x No Stubs x No ext. VPs) x SD_FILE
DC Fan-Out(global x No Stubs x No ext. VPs) x SD_VP
DC Fan-Out(global x No Stubs x No ext. VPs) x TOTAL_SIZES
DC Fan-Out(global x No Stubs) x ALL_CTCR
DC Fan-Out(global x No Stubs) x COC
DC Fan-Out(global x No Stubs) x Feature Type(bool=1)
DC Fan-Out(global x No Stubs) x Feature Type(hex=1)
DC Fan-Out(global x No Stubs) x Feature Type(integer=1, int=1)
DC Fan-Out(global x No Stubs) x Feature Type(string=1)
DC Fan-Out(global x No Stubs) x Feature Type(tristate=1)
DC Fan-Out(global x No Stubs) x Feature distance
DC Fan-Out(global x No Stubs) x Hierarchy Levels
DC Fan-Out(global x No Stubs) x Hierarchy Types(0-0-1)
DC Fan-Out(global x No Stubs) x Hierarchy Types(0-1-0)
DC Fan-Out(global x No Stubs) x Hierarchy Types(1-0-0)
DC Fan-Out(global x No Stubs) x INCOMIG_CONNECTIONS
DC Fan-Out(global x No Stubs) x NUMBER_OF_CHILDREN
DC Fan-Out(global x No Stubs) x OUTGOING_CONNECTIONS
DC Fan-Out(global x No Stubs) x POSITIVE_SIZES
DC Fan-Out(global x No Stubs) x SD_FILE
DC Fan-Out(global x No Stubs) x SD_VP
DC Fan-Out(global x No Stubs) x TOTAL_SIZES
DC Fan-Out(global x No ext. VPs) x ALL_CTCR
DC Fan-Out(global x No ext. VPs) x COC
DC Fan-Out(global x No ext. VPs) x Feature Type(bool=1)
DC Fan-Out(global x No ext. VPs) x Feature Type(hex=1)
DC Fan-Out(global x No ext. VPs) x Feature Type(integer=1, int=1)
DC Fan-Out(global x No ext. VPs) x Feature Type(string=1)
DC Fan-Out(global x No ext. VPs) x Feature Type(tristate=1)
DC Fan-Out(global x No ext. VPs) x Feature distance
DC Fan-Out(global x No ext. VPs) x Hierarchy Levels
DC Fan-Out(global x No ext. VPs) x Hierarchy Types(0-0-1)
DC Fan-Out(global x No ext. VPs) x Hierarchy Types(0-1-0)
DC Fan-Out(global x No ext. VPs) x Hierarchy Types(1-0-0)
DC Fan-Out(global x No ext. VPs) x INCOMIG_CONNECTIONS
DC Fan-Out(global x No ext. VPs) x NUMBER_OF_CHILDREN
DC Fan-Out(global x No ext. VPs) x OUTGOING_CONNECTIONS
DC Fan-Out(global x No ext. VPs) x POSITIVE_SIZES
DC Fan-Out(global x No ext. VPs) x SD_FILE
DC Fan-Out(global x No ext. VPs) x SD_VP
DC Fan-Out(global x No ext. VPs) x TOTAL_SIZES
DC Fan-Out(global) x ALL_CTCR
DC Fan-Out(global) x COC
DC Fan-Out(global) x Feature Type(bool=1)
DC Fan-Out(global) x Feature Type(hex=1)
DC Fan-Out(global) x Feature Type(integer=1, int=1)
DC Fan-Out(global) x Feature Type(string=1)
DC Fan-Out(global) x Feature Type(tristate=1)
DC Fan-Out(global) x Feature distance
DC Fan-Out(global) x Hierarchy Levels
DC Fan-Out(global) x Hierarchy Types(0-0-1)
DC Fan-Out(global) x Hierarchy Types(0-1-0)
DC Fan-Out(global) x Hierarchy Types(1-0-0)
DC Fan-Out(global) x INCOMIG_CONNECTIONS

Continued on next page

110

Appendix

Metric

DC Fan-Out(global) x NUMBER_OF_CHILDREN
DC Fan-Out(global) x OUTGOING_CONNECTIONS
DC Fan-Out(global) x POSITIVE_SIZES
DC Fan-Out(global) x SD_FILE
DC Fan-Out(global) x SD_VP
DC Fan-Out(global) x TOTAL_SIZES
DC Fan-Out(local x No Stubs x No ext. VPs) x ALL_CTCR
DC Fan-Out(local x No Stubs x No ext. VPs) x COC
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(bool=1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(hex=1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(integer=1, int=1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(string=1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(tristate=1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Feature distance
DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Levels
DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(0-0-1)
DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(0-1-0)
DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(1-0-0)
DC Fan-Out(local x No Stubs x No ext. VPs) x INCOMIG_CONNECTIONS
DC Fan-Out(local x No Stubs x No ext. VPs) x NUMBER_OF_CHILDREN
DC Fan-Out(local x No Stubs x No ext. VPs) x OUTGOING_CONNECTIONS
DC Fan-Out(local x No Stubs x No ext. VPs) x POSITIVE_SIZES
DC Fan-Out(local x No Stubs x No ext. VPs) x SD_FILE
DC Fan-Out(local x No Stubs x No ext. VPs) x SD_VP
DC Fan-Out(local x No Stubs x No ext. VPs) x TOTAL_SIZES
DC Fan-Out(local x No Stubs) x ALL_CTCR
DC Fan-Out(local x No Stubs) x COC
DC Fan-Out(local x No Stubs) x Feature Type(bool=1)
DC Fan-Out(local x No Stubs) x Feature Type(hex=1)
DC Fan-Out(local x No Stubs) x Feature Type(integer=1, int=1)
DC Fan-Out(local x No Stubs) x Feature Type(string=1)
DC Fan-Out(local x No Stubs) x Feature Type(tristate=1)
DC Fan-Out(local x No Stubs) x Feature distance
DC Fan-Out(local x No Stubs) x Hierarchy Levels
DC Fan-Out(local x No Stubs) x Hierarchy Types(0-0-1)
DC Fan-Out(local x No Stubs) x Hierarchy Types(0-1-0)
DC Fan-Out(local x No Stubs) x Hierarchy Types(1-0-0)
DC Fan-Out(local x No Stubs) x INCOMIG_CONNECTIONS
DC Fan-Out(local x No Stubs) x NUMBER_OF_CHILDREN
DC Fan-Out(local x No Stubs) x OUTGOING_CONNECTIONS
DC Fan-Out(local x No Stubs) x POSITIVE_SIZES
DC Fan-Out(local x No Stubs) x SD_FILE
DC Fan-Out(local x No Stubs) x SD_VP
DC Fan-Out(local x No Stubs) x TOTAL_SIZES
DC Fan-Out(local x No ext. VPs) x ALL_CTCR
DC Fan-Out(local x No ext. VPs) x COC
DC Fan-Out(local x No ext. VPs) x Feature Type(bool=1)
DC Fan-Out(local x No ext. VPs) x Feature Type(hex=1)
DC Fan-Out(local x No ext. VPs) x Feature Type(integer=1, int=1)
DC Fan-Out(local x No ext. VPs) x Feature Type(string=1)
DC Fan-Out(local x No ext. VPs) x Feature Type(tristate=1)
DC Fan-Out(local x No ext. VPs) x Feature distance
DC Fan-Out(local x No ext. VPs) x Hierarchy Levels
DC Fan-Out(local x No ext. VPs) x Hierarchy Types(0-0-1)
DC Fan-Out(local x No ext. VPs) x Hierarchy Types(0-1-0)
DC Fan-Out(local x No ext. VPs) x Hierarchy Types(1-0-0)
DC Fan-Out(local x No ext. VPs) x INCOMIG_CONNECTIONS
DC Fan-Out(local x No ext. VPs) x NUMBER_OF_CHILDREN
DC Fan-Out(local x No ext. VPs) x OUTGOING_CONNECTIONS

Continued on next page

111

Variability-aware Software Defect Prediction

Metric

DC Fan-Out(local x No ext. VPs) x POSITIVE_SIZES
DC Fan-Out(local x No ext. VPs) x SD_FILE
DC Fan-Out(local x No ext. VPs) x SD_VP
DC Fan-Out(local x No ext. VPs) x TOTAL_SIZES
DC Fan-Out(local) x ALL_CTCR
DC Fan-Out(local) x COC
DC Fan-Out(local) x Feature Type(bool=1)
DC Fan-Out(local) x Feature Type(hex=1)
DC Fan-Out(local) x Feature Type(integer=1, int=1)
DC Fan-Out(local) x Feature Type(string=1)
DC Fan-Out(local) x Feature Type(tristate=1)
DC Fan-Out(local) x Feature distance
DC Fan-Out(local) x Hierarchy Levels
DC Fan-Out(local) x Hierarchy Types(0-0-1)
DC Fan-Out(local) x Hierarchy Types(0-1-0)
DC Fan-Out(local) x Hierarchy Types(1-0-0)
DC Fan-Out(local) x INCOMIG_CONNECTIONS
DC Fan-Out(local) x NUMBER_OF_CHILDREN
DC Fan-Out(local) x OUTGOING_CONNECTIONS
DC Fan-Out(local) x POSITIVE_SIZES
DC Fan-Out(local) x SD_FILE
DC Fan-Out(local) x SD_VP
DC Fan-Out(local) x TOTAL_SIZES
EV DC Fan-In(global) x ALL_CTCR
EV DC Fan-In(global) x COC
EV DC Fan-In(global) x Feature Type(bool=1)
EV DC Fan-In(global) x Feature Type(hex=1)
EV DC Fan-In(global) x Feature Type(integer=1, int=1)
EV DC Fan-In(global) x Feature Type(string=1)
EV DC Fan-In(global) x Feature Type(tristate=1)
EV DC Fan-In(global) x Feature distance
EV DC Fan-In(global) x Hierarchy Levels
EV DC Fan-In(global) x Hierarchy Types(0-0-1)
EV DC Fan-In(global) x Hierarchy Types(0-1-0)
EV DC Fan-In(global) x Hierarchy Types(1-0-0)
EV DC Fan-In(global) x INCOMIG_CONNECTIONS
EV DC Fan-In(global) x NUMBER_OF_CHILDREN
EV DC Fan-In(global) x OUTGOING_CONNECTIONS
EV DC Fan-In(global) x POSITIVE_SIZES
EV DC Fan-In(global) x SD_FILE
EV DC Fan-In(global) x SD_VP
EV DC Fan-In(global) x TOTAL_SIZES
EV DC Fan-In(local) x ALL_CTCR
EV DC Fan-In(local) x COC
EV DC Fan-In(local) x Feature Type(bool=1)
EV DC Fan-In(local) x Feature Type(hex=1)
EV DC Fan-In(local) x Feature Type(integer=1, int=1)
EV DC Fan-In(local) x Feature Type(string=1)
EV DC Fan-In(local) x Feature Type(tristate=1)
EV DC Fan-In(local) x Feature distance
EV DC Fan-In(local) x Hierarchy Levels
EV DC Fan-In(local) x Hierarchy Types(0-0-1)
EV DC Fan-In(local) x Hierarchy Types(0-1-0)
EV DC Fan-In(local) x Hierarchy Types(1-0-0)
EV DC Fan-In(local) x INCOMIG_CONNECTIONS
EV DC Fan-In(local) x NUMBER_OF_CHILDREN
EV DC Fan-In(local) x OUTGOING_CONNECTIONS
EV DC Fan-In(local) x POSITIVE_SIZES
EV DC Fan-In(local) x SD_FILE

Continued on next page

112

Appendix

Metric

EV DC Fan-In(local) x SD_VP
EV DC Fan-In(local) x TOTAL_SIZES
EV DC Fan-Out(global x No Stubs x No ext. VPs) x ALL_CTCR
EV DC Fan-Out(global x No Stubs x No ext. VPs) x COC
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(bool=1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(hex=1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(string=1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature Type(tristate=1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Feature distance
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Levels
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(global x No Stubs x No ext. VPs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(global x No Stubs x No ext. VPs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(global x No Stubs x No ext. VPs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(global x No Stubs x No ext. VPs) x POSITIVE_SIZES
EV DC Fan-Out(global x No Stubs x No ext. VPs) x SD_FILE
EV DC Fan-Out(global x No Stubs x No ext. VPs) x SD_VP
EV DC Fan-Out(global x No Stubs x No ext. VPs) x TOTAL_SIZES
EV DC Fan-Out(global x No Stubs) x ALL_CTCR
EV DC Fan-Out(global x No Stubs) x COC
EV DC Fan-Out(global x No Stubs) x Feature Type(bool=1)
EV DC Fan-Out(global x No Stubs) x Feature Type(hex=1)
EV DC Fan-Out(global x No Stubs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(global x No Stubs) x Feature Type(string=1)
EV DC Fan-Out(global x No Stubs) x Feature Type(tristate=1)
EV DC Fan-Out(global x No Stubs) x Feature distance
EV DC Fan-Out(global x No Stubs) x Hierarchy Levels
EV DC Fan-Out(global x No Stubs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(global x No Stubs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(global x No Stubs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(global x No Stubs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(global x No Stubs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(global x No Stubs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(global x No Stubs) x POSITIVE_SIZES
EV DC Fan-Out(global x No Stubs) x SD_FILE
EV DC Fan-Out(global x No Stubs) x SD_VP
EV DC Fan-Out(global x No Stubs) x TOTAL_SIZES
EV DC Fan-Out(global x No ext. VPs) x ALL_CTCR
EV DC Fan-Out(global x No ext. VPs) x COC
EV DC Fan-Out(global x No ext. VPs) x Feature Type(bool=1)
EV DC Fan-Out(global x No ext. VPs) x Feature Type(hex=1)
EV DC Fan-Out(global x No ext. VPs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(global x No ext. VPs) x Feature Type(string=1)
EV DC Fan-Out(global x No ext. VPs) x Feature Type(tristate=1)
EV DC Fan-Out(global x No ext. VPs) x Feature distance
EV DC Fan-Out(global x No ext. VPs) x Hierarchy Levels
EV DC Fan-Out(global x No ext. VPs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(global x No ext. VPs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(global x No ext. VPs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(global x No ext. VPs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(global x No ext. VPs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(global x No ext. VPs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(global x No ext. VPs) x POSITIVE_SIZES
EV DC Fan-Out(global x No ext. VPs) x SD_FILE
EV DC Fan-Out(global x No ext. VPs) x SD_VP
EV DC Fan-Out(global x No ext. VPs) x TOTAL_SIZES

Continued on next page

113

Variability-aware Software Defect Prediction

Metric

EV DC Fan-Out(global) x ALL_CTCR
EV DC Fan-Out(global) x COC
EV DC Fan-Out(global) x Feature Type(bool=1)
EV DC Fan-Out(global) x Feature Type(hex=1)
EV DC Fan-Out(global) x Feature Type(integer=1, int=1)
EV DC Fan-Out(global) x Feature Type(string=1)
EV DC Fan-Out(global) x Feature Type(tristate=1)
EV DC Fan-Out(global) x Feature distance
EV DC Fan-Out(global) x Hierarchy Levels
EV DC Fan-Out(global) x Hierarchy Types(0-0-1)
EV DC Fan-Out(global) x Hierarchy Types(0-1-0)
EV DC Fan-Out(global) x Hierarchy Types(1-0-0)
EV DC Fan-Out(global) x INCOMIG_CONNECTIONS
EV DC Fan-Out(global) x NUMBER_OF_CHILDREN
EV DC Fan-Out(global) x OUTGOING_CONNECTIONS
EV DC Fan-Out(global) x POSITIVE_SIZES
EV DC Fan-Out(global) x SD_FILE
EV DC Fan-Out(global) x SD_VP
EV DC Fan-Out(global) x TOTAL_SIZES
EV DC Fan-Out(local x No Stubs x No ext. VPs) x ALL_CTCR
EV DC Fan-Out(local x No Stubs x No ext. VPs) x COC
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(bool=1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(hex=1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(string=1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature Type(tristate=1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Feature distance
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Levels
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(local x No Stubs x No ext. VPs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(local x No Stubs x No ext. VPs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(local x No Stubs x No ext. VPs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(local x No Stubs x No ext. VPs) x POSITIVE_SIZES
EV DC Fan-Out(local x No Stubs x No ext. VPs) x SD_FILE
EV DC Fan-Out(local x No Stubs x No ext. VPs) x SD_VP
EV DC Fan-Out(local x No Stubs x No ext. VPs) x TOTAL_SIZES
EV DC Fan-Out(local x No Stubs) x ALL_CTCR
EV DC Fan-Out(local x No Stubs) x COC
EV DC Fan-Out(local x No Stubs) x Feature Type(bool=1)
EV DC Fan-Out(local x No Stubs) x Feature Type(hex=1)
EV DC Fan-Out(local x No Stubs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(local x No Stubs) x Feature Type(string=1)
EV DC Fan-Out(local x No Stubs) x Feature Type(tristate=1)
EV DC Fan-Out(local x No Stubs) x Feature distance
EV DC Fan-Out(local x No Stubs) x Hierarchy Levels
EV DC Fan-Out(local x No Stubs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(local x No Stubs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(local x No Stubs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(local x No Stubs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(local x No Stubs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(local x No Stubs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(local x No Stubs) x POSITIVE_SIZES
EV DC Fan-Out(local x No Stubs) x SD_FILE
EV DC Fan-Out(local x No Stubs) x SD_VP
EV DC Fan-Out(local x No Stubs) x TOTAL_SIZES
EV DC Fan-Out(local x No ext. VPs) x ALL_CTCR
EV DC Fan-Out(local x No ext. VPs) x COC

Continued on next page

114

Appendix

Metric

EV DC Fan-Out(local x No ext. VPs) x Feature Type(bool=1)
EV DC Fan-Out(local x No ext. VPs) x Feature Type(hex=1)
EV DC Fan-Out(local x No ext. VPs) x Feature Type(integer=1, int=1)
EV DC Fan-Out(local x No ext. VPs) x Feature Type(string=1)
EV DC Fan-Out(local x No ext. VPs) x Feature Type(tristate=1)
EV DC Fan-Out(local x No ext. VPs) x Feature distance
EV DC Fan-Out(local x No ext. VPs) x Hierarchy Levels
EV DC Fan-Out(local x No ext. VPs) x Hierarchy Types(0-0-1)
EV DC Fan-Out(local x No ext. VPs) x Hierarchy Types(0-1-0)
EV DC Fan-Out(local x No ext. VPs) x Hierarchy Types(1-0-0)
EV DC Fan-Out(local x No ext. VPs) x INCOMIG_CONNECTIONS
EV DC Fan-Out(local x No ext. VPs) x NUMBER_OF_CHILDREN
EV DC Fan-Out(local x No ext. VPs) x OUTGOING_CONNECTIONS
EV DC Fan-Out(local x No ext. VPs) x POSITIVE_SIZES
EV DC Fan-Out(local x No ext. VPs) x SD_FILE
EV DC Fan-Out(local x No ext. VPs) x SD_VP
EV DC Fan-Out(local x No ext. VPs) x TOTAL_SIZES
EV DC Fan-Out(local) x ALL_CTCR
EV DC Fan-Out(local) x COC
EV DC Fan-Out(local) x Feature Type(bool=1)
EV DC Fan-Out(local) x Feature Type(hex=1)
EV DC Fan-Out(local) x Feature Type(integer=1, int=1)
EV DC Fan-Out(local) x Feature Type(string=1)
EV DC Fan-Out(local) x Feature Type(tristate=1)
EV DC Fan-Out(local) x Feature distance
EV DC Fan-Out(local) x Hierarchy Levels
EV DC Fan-Out(local) x Hierarchy Types(0-0-1)
EV DC Fan-Out(local) x Hierarchy Types(0-1-0)
EV DC Fan-Out(local) x Hierarchy Types(1-0-0)
EV DC Fan-Out(local) x INCOMIG_CONNECTIONS
EV DC Fan-Out(local) x NUMBER_OF_CHILDREN
EV DC Fan-Out(local) x OUTGOING_CONNECTIONS
EV DC Fan-Out(local) x POSITIVE_SIZES
EV DC Fan-Out(local) x SD_FILE
EV DC Fan-Out(local) x SD_VP
EV DC Fan-Out(local) x TOTAL_SIZES
LoF Comment Ratio
McCabe + CC on VPs x ALL_CTCR
McCabe + CC on VPs x COC
McCabe + CC on VPs x Feature Type(bool=1)
McCabe + CC on VPs x Feature Type(hex=1)
McCabe + CC on VPs x Feature Type(integer=1, int=1)
McCabe + CC on VPs x Feature Type(string=1)
McCabe + CC on VPs x Feature Type(tristate=1)
McCabe + CC on VPs x Feature distance
McCabe + CC on VPs x Hierarchy Levels
McCabe + CC on VPs x Hierarchy Types(0-0-1)
McCabe + CC on VPs x Hierarchy Types(0-1-0)
McCabe + CC on VPs x Hierarchy Types(1-0-0)
McCabe + CC on VPs x INCOMIG_CONNECTIONS
McCabe + CC on VPs x NUMBER_OF_CHILDREN
McCabe + CC on VPs x OUTGOING_CONNECTIONS
McCabe + CC on VPs x POSITIVE_SIZES
McCabe + CC on VPs x SD_FILE
McCabe + CC on VPs x SD_VP
McCabe + CC on VPs x TOTAL_SIZES
PLoF
PSCoF
SCoF Comment Ratio

Continued on next page

115

Variability-aware Software Defect Prediction

Metric

Undisciplined CPP

116

Appendix

Table A.9: Achieved validation scores of the first set of experiments.

Precision Recall F1 F2 AUC-ROC Duration (s)
Model Subset Sampling ø ø ø ø ø Σ

RF GPV_RFE Off 0.977432 0.506960 0.667468 0.560897 0.959948 240
GPV Off 0.973382 0.501605 0.661919 0.555400 0.960251 378

GB GPV_RFE Off 0.878049 0.477176 0.617969 0.524988 0.910329 4516
GPV Off 0.874358 0.474130 0.614222 0.521666 0.906361 25937

RF ALL_RFE Off 0.976596 0.422435 0.589675 0.476484 0.955442 225
GB ALL_RFE Off 0.804594 0.437596 0.566684 0.481446 0.893432 3257
RF GPV Smote 0.403128 0.638015 0.493644 0.570993 0.941005 816

ALL_RFE Over 0.452437 0.494298 0.471758 0.484832 0.915004 457
GPV_RFE Smote 0.357662 0.674045 0.467152 0.572497 0.946616 557

GB ALL Over 0.355559 0.600401 0.446027 0.527076 0.924765 599513
RF GPV Over 0.349952 0.576320 0.435383 0.510206 0.928854 739
GB ALL Smote 0.769285 0.294049 0.425176 0.335408 0.892922 660620

Off 0.632263 0.315633 0.420656 0.350615 0.877553 77434
RF GPV_RFE Over 0.326170 0.587555 0.419393 0.506300 0.928519 468

GCV_RFE Smote 0.417775 0.313305 0.357548 0.329538 0.734410 797
Off 0.975537 0.214339 0.351281 0.253931 0.832393 328

GB GPV Over 0.230018 0.684737 0.344278 0.490570 0.926524 89266
GPV_RFE Over 0.229618 0.684385 0.343573 0.489677 0.927539 20269
GPV Smote 0.236046 0.614657 0.340838 0.464938 0.907369 102699

RF ALL Smote 0.700687 0.195790 0.305493 0.228605 0.859971 2655
Over 0.659668 0.197577 0.303836 0.229701 0.890299 2544

GB ALL_RFE Over 0.194770 0.641946 0.298552 0.439300 0.914160 12947
RF LPV_RFE Off 0.891265 0.174754 0.291786 0.208138 0.744306 89
GB LPV_RFE Off 0.754961 0.173685 0.282226 0.205255 0.707214 545

GCV_RFE Off 0.615692 0.177607 0.275103 0.206916 0.704755 954
LPV Off 0.731670 0.169583 0.274936 0.200267 0.723002 1353

RF ALL Off 0.952371 0.159595 0.273214 0.191436 0.895785 1432
LPV Off 0.843709 0.160131 0.268632 0.190973 0.742307 120

GB GPV_RFE Smote 0.168128 0.652821 0.266872 0.412897 0.913820 24322
RF GCV Off 0.897166 0.155492 0.264803 0.186239 0.820075 1392
GB GCV Off 0.483383 0.170119 0.251366 0.195361 0.761028 36745
RF LCV_RFE Off 0.854152 0.142116 0.243438 0.170496 0.765221 210
NN ALL Smote 0.224262 0.262657 0.239804 0.252391 0.756442 120565

Over 0.197283 0.300460 0.235787 0.269707 0.769569 134595
RF LNV_RFE Off 0.939705 0.133560 0.233659 0.161175 0.747704 104
GB GCV_RFE Smote 0.177617 0.330604 0.229947 0.280660 0.725932 16767
RF GCV_RFE Over 0.187010 0.271757 0.221257 0.248904 0.707837 678
GB LNV_RFE Off 0.544613 0.138196 0.220032 0.162333 0.680750 419
RF LNV_RFE Smote 0.185786 0.266941 0.218237 0.244697 0.687119 240

LNV Smote 0.339268 0.159770 0.216925 0.178566 0.705323 593
GCV Over 0.210084 0.208272 0.209096 0.208583 0.780776 2803

GB GCV Over 0.137496 0.401572 0.204723 0.289895 0.785013 505358
RF GCV Smote 0.201370 0.208272 0.204074 0.206404 0.758004 3020

LCV Off 0.845451 0.110912 0.195932 0.134203 0.765334 304
LNV Off 0.888343 0.107525 0.191641 0.130421 0.766042 208

GB LCV_RFE Off 0.438304 0.117512 0.185098 0.137601 0.719586 309
LCV Off 0.369107 0.111449 0.171034 0.129487 0.733784 1974
GCV Smote 0.114563 0.322581 0.168902 0.236332 0.744885 549651

RF LNV Over 0.185443 0.151034 0.166379 0.156800 0.718721 460
NN GPV Over 0.102617 0.403878 0.162857 0.252651 0.769259 41202

Smote 0.104967 0.366980 0.162154 0.242439 0.767492 41870
RF LCV Smote 0.134114 0.200425 0.160652 0.182347 0.691292 864
GB LNV Off 0.371376 0.100039 0.157467 0.117118 0.726729 1186
RF LCV Over 0.149645 0.162799 0.155860 0.159928 0.717603 750
GB GCV_RFE Over 0.099189 0.346295 0.154056 0.230800 0.722874 13192
RF LNV_RFE Over 0.118066 0.202751 0.145772 0.173269 0.637200 228

Continued on next page

117

Variability-aware Software Defect Prediction

Precision Recall F1 F2 AUC-ROC Duration (s)
Model Subset Sampling ø ø ø ø ø Σ

NN GPV_RFE Over 0.088510 0.413871 0.145498 0.237566 0.797109 36665
GB LNV Smote 0.174088 0.124290 0.144533 0.131592 0.657901 26514
NN GPV_RFE Smote 0.086691 0.407092 0.142743 0.233509 0.791522 37023
RF LCV_RFE Over 0.104609 0.202205 0.137804 0.170312 0.705082 518
NN ALL_RFE Over 0.084154 0.375526 0.137317 0.221405 0.779656 68123
RF LPV_RFE Over 0.104324 0.292062 0.136367 0.175861 0.665348 188
GB LNV_RFE Smote 0.089577 0.286735 0.136003 0.198115 0.680684 7164

LPV_RFE Over 0.092723 0.347164 0.135240 0.193230 0.695734 4127
NN ALL_RFE Smote 0.082014 0.334694 0.131353 0.206138 0.759832 69048

GCV Smote 0.086052 0.249101 0.126666 0.178445 0.698008 89748
Over 0.083450 0.262480 0.125925 0.182340 0.704995 99564

GB LPV Over 0.077978 0.345750 0.125251 0.198110 0.705323 12450
RF LPV Over 0.082672 0.261764 0.122503 0.174028 0.656243 264
GB LCV Over 0.074315 0.348789 0.122460 0.200423 0.718167 35253

LNV Over 0.073544 0.347188 0.121350 0.198982 0.723267 24281
RF LCV_RFE Smote 0.075277 0.299750 0.120286 0.187650 0.708530 819
NN GCV_RFE Smote 0.075713 0.267663 0.116851 0.175088 0.704344 37085

Over 0.072420 0.297263 0.115897 0.181973 0.709923 45456
GB LCV Smote 0.073411 0.225038 0.110652 0.159149 0.661551 37265
RF ALL_RFE Smote 0.054766 0.779779 0.102341 0.213754 0.925762 590
GB LCV_RFE Over 0.057688 0.379101 0.100123 0.179246 0.727112 8156
NN LPV Over 0.049389 0.226282 0.080816 0.131109 0.646460 35657

Smote 0.048815 0.221832 0.079797 0.129204 0.645304 35149
GB LNV_RFE Over 0.043721 0.349862 0.077550 0.145012 0.679576 5805
NN LPV_RFE Smote 0.047937 0.155851 0.073097 0.107017 0.602953 36006
GB ALL_RFE Smote 0.037950 0.861802 0.072697 0.161316 0.887932 16167
NN LPV_RFE Over 0.047691 0.147641 0.071843 0.103562 0.603450 33482

LCV Over 0.037546 0.360377 0.067812 0.131577 0.684418 35507
RF LPV Smote 0.038715 0.428867 0.067436 0.127821 0.674641 293
NN LNV Smote 0.037054 0.337734 0.066683 0.128312 0.678428 30951

Over 0.036441 0.367507 0.066138 0.129671 0.685488 30612
GB LCV_RFE Smote 0.035217 0.517656 0.065922 0.138265 0.725798 14544
RF LPV_RFE Smote 0.037359 0.467198 0.065680 0.128180 0.694089 227
NN LCV Smote 0.035967 0.362889 0.065326 0.128185 0.679386 35395

LCV_RFE Over 0.035163 0.403702 0.064633 0.130083 0.689836 35845
LNV_RFE Smote 0.034426 0.388563 0.063181 0.126739 0.681050 34871
LCV_RFE Smote 0.034121 0.399797 0.062715 0.126369 0.684076 35220
LNV_RFE Over 0.033262 0.430998 0.061725 0.126893 0.688011 35224

NBG LNV Off 0.038435 0.125534 0.058670 0.085978 0.635658 0
GB LPV_RFE Smote 0.028686 0.507847 0.054304 0.116991 0.695579 4656
NBG LNV Over 0.030703 0.233589 0.053904 0.098955 0.635629 0

LCV Over 0.033221 0.157802 0.053888 0.086778 0.628518 0
GB LPV Smote 0.028397 0.506955 0.053782 0.115994 0.694139 13968
NBG LNV Smote 0.028656 0.368743 0.052582 0.105659 0.637809 0

LPV Off 0.037218 0.087912 0.052291 0.069083 0.578862 0
LCV Off 0.033758 0.103954 0.050704 0.072850 0.628482 0

Smote 0.027195 0.291865 0.048188 0.090391 0.629725 0
GCV Over 0.026456 0.319511 0.047504 0.091760 0.614154 40

Off 0.026668 0.288492 0.047233 0.088642 0.614216 20
LPV Over 0.026247 0.139440 0.043814 0.073694 0.579165 0

Smote 0.022849 0.203639 0.041084 0.078835 0.580243 0
LPV_RFE Over 0.022636 0.124288 0.038294 0.065469 0.554135 0

Smote 0.022192 0.126250 0.037744 0.065134 0.553004 0
LNV_RFE Over 0.022346 0.111271 0.037204 0.061917 0.541781 0

Smote 0.022215 0.113588 0.037120 0.062192 0.546559 0
GCV_RFE Smote 0.020741 0.142478 0.036198 0.065494 0.566223 0

Over 0.020552 0.144439 0.035983 0.065483 0.558740 0
GPV_RFE Off 0.021626 0.085419 0.034510 0.053715 0.556034 0

Continued on next page

118

Appendix

Precision Recall F1 F2 AUC-ROC Duration (s)
Model Subset Sampling ø ø ø ø ø Σ

LCV_RFE Smote 0.017713 0.679181 0.034415 0.079326 0.597321 0
Over 0.019986 0.200397 0.034185 0.060345 0.599294 0

GCV_RFE Off 0.021290 0.082206 0.033692 0.051978 0.558834 0
LPV_RFE Off 0.021392 0.067942 0.032536 0.047333 0.553606 0
GPV_RFE Over 0.015339 0.784948 0.030090 0.071132 0.555969 0

Smote 0.015117 0.796182 0.029671 0.070250 0.555502 0
ALL_RFE Over 0.015029 0.824532 0.029520 0.070037 0.542592 0

Smote 0.015016 0.830238 0.029499 0.070015 0.543878 0
Off 0.026418 0.031921 0.028883 0.030624 0.542919 0

ALL Over 0.014432 0.984668 0.028447 0.068163 0.523834 85
Off 0.014369 0.988233 0.028327 0.067898 0.512125 40

GPV Smote 0.014359 0.993761 0.028309 0.067872 0.501211 10
ALL Smote 0.014348 0.984132 0.028283 0.067786 0.500619 78
GPV Off 0.014344 0.997504 0.028281 0.067818 0.500123 10

Over 0.014340 0.996969 0.028273 0.067799 0.499795 11
GCV Smote 0.014324 0.980208 0.028236 0.067667 0.512406 40
LNV_RFE Off 0.021791 0.032455 0.025523 0.028989 0.541812 0
LCV_RFE Off 0.022184 0.029424 0.024813 0.027148 0.598714 0

119

Variability-aware Software Defect Prediction

Bibliography
[AMMR93] Anand, Rangachari ; Mehrotra, Kishan G. ; Mohan, Chilukuri K. ;

Ranka, Sanjay: An improved algorithm for neural network classification
of imbalanced training sets. In: IEEE Transactions on Neural Networks 4
(1993), Nr. 6, S. 962–969

[BBM96] Basili, Victor R. ; Briand, Lionel C. ; Melo, Walcélio L: A validation of
object-oriented design metrics as quality indicators. In: IEEE Transactions
on software engineering 22 (1996), Nr. 10, S. 751–761

[BFSO84] Breiman, Leo ; Friedman, Jerome ; Stone, Charles J. ; Olshen,
Richard A.: Classification and regression trees. CRC press, 1984

[BNG+09] Bird, Christian ; Nagappan, Nachiappan ; Gall, Harald ; Murphy, Bren-
dan ; Devanbu, Premkumar: Putting it all together: Using socio-technical
networks to predict failures. In: 2009 20th International Symposium on Soft-
ware Reliability Engineering IEEE, 2009, S. 109–119

[Bre01] Breiman, Leo: Random forests. In: Machine learning 45 (2001), Nr. 1, S.
5–32

[CBHK02] Chawla, Nitesh V. ; Bowyer, Kevin W. ; Hall, Lawrence O. ;
Kegelmeyer, W P.: SMOTE: synthetic minority over-sampling technique.
In: Journal of artificial intelligence research 16 (2002), S. 321–357

[CBK09] Caglayan, Bora ; Bener, Ayse ; Koch, Stefan: Merits of using repository
metrics in defect prediction for open source projects. In: 2009 ICSE Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research and
Development IEEE, 2009, S. 31–36

[CD09] Catal, Cagatay ; Diri, Banu: A systematic review of software fault predic-
tion studies. 36 (2009), Nr. 4, 7346–7354. http://dx.doi.org/10.1016/j.
eswa.2008.10.027. – DOI 10.1016/j.eswa.2008.10.027. – ISSN 09574174

[Cha09] Chawla, Nitesh V.: Data mining for imbalanced datasets: An overview. In:
Data mining and knowledge discovery handbook. Springer, 2009, S. 875–886

[DP02] Denaro, Giovanni ; Pezzè, Mauro: An empirical evaluation of fault-
proneness models. In: Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002 IEEE, 2002, S. 241–251

[ESKS19] El-Sharkawy, Sascha ; Krafczyk, Adam ; Schmid, Klaus: MetricHaven
- More Than 23,000 Metrics for Measuring Quality Attributes of Software
Product Lines. In: Proceedings of the 23rd International Systems and Soft-
ware Product Line Conference Bd. B, - ACM, 2019, S. 25–28

[FR12] Fortmann-Roe, Scott: Understanding the bias-variance tradeoff. In: I: URl:
http://scott. fortmann-roe. com/docs/BiasVariance. html (hämtad 2017-09-
29) (2012)

[Fri91] Friedman, Jerome H.: Multivariate adaptive regression splines. In: The
annals of statistics (1991), S. 1–67

[Fri01] Friedman, Jerome H.: Greedy function approximation: a gradient boosting
machine. In: Annals of statistics (2001), S. 1189–1232

120

http://dx.doi.org/10.1016/j.eswa.2008.10.027
http://dx.doi.org/10.1016/j.eswa.2008.10.027

Bibliography

[Fri02] Friedman, Jerome H.: Stochastic gradient boosting. In: Computational
statistics & data analysis 38 (2002), Nr. 4, S. 367–378

[FS95] Freund, Yoav ; Schapire, Robert E.: A desicion-theoretic generalization
of on-line learning and an application to boosting. In: European conference
on computational learning theory Springer, 1995, S. 23–37

[FS+96] Freund, Yoav ; Schapire, Robert E. u. a.: Experiments with a new boosting
algorithm. In: icml Bd. 96 Citeseer, 1996, S. 148–156

[GBD+10] Gray, David ; Bowes, David ; Davey, Neil ; Sun, Yi ; Christianson,
Bruce: Software defect prediction using static code metrics underestimates
defect-proneness. In: The 2010 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2010. – ISBN 978–1–4244–6916–1, 1–7

[GDPG12] Giger, Emanuel ; D’Ambros, Marco ; Pinzger, Martin ; Gall, Harald C.:
Method-level bug prediction. In: Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement ACM, 2012,
S. 171–180

[GE03] Guyon, Isabelle ; Elisseeff, André: An introduction to variable and feature
selection. In: Journal of machine learning research 3 (2003), Nr. Mar, S.
1157–1182

[GFS05] Gyimothy, Tibor ; Ferenc, Rudolf ; Siket, Istvan: Empirical validation
of object-oriented metrics on open source software for fault prediction. In:
IEEE Transactions on Software engineering 31 (2005), Nr. 10, S. 897–910

[GMSP17] Gregorutti, Baptiste ; Michel, Bertrand ; Saint-Pierre, Philippe: Cor-
relation and variable importance in random forests. In: Statistics and Com-
puting 27 (2017), Nr. 3, S. 659–678

[Gra12] Gray, David: Software Defect Prediction Using Static Code Metrics: For-
mulating a Methodology. (2012), S. 201

[GWBV02] Guyon, Isabelle ; Weston, Jason ; Barnhill, Stephen ; Vapnik, Vladimir:
Gene selection for cancer classification using support vector machines. In:
Machine learning 46 (2002), Nr. 1-3, S. 389–422

[H+77] Halstead, Maurice H. u. a.: Elements of software science. Bd. 7. Elsevier
New York, 1977

[Hal99] Hall, Mark A.: Correlation-based feature selection for machine learning.
(1999)

[HBB+12] Hall, T. ; Beecham, S. ; Bowes, D. ; Gray, D. ; Counsell, S.: A
Systematic Literature Review on Fault Prediction Performance in Software
Engineering. 38 (2012), Nr. 6, 1276–1304. http://dx.doi.org/10.1109/
TSE.2011.103. – DOI 10.1109/TSE.2011.103. – ISSN 0098–5589, 1939–3520

[HM82] Hanley, James A. ; McNeil, Barbara J.: The meaning and use of the area
under a receiver operating characteristic (ROC) curve. In: Radiology 143
(1982), Nr. 1, S. 29–36

[HMK12] Hata, Hideaki ; Mizuno, Osamu ; Kikuno, Tohru: Bug prediction based
on fine-grained module histories. In: Proceedings of the 34th International
Conference on Software Engineering IEEE Press, 2012, S. 200–210

121

http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103

Variability-aware Software Defect Prediction

[IH93] Iglewicz, Boris ; Hoaglin, David C.: How to detect and handle outliers.
Bd. 16. Asq Press, 1993

[IS15] Ioffe, Sergey ; Szegedy, Christian: Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In: arXiv preprint
arXiv:1502.03167 (2015)

[JB11] Jones, Capers ; Bonsignour, Olivier: The economics of software quality.
Addison-Wesley Professional, 2011

[JK19] Johnson, Justin M. ; Khoshgoftaar, Taghi M.: Survey on deep learning
with class imbalance. In: Journal of Big Data 6 (2019), Nr. 1, S. 27

[JPT16] Jimenez, Matthieu ; Papadakis, Mike ; Traon, Yves L.: Vulnerability
Prediction Models: A Case Study on the Linux Kernel. In: 2016 IEEE 16th
International Working Conference on Source Code Analysis and Manipula-
tion (SCAM), IEEE, 2016. – ISBN 978–1–5090–3848–0, 1–10

[KB08] Kastro, Yomi ; Bener, Ayşe Basar: A defect prediction method for software
versioning. In: Software Quality Journal 16 (2008), Nr. 4, S. 543–562

[KB14] Kingma, Diederik P. ; Ba, Jimmy: Adam: A method for stochastic opti-
mization. In: arXiv preprint arXiv:1412.6980 (2014)

[KCH+90] Kang, Kyo C. ; Cohen, Sholom G. ; Hess, James A. ; Novak, William E. ;
Peterson, A S.: Feature-oriented domain analysis (FODA) feasibility study
/ Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst. 1990. –
Forschungsbericht

[KDPGA12] Khomh, Foutse ; Di Penta, Massimiliano ; Guéhéneuc, Yann-Gaël ; An-
toniol, Giuliano: An exploratory study of the impact of antipatterns on
class change-and fault-proneness. In: Empirical Software Engineering 17
(2012), Nr. 3, S. 243–275

[KGS10] Khoshgoftaar, Taghi M. ; Gao, Kehan ; Seliya, Naeem: Attribute se-
lection and imbalanced data: Problems in software defect prediction. In:
2010 22nd IEEE International Conference on Tools with Artificial Intelli-
gence Bd. 1 IEEE, 2010, S. 137–144

[KJD02] Kang, K.C. ; Jaejoon Lee ; Donohoe, P.: Feature-oriented product line
engineering. 19 (2002), Nr. 4, 58–65. http://dx.doi.org/10.1109/MS.
2002.1020288. – DOI 10.1109/MS.2002.1020288. – ISSN 0740–7459

[KM08] Kaur, Arvinder ; Malhotra, Ruchika: Application of random forest in pre-
dicting fault-prone classes. In: 2008 International Conference on Advanced
Computer Theory and Engineering IEEE, 2008, S. 37–43

[KMM+07] Kamei, Yasutaka ; Monden, Akito ; Matsumoto, Shinsuke ; Kakimoto,
Takeshi ; Matsumoto, Ken-ichi: The effects of over and under sampling on
fault-prone module detection. In: First International Symposium on Empir-
ical Software Engineering and Measurement (ESEM 2007) IEEE, 2007, S.
196–204

[Kra91] Kramer, Mark A.: Nonlinear principal component analysis using autoasso-
ciative neural networks. In: AIChE journal 37 (1991), Nr. 2, S. 233–243

122

http://dx.doi.org/10.1109/MS.2002.1020288
http://dx.doi.org/10.1109/MS.2002.1020288

Bibliography

[KS04] Khoshgoftaar, Taghi M. ; Seliya, Naeem: Comparative assessment of
software quality classification techniques: An empirical case study. In: Em-
pirical Software Engineering 9 (2004), Nr. 3, S. 229–257

[LBMP08] Lessmann, Stefan ; Baesens, Bart ; Mues, Christophe ; Pietsch, Swan-
tje: Benchmarking classification models for software defect prediction: A
proposed framework and novel findings. In: IEEE Transactions on Software
Engineering 34 (2008), Nr. 4, S. 485–496

[LBOM12] LeCun, Yann A. ; Bottou, Léon ; Orr, Genevieve B. ; Müller, Klaus-
Robert: Efficient backprop. In: Neural networks: Tricks of the trade. Springer,
2012, S. 9–48

[McC76] McCabe, Thomas J.: A complexity measure. In: IEEE Transactions on
software Engineering (1976), Nr. 4, S. 308–320

[MGF06] Menzies, Tim ; Greenwald, Jeremy ; Frank, Art: Data mining static
code attributes to learn defect predictors. In: IEEE transactions on software
engineering 33 (2006), Nr. 1, S. 2–13

[MK10] Mende, Thilo ; Koschke, Rainer: Effort-aware defect prediction models. In:
2010 14th European Conference on Software Maintenance and Reengineering
IEEE, 2010, S. 107–116

[MMT+10] Menzies, Tim ; Milton, Zach ; Turhan, Burak ; Cukic, Bojan ; Jiang,
Yue ; Bener, Ayşe: Defect prediction from static code features: current
results, limitations, new approaches. In: Automated Software Engineering 17
(2010), Nr. 4, S. 375–407

[MPS08] Moser, Raimund ; Pedrycz, Witold ; Succi, Giancarlo: A comparative
analysis of the efficiency of change metrics and static code attributes for
defect prediction. In: Proceedings of the 30th international conference on
Software engineering ACM, 2008, S. 181–190

[MRG+17] Medeiros, Flávio ; Ribeiro, Márcio ; Gheyi, Rohit ; Apel, Sven ; Käst-
ner, Christian ; Ferreira, Bruno ; Carvalho, Luiz ; Fonseca, Baldoino:
Discipline matters: Refactoring of preprocessor directives in the# ifdef hell.
In: IEEE Transactions on Software Engineering 44 (2017), Nr. 5, S. 453–469

[OWB05] Ostrand, Thomas J. ; Weyuker, Elaine J. ; Bell, Robert M.: Predict-
ing the location and number of faults in large software systems. In: IEEE
Transactions on Software Engineering 31 (2005), Nr. 4, S. 340–355

[PD07] Pelayo, Lourdes ; Dick, Scott: Applying Novel Resampling Strategies To
Software Defect Prediction. In: NAFIPS 2007 - 2007 Annual Meeting of the
North American Fuzzy Information Processing Society, IEEE, 2007. – ISBN
978–1–4244–1213–6 978–1–4244–1214–3, 69–72

[PPB18] Pascarella, Luca ; Palomba, Fabio ; Bacchelli, Alberto: Re-evaluating
method-level bug prediction. In: 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER) IEEE, 2018,
S. 592–601

[Qui86] Quinlan, J. R.: Induction of decision trees. In: Machine learning 1 (1986),
Nr. 1, S. 81–106

[Qui14] Quinlan, J R.: C4. 5: programs for machine learning. Elsevier, 2014

123

Variability-aware Software Defect Prediction

[Ros58] Rosenblatt, Frank: The perceptron: a probabilistic model for information
storage and organization in the brain. In: Psychological review 65 (1958),
Nr. 6, S. 386

[RS04] Raileanu, Laura E. ; Stoffel, Kilian: Theoretical comparison between
the gini index and information gain criteria. In: Annals of Mathematics and
Artificial Intelligence 41 (2004), Nr. 1, S. 77–93

[Rux06] Ruxton, Graeme D.: The unequal variance t-test is an underused alternative
to Student’s t-test and the Mann–Whitney U test. In: Behavioral Ecology 17
(2006), Nr. 4, S. 688–690

[SHAJ12] Shihab, Emad ; Hassan, Ahmed E. ; Adams, Bram ; Jiang, Zhen M.: An
industrial study on the risk of software changes. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering ACM, 2012, S. 62

[SHK+14] Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ; Sutskever,
Ilya ; Salakhutdinov, Ruslan: Dropout: a simple way to prevent neural
networks from overfitting. In: The journal of machine learning research 15
(2014), Nr. 1, S. 1929–1958

[SMWO10] Shin, Yonghee ; Meneely, Andrew ; Williams, Laurie ; Osborne, Ja-
son A.: Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities. In: IEEE transactions on software
engineering 37 (2010), Nr. 6, S. 772–787

[SMWO11] Shin, Yonghee ; Meneely, Andrew ; Williams, Laurie ; Osborne, Ja-
son A.: Evaluating Complexity, Code Churn, and Developer Activity Met-
rics as Indicators of Software Vulnerabilities. 37 (2011), Nr. 6, 772–787.
http://dx.doi.org/10.1109/TSE.2010.81. – DOI 10.1109/TSE.2010.81.
– ISSN 0098–5589

[SWHJ14] Scandariato, Riccardo ; Walden, James ; Hovsepyan, Aram ; Joosen,
Wouter: Predicting vulnerable software components via text mining. In:
IEEE Transactions on Software Engineering 40 (2014), Nr. 10, S. 993–1006

[SWJAK09] Shivaji, Shivkumar ; Whitehead Jr, E J. ; Akella, Ram ; Kim, Sunghun:
Reducing features to improve bug prediction. In: 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering IEEE, 2009, S. 600–
604

[Tan15] Tan, Ming: Online Defect Prediction for Imbalanced Data. (2015), S. 51

[TBTM10] Tosun, Ayşe ; Bener, Ayşe ; Turhan, Burak ; Menzies, Tim: Practical
considerations in deploying statistical methods for defect prediction: A case
study within the Turkish telecommunications industry. In: Information and
Software Technology 52 (2010), Nr. 11, S. 1242–1257

[TL11] Toloşi, Laura ; Lengauer, Thomas: Classification with correlated features:
unreliability of feature ranking and solutions. In: Bioinformatics 27 (2011),
Nr. 14, S. 1986–1994

[TMHM16] Tantithamthavorn, Chakkrit ; McIntosh, Shane ; Hassan, Ahmed E. ;
Matsumoto, Kenichi: An empirical comparison of model validation tech-
niques for defect prediction models. In: IEEE Transactions on Software
Engineering 43 (2016), Nr. 1, S. 1–18

124

http://dx.doi.org/10.1109/TSE.2010.81

Bibliography

[VLBM08] Vincent, Pascal ; Larochelle, Hugo ; Bengio, Yoshua ; Manzagol,
Pierre-Antoine: Extracting and composing robust features with denoising
autoencoders. In: Proceedings of the 25th international conference on Ma-
chine learning, 2008, S. 1096–1103

[VLL+10] Vincent, Pascal ; Larochelle, Hugo ; Lajoie, Isabelle ; Bengio, Yoshua ;
Manzagol, Pierre-Antoine: Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising criterion. In:
Journal of machine learning research 11 (2010), Nr. Dec, S. 3371–3408

[WLT16] Wang, Song ; Liu, Taiyue ; Tan, Lin: Automatically learning semantic
features for defect prediction. In: Proceedings of the 38th International Con-
ference on Software Engineering - ICSE ’16, ACM Press, 2016. – ISBN
978–1–4503–3900–1, 297–308

[WSS14] Walden, James ; Stuckman, Jeff ; Scandariato, Riccardo: Predicting
vulnerable components: Software metrics vs text mining. In: 2014 IEEE 25th
international symposium on software reliability engineering IEEE, 2014, S.
23–33

[YLX+15] Yang, Xinli ; Lo, David ; Xia, Xin ; Zhang, Yun ; Sun, Jianling: Deep
Learning for Just-in-Time Defect Prediction. In: 2015 IEEE International
Conference on Software Quality, Reliability and Security, IEEE, 2015. – ISBN
978–1–4673–7989–2, 17–26

[ZPZ07] Zimmermann, Thomas ; Premraj, Rahul ; Zeller, Andreas: Predicting
defects for eclipse. In: Third International Workshop on Predictor Models in
Software Engineering (PROMISE’07: ICSE Workshops 2007) IEEE, 2007, S.
9–9

125

	List of Figures
	List of Tables
	Source code index
	Introduction
	Motivation
	Goals
	Thesis Structure

	Background
	CRISP-DM Methodology
	Regression and Classification
	Bias, Variance, Over- & Under-fitting
	Naive Bayes
	Decision Tree
	Random Forest
	Gradient Boosting Trees
	Artificial Neural Networks
	Performance Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F1-Score
	AUC-ROC

	Related Work
	General Software Defect Prediction
	Method-level Software Defect Prediction

	Business Understanding
	Data Understanding
	Software Metrics
	Code Metrics
	Lines and Statement Counts of Code
	Software-Features per Function
	Number of Code Blocks
	Tangling Degree
	Cyclomatic Complexity
	Nesting Depth
	Fan-In/-Out
	Recursive Fan-In/-Out
	Undisciplined Pre-Processor Usage

	Variability Metrics
	Scattering Degree
	Software-Feature Size
	Software-Feature Definition Distance
	Cross-Tree Constraint Usage
	Connectivity of Software-Feature
	Software-Feature Types
	Software-Feature Hierarchies

	Data Aggregation
	Cleaning of the Defects
	Cleaning of the Baseline
	Merging both Datasets

	Data Exploratory Analysis
	Class Balance
	Correlation & Data Distribution
	Locations

	Software Metric Subset Comparison Experiments
	Goal
	Concept
	Pre-Processing
	High Number of Features
	The Problem
	The proposed Solutions
	Considered Alternatives

	Imbalanced Class Distribution
	The Problem
	The proposed Solutions
	Considered Alternatives

	Different Feature Scales
	The Problem
	The proposed Solutions
	Considered alternatives

	Model Construction
	Fully Connected Network
	Naive Bayes Classifier
	Random Forest Classifier
	Gradient Boosting Classifier

	Implementation
	Preparation Pipeline
	Recursive Feature Elimination
	Validation Routine

	Analysis
	Comparison of Feature Subsets
	Non-Variability-Awareness vs. Variability-Awareness
	Local Scope vs. Global Scope
	Comparison of Classification Algorithms
	RFE vs. normal Feature Subsets
	Comparison of Resampling Methods
	Training Durations
	Interpreting the Models Performance
	Interpreting the AUC-ROC Measure
	Interpreting the Precision-Recall-Curve

	Experimental Environment

	Software Metric Subset Combination Experiments
	Goal
	Concept
	Data Pre-Processing
	Model Construction
	Implementation
	Analysis
	General Performance Analysis
	Feature Subset Combination Ranking
	Interpretation of best-performing Configuration
	Analysis of individual Software Metrics' Importances

	Experimental Environment

	Discussion
	Answering the Research Questions
	Aligning the results with reviewed literature
	Limitations
	Threats to Validity

	Conclusion
	General Conclusion
	Recommendation & Outlook
	Contribution

	Appendix
	Bibliography

