erSitdy

.
3 %
O - A
(- w

— S 2003

Masterarbeit im Studiengang
Angewandte Informatik

Variability-Aware Analysis of
C Source Code

Adam Krafczyk

245935

adam.krafczyk@uni-hildesheim.de

Betreuer:
Prof. Dr. Klaus Schmid
Sascha El-Sharkawy (M.Sc.)

Software Systems Engineering e Institut fiir Informatik
Universitat Hildesheim e Universitétsplatz 1 e D-31141 Hildesheim

Eigenstandigkeitserklarung

Erkliarung iiber das selbststidndige Verfassen von "Variability-Aware Analysis
of C Source Code"

Ich versichere hiermit, dass ich die vorstehende Arbeit selbststdndig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der obigen Arbeit, die
anderen Werken dem Wortlaut oder dem Sinn nach entnommen wurden, habe ich in jedem
Fall durch die Angabe der Quelle bzw. der Herkunft, auch der benutzten Sekundéarliter-
atur, als Entlehnung kenntlich gemacht. Dies gilt auch fiir Zeichnungen, Skizzen, bildliche
Darstellungen sowie fiir Quellen aus dem Internet und anderen elektronischen Text- und
Datensammlungen und dergleichen. Die eingereichte Arbeit ist nicht anderweitig als Prii-
fungsleistung verwendet worden oder in deutscher oder einer anderen Sprache als Verof-
fentlichung erschienen. Mir ist bewusst, dass wahrheitswidrige Angaben als T&uschung
behandelt werden.

Hildesheim, den 27.11.2019

Adam Krafczyk

Abstract

Variability in software projects is commonly used to create multiple variants of a software
product. Especially software product lines make systematic use of variability to generate
whole families of products. A popular mechanism to implement variability in C-code is
conditional compilation via the C-preprocessor. Variability introduces new challenges that
may be addressed with static analysis. However, traditional static analyses usually cannot
handle variability and commonly ignore the C-preprocessor.

This thesis aims at enabling different static analysis approaches for C-source code con-
taining C-preprocessor variability. The goal is to extract and represent the variability in
the source code so that static analysis is possible. Two different approaches for static
analysis of source code are developed. The first one analyzes only the C-preprocessor vari-
ability and extracts implicit domain knowledge from the implementation artifacts. The
second approach is a parser that builds a combined model of the syntactical structure
of the source code and the C-preprocessor variability. Both approaches are evaluated on
real-world software product lines.

The first approach successfully extracts dependencies between variability variables from
the source code assets. These dependencies represent domain knowledge that can be used
to build variability model constraints. The second approach parses code into a code model
that closely reflects the developer perspective on the content of the parsed source file, as
opposed to the more abstract representations commonly used in static analyses. It enables
analyses that require a combined view of the syntactical structure of the code and the
variability.

Contents

Contents

List of Figures

List of Tables

1 Introduction
2 Background
2.1 Variability in Source Code
2.2 Software Product Lines
2.3 Static Analysis of Variability
2.4 KernelHaven Analysis Framework
3 Analysis of Integer-Based C-preprocessor Variability
3.1 Use-Case e
3.2 Non-Boolean Transformation
3.3 Extraction of C-preprocessor Conditions
3.4 Feature-Effect Analysis. o
3.5 Result Simplification L o L
3.6 Analysis Results
4 Extraction of Source Code Combined with Variability
4.1 Use-Case e e
4.2 srcML Parsing Tool
4.3 Transformation of steML
4.4 Alternative Approaches
5 Evaluation
5.1 Non-Boolean Transformation
5.2 CodeBlockExtractor e
5.3 Formula Simplification oL
5.4 srcML-Extractor e
5.5 Threats to Validityo
6 Conclusion
Bibliography

15
16
20
28
32
36
43

47
47
50
93
62

66
66
72
76
84
88

93

97

Variability-Aware Analysis of C Source Code

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
0.4
9.5
5.6

Example of C-preprocessor
Resolved variability of Figure 2.1
KernelHaven reference architecture

KernelHaven pipeline in the Bosch PS-EC use-case
Resolving variability granularity in the Bosch PS-EC product line.

Overview of the non-Boolean transformation in the analysis process

Integer sub-expression in a variability condition
Conditional compilation blocks using the C-preprocessor
Nesting structure of CodeBlocks o it
C-preprocessor conditions for illustrating feature-effects
Example Binary Decision Diagram
Simplification steps in the feature-effect computation
Ratio of dependent vs. independent variables per product variant
Aggregated classification of independent vs. dependent variables
Classification of variables grouped by number of products

Example of C-source code parsed by srcML
Formatted parsing result of s,eML L.

Example of C-source code with C-preprocessor directives parsed by srcML

srcML-Extractor transformation process L.
C-preprocessor markup created by srcML (simplified)
Required C-preprocessor nesting (simplified)
Problematic C-preprocessor markup created by srcML (simplified)

Code with changing structure depending on conditional compilation

srcML markup of Figure 4.8a (simplified)
Transformation result with reference node (simplified)
Example C-preprocessor construct that cannot be transformed
Example C-preprocessor construct that srcML marks-up incorrectly
AST class diagram of srcML-extractor (simplified excerpt)
Parsing approach of TypeChef
Non-trivial lifting of C-preprocessor variability

Runtime with varying number of conditions
Euntime with varying number of allowed values
Ratio of extracted condition types
Ratio of dependent vs. independent variables for different simplifications . .
Total number of operators and variables relative to Simple simplification . .
Ratio of files parseable by the srcML-extractor

50
51
92
93
o4
54
o6
o6
o7
o7
o8
99
60
62
64

68
69
74
81
82

ii

List of Tables

List of Tables

21

5.1
5.2
5.3
5.4
9.5

Example excerpt of vending machine variability model

Non-Bolean transformation measurements for two product variants.

Runtime measurements of different simplification settings (variant 1)
Runtime measurements of different simplification settings (variant 2)
AAS setting-specific runtime measurements (both variants)
Runtime of srcML-extractor transformation steps

iii

Introduction

1 Introduction

In software development it is quite common to develop multiple variants of a software
product at once. These variants differ in some, sometimes only small aspect. Common
use-cases for this are optional features, that can be en- or disabled in the build process, or
platform-specific adaptations, that for example create one variant for Linux and another
one for Windows. The differences between such variants are called variability. If multiple
variants are developed in the same source code, there are mechanisms that implement the
variability: at some point, the code changes depending on which wvariant is created. This
may be during the build process, or even later at runtime.

Software product lines systematically use wvariability to implement a wide range of prod-
ucts, sometimes referred to as a product family. The assets of the product line are used
to build product variants that are tailored for specific customer needs. Often, a whole
domain of software products is covered by a single software product line. This requires a
large amount of variability that enables the flexibility in the product creation. Whereas
traditional software development sporadically uses variability to create some variants, the
software product line approach systematically uses and manages the variability as a key
success factor.

A common implementation of variability in C-source code is realized with the C-prepro-
cessor, as it is included in all C-compilers. It has directives for conditional compilation,
that means that parts of the source code are only compiled under certain conditions.
Most prominently, the #ifdef directive can be used for this. This mechanism allows the
implementation of multiple different variants of source code in a single file. At compile-
time, it is decided which wvariant is built. This thesis will focus on wvariability that is
implemented in this way.

The advantage of variability in the source code is that multiple different variants can be
developed at once with relatively little overhead. The alternative is to develop all variants
separately, which almost always increases the required effort. Especially for variants that
only differ slightly, the overhead of developing them separately is too high. Variability also
enables the software product line approach: without wvariability, a software product line
could not generate such a huge range of tailored products. The assets from the product
line that are re-used in many wariants have to be flexible enough to adapt to different
customer needs.

But variability in the source code also introduces some new challenges. The complexity of
the source code increases, as now multiple variants of the program are depicted at once.
This can make it harder for developers to understand the source code. Another challenge
arises from the combination of variability, for instance the interaction of optional features.
One optional feature may require that another optional feature is also enabled, or two
optional features may be mutually exclusive. This can add a layer of interdependencies to
the wvariability, which is not obvious when just looking at the source code. This challenge
also decreases the understandability of the source code.

Variability-Aware Analysis of C Source Code

Static analyses are used in software development to assist the development process. They
are often used in practice to find defects in source code. Traditional static analysis ap-
proaches and tools do not consider variability. C-preprocessor directives are either resolved
or ignored by the tools. This means that only a single variant without variability can be
analyzed by these tools. In contrast to that, variability-aware static analyses are devel-
oped specifically for source code that contains variability [TAK+14]. They are often used
to address the specific challenges that arise from the variability.

This thesis presents two static analysis approaches for source code containing variability
in the form of C-preprocessor conditional compilation. The focus is on the extraction and
representation of the relevant information from the source code files. The two presented
approaches build different models of the analyzed code.

Analysis of Variability In this approach, the variability inside the source code files is an-
alyzed. The goal is to extract implicit domain knowledge from the #ifdef directives
in the source code. This addresses the challenge posed by the implicit layer of inter-
dependencies in the wvariability. This analysis makes the interdependencies explicit,
which can help developers to understand and mange the wvariability in the source
code.

For this approach, the #ifdef wvariability information has to be extracted from the
source code files. A parser is developed and implemented that reads the wvariability
information from the C-preprocessor directives and converts it into a model suitable
for static analysis. Further, an existing analysis approach that extracts the implicit
domain knowledge from this model is adapted and implemented. The resulting tool-
chain is applied in a real-world industrial use-case, the Bosch PS-EC product line.

Extraction of Source Code Combined with Variability This approach builds a model of
the source code that combines the syntactical structure of the C-code with the vari-
ability directives from the C-preprocessor. Based on an existing parser that creates
syntactical markup for C-code, an approach is developed and implemented that builds
such a combined code model. This approach enables static analyses that consider
the syntactical structure of the code and the variability, and the interaction of both.
The use-case for this is a framework for implementing variability-aware metrics, i.e.
analyses that quantify certain aspects of the source code, the variability, or both.

This thesis is structured in the following way: First, Chapter 2 introduces core concepts
that are important background for this thesis. This includes the concept of variability,
software product lines, and variability-aware static analysis. Chapter 3 describes the ap-
proach that analyzes the variability in the Bosch PS-EC product line. The different aspects
of the extractor, transformation, and analysis are explained. Chapter 4 describes the ex-
traction of source code combined with variability. This covers the underlying parsing tool
and the approach that creates the combined code model. Chapter 5 evaluates the different
implementations that are created in this thesis. Finally, Chapter 6 concludes this thesis.

Background

2 Background

This chapter introduces core concepts that are the basis for this thesis. First, Section 2.1
introduces the concept of variability in source code. Here, the idea of developing multiple
variations of a software product at once is explored. Section 2.2 introduces the concept
of software product lines, which expand and systemize the idea of variability in software
projects. Software product lines are the underlying objects of investigation in this thesis.
Section 2.3 addresses how the general concept of static analysis applies to a software
project containing variability. Different concrete static analysis approaches for software
product lines will be explored in this thesis. Finally, Section 2.4 introduces the KernelHaven
framework for static analysis of software product lines. This framework is the basis for the
implementations that are developed in this thesis.

2.1 Variability in Source Code

In software development it is quite common to develop multiple variations of a product
at once. The resulting variants are basically the same product, but they contain slight
differences that change the product in certain aspects. For example, the following use-
cases for having multiple variations occur in practice:

e Platform-specific differences can be addressed, which allows the product to run on
different target machines. For example, different variable data types may be needed
on a 32-bit system compared to a 64-bit system.

e Some features of the product may be optional during the building process that
compiles the product. For example, certain features may only be available if an
optional library is available. If the library is missing, fallback routines are compiled
into the product instead.

e Run-time switches can be used to modify the execution logic of the product. For
example, consider the 1s command on Unix systems. By default, it creates a space-
separated list of the contents of a directory. However, when the -1 switch is passed
to it, it lists each entry on a single line and shows additional information about the
files.

Such variations in a software engineering project are called variability. Through variability,
multiple different variants of the product exist in a single source tree. Thus, a single project
contains more than one product. Many aspects of the software are not variable and exist
in all variants. However, the variable parts can lead to a whole range of slightly (or even
moderately) different products. A range of related products that differ in some aspects are
sometimes referred to as a product family.

The variability in a project needs to be resolved to create a runnable program. For each
variable part of the source code (i.e. parts that have more than one possible variant)
it needs to be determined which of the alternative variants should be used. Resolving

© N o o A W N R

Variability-Aware Analysis of C Source Code

variability can happen during different stages of the development and build process. This
is referred to as the binding time [VSRO7, p. 12]:

Checkout-time variability is resolved when retrieving the source from a repository. For
example, alternative source code files may be selected here.

Compile-time variability is resolved when (or directly before) the source code is compiled.
Typically, this involves text-based transformations on the source code.

Link-time variability is resolved when the linker combines multiple objects into an exe-
cutable binary. For example, this process decides which version of a library to use.

Run-time variability is resolved while the program is running. This variability is typically
implemented via the standard functions of the programming language and control
structures are used to evaluate which alternative to execute.

The variability in a project is typically implemented via Boolean expressions for the vari-
able parts. The variant for which the variability expression evaluates to true will be used
in the product. The variants which evaluate to false are discarded. The variables that are
used in these variability expressions are called wvariability variables. They control which
overall variant of the product is being built. A set of values for the variability variables is
called a configuration. The configuration of the variability variables needs to be available
at the binding time of the variability, that is when the variability is resolved. For instance,
to resolve compile-time variability, a configuration is passed to the build system. The val-
ues for the variability variables are then used to resolve the variability expressions during
the compilation process.

This thesis will focus on compile-time variability in projects written in the C-programming
language. This kind of variability is typically realized by using the C-preprocessor. The C-
preprocessor is implemented by all C-compilers, which means that no additional tooling is
required for this variability implementation. It runs before the source code is parsed by
the compiler. It evaluates directives starting with a hash character (#) and does text-based
modifications on the source code. Some of these commands can be used for conditional
compilation, which is used to implement variability. Additionally, the C-preprocessor also
does macro expansion, which can be used to insert text snippets into the source code.
Configurations for the variability variables can be passed either as command-line options
to the compiler call (via the -D switch) or inside a header file using #define statements.

int calc(int a) {

a = a * a;
#ifdef CONFIG_MULT

return CONFIG_FACTOR x* a;
#else

return a / CONFIG_FACTOR;
#endif
}

Figure 2.1: Example of C-preprocessor

Figure 2.1 shows an example of how the C-preprocessor can be used for implementing
variability via conditional compilation. The #ifdef directive in line 3 is used to select
between two alternative implementations: If the variability variable CONFIG_MULT is de-
fined, line 4 is compiled and line 6 is discarded. Otherwise, line 4 is discarded and line 6

o N o oA W N e

Background

is compiled. This allows the user who compiles the program to switch between two alter-
native implementations, based on the configuration of the variable CONIFG_MULT that is
passed to the compilation process. Additionally, CONFIG_FACTOR, used in lines 4 and 6, is
a C-preprocessor macro; the content of that variable will be inserted in its place.

#define CONFIG_MULT 1 |//#define CONFIG_MULT
#define CONFIG_FACTOR 2 2 |[#define CONFIG_FACTOR 4
Configuration Configuration
int calc(int a) { 1 |int calc(int a) {
a = a * a; 2 a = a * a;
3
return 2 * a; 4
5
6 return a / 4;
7
} s |}
Resolved Source Code Resolved Source Code

Figure 2.2: Resolved variability of Figure 2.1

Figure 2.2 shows two examples of how the variability in Figure 2.1 can be resolved. The
figures at the top show configurations and the figures at the bottom show the corre-
sponding source code with resolved variability. The configuration for the left example,
defines the variable CONFIG_MULT (line 1) and sets the value 2 for CONFIG_FACTOR. This
means that in the source code, the statement in line 4 in the #ifdef-block is selected,
and CONFIG_FACTOR is replaced by the literal 2. This resolved source code is then passed
to the compiler. The right example does not define CONFIG_MULT (line 1 is commented-
out) and sets CONFIG_FACTOR to 4. This results in the #else-block to be selected, with
CONFIG_FACTOR replaced by 4.

Using variability in the source code to manage multiple variants has the advantage of
having relatively little overhead. Slight modifications only require a few extra lines of
code. The alternative to in-source variability is to have multiple forks of the program,
one for each variation. This clone-and-own approach requires the whole source code to be
copied for each variation that is created. This alternative has several drawbacks:

e The common parts, i.e. the source code that is not changed over the different varia-
tions, may get out of sync. Changes in one variant are not automatically applied to
other variants that have the same source code. In contrast, when using variability,
the common source code is only stored in a single location. Changes to code outside
of #ifdef blocks automatically applies to all variants.

e The clone-and-own approach also does not make it clear, what parts actually dif-
fer between the variants. Since whole source files are copied and then changed, an
external diff-tool would be needed to show the differences between two variants. In
contrast, with in-source variability, it is clear which parts change for which variant.
#ifdef blocks are clearly visible when looking through a source file.

Despite all these advantages, using the C-preprocessor to implement compile-time variabil-
ity also has a few challenges. First, it increases the complexity of the source code files.
Source code files now do not only display a single program, but multiple variations of a
program at once. This increases the visual complexity: a developer that looks that the

Variability-Aware Analysis of C Source Code

source code has to see all variations at once. This makes it harder to parse the actual
structure of the underlying program. Additionally, the logical complexity of the source
code is increased. Modifications to the common source code now have to address all pos-
sible variations at once. Modifications of the variable source code have to consider how
and under which configurations these parts integrate into the product. This problem of
increased complexity through conditional-compilation with the C-preprocessor is known
under the term “Ifdef-Hell” [MRG+17].

Another challenge with variability in source code is that variability variables may have
complex dependencies between them. Not all possible configurations for the variability
variables may lead to a sensible program. For example, the face-recognition feature of a
smartphone requires that a camera is present. A configuration where the face-recognition is
enabled, but no camera is available, does not make sense. An #ifdef FACE_RECOGNITION
implies an #ifdef CAMERA, but this implication is never stated in the source code. Such
constraints add an implicit layer of complexity to all #ifdef blocks. However, for the
developer to understand the code, knowing these dependencies may be crucial.

2.2 Software Product Lines

Software product line engineering is an approach to create multiple similar products from a
single project, the software product line. The derivation of new products from the software
product line is guided by systematic re-use of assets [VSRO07, p. 6]. Assets in the product
line are all artifacts relevant to a software engineering project: requirements, source code,
tests, documentation, etc. The product line can be thought of as a construction kit for
new products. It is aimed at a certain family of products, but still supports adapting each
product to its specific needs.

As an example, consider an imaginary software product line for vending machines. The
product line contains components for possible features of vending machines: payment
(coins, banknotes, credit cards), user input (buttons, touchscreen), output (robotic arm,
ticket printing, trapdoor), refrigeration, heating, etc. To create a new product, i.e. a new
kind of vending machine, the assets implementing the desired features are taken from
the product line. In the ideal case, when all required functionality is already present in
the product line, this creates the complete product. However, sometimes product-specific
adaptions may be required.

The benefit of software product lines is to reduce the cost, improve the quality, and reduce
the time-to-market of products, while still allowing the creation of tailor-made products
[ABK+13, p. 9f.]. The cost and time-to-market are reduced since re-use of existing assets
requires significantly less effort than creating these assets from scratch. However, there is
an up-front investment required to create the re-usable assets in the product line. This
initial investment will be recapitalized over time by the lower effort of creating multiple
products. Usually, the break-even point is reached at about 3 products [VSRO7, p. 4].
The quality of products derived from a software product line is expected to increase, as
the components used for creating the products are re-used across many products. Effort
invested in improving the quality of product line assets will apply to all products that use
these assets.

In the example of the vending machine, the imaginary developing company decided to cre-
ate a software product line for all their vending machines. Initially, there was an increased

Background

investment required to create the initial product line. It was developed by combining
components from previously developed single-system vending machines into a new project
covering the whole vending machine family. After that, many vending machines were cre-
ated from the product line. These were both cheaper and faster to create compared to
the competitors, which quickly offset the cost for the initial investment. Additionally, the
quality of the software improved, as bug-fixes in the product line now get applied to many
products at once.

Software product line engineering requires a systematic approach for developing re-usable
assets and for re-using these assets to create products. It distinguishes between the fol-
lowing activities [VSRO7, p. 7f.] [ABK+13, p. 20ff.]:

Domain engineering develops assets for re-use in multiple products. This creates a plat-
form of re-usable elements that aims at supporting the products that will be derived
from it in the future.

Application engineering develops products with re-use of the assets of the product line.
A large part of the product can usually be created from the re-used assets. However,
some product-specific development may be necessary to implement requirements
that are specific to a single product.

The imaginary vending machine company has two departments responsible for product
line development and product derivation. One is responsible to develop the product line
platform (domain engineering). The market trends are analyzed to determine future de-
velopments in the field of vending machines. New features are then integrated into the
product line, to make them available to future products. The other department derives
products from the product line (application engineering). They elicit the requirements from
the customers and then configure a fitting project from the product line. The product is
quickly build from the re-usable parts of the product line. Sometimes, product-specific
features need to be implemented, because they are not available in the product line. These
product-specific features may get integrated into the product line platform at a later
point.

A software product line contains a whole family of products. This means, that the assets
that make up the product line inherently contain variability. The systematic management
of this variability is an important aspect of software product line engineering [VSRO7,
p. 8ff.]. Elements of a software product line can be categorized in three types:

Commonality The element is present across all products derived from the product line.
Variability The element is present in some, but not all products.
Product-specific The element is specific to a single product.

In the imaginary vending machine product line, these three types of elements occur, for
example, as follows: All vending machines have a maintenance mechanism, which is a com-
monality of all products. This includes an internal user-interface that allows maintenance
activities of the different parts of the vending machine. A variability in the product line is
the LCD monitor driver. It is present in some, but not all of the vending machines created
from this product line. Finally, there are individual vending machines that have features
that no other vending machine shares. For example, one machine has a key-card reader
that handles payment through special key-cards that the users of that machine have.

The variability of a software product line is described by a wvariability model. It contains
the set of all variability variables that describe the possible variations when creating a

Variability-Aware Analysis of C Source Code

new product. A configuration is a mapping of variability variables to concrete values. For
each variability variable, it defines which alternative is selected. This way, the configuration
describes a product that can be created from the product line. Additionally, the variability
model defines constraints between the variability variables. This specifies, that not all
possible combinations of values for variability variables describe sensible products. When
creating a configuration for a new product, it is checked whether the desired configuration
fulfills all constraints of the variability model.

Variable Constraint
REFRIGERATION REFRIGERATION — —HEATING
REFRIGERATION_TEMPERATURE | REFRIGERATION_TEMPERATURE <= REFRIGERATION
REFRIGERATION TEMPERATURE < 20° C
HEATING HEATING — —REFRIGERATION

Table 2.1: Example excerpt of vending machine variability model

An excerpt of the variability model of the imaginary vending machine product line is
shown in Table 2.1. It contains these variability variables: REFRIGERATION is a Boolean
variable describing whether there is a refrigeration unit for the stored items; REFRIGERA-
TION_TEMPERATURE is a floating point number defining the desired refrigeration temper-
ature; HEATING is a Boolean variable describing whether there is a heating unit for the
stored items. One constraint for these variables is, that REFRIGERATION and HEATING are
mutually exclusive; heating and refrigeration at the same time does not make sense for
a vending machine. Additionally, REFRIGERATION_TEMPERATURE must be lower than room
temperature, and must be set when REFRIGERATION is true; defining a desired cooling
temperature without a refrigeration unit, or higher than the (expected) room temperature
would be nonsensical. When a new vending machine is created from the product line,
concrete values are selected for these variables. Then, it is checked whether all constraints
for these concrete values are fulfilled. If this is not the case, the configuration needs to be
changed in order to describe a valid product that can be created from the product line.

On the implementation side, variability in a software product line must be realized in the
assets. The architecture of a product line supports the presence of variability [VSRO7,
p. 40ff.]. Replacements and extensions of components allow variability on an architectural
scale. Variations are developed as separate components against a common interface or
specification. This allows to resolve variability on larger scale, which moves complexity
out of the different components of the architecture. However, variability may also be
realized as adaptations inside the components. This is where explicit variability in source
code is used, as described in Section 2.1.

In the imaginary vending machine product line, broader variability is handled in the
architecture. For example, the different user input alternatives are implemented as sep-
arate components against a common user input interface. One component implements
a touchscreen monitor, while another implements a keypad. This hides the complexity
of variability to a certain degree, as all components just need to interact with the com-
mon interface. In contrast, smaller variability, like variations in the way the touchscreen
works, are implemented inside these components. This is realized by using conditional-
compilation of source code parts. This kind of variability appears throughout the source
code and developers need to consider it when modifying the product line assets.

A software product line inherently contains variability, which results in challenges as de-
scribed in Section 2.1. Variability increases the complexity of software projects and there

Background

is a layer of interdependencies introduced by the variability variables. The systematic ap-
proach of product lines regarding variability helps to address these problems. Handling
variability on an architectural scale helps to move the complexity out of the component
implementations. Explicitly modeling the dependencies between variability variables helps
to make that aspect more visible to developers. However, software product lines usually
contain more variability than other software projects, as their primary intent is to cover a
wider range of products. This makes it harder to deal with these challenges. While some
variability is moved into the architecture, a software product line typically still contains
a larger amount of conditional compilation in its source code, compared to other software
projects. Dependencies between variability variables are explicitly modeled, but this typi-
cally results in complex models. Additionally, these dependencies are still not visible when
just looking at the source code.

2.3 Static Analysis of Variability

Static analysis refers to automated analysis of software, without executing the software. It
analyzes quality characteristics of the software, often with the goal to identify faults. This
analysis is done statically on the source code or the compiled program. In contrast to that,
dynamic analysis is performed by executing the program to analyze. Typical examples of
static analyses are the detection of null-pointer accesses, out-of-bounds access of arrays,
etc. In practice, static analysis is applied in software engineering to systematically search
for defects. It complements other fault-detection techniques, such as manual inspections
and dynamic testing [ZWN+-06].

In software product line engineering, applying existing static analysis approaches is often
not straightforward. These approaches have mostly been developed for traditional single-
system development. The inherent variability in software product line assets is often not
compatible with traditional static analyses. Practically speaking, most static analysis tools
are not built to handle conditional compilation in the software they analyze. However, the
advantages promised by applying static analysis in software engineering are still desirable
for software product lines. Thus, there is a need to adapt the existing, or create new static
analysis methods for product lines.

For software product lines, there are three main categories of analysis [TAK+14]:

Product-Based approaches only analyze a single product at a time. A product is fully
derived from the product line (i.e. all variability is resolved) and is then statically
analyzed. This has the advantage, that all existing static analysis tools created for
single systems can be used without modifications. However, this approach can only
find faults in the product configurations that it is executed on. Since many product
lines have a vast amount of possible product configurations, applying this strategy is
only feasible on a very small subset of products. A challenge here is the selection of
which products should be analyzed to get the most coverage for the invested effort.

Feature-Based approaches analyze a single feature at a time. All assets that belong to
a single feature representing a variability are analyzed in isolation. This allows for
easier analysis, as the scope is limited to a small number of assets at a time. For
analyzed characteristics that are compositional with respect to the features, this
approach produces results for the whole product line. However, many characteristics

Variability-Aware Analysis of C Source Code

are dependent on interactions between features. These interactions, though, can not
be analyzed when only considering a single feature at a time.

Family-Based approaches analyze the product line assets including all variability. This
requires that the analysis approach can handle the variability that is present in the
assets. In practice, this means that existing static analysis approaches need to be
either extended or new approaches need to developed. When this is the case, these
approaches promise results that hold for the whole product line, i.e. all possible vari-
ations at once. This is typically much cheaper than generating all possible products
and analyzing them individually, as there may be a vast amount of possible product
configurations.

This thesis is working in the context of family-based static analysis. While the other
approaches have their own benefits, we believe that family-based approaches are promising
with regard to benefit of the produced results in the engineering process. Family-based
approaches are executed on, and their results are applicable for the product line as a whole,
including all variability. This means that they can be applied early-on in the domain-
engineering process and their results are relevant for many products that will be derived
from the product line platform. Family-base approaches have the most complete picture
of the product line, while the other approaches are (intentionally) limited.

There already exists a number of family-based static analysis approaches for product lines.
The following paragraphs will introduce a few examples: dead and undead code analysis,
type-checking, feature-effect analysis, configuration mismatch analysis, and metrics.

The dead and undead code analysis finds conditional-compilation blocks that are
either never or always included [TLS+11]. A conditional-compilation block (e.g. a C-pre-
processor block) is called dead if its variability condition can never be fulfilled, considering
the constraints in the variability model. For instance, a block with the variability condi-
tion CONFIG_A A CONFIG_B is dead, if the variability model specifies that CONFIG_A and
CONFIG_B are mutually exclusive. A dead block can be removed from the product line, as it
will never have an influence on the derived products. Similarly, a conditional-compilation
block is called undead if its variability condition always evaluates to true, considering
the constraints in the variability model. For instance, a block with the variability condi-
tion ~CONFIG_A Vv CONFIG_B is undead, if the variability model specifies the constraint
CONFIG_A = CONFIG_B. Such a block is not real variability; its variability condition can
be removed and the block can be become a commonality of the product line. These kinds
of problems arise from a mismatch of the variability constraints in the product line assets
and the variability model. The dead and undead code analysis help to locate and remove
such misleading variability from the source code.

Type-checking verifies that the analyzed source code adheres to the rules of the type-
system of the programming language. For statically typed languages, this is implemented
by the compiler. However, for product lines the compiler only runs after the conditional-
compilation variability has been resolved. Thus, it only checks the type-safety of a single
product at a time. To solve this problem, family-based type-checking has been proposed,
which type-checks all variants of the product line at once. The result of this approach is
either that all possible products of a product line are type-safe, or it shows configurations
where the resulting product violates a type-system rule.

The TypeChef tool implements such family-based type-checker for the C-programming
language with C-preprocessor based conditional-compilation [KKH+10; KGR+11]. A core
concept of this approach is to parse the source code into a variable abstract syntax tree

10

Background

(AST), which includes all variations at once. All elements in this AST have a presence
condition annotated, which specifies under which variability condition they are included.
The type-checker then builds a table of function and variable declarations, including their
types and the presence condition of the declaration. For function calls and variable refer-
ences, it is then checked that no type-system rules are violated; that means, it is checked
that the usage matches the previously collected declaration. This matching considers the
presence condition of the declaration, the presence condition of the usage, and the con-
straints of the variability model. This way, all valid combinations (i.e. configurations that
fulfill the variability model constraints) of declaration and usage of variables and functions
are checked at once.

The feature-effect analysis analyzes under which condition a variability variable has
an effect on the product derivation [NBK+14]. An effect on the product derivation is
assumed, when the variable controls whether a variability is included in the product or not.
For conditional-compilation, this means that the variable controls whether the variability
condition of a conditional-compilation block evaluates to true or false. As an example,
consider a conditional-compilation block with the condition CONFIG_A A CONFIG_B. If
CONFIG_A is true, toggling CONFIG_B between true and false decides if the block is included
or not. However, if CONFIG_A is false, toggling CONFIG_B has no effect anymore; the block
is not included. Thus, CONFIG_B only has an effect, if CONFIG_A is true; the corresponding
feature-effect is CONFIG_B = CONFIG_A. The feature-effect analysis calculates this for all
variability conditions that appear in the product line; all cases where a variability variable
occurs are considered for its feature-effect. The result of this shows for each variability
variable, under which conditions it has an effect on the product derivation. This could be
used to dynamically guide the configuration creation: variables that have no effect given
the current partial configuration do not need to be configured anymore.

The configuration mismatch analysis analyzes mismatches between the variability in
the product line assets and the variability model constraints [EKS17]. The basic idea of
this analysis is to check if the feature-effects of the variability variables are included in the
constraints of the variability model. A configuration mismatch is detected if the variability
model constraints are more relaxed than the feature-effects. For instance, consider the
feature-effect CONFIG_A = (CONFIG_B A CONFIG_C) and the variability model constraint
CONFIG_A = CONFIG_B. That is, CONFIG_A can be selected in the variability model if
CONFIG_B is set, but CONFIG_A has only an effect on the product derivation if CONFIG_B
and CONFIG_C are set. In this example, the variability model is more relaxed than the
feature-effect. This relaxed variability model results in two different, valid configurations
leading to identical products: if CONFIG_B is set and CONFIG_C is not set, toggling CONFIG_A
has no effect on the product, but creates two different, valid configurations. This is a
configuration mismatch; different configurations should always lead to different products.
This problem can be addressed by either making the variability model more restrictive,
or by making the feature-effect more relaxed, by handling more cases in the product line
assets.

Metrics quantify different aspects of a software project. A common example here is the
Lines of Code (LoC) metric, which counts the number of lines in the source code files.
This can be used as an indicator for the size of a software project. Variability-aware
metrics consider variability in their computation and are often defined specifically for
software product lines [EYS18]. For example, the Number of Variation Points (NoVP)
metric counts how many conditional compilation blocks are in the source code. There are
also metrics defined for variability models. For instance, the Number of Features (NoF)

11

Variability-Aware Analysis of C Source Code

metric counts how many variability variables are in the variability model. Metrics can be
used as a source of empirical data in a controlled software engineering process.

2.4 KernelHaven Analysis Framework

KernelHaven is a framework for statically analyzing software product lines [KES18b;
KES18c]. Its goal is to enable writing analyses for product lines that are independent
of the implementation details of specific product lines. To this end, KernelHaven defines a
pipeline reference architecture that separates data extraction and analysis. Additionally,
common utility tasks such as parallelization, writing output in different formats, logging,
etc. are handled by the KernelHaven infrastructure. This way, analysis components can
focus on their core task of implementing the analysis logic. KernelHaven is developed in
Java and accessible as open-source [KE+19].

Analyzed Extractors Common
Product Line | . Data Models |
B ~ —————/ ~)
vc | : | ! ; !
53 | Source Code 3E>3 Code Extractor}l:>§ Code Model 3E>}
°z v . L : f
T T ~ w~
1T £ Build : | - 1 : . : ! .
'S | |Build Extractor| | Build Model | | Analysis
'm.e System : ‘ ‘ ! ; !
o | | ‘

> | ! ‘

>0 ‘ ! i . s ‘ ! ; \
CSE | varabiiy |N| VARRBEY N variability [N
2 | “Model |52 _Medel L >1 TModel |
T : | Extractor | ! | {

Vi

Figure 2.3: KernelHaven reference architecture

Figure 2.3 shows the reference architecture of KernelHaven. On the left are the assets of
the software product line that is analyzed. The variability information from the assets is
read by different extractors that parse it into common data models. The common data
models are then used as the input for the analysis component. This approach makes the
analysis component independent from implementation-specifics of the analyzed product
line. The analysis only uses the common data models that are defined in the KernelHaven
framework. These data models serve as a constant interface that does not change when
analyzing different product lines. The extractors handle the implementation-specifics and
transform the variability information read from the product line assets to the common
data models.

KernelHaven has an extensive plug-in system that allows dynamic adaptation to different
use-cases. The extractor and analysis components shown in the reference architecture in
Figure 2.3 are exchangeable. The configuration created by the user, called the pipeline
configuration, defines which extractors and analyses are used. The pipeline configuration
is read at start-up time and the components are instantiated accordingly. Exchanging
extractors allows adapting the analysis to different product lines. The analysis component
can also be exchanged, which allows many different analyses to be conducted on a product
line.

The plug-ins provide extractors, analyses, preparations, and general utility functions. Ex-
tractors and analyses are core components of the pipeline explained above. Preparations

12

Background

are optional components that are run before the extractors start. They can be used to
implement general adaptations of the analyzed product line. For instance, the analysis
presented in Chapter 3 has a preparation that transforms the variability of the whole
product line before the extractors parse it. Plug-ins can also provide general utility func-
tions that are used by other plug-ins. This can range from simplification algorithms for
Boolean formulas to input/output handlers for Excel worksheets.

The KernelHaven pipeline is split into three sub-pipelines (cf. Figure 2.3) that extract
different kinds of variability information typically found in software product lines:

Code Pipeline This sub-pipeline extracts variability information from the source code
files. Typically, variability in the source code involves conditional compilation blocks,
for example implemented using the C-preprocessor. The KernelHaven data model for
this sub-pipeline is generic and allows for extensions, as there is a variety of different
variability information that may be extracted here.

Build Pipeline This sub-pipeline extracts variability information from the build system.
The build system typically contains file-level presence conditions for the source code
files. The KernelHaven data model for this sub-pipeline is a simple mapping of files
and presence conditions.

Variability Model Pipeline This sub-pipeline extracts variability information from the
variability model. The variability model typically contain a list of all variability
variables and constraints between these variables. The KernelHaven data model for
this sub-pipeline reflects these two parts of a variability model. The variability vari-
ables are collected in a set and are referenced by their name. The data stored for
each variable is extensible to support the variety of different variable types. A data
file contains the constraints of the variability model. This is typically stored in the
DIMACS format, which contains propositional formulas in conjunctive normal form.
However, other formats are possible, which allows the model to be adapted to dif-
ferent kinds of variability models.

In practice, all variability information in a product line can be extracted by one of these
sub-pipelines. However, not all product lines may have information for all three sub-
pipelines, and not all analyses require the information of all three sub-pipelines. Thus, in
a specific execution some sub-pipelines may be left empty. For example, a product line
may not have a variability model. In this case, the variability model sub-pipeline is not
used.

The analysis components can also be chained to form a processing pipeline. Many anal-
yses can be broken down into several steps that the variability information is passed
through. Some of these steps are also common in multiple analyses. The analysis steps
can be implemented as independent analysis components. The full analysis approaches
are then defined by combining the required components into a pipeline. For instance, the
configuration mismatch analysis introduced in the previous section is an extension of the
feature-effect analysis. The analysis components of the feature-effect analysis are re-used
in the configuration mismatch analysis pipeline.

The properties of KernelHaven fulfill many of the requirements for an experimentation
workbench for static software product line analysis [SEK19]. An experimentation work-
bench aims at supporting the process of creating and refining experiments in software en-
gineering. In the context of static software product line analysis, experimentation means

13

Variability-Aware Analysis of C Source Code

that new analyses are implemented and evaluated. KernelHaven acts as an experimenta-
tion workbench, supporting the process in different aspects:

e The flexible analysis component structure of KernelHaven allows to easily implement

new analysis ideas. This is further supported by re-using analysis components from
existing, previously implemented analysis approaches.

The decoupling of analyses from implementation details of the analyzed product
lines allows for easy execution of existing analyses on different product lines. Anal-
ysis ideas only have to be implemented once using the common data model of Ker-
nelHaven. After that, they can be tested on many product lines by exchanging the
corresponding extractors.

The results produced by a KernelHaven analysis can be easily integrated into further
processing and analysis frameworks. This supports the evaluation of experimentation
results. This is enabled as KernelHaven supports many different output formats that
can be changed transparently in the pipeline configuration. These output formats
range from CSV, over Excel to SQLite databases, and can be further extended by
additional plug-ins. For example, KernelHaven can be configured to output in CSV
which can then easily be used for statistical analysis in the R programming language.
Another example is in the ITEA project REVaMP?, where KernelHaven integrates
into a broader toolchain [GBA+19]. One such integration is that the output of a
feature-effect analysis by KernelHaven is written to an SQLite database, which is
then visualized by the FeDeV tool.

The pipeline configuration of KernelHaven serves as a description of the experiment.
It contains the setup of the different components of the pipelines: the extractors
and the processing pipeline of the analysis components are defined. Experiments
can easily be shared and repeated by supplying the pipeline configuration and the
necessary plug-ins.

The process of developing a new analysis idea often involves rapid prototyping.
Here, it is beneficial when the prototype can be tested on a product line without
much overhead. KernelHaven supports this with the option to cache the results of
the extractors. Some extractors have a long runtime, which would hinder the fast
iterations of prototypes. The caching system allows the developer to test the analysis
prototype on real data, without a significant runtime overhead. Additionally, different
extractors can be used during testing and for the final analysis. In the testing phase,
a less exact extractors that has a short runtime can be used, while for the final
analysis a more exact but slower one can be selected.

KernelHaven offers an option that archives all relevant assets of an analysis after it is
finished. This includes the pipeline configuration, the plug-ins, the analysis output,
and the analyzed product line. This supports the requirements of many researchers
that the experiment should be archived.

KernelHaven has a growing number of existing open-source plug-ins. These cover
extractors for different product lines, analysis components, and utility functionality.
This body of existing work can be easily re-used when developing new analyses.

14

Analysis of Integer-Based C-preprocessor Variability

3 Analysis of Integer-Based C-preprocessor Variability

This chapter presents a static analysis that was conducted in an industrial use-case. The
objective of the analysis is to reverse-engineer knowledge that is implicitly encoded in the
variability conditions of the Bosch PS-EC software product line. This involves two general
steps: First, the variability information of the PS-EC product line needs to be extracted.
This covers the variability model that defines all variability variables, the configuration
management system that defines presence conditions for components and source code files,
and conditional compilation blocks in the source code and other assets of the software
product line. This step builds a model of the variability in the product line. Then, based
on this model, the variability information of the product line is analyzed. This step aims
at extracting domain knowledge, that is implicitly encoded in the variability conditions.

Analyzed ¢3 1 Extractors Common
Product Line Data Models
(X\ ! S
- h 3.2 3.3
3T | Source Code I:> |:> Code Extractor |:> Code Model |:>
OF o | J
o N @ (~ ™ 3.4 (35
S.= |configuration @ . . :
S Q Build Extractor Build Model Analysis
me Management o
a o | J
= g ™~
20 ™ o (b)
£ Variability Variability Variability
28 Variables Model Model
§ @ | Extractor | L)

Figure 3.1: KernelHaven pipeline in the Bosch PS-EC use-case

The analysis presented in this chapter is implemented using the KernelHaven analysis
framework (cf. Section 2.4). Figure 3.1 shows an overview of the adapted KernelHaven
pipeline structure used for this analysis. On the left, the sources of variability information
in the PS-EC product line are passed through a preprocessing step. The preprocessed
product line assets are then parsed by the extractors of the three sub-pipelines. The
resulting models are then passed to the analysis component.

The sections in this chapter cover different aspects of the analysis, in the order they
appear in the analysis pipeline. The small clouds in Figure 3.1 indicate the sections in
which the respective part of the analysis pipeline is covered. First, Section 3.1 introduces
the industrial use-case where this analysis was conducted. It describes how the variability
is implemented and what challenges arise when extracting the variability information.
Section 3.2 introduces the preprocessing step that prepares the product line for analysis. It
explains how the integer-based variability information can be encoded using pure Boolean
formulas. Section 3.3 describes the code extractor that is used to extract C-preprocessor
conditional compilation blocks from C-source code. Section 3.4 introduces the feature-effect
analysis, that is used to extract the domain knowledge from the variability information.
Section 3.5 discusses different techniques that are used to simplify the resulting Boolean
formulas. Finally, Section 3.6 presents the results found with this analysis.

15

Variability-Aware Analysis of C Source Code

This chapter is largely based on previous work published in:

Sascha El-Sharkawy, Saura Jyoti Dhar, Adam Krafczyk, Slawomir Duszyn-
ski, Tobias Beichter, and Klaus Schmid. “Reverse Engineering Variability in
an Industrial Product Line: Observations and Lessons Learned”. In: Proceed-
ings of the 22nd International Systems and Software Product Line Conference
(SPLC’18). Vol. 1. - ACM, 2018, pp. 215-225. DOI: 10.1145/3233027 . 3233047

3.1 Use-Case

The business unit Powertrain Solutions - Electronic Controls (PS-EC) of the Robert Bosch
GmbH develops a software product line in the domain of embedded electronic control units
(ECU) for diesel, gasoline, hybrid, and electric engines. ECUs control the functions of an
engine, like fuel intake, torque, and battery charging [TBM+12]. They are used in a wide
variety of applications, like scooters, motorbikes, passenger cars, delivery vehicles, trucks,
construction machinery, and stationary industrial engines. The PS-EC product line is a
well-known hall-of-fame member of the Software Product Line Conference [SHF07].

The PS-EC product line consists of 300 subsystems. These are independently managed
by experts in the respective technical domain. Typically, 100 of these subsystems are
included in a product. This amount of decomposition in the architecture allows for highly
distributed development. The PS-EC product line is used to create, on average, 2000 new
products per year.

The variability in the PS-EC product line is driven by many factors [STB+04]. Technical
factors include the variability in the engine hardware, which the software needs to adapt
to, and divergent concepts for the powertrain, like electric and hybrid vehicles. Organiza-
tional factors increasing the variability stem from different business models. These range
from Bosch being a full service provider, supplying all hard- and software, to Bosch only
supplying the hardware and device drivers. With globally acting customers, differences in
legislation also need to be considered. Finally, customer-specific requirements need to be
fulfilled, which allows Bosch to offer a competitive product portfolio.

Variability in the PS-EC product line is realized in different levels of granularity. A subsys-
tem may have different alternative code modules as implementations. This allows for even
higher distribution of development, as unrelated features in the same subsystem can be de-
veloped independently in different code modules. Additionally, conditional compilation of
the C-preprocessor is used for more fine-grained variability. When creating a new product,
the variability is resolved in two steps: First, it is selected which subsystems need to be
included and which alternative implementation of these to use. Then, the C-preprocessor
variability is resolved during the compilation process.

Figure 3.2 illustrates the steps in which the variability of the PS-EC product line is re-
solved. At the top, all variability is still present. There are three subsystems: A, B, and
C. Subsystem B has two alternative implementations. The implementations of the sub-
systems A and B also contain C-preprocessor variability. In the first step, subsystems A
and B are selected to be included in the product. Subsystem C is left out. Additionally,
implementation 2 of subsystem B is selected over implementation 1. The second step re-
solves the C-preprocessor statements. The #if block in the implementation of subsystem
A is included, while the one in the implementation of subsystem B is not.

16

https://doi.org/10.1145/3233027.3233047

Analysis of Integer-Based C-preprocessor Variability

N N ™
Subsystem A Subsystem B Subsystem C
Implementation Implementation 1 Implementation 2 Implementation
/7. // .. /7.
#if A==1 #if B==0 #if B==2 /]
// /7. /7.
#endif #endif #endif
// .. // ... // ..
. / U / \\ J/

2

Subsystem B

Implementation 2
/.

Subsystem A Subsystem B

Implementation Implementation 2
// .. /7 ...

#if K==
#endz

// ..

/7 ..

// .

Figure 3.2: Resolving variability granularity in the Bosch PS-EC product line

The variability of the PS-EC product line is rigorously managed. All variability variables,
their dependencies, and possible values are documented. Additionally, each variability vari-
able is clearly owned by a single subsystem or implementation alternative. Special tools
are employed to assist handling the variability. For instance, a configuration management
system performs the process of selecting the subsystems and implementation alternatives
(step 1 in Figure 3.2). The subsystems and alternative implementations have variability
conditions that define their inclusion, which are automatically evaluated by the configu-
ration management system based on the current product configuration.

The process to create a configuration for a new product, while partially automated, involves
domain experts of the used subsystems. These experts use their domain knowledge to
ensure that a valid configuration is created. That is, they ensure that the selected values for
the variability variables do not conflict with each other. This is required, as the variability
model does not contain formalized constraints to check the consistency of configurations.

The configuration process is an area where the PS-EC business unit wants to improve its
product line. The effort required from domain experts can be reduced by formalizing do-
main knowledge in the variability model in the form of constraints between the variability
variables. This way, non-sensible combinations of values for variability variables can be
detected and excluded during the configuration process. Automating this process requires
drastically reduced effort, compared to manually involving domain experts. Additionally,

17

Variability-Aware Analysis of C Source Code

an automated formalized approach reduces the risks inherent to manual configuration
checking done by humans, for example by overlooking a detail. On the other hand, cre-
ating the required constraints in the first place is not trivial. It requires a comprehensive
view on the variability that is implemented in the product line. The domain knowledge
must be formalized in a way that covers all possible variants at once.

The goal of the analysis presented in this chapter is to help create an initial set of con-
straints for the variability variables. The idea is to reverse engineer implicit domain knowl-
edge that is present in the already existing variability implementations. That is, the usage
of variability variables in the existing variability conditions in the different artifacts of the
product line is used to extract domain knowledge that is implicitly present. The resulting
formulas can then be used as a starting point for the constraints in the variability model.
Based on the extracted domain knowledge, the domain experts can manually expand the
constraints. The reverse engineering should extract as much domain knowledge from the
implementation as possible, to reduce the effort required from the domain experts in the
following manual expansion. Additionally, the formulas created by the automated extrac-
tion should be as concise as possible. Concise formulas are often easier to understand and
thus more suitable to build the variability model upon.

Creating constraints in a global variability model, covering the whole PS-EC product
line, is not intended. With internationally distributed development of the many subsystem
alternatives, it is simply impractical to try to keep a comprehensive model of all variability
constraints in sync. Instead, the goal is to create constraints on a smaller, per-subsystem
/ per-alternative-implementation scale. This resembles more closely that each subsystem
is developed and managed independently by different groups of technical domain experts.
When creating a new product, the constraint models of the involved subsystems can be
combined to a product-level variability model.

The PS-EC product line cannot be analyzed as a whole. This is because in the first step of
resolving variability (subsystem and alternative selection, cf. Figure 3.2), a complete selec-
tion of the whole product line is not possible. Alternatives cannot be selected together, as
they supply the same set of files, which leads to file collisions. Additionally, the subsystems
have complex interdependencies, often to specific versions in time, which also cannot be
selected at the same time.

For these reasons, the analysis in this chapter will not analyze the full PS-EC product
line, but multiple product variants that are derived from it. This derivation is based on
product configurations that were created for real-world customers. The product variants
have the first level of variability granularity resolved, that is the subsystem and alternative
selection has been performed. While the deselected alternatives and other subsystems
are not available for analysis, the variability conditions of the selected subsystems and
alternatives are still available. Additionally, the C-preprocessor variability conditions in the
source code are also available for analysis. On the spectrum of a 150 % model representing
the unresolved variability of the whole product line, and a 100 % model only representing
the resolved variability in a completely configured product, we consider these partially
resolved product variants to represent a 120 % model of variability.

The reverse engineering process considers the following sources of variability information
from the PS-EC product line:

List of variability variables A list that defines all variability variables. It lists the name
of the variable, the type, and the set of values that the variable is allowed to be
assigned. All variable types are realized as integers. Some do not have restrictions on

18

Analysis of Integer-Based C-preprocessor Variability

the allowed values (unrestricted variables), while most have a smaller set of allowed
values (like enumerations). For Boolean variables, the value 0 is assigned to signify
false, while the value 1 signifies true. For all variables, there is also the option to not
define them, that is, to not set any value for them. In KernelHaven, the information
from this source is extracted in the variability pipeline.

Conditions in the C-preprocessor The source code contains C-preprocessor conditional
compilation using variability variables. The resulting presence conditions for the
source code blocks are extracted. In KernelHaven, the information from this source
is extracted in the code pipeline.

Conditions in the configuration management system The configuration management
system, that selects which subsystems and implementation alternatives are used in
a product, contains variability conditions. These are used to automatically select
the subsystems and implementation alternatives based on the product configura-
tion. Thus, these variability conditions are used as presence conditions for whole
subsystems and implementation alternatives. In KernelHaven, the information from
this source is extracted in the build pipeline.

Conditions in interface descriptions The product line contains interface descriptions in
XML files. These are used to automatically generate interfaces and follow indus-
try standards like MSR, MDX, and AUTOSAR. Some of the interfaces in these files
have variability conditions that define when they are provided. These are essen-
tially equivalent to presence conditions like C-preprocessor blocks in source code. In
KernelHaven, the information from this source is extracted in the code pipeline.

List of legacy variability variables Over time, some previous variability in the product
line is no longer considered to be variable anymore; it has either been permanently
excluded or included. To support legacy projects, the corresponding variability vari-
ables and variability conditions have not been removed from the implementation
assets. Instead, a list contains all these legacy variability variables and defines fixed
values for them. These are now always set as constants, effectively eliminating their
variability for new products. In KernelHaven, the information from this source is
extracted in the variability pipeline.

A challenge of the analysis in this chapter is to extract and combine these diverse sources of
variability into one consistent view. Considering as many sources of variability as possible
promises the most amount of domain knowledge to be reverse engineered, provided that
it can be combined consistently for analysis. Another challenge posed by this product
line is that the variability variables all hold integer values. Many of the existing analysis
techniques and tools for C-preprocessor variability expect Boolean variability conditions.
Expressions with integer variables and operators are mostly not considered. Thus, these
approaches need to be modified so that they can be applied to the PS-EC product line.

19

Variability-Aware Analysis of C Source Code

3.2 Non-Boolean Transformation

This section is based on work previously published in:

Adam Krafczyk, Sascha El-Sharkawy, and Klaus Schmid. “Reverse engineering
code dependencies: converting integer-based variability to propositional logic”.
In: Proceeedings of the 22nd International Conference on Systems and Soft-
ware Product Line-Volume 2. ACM. 2018, pp. 34—41. por: 10.1145/3236405.
3237202

The variability variables in the Bosch PS-EC product line hold integer values. Most of
them represent Boolean variables (0 for false, 1 for true) or (small) enumerations of allowed
values, while some are unrestricted (e.g. the whole 32-bit integer range is allowed). The
existing variability model of the product line has a list of all the variability variables and
their allowed values. The variability conditions in the C-preprocessor (and other places)
use integer arithmetic operators (+, -, *, /, %, &, |, =, ~) and integer comparison operators
(==, !=, <, <=, >, >=) on them. Additionally, the Boolean operators (&&, ||, !) and the
defined function are used. The defined function returns whether any value has been
set for a given variable. Variability conditions constructed with these operations define
whether code blocks should be included in the compilation process or not (conditional
compilation). For example, such a condition may look like this:

#if (VAR_A * 2 > VAR_B) || defined(VAR_C) (3.1)

Code following this C-preprocessor directive, until the next #endif, is only included in the
compilation process if the value of VAR_A times 2 is greater than the value of VAR_B or if
VAR_C is set to any value. The variability model defines the allowed values for the three
variables, for example: VAR_A € {1,2,3}, VAR_B € {5,6}, and VAR_C € {0, 1}.

Other software product lines using the C-preprocessor that are commonly analyzed in
academia, like the Linux Kernel [Linl9], usually have a different approach to how vari-
ability variables are handled. In them, Boolean variability variables' are predominantly
used [BSL+13]. For example, in the Linux Kernel only 3% of the 6320 variability variables
are integers, and 0.4% are string variables. The rest are Boolean variables (or at least im-
plemented as Boolean variables in the C-preprocessor). In contrast to the PS-EC product
line, Boolean variables in other C-preprocessor product lines are often not implemented
by setting different values for a C-preprocessor variable. Instead, the distinction between
the states true and false is implemented by either defining or not defining the C-preproces-
sor variable. The variability conditions then use the defined function (or the shorthand
#ifdef) to check if a given variability variable is set.

Many of the family-based analysis techniques defined for software product lines use SAT-
based approaches on propositional logic. For instance, the dead and undead code analysis,
the feature-effect analysis, and the configuration mismatch analysis introduced in Chap-
ter 2.3 fall into this category. They only work on variability conditions in propositional
logic, with only Boolean variability variables. Such SAT-based approaches work well on
the Linux Kernel, as the small number of non-Boolean variability variables can be ignored

!The Linux Kernel also has the concept of tristate variables. These are variables that allow three possible
states. They are implement as two Boolean variables in the C-preprocessor, and thus can be considered
as Boolean variables from the perspective of an analysis tool.

20

https://doi.org/10.1145/3236405.3237202
https://doi.org/10.1145/3236405.3237202

Analysis of Integer-Based C-preprocessor Variability

while still creating reasonable results. However, these approaches and tools do not work
on the integer-based variability of the PS-EC product line.

One possible approach to apply SAT-based analysis approaches on the PS-EC product
line is to adapt the approaches to also handle the integer-based variability expressions. On
the conceptual side, the approaches are currently only defined for variability conditions in
propositional logic. They need to be expanded to handle higher-order logic expressions,
like integer arithmetic and comparisons. For the feature-effect analysis, for example, this
is not straightforward, as a core definition relies on setting variability variables to true
and false. This cannot simply be applied to non-Boolean variability variables. In addition
to the conceptual challenges, there are also technical problems to consider. The tools that
implement the analysis approaches need to be expanded to be able to parse and represent
integer-based formulas as present in the PS-EC product line. Additionally, the SAT-solvers
that most of the tools employ need to be exchanged for solvers that can handle more than
propositional logic. Because of these conceptual and technical challenges, significant effort
is required to expand existing SAT-based approaches to be able to handle the integer-
based variability of the PS-EC product line. Thus, a different approach that requires less
effort was developed in the context of this thesis.

Source Code

with integer-based
variability m Source Code
Preprocessing |:> with Boolean
Variability Model a variability

defines allowed ranges
for variability variables

$

Figure 3.3: Overview of the non-Boolean transformation in the analysis process

The solution that was developed in the context of this thesis is to convert the integer-based
variability to equisatisfiable propositional formulas. With this approach, all variability con-
ditions are converted in a preprocessing step, before they are passed to the analysis. The
result of the conversion are pure Boolean expressions, that hold the same variability in-
formation with respect to satisfiability as the original variability expressions. Thus, the
existing SAT-based analysis approaches and tools can be used without modification to
create useful results for the PS-EC product line. Figure 3.3 shows the preprocessing pro-
cess: the integer-based variability in the source code is, based on the information from the
variability model, transformed to propositional logic. This is then passed to the SAT-based
analysis.

The NonBooleanPreperation class is implemented as a preprocessing component in the
KernelHaven pipeline [KE18c]|. Preprocessing components are executed before any extrac-
tion or analysis takes places. The non-Boolean preprocessing copies the whole source code
tree while replacing all integer-based C-preprocessor conditions. This results in a source
code tree with pure Boolean variability in the C-source files, which allows any of the ex-
isting Boolean-based extractors and analysis tools to be run. The preparation converts
integer-based conditions in the following steps:

1. Parse the condition to an abstract syntax tree (AST)

2. Transform the AST so that it only contains Boolean operators and variables

21

Variability-Aware Analysis of C Source Code

3. Convert the transformed AST back into a C-preprocessor string to replace the original
condition

The preparation component for KernelHaven applies this conversion automatically to all
C-preprocessor conditions in source code files. In addition to that, the conversion approach
is used by extractors that read integer-based variability and need to convert it to proposi-
tional logic. For instance, the extractors that read other variability sources of the PS-EC
product line (e.g. the configuration management) use this conversion mechanism to convert
their variability conditions.

The transformation step introduces Boolean variables for each possible value of the vari-
ability variables. This is feasible, because most of the variability variables have only a small
range of allowed values. For each integer-based condition, the transformation calculates
which combinations of values satisfy this condition. From this, a propositional formula
using the introduced Boolean variables is created, that reflects these combinations. This
approach ensures that the variability information that is important for the SAT-based
analyses is preserved. In addition to the Boolean variables for each possible value, another
Boolean variable is introduced for each variability variable, that denotes whether that
variable is defined (i.e. whether it is set to any value). This is used in the transformation
process to convert calls of the defined function of the C-preprocessor.

The mapping of allowed values per variability variable to the Boolean replacements can
be formalized as follows:

Let V be the set of all integer-based variability variables, R : V' — P(Z) a function that
defines the range of allowed values for each variable, and B a set of Boolean variables. We
then introduce a function

o:V x (Z U {e}) - B

which injectively maps a variable and one possible value of it to a Boolean variable. € in
place of a value maps to the Boolean variable that denotes whether the integer variable is
defined or not (i.e. whether it is set to any value). For instance, consider the variable VAR_A
with R(VAR_A) = {1,2,3}. VAR_A may be set to either 1, 2, or 3. o(VAR_A, €) returns the
Boolean variable that denotes whether VAR_A is defined. o(VAR_A, 1) returns the Boolean
variable that denotes that VAR_A is set to 1. In practice, such variable names may look like
this: o(VAR_A,1) = VAR_A_eq_1, 0(VAR_A,¢) = VAR_A. The exact naming scheme depends
on the context that the approach is applied in; it has to ensure that no name collisions
occur, and that the names are valid identifiers for the C-preprocessor.

There are two constraints for the introduced Boolean variables, which are not explicitly
modeled. These have to be manually considered when interpreting the result of any analysis
done on the propositional formulas:

1. The Boolean variables for the possible values of an integer variable are mutually
exclusive:

VveV, VijeR(), i#j|o(vi) = —o(v,j)
2. The € Boolean variable is true if and only if a value is set for the integer variable,

that is if any of the Boolean variables denoting the possible values is true:

VoeV |o(ve — \/ o(v,1)
1€R(v)

22

Analysis of Integer-Based C-preprocessor Variability

Figure 3.4: Integer sub-expression in a variability condition

The integer-based variability conditions are converted to propositional logic by replacing
all integer sub-expressions inside of them. Figure 3.4 shows the abstract syntax tree (AST)
of the variability condition shown in Formula 3.1. The integer sub-expression that must be
replaced by a Boolean equivalent is highlighted. The highest operator of any integer sub-
expression is always a comparison operator.?2 On the left and right side of this comparison,
there are literals, variables, or arithmetic operations combining both. The general idea is
to find all possible combinations of allowed values for the variables on the left and right
side that fulfill the comparison operator. These values are then transformed into Boolean
variables using the o function. A propositional formula is constructed from them, that is
satisfiable for all combinations that fulfill the comparison.

The integer parts of a variability condition are resolved by walking bottom-up through the
AST. Arithmetic operations are applied on all allowed values of the variability variables
at once. This results in a set of values, instead of a single result value for the operation.
This is needed, because the transformation wants to find all possible values that fulfill the
comparison at once. Eventually, when the comparison operator is reached, it is checked
which original values of the variability variables fulfill the comparison operator. These
original values are required for the o function to get the Boolean replacement variable.
Thus, when applying arithmetic operations, this approach keeps track which original value
of the variability variable led to the current result of the arithmetic operation. For instance,
when resolving the arithmetic operation VAR_A * 2, with R(VAR_A) = {1, 2, 3}, the
following tuples of current and original values are computed: {(2,1), (4,2), (6,3)}.

The following rules are used to evaluate the integer parts of the AST. They are applied
based on which integer operator is used on which input types.

e comparison operator refers to integer comparison operators (==, !=, <, <=, > >=)
e arithmetic operator refers to integer arithmetic operators (+, =, *, /, %, &, |, =, ~)
e literal refers to literal integer values

e variable refers to integer variables, with a defined range of allowed values

2Sometimes there are no explicit comparison operators to convert integer expressions to Boolean values.
In this case, a !'= 0 comparison can be assumed, since all integer values except 0 are defined to be true
in the C-preprocessor.

23

Variability-Aware Analysis of C Source Code

Arithmetic Operator on two Literals For integer arithmetic operations on two literal val-

ues, the result is simply calculated.

In this figure, the expression 2 * 4 results in the literal value 8.

Comparison Operator on two Literals For comparison operations on two literal values,

the resulting Boolean constant is simply calculated. Neither side of the comparison
contains any integer variables, thus a single Boolean literal can express the satisfia-
bility of this (sub-)expression.

Arithmetic Operator on Literal and Variable For integer arithmetic operations on vari-

ables, the operation is calculated on each of the allowed values. A set of tuples is
stored in the variable, which contains for each original value, the currently computed
value. All arithmetic operations on this variable will always update the current value.
When resolving the variable to a Boolean formula later on, it is important which
original value led to the currently computed one.

current original

In this figure, the literal value 2 is added to VAR_A. VAR_A has three possible values: 1,
2, and 3. For each of these possible values, the operation is computed and the result
stored in the first component in the tuple. The second component is not modified;
it contains the original value of VAR_A that led to the currently computed one. For
example, in the second tuple of the result, the original value 2 of VAR_A led to the
current value of 4 (via the addition of 2).

Comparison Operator on Variable and Literal A comparison of a variable and an integer

literal is resolved to a propositional formula, which contains all possible original
values that satisfy the comparison. The comparison is computed on all the current
values stored in the variable. For each current value that satisfies the comparison,
the corresponding original value of the variable is turned into a Boolean variable
via the o function. All these Boolean variables that fulfill the comparison are then
combined with a Boolean disjunction operator.

E:> [O(VAR_A, 2)][o(VAR_A, 3)}

VAR_A
{(3,1), {4.2), (5.3}

In this figure, VAR_A is compared with the literal 4 with a “greater than or equal”
comparison operator. In this example, the current and original values in the tuples

24

Analysis of Integer-Based C-preprocessor Variability

are different; this is because some previous arithmetic operation on VAR_A has mod-
ified them. This is not always the case (a variable can also be compared without
doing arithmetic on it first), but we chose this for illustration purposes, to make it
clear that the current and original values have to be treated differently. Two of the
current values (the first component of the tuples) of VAR_A fulfill the comparison:
the second and the third tuple. From both these tuples, the original values (the sec-
ond component) are transformed into Boolean variables and combined with a logical
disjunction.

Comparison Operator on two Variables A comparison of two variables is resolved to a
propositional formula that contains all possible combinations of original values that
satisfy the comparison. For each pair of the current values of the two variables it
is checked if they fulfill the comparison operator. For each pair that does fulfill it,
the two original values of the variables are turned into Boolean variables (via the o
function) and combined with a logical conjunction operator. All of these conjunction
terms are then combined with a logical disjunction operator.

o(VAR_A, 2)

VAR_A
{(3,1),14:2), (5.3

o(VAR_B, 1)

VAR_B 0(VAR_A, 3)
{411 15.2)

o(VAR_B, 2)

In this figure, there are two pairs of tuples that have the same current value and thus
fulfill the equality operator: the second one from VAR_A and the first one of VAR_B
both have the value 4, the third one from VAR_A and the second one from VAR_B
both have the value 5. For the first pair, the original value of VAR_A that led to the
current value is 2 (the second component in the tuple), while the original value of
VAR_B is 1. Thus, the Boolean representation of this combination is o(VAR_A,2) A
o(VAR_B, 1). Similarly, the Boolean representation of the second matching pair is
o(VAR_A, 3) Ao (VAR_B, 2). Since both of these pairs fulfill the equality operator, they
are combined with a disjunction operator.

Arithmetic Operator on two Variables For integer arithmetic operations on two vari-
ables, the operation is done on each combination of the current values of both
variables. For each of these calculated values, both of the original values of the
variables that led to this current value are stored. When turning this tuple into a
Boolean formula, instead of a single variable being created (e.g. o(VAR_A, 2)), a log-
ical conjunction of the two variables is created based on the original values stored
in the tuple (e.g. o(VAR_A,2) A o(VAR_B, 1)).

VAR_A
{3.1), (4.2)}

VAR_B
{(4.2), (5.2)}

VAR_A
[:> VAR_B
{7.1,1), (8,1,2), (8.2.1), (9.2,2)}

T
current ‘ original

original of VAR_B
of VAR_A

25

Variability-Aware Analysis of C Source Code

In this figure, the two variables VAR_A and VAR_B, both with two possible values, are
added together. Combining the first tuple of both, results in the first tuple of the
result: the current values (the first components of the tuples: 3 and 4) are added
together, resulting in the new current value 7. Then, both of the original values (the
second components in the tuples) are stored in the result, to indicate which original
values of VAR_A and VAR_B led to the current value of 7. When turning this tuple
into a Boolean formula (if the current value of this tuple fulfills a comparison later
on), then the original values of both variables have to be considered: the resulting
formula is o(VAR_A, 1) A o(VAR_B, 1). There are two different combinations that lead
to the current value of 8. Thus, the result has two tuples where the first component
is 8, but with different original values in the following components.

The following example illustrates how these transformation rules are applied. The AST of
the condition in Formula 3.1, shown in the following figure, is used as a basis. The allowed
values for each variability variable has been annotated.

VAR_B } [VAR_C]

{5, 6} {0, 1}

First, the multiplication operator is resolved by multiplying each possible value of VAR_A
by the literal value 2. The highlighted region shows what part of the AST has been changed
in this step.

: VAR A :[VAR B]
{2,1), (4,2), (6,3)}/ 5, 6}

7

i~

Now, the comparison operator can be resolved. The current values of VAR_A and VAR_B
are compared. Since there was no arithmetic operation on VAR_B, its original and current
values are identical. Only one pair of current values of VAR_A and VAR_B match: the third
one of VAR_A is greater than the first one of VAR_B (6 > 5). This is then converted into
a propositional formula, that specifies that the original value 3 from VAR_A and 5 from
VAR_B fulfill this comparison.

26

Analysis of Integer-Based C-preprocessor Variability

Finally, the defined (VAR_C) call is replaced by the e variable for VAR_C.

(0(VAR_A, 3)(a(VAR_B, 5))

The AST now only contains Boolean variables and operators. The final step is to convert
it back into a C-preprocessor condition string. This involves applying the o function to get
the names of the Boolean variables and adding a defined call around them. This results
in the this condition:

#if (defined(VAR_A_eq_3) && defined(VAR_B_eq_5)) || defined(VAR_C)

In many cases, the resulting propositional formula is much larger, compared to the original
integer-based one. The goal is not to produce small or readable conditions, but to provide
input data for analysis tools. Thus, it is not a primary concern to keep the resulting
propositional formulas concise. However, in practice, we encountered runtime and memory
problems with too large conditions in a very small number of cases.

To circumvent the runtime and memory problems of too large conditions, our tool defines
a fixed upper limit for the number of value combinations to consider. When a series of
arithmetic operations on variables exceeds this limit, we drop the per-value analysis for this
sub-expression. Instead, we fall back to a less exact approach: only o(var, €) variables are
created for all involved variables. This retains the information, that the condition somehow
depends on these variables, but the information which concrete values it depends on is
lost.

A special case in the transformation process are integer variables that have only one
allowed value. In the PS-EC product line, the legacy variability variables fall into this
category. In the past, these were variability variables, but now their variability has been
dropped and they are defined to be constants. If these variables are encountered in the
non-Boolean transformation process, they are replaced by their constant value, effectively
turning them into integer literals. This makes it easier to calculate the combinations of the
other integer variability variables, that satisfy a constraint. It also removes unnecessary
variables from the propositional formulas, and thus reduces the unnecessary complexity
of the output.

Another special case are integer variables that have no restriction on the allowed values.
The “allowed values” for such a variable are for example the whole range of 32 bit integer
variables. It is not possible (or at least not feasible) to introduce Boolean variables for
each of the possible values. In this case, a less exact approach is applied, to still be able
to handle these variables: only the single Boolean variable o(var, €) is introduced. Then,
in each condition where the unrestricted variable appears, this Boolean variable is used,
no matter which actual value of the variable would fulfill the condition. This way, the
variability information that the given condition somehow depends on the unrestricted
variable is preserved; however, the information which specific values it depends on is lost.
For example, the condition VAR_D+ 2 > 5, with VAR_D as an unrestricted integer variable,
is converted to o(VAR_D,€).

27

Variability-Aware Analysis of C Source Code

This inexact strategy has few drawbacks. The resulting formulas for unrestricted integer
variables will only represent that the original condition somehow makes use of the un-
restricted variable. This means that the final analysis steps, that analyze the variability
conditions, only have vague information for these kind of variables. Additionally, the in-
exact approach may also result in wrong representations of the satisfiability of variability
conditions. For instance, the unsatisfiable condition VAR_D > 0 A VAR_D < 0 would be
transformed to o(VAR_D, €) A o(VAR_D, €), which appears satisfiable.

The impact of the inexact strategy for unrestricted variables depends on the concrete use-
case where this approach is applied. The more unrestricted integer variables are present
in the variability model, the more of a problem this becomes. Also the usage of these
variables in the conditions needs to be examined: if the unrestricted variables are mixed
together with the restricted integer variables in the conditions, then the inexact results
may influence the other variables, too. In contrast, if they are mostly used in separate
conditions, then the results for the restricted variables are unaffected and remain exact.

In addition to the potential problems mentioned above, there are a few minor technical
issues with the implementation in KernelHaven. These stem from the specifics of the C-
preprocessor, and are thus not inherent to the approach itself.

e The C-preprocessor has no well-defined data types. This leads to a problem when
evaluating the bit-wise negation operator ~, where the concrete type of an integer
(bit size, and whether it is signed or unsigned) is important for correct results.
However, in practice, this operator is not used much.

e Based on the usage of variability in the PS-EC product line, the implementation is
only designed to handle integer and Boolean variables in the C-preprocessor condi-
tions. It can not handle string variables, or the string concatenation operator (##).
When encountering this, the tool will print a warning and skip replacing the condi-
tion.

e The C-preprocessor allows defining functions (with the #define directive) that can
be used in #if-statements. The implementation in KernelHaven can not evaluate
these custom functions; when such a function appears in a condition, the tool will
print a warning and skip replacing the condition.

3.3 Extraction of C-preprocessor Conditions

This section describes how the CodeBlockExtractor extracts variability conditions from
the C-preprocessor. The CodeBlockExtractor is a code extractor plug-in for KernelHaven
[Kral8], that has been developed in the context of this thesis. It considers Boolean vari-
ability, as implemented in the Linux Kernel [Lin19] and other software product lines using
the C-preprocessor. Section 3.2 describes how the integer-based variability of the Bosch
PS-EC product line is converted to pure Boolean variability as handled in this section.

The C-preprocessor contains statements for conditional compilation: #if, #elif, #else,
#endif, #ifdef, and #ifndef. These control whether the lines that are enclosed by them
are passed to the compiler, or whether they are ignored during compilation. This is used
to implement variability in the source code: variability variables are used in the condi-
tional compilation expressions, that control which variant of the source code should be
compiled.

28

© 0 N o o W N R

R
(ST R R SN Y

-
=Y

Analysis of Integer-Based C-preprocessor Variability

statementl;
#if defined(VAR_A) || !'defined (VAR_B)
statement?2;
#if defined (VAR_C)
statement3;
#elif defined (VAR _B) && (defined(VAR_D) || !'defined (VAR _E))
statement4;
#else
statementh;
#endif
#else
statement6;
#ifdef VAR_C
statement7;
#endif
#endif

Figure 3.5: Conditional compilation blocks using the C-preprocessor

Figure 3.5 shows an example of C-preprocessor blocks. Five Boolean variability variables
control which statements are compiled: VAR_A through VAR_E. Their two possible states,
true and false, are encoded by either defining or not defining them as C-preprocessor
symbols; thus, the defined function of the C-preprocessor is used to check whether the
variability variables are true or false. statement1 in line 1 is outside of any C-preprocessor
blocks; it is always included in the compilation process. In contrast, statement?2 in line 3 is
nested inside an #if block; it is only included if the expression of that #if block evaluates
to true. In this case, VAR_A needs to be defined or VAR_B needs to be undefined.

The goal of the CodeBlockExtractor is to extract the variability information that is present
in the C-preprocessor blocks and to represent it in a data structure that will be used by a
following analysis. This data structure must represent which parts of the source code are
variable and what the presence conditions of these parts are. The presence condition of a
source code block is a Boolean formula that, using variability variables, describes under
which conditions that block is included in the product (i.e. under which conditions it is
compiled).

The CodeBlockExtractor walks line-by-line through the source code file. C-preprocessor
statements are lines starting with a hash character (#); optionally, whitespace may be
before or after the hash. Lines inside block comments (/* ... */) are not considered by the
C-preprocessor. When a C-preprocessor statement that opens a new conditional compilation
block (#if, #ifdef, #ifndef, #elif, #else) is encountered, a CodeBlock object is created
by the CodeBlockExtractor with the starting line set to the opening line number. When
a statement that closes a conditional compilation block (#endif, #elif, #else) is en-
countered, the CodeBlockExtractor sets the end line for the previously created CodeBlock
object. The #elif and #else statements both close the previous block and directly open
a new one.

Conditional compilation blocks may be nested inside each other. For instance, the #if in
line 4 in Figure 3.5 is nested inside the #if in line 2. The CodeBlockExtractor keeps track of
this by storing the currently open CodeBlock objects in a stack. A newly opened CodeBlock
is pushed onto the stack, a closed CodeBlock pops the top of the stack. Additionally, when
a new CodeBlock is created, it is added to the list of children of the enclosing CodeBlock

29

Variability-Aware Analysis of C Source Code

(i.e. the CodeBlock that is at the top of the stack). Blocks that are not nested inside other
blocks are called top blocks of the source code file.

Block 1
Type: #ifdef

Start: 2
End: 10

(Block2)
Type: #if
Start: 4
End: 5

(Block 3
Type: #elif
Start: 6
End: 7
Block 4
Type: #else
Start: 8

End: 9

Block 5
Type: #else
Start: 11
End: 15

Block 6
Type: #ifdef
Start: 13
End: 14

Figure 3.6: Nesting structure of CodeBlocks

Figure 3.6 illustrates the nesting structure of the blocks in Figure 3.5. Block 1 and Block 5
are top blocks, as they are not nested in any other blocks. The arrows indicate the children
of blocks. Blocks 2, 3, and 4 are nested inside the #if in line 2 (Block 1); Block 6 is nested
inside the #else in line 11 (Block 5).

The CodeBlockExtractor also considers whether there is code outside of all conditional
compilation blocks. If this is the case, an artificial CodeBlock is created that covers the
whole file. For instance, statementl in line 1 of Figure 3.5 is outside of all C-preprocessor
blocks. Thus, the CodeBlockExtractor will create a CodeBlock with the presence condition
true that covers the whole file (lines 1 through 16). The previous top blocks of the file,
Block 1 in line 2 and Block 5 in line 11 will be nested as children in this new artificial
block. This structure allows the following analysis steps to differentiate whether all code is
inside conditional compilation blocks, or whether there is also common code in the source
file.

The presence condition of a conditional compilation block depends on its expression, its
type, the previous siblings, and the enclosing block [STL+10]. The expression of a block b,
expr(b), is the parsed Boolean variability condition that is written in the source code.
The CodeBlockExtractor parses the C-preprocessor expression to a Boolean formula. For
instance, the #if statement in line 2 of Figure 3.5 (blockl) has expr(blockl) = VAR_A V
—VAR_B. The #else statement in line 11 (block5) does not have an expression; in this case,
expr(blockb) is defined to be true.

30

Analysis of Integer-Based C-preprocessor Variability

The C-preprocessor supports expressions that contain more than pure Boolean logic. For
instance, arithmetic and comparison operators for numbers are supported. However, the
CodeBlockExtractor is only meant to support Boolean variability expressions. Only the
Boolean operators (&&, ||, !) and Boolean variables (where the defined function is used
to differentiate between true and false) are supported.

The expression of a conditional compilation block in the source code is parsed with full
support for the C-preprocessor expression syntax. After that, if unsupported operations
(e.g. number comparisons or unknown macro calls) are found in the resulting abstract
syntax tree, an exception is thrown. The user can configure what should happen in this
case: parsing of the whole file can be aborted, or parsing of the expression can be aborted
and a replacement is used instead. In the latter case, it can be configured to either use
the constant true as a replacement, or a special variable called PARSING_ERROR. The true
constant will likely cause the condition of this block to disappear in further analysis,
as constants are usually pruned from Boolean formulas. In contrast, the PARSING_ERROR
variable will be visible in the analysis results, and signal which parts of the analysis result
are affected by parsing errors.

The CodeBlockExtractor can also be configured to parse in a mode called fuzzy parsing.
In this mode, some operations on numeric values are allowed and encoded as special
Boolean variables. Comparisons between numbers and variables and comparisons between
two variables are supported. For each such comparison, a Boolean variable is created to
represent it. This follows the underlying idea of the ¢ function as introduced in Section 3.2.
For example, if the comparison VAR_A > 6 is encountered, a Boolean variable VAR_A_gt_6
is used to replace the comparison. This fuzzy parsing approach makes the parser more
accepting, which may improve the quality of the created variability information. However,
it also introduces new artificial variables, that need to be considered in the following
analysis. With a non-Boolean transformation of the variability conditions beforehand, as
presented in Section 3.2, there is no need to enable fuzzy parsing, as all numeric operations
have already been resolved.

The variability implementation of the Linux Kernel served as the basis for the kind of
C-preprocessor variability the CodeBlockExtractor supports. Boolean variability variables
are realized by either defining or not defining a C-preprocessor symbol. The defined func-
tion is used in #if conditions to read the state of a variability variable. However, the
Linux Kernel uses three custom macro functions in addition to the defined function:
IS_MODULE, IS_ENABLED, and IS_BUILTIN. These are used to handle tristate variability
variables, which are implemented using two Boolean C-preprocessor symbols. The Code-
BlockExtractor has a setting which enables support for these three macros. The macro
calls are replaced by Boolean formulas that use the two Boolean variables that make up
the tristate variable. This way, the CodeBlockExtractor fully supports the Boolean and
tristate variability of the Linux Kernel, which makes up most of the variability in the
product line [BSL+13].

The presence condition of a conditional compilation block does not only depend on its
expression, though. The condition of a block b, cond(b), describes how the type of C-pre-
processor statement that is used influences the inclusion of the block. This is relevant for
#elif and #else conditions: they are only included, if none of the previous siblings in
that if-elif-else group are included. Let ps(b) be the set of all preceding siblings of block
b. The condition of b is defined as:

31

Variability-Aware Analysis of C Source Code

/\ —expr(s) if b is an #else
seps(b)
cond(b) = { expr(b) A\ -—ewpr(s) ifbis an #elif
seps(b)
expr(b) else

For example, the #elif block in line 6 of Figure 3.5 (block3) is included, if its expression
evaluates to true, and the expression of the preceding #if in line 4 (block2) does not
evaluate to true:

cond(block3) = VAR_B A (VAR_D V —VAR_E) A —VAR_C
———

expr(block3) —expr(block2)

The #else block (block4) in line 8 is included, if both, the expression of the #if in line 4
and the expression of the #elif in line 6 do not evaluate to true:

cond(blockd) = —VAR_C A —(VAR_B A (VARD V —VAR_E))
——
—expr(block2) —expr(block3)

Finally, the nesting structure of the conditional compilation blocks needs to be considered
to calculate the presence condition. A block b is only included, if its parent block pb is also
included. The presence condition pc(b) is defined as:

pe(b) = cond(b) N pc(pb)

If b is a top block, i.e. there is no enclosing block, pe(pb) can be considered to be true.
For example, the presence condition of the #if block in line 2 in Figure 3.5 (blockl) is
only its condition (pe(blockl) = cond(blockl)), as it does not have any enclosing block. In
contrast, the #elif block in line 6 (block3) is a child of block1; its presence condition is:

pe(block3) = VAR_B A (VAR_D V —VAR_E) A —VAR_C A (VAR_A V —VAR_B)

cond(block3) pe(blockl)

3.4 Feature-Effect Analysis

The goal of the analysis in this chapter is to create a set of constraints for the configuration
process of variability variables. These constraints encode domain knowledge that defines
which configurations of the variables are not allowed. The constraints can be used in the
configuration process to automatically exclude invalid options, which has the potential to
reduce the effort and increase the accuracy of creating a new configuration (cf. Section 3.1).

32

w N e o s W N e

Analysis of Integer-Based C-preprocessor Variability

// Block bl pc(bl) = VAR_A
#ifdef VAR_A
statementl;
// Block b2 pc(b2) = VAR_A && VAR_B
#ifdef VAR_B
statement?2;
#tendif
#endif

Figure 3.7: C-preprocessor conditions for illustrating feature-effects

The idea of the analysis in this chapter is to extract domain knowledge that is implicitly
present in the variability conditions of the product line. This can be used to create a set
initial constraints that can be built upon by domain experts in the future.

The feature-effect? analysis approach [NBK+14] is used to extract the constraints from
the variability conditions of the product line. The basic assumption of this approach is
that toggling a variability variable should always have an effect on the final product.
For instance, the two C-preprocessor blocks in Figure 3.7 control the inclusion of one
statement each. Toggling VAR_A always toggles the inclusion of statementl in line 3; thus
VAR_A always changes the resulting product. However, VAR_B only controls the inclusion
of statement2, if VAR_A is set. If VAR_A is not set, then the whole block from line 2 to 8
is not included, no matter how VAR_B is set. Together with the assumption, that toggling
a variability variable is meant to have an effect on the product, it can be concluded that
VAR_B is not meant to be selected when VAR_A is deselected. This relation can be encoded
as the constraint: VAR_B = VAR_A. With this constraint in the variability model, it can
be assured that all valid mutations to the configuration will have an effect on the created
product.

More generally, an effect on the product is assumed when the inclusion of any conditional
compilation block changes. A more detailed analysis whether the de-/selection of a block
actually results in a semantically different product is undecidable, thus this approximation
is chosen. For a single block b with the presence condition pe(b), the effect of the variable
v on the block can be expressed by the formula:

pe(b)[v < true] @ pe(b)[v « false]

where F[v + x| means setting all occurrences of v in formula F' to x and & denotes the
XOR operation. The variable v is set to each, true and false, and the XOR, checks whether
the two resulting formulas differ. As an example, consider the two blocks b1 and b2 in
Figure 3.7. The effect of VAR_A on block b1 is:

pe(b1)[VAR_A < true] @ pe(bl)[VAR_A < false]
= true @ false

= true

3The authors of the feature-effect approach use the term “feature”, which implies a user-facing capa-
bility of the software product. In this thesis, we use the term “variability variable” to include, more
generally, all variables that are used to implement variability in a software product line. For the sake
of this analysis, the terms “feature” as used by Nadi et. al. and “variability variable” can be seen as
sSynonymous.

33

Variability-Aware Analysis of C Source Code

This means, that VAR_A always has an effect on b1, without any precondition. In contrast,
the effect of VAR_B on b2 is:

pc(b2)[VAR_B < true] @ pc(b2)[VAR_B < false]
= (VAR_A A true) & (VAR_A A false)
= VAR_A & false
— VAR_A

As shown earlier, the effect of VAR_B on this block depends on VAR_A being set to true.

The effect of a variable on a given block can also result in more complex formulas. For
example, for a block b with pe(b) = VAR_A V (VAR_B A VAR_C), the variable VAR_A has
the effect:
pc(b)[VAR_A < true] @ pc(b)[VAR_A < false]

= (true V (VAR_B A VAR_C)) @ (false V (VAR_B A VAR_C))
(true) ® (VAR_B A VAR_C)
—~(VAR_B A VAR_C)
= —VAR_B V —VAR_C

The feature-effect analysis should create constraints for the whole product line, not just
individual blocks. A variability variable has an effect on the product, if any conditional
compilation block is affected by it. Thus, all conditional compilation blocks of the product
line have to be considered. Let B be the set of all conditional compilation blocks of the
product line; the feature-effect fe(v) of the variability variable v is:

fe(v) = \/ pe(b)[v < true] @ pe(b)[v < false] (3.2)
beB

For the variables in Figure 3.7 this means:

fe(VAR_A) = (pc(b1)[VAR_A < true] & pc(bl)[VAR_A < false])
V (pc(b2)[VAR_A < true] @ pc(b2)[VAR_A «+ false])
= true V VAR_B

= true

fe(VAR_B) = (pc(bl)[VAR_B < true] @ pc(bl)[VAR_B <« false])
V (pc(b2)[VAR_B < true] & pc(b2)[VAR_B < false])
= false vV VAR_A
= VAR_A

The disjunction over the effects of a variability variable on individual blocks expresses that
the variable should have an effect on any block in the product line. This mechanism leads
to a few interesting observations regarding the resulting feature-effect:

e Presence conditions of blocks that do not contain the variable that the feature-effect
is computed for, do not influence the resulting feature-effect formula. Setting the
variable to true and false leaves the presence conditions of these blocks unchanged,
thus the XOR over the two unchanged formulas results in the constant false. These
false constants are then removed when building the disjunction over the individual
effects (they cancel out as x V false = x).

34

Analysis of Integer-Based C-preprocessor Variability

e The feature-effect can only become false, if all parts of the disjunction are false.
That would mean, that the variable never has any effect on any conditional compi-
lation block of the product line.

e The disjunction over the individual block-effects causes the more relaxed terms to
cancel out the more restrictive ones. For instance, a variable that appears in two
blocks may have the individual effects A and A A B. That means, for one block
it only depends on A, while for the other it depends on A and B. When combining
both effects with a disjunction, the more relaxed dependency on only A cancels out
the more restrictive dependency on A and B (A V (A A B) = A). The resulting
feature-effect contains only A.

e A variable that appears at least once as a top-level variable, that is it appears in a
block where it always has an effect, the feature-effect becomes true. For instance,
VAR_A in Figure 3.7 always has an effect on block b1 (the individual block-effect is
true), but only has an effect on block b2 if VAR_B is set. When combining both, the
true formula for block bl causes the whole disjunction, and thus the whole feature-
effect, to become true as well (x V true = true).

e If a variable is always nested inside another one (that is, the parent variable appears
as a conjunction in all presence conditions), then the parent variable appears with
a conjunction in the feature-effect (p A z) V (p A y)=p A (x V y)).

e If a variable has two parents pl and p2 (that is, the variable is always either nested
in pl or p2), then the feature-effect becomes pl Vv p2.

The implementation of the feature-effect analysis as an analysis plug-in for KernelHaven
[KE19a] executes the following steps:

1. Collect a set of all unique presence conditions in the product line. Multiple occur-
rences of the same presence condition do not influence the result, thus only a single
instance of each presence condition is required.

2. For each variability variable, create the subset of the presence conditions containing
only the conditions where the variable appears. As noted above, if the variable does
not appear in a presence condition, that presence condition does not influence its
feature-effect.

3. For each variable with its set of presence conditions, the feature-effect formula (cf.
Formula 3.2) is computed.

For the integer-based variability in the Bosch PS-EC product line, a few adaptations to
the standard feature-effect computation are implemented. The non-Boolean transforma-
tion (cf. Section 3.2) creates artificial Boolean variables for each allowed value of the
integer variability variables. The feature-effect analysis is executed on these Boolean vari-
ables. Thus, the the resulting feature-effects are per allowed value of the original integer
variability variables. For instance, for a variable A with three allowed values (1, 2, and 3),
this analysis produces feature-effects for four Boolean variables: o(A, 1), o(A,2), o(A,3),
and o(A,€). This gives fine-grained information on when setting A to a specific value has
an effect

The non-Boolean transformation has an implicit constraint that the Boolean variables
for the possible values of an integer variable are mutually exclusive. For instance, o(A, 1)
and o(A,2) may not be set to true at the same time. This constraint is not explicitly

35

Variability-Aware Analysis of C Source Code

modeled in the non-Boolean transformation process. Thus it may occur, that the feature-
effect fe(o(A, 1)) contains the variable o(4,2). For example, fe(o(A,1)) =z V o(A,2); i.e.
setting A to 1 has an effect if x is set, or if A is set to 2. The latter case makes no sense,
as A can not freely be set to 1 if it is already set to 2. The feature-effect computation is
adapted to prevent this problem. For an integer variability variable v, with R(v) denoting
the set of allowed integer values of v, the following replacement is done in the computed
feature-effect:

Vi,j€ RW), i#j| fe(o(v,i))[o(v,]) < false]

In the feature-effect of the Boolean variable (v, %) (i.e. v being set to a value 7), all variables
that denote that v is set to another value j are replaced by false. In the example above,
this means that in fe(o(A,1)) = x V o(A,2) the variable o(A,2) is replaced by false:
fe(o(A, 1)) =2 V false = .

Another adaptation is required as the analysis of feature-effects per-value may be too fine-
grained. The goal of the analysis is to create a set of basic constraints as a starting point
for a variability model; a per-value analysis may result in too fine-grained formulas for
that goal. Thus, an (optional) final step is implemented, that aggregates the feature-effect
formulas of the artificial Boolean variables that were introduced for the integer variability
variables. For an integer variable v and R(v) the function that returns the set of allowed
integer values for v, the aggregated feature-effect is computed as:

few)= \/ fe(o(v,))

t€RU{e}

This disjunction over the feature-effects of the individual values has the same reasoning
as the disjunction in the feature-effect formula itself (cf. Formula 3.2). An effect on the
product is assumed when any change in the variability of the assets occurs. For an integer
variability variable, this means that configuring it has an effect if any of the possible values
results in a change.

Note that the feature-effect fe(o(v,€)), and the aggregated feature-effect fe(v), do not
generally equal. This may seem counter-intuitive, as o(v, €) denotes that v is set to any
value (cf. Section 3.2), and fe(v) is also constructed in a way that denotes that any value
of v has an effect. The disparity stems from the fact that the constraint, that o (v, €) is true
when v is set to any value, is not explicitly modeled in the non-Boolean transformation
process. o(v,€) is only used when an explicit defined call is encountered in the C-pre-
processor conditions. Thus, in the collection of presence conditions that is passed to the
feature-effect analysis, o(v, €) does not generally denote that that v is set to any value.

3.5 Result Simplification

The goal of the analysis in this chapter is to create formulas that serve as a basis for domain
experts to create variability model constraints. Humans will have to read, understand,
and adapt the formulas created here. Thus, the formulas have to be understandable by
humans. The extracted domain knowledge is unusable for this goal if it is encoded in
formulas that the domain experts cannot work with. Formulas that are too complex for
human understanding may be useful for automatic processing, but the goal of this analysis
is to serve as a basis for a variability model that humans can understand and modify.

36

Analysis of Integer-Based C-preprocessor Variability

The formulas created in the feature-effect analysis are in propositional logic containing
only Boolean variables. They use two binary operators (A and V), one unary operator (—),
the literals true and false, and Boolean variables. With the basic structure being relatively
simple and widely established, the main challenge for understandable formulas is their size.
Thus, the goal of creating understandable formulas is to find, for each feature-effect, the
smallest equal propositional formula. Here, “small” means few operators and variables.

The feature-effect analysis creates, without additional simplification, rather large formulas,
even for relatively small presence condition inputs. For instance, the presence condition
(A vV B) A C has the following feature-effect for A (cf. Formula 3.2):

((true v B) N C) @ ((false v B) N C)

The XOR operator, @, is not present in KernelHavens representation of Boolean formulas,
thus it needs to be expressed using the other operators:*

(((true v B) AN C) V ((false V B) A C)) A (—=((true vV B) A C) V =((false V B) A C))

Even for this relatively simple presence condition (3 variables with 2 operators), the
feature-effect analysis creates a large formula (8 variables, 13 operators, 4 constants).
This becomes even worse the more presence conditions the variable A is used in; for each
such presence condition, the individual block-effect is combined with a disjunction. A
first, almost trivial step to simplify the resulting feature-effects is to prune the constants
by applying the annihilator and identity rules:®

(CV (BAC)A(CV (B A C))

This still results in a formula with 6 variables and 7 operators. Further simplification can
reduce this even further:

C N -B

This smallest possible representation only contains 2 variables and 2 operators. From a
readability perspective, this is the most useful result. This example shows, that Boolean
formula simplification is required when the resulting feature-effects are interpreted by
humans. A post-processing component, that simplifies all feature-effects to their smallest
possible equivalent, greatly increases the value of the feature-effect analysis for this use-
case.

A problem is that existing work on Boolean formula minimization that we found is not
applicable in the use-case of this chapter. The method developed by Quine and McCluskey
finds the representation of a Boolean formula, that has the smallest number of operators
[Qui52; Quibh; McC56]. However, since the underlying problem of finding the shortest
possible Boolean equivalent is NP-complete, the exact Quine-McCluskey algorithm has
exponential runtime with respect to the number of unique variables in the formula. It
is generally not considered to be feasible for formulas with a larger number of unique
variables. However, this commonly occurs when analyzing presence conditions of software
product lines.

Another existing approach is the Espresso logic minimizer [BHH+82]. In contrast to the
Quine-McCluskey algorithm, it is not an exact approach, but rather uses a heuristic to

XY <<= (X VY)A (=X VY)
5X V false <= X, X A true <= X, X V true <= true, X A false <= false

37

Variability-Aware Analysis of C Source Code

find shorter equivalent formulas. Because of this, its runtime does not grow exponentially
with more unique variables. However, it is not applicable in the use-case of this chapter,
as it requires the full truth-table of the Boolean formula to minimize as an input. Creating
this truth-table is not feasible, as it grows exponentially in size with the number of unique
variables in the formula. As with the Quine-McCluskey algorithm, the Espresso tool was
also created in the context of the digital circuit community. There, Boolean simplification
is applied to reduce the number of hardware logic components required to implement a
circuit. Large numbers of unique variables, i.e. inputs in their case, seems to be not a
common challenge in that context. In contrast, in the analysis of presence conditions of
software product lines, large amounts of different variables in a single formula regularly
occur.

Propositional formulas can be represented as binary decision diagrams (BDDs) and the
simplification can be conducted on such BDDs [Bry86]. A BDD is a rooted, directed,
acyclic graph. A variable is represented as a node in the BDD, with two outgoing edges
that represent the variable being set to true and false. A BDD is acyclic, so paths through
the BDD represent specific configurations for the variables. All paths end in either of two
terminal nodes, which represent the result of the propositional formula for that configu-
ration of variables (true or false). Figure 3.8 shows a BDD representation of the formula
AV (B A=C). The continuous edges represent that the variable is set to true, the dashed
edges represent that the variable is set to false. The path —A,—B ends in the termi-
nal node false, which means that the original is false if A and B are set to false. The
path = A, B, =C ends in the terminal true; the original formula results in true for this
configuration.

Figure 3.8: Example Binary Decision Diagram

BDDs are often used as a representation of propositional formulas to reduce their size.
However, this approach is not feasible in the use-case of this chapter. This is because the
construction of the BDD representation for large formulas is costly, as it requires setting
variables to true and false and evaluating the formula each time to build the respective
sub-trees of a node in the BDD. This is similar to the calculation of the complete truth-
table, which was already discussed to be unfeasible.

The solution that is implemented for the use-case of this chapter is to implement custom
heuristic approaches that reduce the size of formulas in a reasonable runtime. The general
idea is to apply standard rules of Boolean algebra to detect parts of the Boolean formula
that can be converted to a more concise form. Apart from a list of standard Boolean
algebra laws, the main driver was manual inspection of formulas that were created by the
feature-effect analysis. From them, common patterns that could be further simplified were
included in the heuristic implementation.

The following list introduces the different implementation approaches that were created
in the context of this thesis (except the “simple Boolean algebra” approach, which has not

38

Analysis of Integer-Based C-preprocessor Variability

been developed in this thesis). They are ordered from simple to more sophisticated, and
generally build upon the previous approaches that were developed beforehand:

Prune Constants This most simple approach prunes constants and variable repetitions
(e.g. x V x) from the formula. This was also applied as a first simplification in the
introductory example of this section. The Boolean algebra rules implemented here
include identity, annihilator, idempotence, and double negation. The advantage of
this approach is that it is very fast; it requires only a single iteration, bottom-up
through the Boolean formula abstract syntax tree (AST). However, a disadvantage
is that it only implements very rudimentary simplifications; as seen in the intro-
ductory example of this section, further simplification approaches are almost always
required. In KernelHaven, this approach is referred to as the SIMPLE simplifier and
implemented in the FormulaSimplifier class.

Simple Boolean Algebra This approach applies more rules from Boolean algebra to sim-
plify the formula. These rules include, among the ones implemented in the previous
approach, complementation and absorption. In KernelHaven, this approach is re-
ferred to as the VISITOR simplifier and implemented in the FormulaSimplification-
Visitor class.

The complementation rules (FAAN A <= false and ~AV A <= true) are only
implemented for exact matches of A. This means, that if A itself is a sub-formula, the
complementation rule is only applied if both versions of A have the exact same AST
representation. For example, the commutativity of the A and V operators are not
considered in this check. This approach makes the equality checks to detect this sim-
plification rule fast. However, it also decreases the number of possible simplifications
that can be detected like this.

The absorption rules (AN (AV B) <= Aand AV (AAB) <= A) are only
implemented for A being a variable or a negated variable. This also greatly reduces
the overhead for equality checks to find this pattern in formulas to simplify.

More Complex Boolean Algebra This approach applies all of the above Boolean algebra
rules, but has an improved detection approach. In KernelHaven, this approach is
implemented in the FormulaSimplificationVisitor2 class.

The detection mechanism of the previous approaches is limited in detecting patterns
that can be simplified. They only check if simplification rules can be applied on
the exact operator structure of the AST. For instance, they can only detect the
idempotence rule (AN A <= A) if it appears directly under an operator. They
could detect it in the formula B A (A A A) and simplify it to B A A, but they are
unable to detect it like this: A A (B A A). Because of the associativity of A, both
formulas are equal. However, the second one does not contain A A A directly, thus
the previous approaches cannot detect this.

The “more complex Boolean algebra” approach improves the detection mechanism by
addressing this shortcoming. The operator structure is flattened, instead of keeping
the original structure of the binary AST. For instance, for the formula A A (B A A),
all three terms of the conjunction (A, B, and A) are considered at once. Then, when
checking for patterns that can be simplified, all combinations of terms are considered.
This way, the idempotence can be detected in any nesting structure, even if it cannot
be found when considering any operator in the AST by itself.

39

Variability-Aware Analysis of C Source Code

However, the flattened structure of terms leads to a significant increase of equality
checks, as all combinations of terms need to be considered now. To alleviate the
runtime penalty of this, equality checks are only done on variables. There are no
equality checks on more complex sub-formulas. For instance, the idempotence rule
is only detected when the same variable occurs in the list of terms; recurrence of the
same sub-formula is not found. In this regard, this approach cannot simplify some
cases that the previous approach could simplify. This disadvantage can be eliminated
by combining the “more complex Boolean algebra” approach with the next one, the
“equal sub-formula detection”.

In addition to all of the the above Boolean algebra rules, the “more complex Boolean
algebra” approach also applies the distributivity rules to factor-out common vari-
ables. In contrast to the previous approaches, this is beneficial in this approach, as
it can consider more terms to find common factors. This is possible, since the hierar-
chy of equal operators is flattened. The previous approaches only consider operators
with two operands, whereas this approach, by flattening the operator structure, can
consider many terms at once.

Equal Sub-Formula Detection This approach detects equal sub-formulas, which is used

to improve the detection mechanism for simplification possibilities. It is used together
with the previous approach. In KernelHaven, this approach is implemented in the
SubTreeSimplifier class.

The previous approach detects simplification possibilities by checking if a rule pattern
matches with the given formula. For instance, if the pattern —A V A is found (i.e.
two terms in a disjunction are negatives of each other), then the whole disjunction
is replaced by true according to the complementation rule. However, these patterns
are only detected when the symbols (A in this case) are variables. If A were a
sub-formula, e.g. B A C, then the pattern would not be detected by the previous
approach. However, the complementation rule could theoretically be used to simplify
this disjunction.

The sub-formula detection approach allows the previous approach to detect such
cases by replacing equal sub-formulas with variables. For example, the sub-formula
B AC is found more than once in the formula to simplify. In this case, this approach
would replace B A C' with a temporary variable, run the previous simplification
approach, and then replace the temporary variable with B A C' again. This allows
the previous simplification to detect cases where, for example, the sub-formula BAC
(which is then replaced by a temporary variable) is a part of the complementation
rule. The number of possible simplifications detected by the previous approach is
greatly increased by this approach.

This approach first detects all sub-formulas that occur more than once. The detection
is implemented by walking through the AST of the formula and collecting the (deep)
hashes of each operator. If two operators have the same (deep) hash, an additional
check is done that they are actually equal to avoid hash collisions. This algorithm
finds all sub-trees in the AST and detects when an equal sub-tree occurs more than
once. The (deep) hash of operators is constructed in a way that the commutativity
of the A and V operators does not matter, i.e. switched operands are still detected
as an equal sub-formula.

After all recurring sub-formulas are found, they are replaced one-by-one with tempo-
rary variables. After each replacement, the formula is passed to the previous simpli-

40

Analysis of Integer-Based C-preprocessor Variability

fication approach, and the temporary variable in the simplified formula is replaced
by the original sub-formula. The whole process of sub-formula detection is looped,
until no further changes are detected when simplifying the formula.

Combined Approach This approach is a combination of the above simplification ap-
proaches. In KernelHaven, this is referred to as ADAMS_AWESOME_SIMPLIFIER and
implemented in the AdamsAwesomeSimplifier class.

This approach was developed on a set of large formulas that were found in the feature-
effect analysis of the use-case of this chapter. It re-uses the above approaches and
applies them in an order that was found to produce good results with a reasonable
runtime on the given test set. The approach has the following steps:

1. Prune constants (see first approach above)
Move negations inwards as much as possible (e.g. via =(AV B) <= —-AA-DB)
Apply the simple Boolean algebra approach from above

Apply the more complex Boolean algebra approach from above

AN e o S

Apply the equal sub-formula approach from above (which internally uses the
more complex Boolean algebra approach)

6. Move negations outwards as much as possible (reverse idea to step 2)
7. Apply the equal sub-formula approach again

This whole process is applied in a loop that iterates until the length of the for-
mula (measured in characters of the string representation) no longer decreases. The
shortest formula that was found in all iterations is returned as the simplified result.

The general idea of each iteration is to apply the faster approaches first, as this
reduces the formula size early, before applying the the more costly approaches. In
the development process, the runtime and the formula size reduction of each step was
monitored. This, for example, showed that moving the negations inwards or outwards
before applying the equal sub-formula approach leads to better simplification results.
Additionally, repeating the whole loop until no further reduction is detected leads
to better results with only slightly increased runtime, compared to a fixed number
of iterations.

The above approaches are general in the sense that any arbitrary Boolean formula can
be input to them for simplification. This can be used as a post-processing step after the
feature-effect formulas have been created. However, there is also potential for simplification
during the feature-effect computation. This uses specifics in the feature-effect computation
to employ special simplification techniques. Figure 3.9 illustrates the feature-effect compu-
tation for a single variable on an abstract level. On the left, the presence conditions where
the variable occurs are supplied as the input. Each of them is used to create an XOR
term (cf. Formula 3.2), which are then all combined with a disjunction. This produces
the final feature-effect formula. In addition to this process, Figure 3.9 also shows where
simplifications are done using orange boxes. This includes several simplification steps that
use the general approaches described above, and a special simplifying disjunction.

One specialized simplification technique applied here is that the general simplification
approach described above is applied early and throughout the computation. Applying
simplification on the smaller parts that make up the final large formula has the potential

41

Variability-Aware Analysis of C Source Code

f= [[
S £ 25 2
Relevant ki g >8 g
} Feature
Presence & I:> XOR E> £ E> §§ E> £ E> Effect
Conditions = =) =
E £ %o E
n 7 7

Figure 3.9: Simplification steps in the feature-effect computation

to decrease the required runtime. This is because simplification algorithms are generally
faster on smaller formulas, since there are fewer possible combinations to consider when
applying simplifications rules. The resulting simplified formulas then also lead to a smaller
combined formula, which makes simplification on this faster. Additionally, the memory
footprint also decreases, as the simplifications remove unnecessary sub-formulas as soon
as possible, instead of carrying it throughout the computation process and removing it in
the final simplification step.

In the feature-effect computation, this concept is applied by inserting simplification steps
in-between each individual step. First, the presence conditions are simplified before any
computation is done. Simplification here is usually cheap, as presence conditions are the
smallest parts in the feature-effect computation. If simplification opportunities are found
here, they carry throughout the remaining process and thus have a large impact. Then,
after the XOR terms are created, they are also simplified. As shown in the introductory
example of this section, the XOR terms contain constants which can always be simplified.
Additionally, due to the structure of the XOR representation using A, V, and — operators,
the individual formulas grow considerably in this process. Simplifying these formulas here,
before they are combined to form an even larger formula, saves a lot of performance
overhead for the final simplification. After the disjunction that combines all XOR, terms,
another final simplification step is applied. This then produces the final result.%

Another specialized simplification technique developed in the context of this thesis is im-
plemented in the disjunction that combines the individual XOR terms. The idea here is to
leave out disjunction terms that are already covered by the other terms in the disjunction.
For instance, if the term A is already present in the disjunction, then adding the term
A A B next can be omitted. In this case, the first term is more general and covers the
second, more restrictive, term completely. The other way around, if a newly added term
is more general covering all existing terms in the disjunction, the existing terms can all be
dropped in favor of the new term. For instance, the existing terms A A B and A A C' can
be dropped when A is added to the disjunction. In this case, only the more general term
A is required to represent the whole disjunction. In the most extreme case, adding true
to a disjunction completely overrides any previous or future terms added to it.

The underlying idea leveraged by this approach, that more general terms cancel out the
more restrictive terms, goes along with the observations about feature-effects made in
Section 3.4. For feature-effects, it is common that a few code blocks with a general block-
specific feature-effect cause the more restrictive block-specific feature-effects of other code
blocks to disappear. From a simplification perspective, where smaller results are more
favorable, this is especially advantageous, as the restrictive terms that can be dropped are
usually longer. For instance, the term A A X, where X is a very large sub-formula, can be
dropped if A is also a term in the disjunction.

STf the feature-effect formulas are aggregated (cf. Section 3.4), there is another simplification step after
the aggregation.

42

Analysis of Integer-Based C-preprocessor Variability

The implementation of the simplifying disjunction uses SAT-solvers to determine which
terms of the disjunction are more general than others. While the satisfiability problem is
NP-complete, there is no runtime problem in practice. Modern solvers are very efficient,
especially with the for SAT-solvers relatively small formulas, that occur in the feature-effect
computation. Compared to the other simplification steps, the runtime of the SAT-solver
calls is insignificant.

The simplifying disjunction keeps track of the previously added terms. For each newly
added term, it is decided if all the previous terms or the newly added one are more
general. A more exact approach would be to check for each combination of two terms,
whether one is more general than the other. However, this is unfeasible, as it would result
in a quadratically growing number of SAT-calls with respect to the number of terms.
Instead, each newly added term (new) is compared to the disjunction of all previously
added ones (previous). The first SAT-call is sat(—previous A new), which checks if new is
a subset of previous. If this SAT-call returns false, the previous terms are more general
and cover the more restrictive new one; the new term is not added to the disjunction. The
second SAT-call is sat(previous A —new), which checks if previous is a subset of new. If
this call returns false, new is more general and covers all terms in previous. In this case,
all terms in previous are removed and only new is added. Finally, if both SAT-calls return
true, then neither new nor previous are subsets of each other. In this case, the previous
is kept and new is added to the disjunction; no simplification is done in this case.

3.6 Analysis Results

This section presents the results that were found in the application of the analysis pre-
sented in this chapter. This is a summary of the results found in the previously published
work [EDK+18]. The analysis was conducted on 7 recent product variants which contain
120 % variability (cf. Section 3.1). The selection of the product variants aimed at creat-
ing a diverse product set, covering two different engine types: diesel (2 product variants)
and gasoline (5 product variants). The feature-effect analysis conducted on these prod-
uct variants created a result table for each of them. These tables list all the variability
variables that are used in the respective product variant, and the feature-effects for these
variables.

The feature-effects computed for the variability variables can be thought of as precon-
dition that defines when configuring the variability variable has an effect on the final
product (cf. Section 3.4). Variables with the feature-effect true always have an effect on
the product; they are independent of all other variability variables. We call these top-level
or independent variability variables, as these are on the top of the dependency hierarchy.
In contrast, all other variability variables are dependent variables, as their effect on the
product depends on other variables being configured a certain way.

The first analysis of the feature-effect results examines the proportion of dependent and
independent variability variables in each of the analyzed product variants. Figure 3.10
depicts the found results. The absolute number of variability variables cannot be disclosed
due to confidentially reasons. In this figure, the number of all variability variables in all
product variants has been used as the 100 % baseline. The height of the bars signifies
the relative number of variability variables used in each product variant. For example,
58.1 % of the variability variables encountered in all 7 product variants are present in
the first product variant. Of these, about 68.7 % (i.e. 39.9 % of all variability variables)

43

Variability-Aware Analysis of C Source Code

% of total unique feature variables

Figure 3.10: Ratio of dependent vs. independent variables per product variant [EDK+18]

are independent/top-level variables in this product variant. The total sum over of the
number of used variability variables of the product variants is greater than 100 % as many

60
8 50
>
©
]
a 40
Q
o
g 30
£
E= 20
3

10
Type
Independent
Dependent

62.8%
58.1%

()
32.4% 333% 2030

12.5%
7.9%
- []

Product 1 Product 2 Product 3 Product 4 Product5 Product 6 Product 7

Gasoline Gasoline Gasoline Gasoline Gasoline Diesel Diesel
39.6% 40.7% 4% 12.5% 12.9% 12.4% 5.4%
18.5% 22.1% 3.9% 19.9% 20.4% 22.9% 7.1%

variability variables occur in more than one product variant.

The next analysis of the feature-effect results aggregates the individual results of the 7
analyzed product variants. The aggregation compares the classifications into independent
versus dependent variables in each product variant. If a variability variable is consistently
dependent or independent it remains in that class. However, if a variability variable is
dependent in some product variants, but independent in others, then it is classified as

mized.

% of total unique feature variables within

Figure 3.11: Aggregated classification of independent vs. dependent variables [EDK+18]

100%
90%
"
S 80%
=}
3
0,
s 70%
@
g— 60%
a
S5 50%
S 40
9 40%
wv
L 30%
wv
3
©20%
10%
0%
* Mixed
Independent
Dependent

All Product Samples Gasoline Products Diesel Products
25.1% 19.0% 3.5%
40.9% 48.9% 33.4%
34.0% 32.1% 63.1%

44

Analysis of Integer-Based C-preprocessor Variability

Figure 3.11 shows the results of this aggregated classification. The first bar depicts the
ratio of the classifications when aggregating all product variants. The next two bars depict
the ratio when only aggregating all gasoline (5 product variants which use 93.5 % of all
variability variables) or diesel (2 product variants which use 37.9 % of all variability vari-
ables) product variants. This chart shows that aggregating more product variants leads to
greater proportion of mixed variables, i.e. variables that are classified inconsistently across
the individual product variants. For the specific product variants here, the high amount
of mixed variables could be explained by their selection, which aimed at a high diversity
of products. We would expect that a set of more similar products would lead to more con-
sistent results regarding the classification of dependent and independent variables. This is
already hinted in the chart, as the separate aggregation of the gasoline and diesel product
variants results in more coherent classifications (i.e. less amount of mixed variables).

A final analysis of the feature-effect results aims at further exploring the relation of mixed
variables and the number of product variants they appear in. We expect that the likelihood
of a variability variable being classified as mixed increases with the number of product
variants it appears in. This is simply because the classification of a variable can only change
from consistent (i.e. consistently independent or consistently dependent) to mixed, and
never from mixed to consistent. The statement, that a variable is consistently dependent
or independent, increases in value when it holds over more product variants. For instance,
a feature-effect that is found across many product variants likely represents more general
domain knowledge than a feature-effect that is only found in a small number of product
variants.

46.2%
45%
3
o 40%
e
ST 35%
o3
5 2 30%
B 2
v QO
= = 25%
s g
T3 20%
S ¢
© f, 15%
2% 10% 8.2%
o
= o . 2.6%
o, M T O em W L ==
1 2 3 4 5 7
Mixed 0.0% 6.0% 4.3% 5.8% 5.6% 2.3% 1.1%
Independent 25.7% 6.2% 2.0% 3.3% 1.2% 1.1% 1.3%
m Dependent 20.5% 5.7% 2.2% 3.4% 1.4% 0.7% 0.2%

Number of impacted products

Figure 3.12: Classification of variables grouped by number of products [EDK+18]

Figure 3.12 depicts the classifications of variables into independent, dependent, and mixed
grouped by the number of product variants they appear in. For instance, the first bar shows
the variables that appear in exactly one product variant. In this case, no variable can be
classified as mixed, as there can be no contradictory classifications in a single product
variant. The second bar shows the classifications of the variables that appear in exactly
two product variants, et cetera. The ratio of variables classified as mixed to non-mixed
rises from 33.5 % for variables that appear in 2 product variants up to 68.3 % for variables
appearing in 5 product variants; it then falls back down to 42.3 % for variables appearing

45

Variability-Aware Analysis of C Source Code

in all 7 product variants. This observation is somewhat consistent with the expectation
that the ratio of mixed variables increases with the number of product variants they are
found in. The overall amount of mixed variables (25.1 %) is greater than the amount of
consistently dependent variables occurring in 2 or more product variants (13.6 %). This
shows that the chance of finding a feature-effect that appears consistently across many
product variants is quite low. This may stem from the fact that the analyzed product
variants were selected to be diverse; a selection of more coherent product variants may
have led to more feature-effects appearing consistently throughout the product variants.

Overall, there were a number of lessons learned from conducting this analysis on a real-
world industrial product line:

e Considering additional sources of variability information improved the result of the

analysis. The original prototypes for the feature-effect analysis on the PS-EC product
line did not consider all the variability sources listed in Section 3.1. The variability
conditions in interface descriptions and the list of legacy variability variables were
only added later during the development process. The inclusion of the variability con-
ditions from the interface descriptions improved the accuracy of the feature-effects;
generally, the more sources where a variability variable may have an effect on the
product line are considered, the more accurate the computed feature-effects become.
The inclusion of the legacy variability, which effectively replaces some variables in
the variability conditions with constants, helped to reduce the size of the result-
ing feature-effect formulas. This way, the formulas were more focused on relevant
variability.

The analysis in this chapter was carried out on a diverse set of products. This lead
to the results showing rather inconsistent classifications for the feature-effects of the
variability variables. Analysis of groups of more similar product variants may lead
to more consistent, and thus more usable result.

Both, identifying dependent and independent /top-level variables can guide the cre-
ation of variability model constraints. Top-level variables, i.e. variables that always
have an effect on the product, represent the highest level of the dependency hierar-
chy. The feature-effects of dependent variables can serve as a basis for the creation of
variability model constraints, or they can be used to verify existing constraints. Vari-
ability model constraints have the potential to save effort and increase the quality of
the configuration creation process. Additionally, they could also be used to guide the
definition of new test cases by ensuring that configurations for the test-cases result
in actually different products.

The flexibility of KernelHaven allowed the analysis pipeline to be adapted to the
PS-EC use-case. A preparation plug-in converted all integer-based variability to
propositional logic, which can be handled by the data models of KernelHaven. New
extractor plug-ins allowed the adaptation to the specifics how the PS-EC product
line implements variability, including custom extractors for proprietary input file for-
mats. The analysis components were extended to adapt the feature-effect approach
to the specifics of the PS-EC product line; for example, the aggregation of artifi-
cial Boolean variables that were introduced as replacements for the integer-based
variability variables was added to the feature-effect computation.

46

Extraction of Source Code Combined with Variability

4 Extraction of Source Code Combined with
Variability

This chapter presents the srcML-Extractor that was developed as a code model extractor
for KernelHaven in the context of this thesis. It combines the traditional abstract syntax
tree (AST) representation of source code with variability information. This enables anal-
yses to augment well-established analysis techniques for traditional code with variability
information. Additionally, the interaction of constructs in the source code with variability
mechanisms can be analyzed. The use-case that initiated the development of this extrac-
tor is a framework for implementing variability-aware software product line metrics. Such
metrics quantify aspects of the code, the variability, and the combination of both. This
use-case and its motivation are introduced in Section 4.1. Section 4.2 introduces the srcML
tool, that is used for the basic parsing of source code. The output of the srcML parsing
requires further transformations to fulfill the requirements of the metric framework. This
transformation process performed by the sreML-Extractor is explained in Section 4.3. Fi-
nally, Section 4.4 discusses alternative approaches that enable the analysis of source code
combined with variability information.

4.1 Use-Case

A recent systematic literature review on variability-aware software product line metrics
found shortcomings in the reviewed field [EYS18]. In contrast to traditional software met-
rics, variability-aware metrics consider the variability that is present in software product
lines. The literature review found a number of metrics that are designed for software prod-
uct lines. However, it also found the following weaknesses in the field of variability-aware
metrics:

e There is a lack of metrics that combine information from the variability model and
the source code. Most metrics are defined only for one or the other aspect. However,
the variability in software product lines spans the whole project. Metrics that per-
form a more encompassing analysis that includes all facets of variability are likely
beneficial.

e There is a lack of proper evaluations for variability-aware metrics. The literature re-
view found that only about 36 % of the metrics had any evaluation at all. Addition-
ally, some of the evaluations lacked in quality. Evaluations of metrics are important,
as they explore how the application of the metrics can be beneficial in practice.

e There seems to be limited knowledge about existing variability-aware metrics in the
community. The literature review found multiple instances where conceptually equal
metrics were developed independently by different groups. This is disadvantageous,
as it may lead to confusion about the multiply defined metrics. Additionally, the
effort that went into the re-creation of existing metrics could be spared. The literature

47

Variability-Aware Analysis of C Source Code

review already remedies this to some extend, as it provides an encompassing overview
of the existing variability-aware metrics.

e Established traditional (i.e. non-variability-aware) metrics were often not considered
in the creation of new metrics. Concepts that are well-known in traditional metrics
were not considered for the variability-aware metrics. The authors of the literature
review argue that adapting traditional metrics to the variability information leads
to a more comprehensive set of metrics.

MetricHaven, a framework for implementing variability-aware metrics, was conceived to
address some of the findings of the systematic literature review [EKS19]. MetricHaven
is implemented as a plug-in for the KernelHaven analysis framework [EK19]. It follows
the basic architecture of KernelHaven, where specialized extractors create common data
models that are passed to the metrics (cf. Section 2.4). The metrics are implemented
on the generic interface of the common data models, thus they are independent from
implementation details of specific product lines.

MetricHaven enables metrics to combine the variability information from different sources.
This comes from the basic architecture of KernelHaven, where the three sub-pipelines ex-
tract different kinds of variability information. All these variability sources are available
for the metric implementations. This enables the creation of metrics that combine in-
formation from the variability model and the source code, which was an issue detected
by the systematic literature review. Additionally, MetricHaven allows the combination of
metrics. For instance, variability model metrics can be used as weights in the calculation
of variability-aware source code metrics. Such combinations of metrics lead to new mixed
metrics, which combine information from the variability model and the source code.

Metrics that are implemented in the MetricHaven framework can easily be executed on
different product lines. The KernelHaven framework supplies various utility functions and
extractors that are required to run metrics on different software product lines. New metrics
can be implemented with relatively little effort, as they do not have to handle common
functionality that is already implemented in KernelHaven and MetricHaven. This gives
researchers the tools to evaluate existing and new metrics. The literature review found
that such evaluations are missing in many cases.

MetricHaven implements many of the metrics found in the systematic literature review.
This serves as documentation of the metrics and as a basis for researches and practitioners
to gather experience with them. This addresses the weakness found in the literature review,
that there seems to be limited knowledge about existing metrics. MetricHaven, as an
open-source project that implements most of the known variability-aware metrics, has the
potential to increase the awareness about existing metrics.

Traditional metrics are also supported by MetricHaven. Established metrics on source code
that do not consider variability may still be interesting in combination with the variability-
aware metrics. Additionally, this addresses the finding of the literature review that new
variability-aware metrics often have a weak connection to traditional ones. MetricHaven
supports both kinds of metrics, thus it can help the creation of new variability-aware
metrics based on traditional ones.

The Linux Kernel [Linl9] served as the use-case for the development of MetricHaven.
This large software product line is available as open-source and is commonly used as an
evaluation use-case in software product line research. The properties of the the Kernel-
Haven architecture make MetricHaven agnostic to specific product lines, even though it

48

Extraction of Source Code Combined with Variability

was developed for this specific use-case. The Linux Kernel has three kinds of variability
that reflect the basic structure of the three sub-pipelines in KernelHaven:

Kconfig The variability model of the Linux Kernel is implemented in the Kconfig lan-
guage. It defines the variability variables with a name, type, and description. Ad-
ditionally, constraints between the variables define when they can be de-/selected.
This variability model is extracted with the KconfigReaderExtractor in KernelHaven
[KE18b].

Kbuild The Kbuild build system controls the compilation process of the Linux Kernel. It is
based on Makefiles and decides, based on the configuration, which files are included in
the build process. The variability information of this conditional inclusion of source
files is extracted with the KbuildMinerExtractor in KernelHaven [KE18a].

C-preprocessor blocks In the C-source code files of the Linux Kernel, conditional compila-
tion directives of the C-preprocessor are used. Variability variables are prefixed with
CONFIG_ to differentiate them from other preprocessor symbols. The srcML-extractor
used in this sub-pipeline is developed in this chapter.

The extractors for the Kconfig and Kbuild systems already existed as plug-ins for Kernel-
Haven. They comprehensively parse and represent the variability information from their
respective assets. However, there was no adequate plug-in available for the source code
extraction. A code extractor for this use-case is developed in the context of this thesis and
presented in this chapter.

MetricHaven requires a combined view of the traditional abstract syntax tree (AST) and
the variability information of the source code. For traditional metrics, i.e. metrics that
do not consider variability, the traditional AST alone would suffice. For example, the
Cyclomatic Complexity metric from McCabe requires the control flow graph which can be
read from an AST [McC76]. However, variability-aware metrics additionally require the
variability information (e.g. the hierarchy of conditional compilation blocks). While some
of the variability-aware metrics require only the variability information, others combine the
information from the traditional AST with the variability information. For instance, the
Lines of Feature Code (LoF) metric counts how many source code lines are nested inside
conditional compilation blocks [EYS18]. This can be implemented without the traditional
AST. However, the Degree Centrality (DC) metric combines the nesting of conditional
compilation blocks with the number of incoming and outgoing edges in the call graph
[EYS18]. The former aspect of the DC metric requires the variability information and the
latter aspect requires the traditional AST structure.

The main challenge of a code model extractor for MetricHaven is to parse the traditional
AST structure and the variability information together. This also requires that a data
model is developed that can represent both aspects at the same time. Traditional metric
tools only extract the AST and cannot handle variability. In the context of software product
lines, they can only be used to analyze a single product (cf. product-specific analysis in
Section 2.3). On the other hand, the CodeBlockExtractor presented in Section 3.3 can
only extract variability information. It does not parse the C-code and thus lacks important
information for the metrics.

The model created by the extractor should also represent the developer perspective on
the source code file. This means, that the elements in the model should closely reflect the
structure that the developer sees when looking at the source code file. For instance, vari-
ability should not be resolved by enumerating the possible variations of the AST. Instead,

49

Variability-Aware Analysis of C Source Code

the C-preprocessor blocks should appear in the model as surrounding elements, as they do
in the source code itself. This requirement stems from the use-case for MetricHaven, that
investigates the influence of variability on the developers. Here, it is required to quantify
the variability that the developer has to work with in the source code. A model that does
not reflect the structure of the variability in the source code would hinder this goal.

4.2 srcML Parsing Tool

The srcML-extractor presented in this chapter uses the srcML tool [CDM11; CMD+17]
for the basic parsing of C-source code. The term srcML refers to both, the tool that parses
source code and the resulting markup structure (“source markup language”). The srcML
tool parses the C-code and adds the result as XML markup on-top of the source code. The
term srcML-extractor refers to the KernelHaven plug-in that internally uses the srcML
tool for the creation of the code model.

int main() {
int a = 1;
if (a >= 1) {
return 1;

}

return a;

(a) C-source code

<unit xmlns="http://www.srcML.org/srcML/src"
< xmlns:cpp="http://www.srcML.org/srcML/cpp" revision="0.9.5"
<~ language="C" filename="file.c">
<function><type><name>int</name></type>
< <name>main</name><parameter_list>()</parameter_list> <block>{
<decl_stmt><decl><type><name>int</name></type>
< <name >a</name> <init>= <expr><literal
< type="number ">1</literal></expr></init></decl>;</decl_stmt>
<if>if <condition>(<expr><name>a</name >
— <operator>>=</operator> <literal
< type="number">1</literal></expr>)</condition><then> <block>{
<return>return <expr><literal
< type="number">1</literal></expr>;</return>
}</block></then></if>
<return>return <expr ><name >a</name></expr>;</return>
}</block></function >

</unit>

(b) Parsed srcML

Figure 4.1: Example of C-source code parsed by srcML

Figure 4.1 shows an example of how srcML represents its parsing result. Figure 4.1a shows
the original C-source code that is parsed. Figure 4.1b shows the parsing result created by
the srcML tool. All tokens of the original code are still present in the XML structure. The
XML tags added around them represent the syntactic structure of the code. For instance,

50

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Extraction of Source Code Combined with Variability

the tokens in line 7 are wrapped in a <return> tag, which indicates that this construct is
a return statement. Inside of this construct, the token a is marked-up to be an identifier
(<name>) inside the return expression (<expr>).

<unit =xmlns="http://www.srcML.org/srcML/src"
< xmlns :cpp="http://www.srcML.org/srcML/cpp" revision="0.9.5"
<~ language="C" filename="file.c">
<function>
<type><name >int</name></type>
<name >Main</name >

<parameter_1ist>()</parameter_1ist>

<block>{
<decl_stmt >
<decl>
<type><name >int</name></type>
<name >a</name >
<init >
<expr >
<literal type="number">1</literal>
</expr>
</init>
</decl>
;y</decl_stmt >
<if >
if

<condition>(
<expr >
<name >a</name >
<operator>>=</operator>
<literal type="number">1</literal>
</expr>
)</condition>

<then >
<block >{
<return >
return
<expr >

<literal type="number">1</literal>
</expr>
;</returmn >
}</block>
</then>
</if >
<return >
return
<expr ><name >a</name ></expr >
sy </ return>
}</block>
</ function >
</unit >

Figure 4.2: Formatted parsing result of srcML

o1

N o g s W N R

o o A W

Variability-Aware Analysis of C Source Code

The srcML markup retains the complete text content of the original code [CDM11]. If
the XML tags were removed, the original code is completely re-created. This also includes
newlines and whitespace characters; all tokens inside the XML have the same line number
as in the original source code. This makes the resulting XML hard to read. Figure 4.2
shows the same parsing result as Figure 4.1b, formatted for readability. This shows that
the srcML markup is an abstract syntax tree (AST) of the code. For instance, the function
main (starting in line 2) has a <type>, <name>, and <parameter_list> followed by a
function body (<block>) with nested statements. This equals the data structure used to
represent a function in an AST. srcML arranges its AST in a way that allows it to keep
the original tokens in their original order and location.

In contrast to a compiler, srcML can also parse and add markup for incomplete or syn-
tactically invalid programs. srcML aims at a low-level representation of the AST [Col05].
Higher-level information, such as types and call graphs, are not included. srcML only adds
low-level syntactical markup for the tokens in the source code. For instance, any state-
ment starting with the keyword return up to the semicolon that ends the statement is
marked-up with <return>. srcML does not add information which function this return
statement belongs to (see for example the return statements in Figure 4.1). This approach
of marking-up the tokens with low-level syntactical information makes the srcML tool
more accepting than a compiler.

srcML has a developer-centric view on the source code [CDM11], that is, srcML represents
the code in a way that is very similar to its structure in the source code file. This is a result
of the low-level markup approach of srcML: the basic structure of the code is retained and
is only enriched by additional syntactical markup. In addition to this, srcML also does
not evaluate C-preprocessor directives before parsing the code. Instead, the C-preprocessor
directives are included in the XML markup of the file. This also supports the developer-
centric view on the source.

#ifdef A
1
#else
2
#endif

(a) C-source code with C-preprocessor directives

<expr_stmt ><expr ><name >a</name> <operator >></operator >
<cpp:ifdef>#<cpp:directive>ifdef</cpp:directive>
<> <name>A</name></cpp:ifdef >
<literal type="number">1</literal>
<cpp:else>#<cpp:directive>else</cpp:directive></cpp:else>
<literal type="number">2</literal></expr>
<cpp:endif>#<cpp:directive>endif</cpp:directive>
> </cpp:endif >
y</expr_stmt >

(b) Parsed srcML with C-preprocessor directives

Figure 4.3: Example of C-source code with C-preprocessor directives parsed by srcML

52

Extraction of Source Code Combined with Variability

Figure 4.3 shows an example how C-source code with C-preprocessor directives is parsed.
The #ifdef in line 2 is marked up as an <cpp:ifdef> and inserted in the XML in the
location that corresponds to its location in the source code. There is no higher-level infor-
mation that the #ifdef, #else, and #endif belong to each other. The three C-preprocessor
elements are simply added into the <expr> and <expr_stmt> elements, which corresponds
to their placement in the source code.

The developer-centric view of the srcML markup makes it ideal for the use-case of Met-
ricHaven. As explained in Section 4.1, the code model of MetricHaven should represent
the developer perspective on the source code. srcML fulfills this requirement by keeping
the complete structure of the original source code file and only adding syntactical markup
that preserves this structure. The syntactical information forms an AST, which can be
used for the metrics that require the traditional AST structure. The variability informa-
tion is retained, as the C-preprocessor directives are not resolved, which can be used for
the metrics that require the variability information.

While the basic structure of the srcML markup fits the use-case of MetricHaven, there are
also some adaptations required. First, the srcML markup is created as an XML structure.
This needs to be converted into a Java object structure that is compatible with the code
model interfaces of KernelHaven. This is required as all extractors in KernelHaven need to
conform to the common data model interfaces (cf. Section 2.4). Additionally, the integra-
tion of the conditional compilation blocks of the C-preprocessor needs to be transformed.
As shown above in Figure 4.3, the #ifdef directives are simply marked up to be #ifdef
directives; there is is no information that the elements between the #ifdef and the #else
are actually nested inside the #ifdef. However, the resulting code model should reflect
that the elements after the #ifdef are nested inside a conditional compilation block. This
requires a transformation of the structure that srcML creates.

4.3 Transformation of srcML

This section describes the main implementation part of the sreML-extractor plug-in for
KernelHaven [KE19b]. The extractor uses the srcML tool for the basic parsing of source
code files. After that, a transformation process is required that adapts the parsing results
of srcML to adhere to the code model interface required by KernelHaven. This section
describes this transformation process.

" sreML | ; srcML-Extractor ‘
| Code
Conver5|on||:> Model1

Source | Prepro-
Code 3 cessing

XML

Figure 4.4: srcML-Extractor transformation process

Figure 4.4 shows an overview of the transformation process. The original source code file
on the left is first parsed by the srcML tool. This results in an XML markup as shown in
Section 4.2. This XML markup is the input for the srceML-exractor. After parsing the XML
using the standard Java API, the XML structure is first passed through a preprocessing
step. This step performs modifications on the XML nesting structure that are required
before further conversion. After this preprecessing step, the XML structure is converted to

53

© 0 N o o N W N R

© 0 N o o s W N e

-
o

Variability-Aware Analysis of C Source Code

an AST that implements the KernelHaven code model interface. This results in the code
model that is then passed to the analysis (i.e. metrics in the case of MetricHaven).

The following subsections will explain the preprocessing and conversion steps in detail.
Subsection 4.3.1 describes the preprocessing step that transforms the nesting structure
of #ifdef directives. Subsection 4.3.2 describes the AST that implements the required
KernelHaven interface and the conversion of the XML structure to this AST structure.

4.3.1 Transformation of Variability Nesting Structure

The srcML tool only marks-up C-preprocessor conditional compilation directives (#ifdef
etc.) and does not create a nesting a structure for them. This can be seen in Figure 4.5,
which shows a simplified version of the srcML markup from Figure 4.3. The <literal> in
line 4 is not nested inside the #ifdef in line 3, although semantically it should be. The C-
preprocessor directives are only added as a flat structure into the XML. Additionally, there
is also no information that the #ifdef, #else, and #endif belong to the same construct.
This is because srcML does not parse such higher-level information; it only does low-level
syntactical markup (cf. Section 4.2).

<expr>
<l=-= ... ==>
<cpp:ifdef>#ifdef A</cpp:ifdef>
<literal>1</literal>
<cpp:else>#else</cpp:else>
<literal>2</literal>
<cpp:endif>#endif</cpp:endif>
<l=-= ... ==

</expr>

Figure 4.5: C-preprocessor markup created by srcML (simplified)

The code model created by the srcML-extractor should reflect that elements of the AST
are nested inside conditional compilation blocks. MetricHaven requires a combined view of
the variability and the traditional AST structure. The srcML approach that inserts C-pre-
processor directives individually without considering nesting is not enough. The variability
information has to be combined with the AST structure. Figure 4.6 shows the (simplified)
nesting structured that combines the variability information with the AST. Here, the
<literal> elements are nested inside the C-preprocessor blocks.

<expr>
<l-- ... ==
<cpp:ifdef condition="A">
<literal>1</literal>
</cpp:ifdef>
<cpp:else condition="!A">
<literal>2</literal>
</cpp:else>
Kl-- .. ==
</expr>

Figure 4.6: Required C-preprocessor nesting (simplified)

54

Extraction of Source Code Combined with Variability

The preprocessing step in the sreML-extractor transformation process (cf. Figure 4.4)
transforms the flat C-preprocessor markup created by srcML to the required nesting struc-
ture. This is performed on the XML before it is converted to the AST objects in the next
step. First, the preprocessing matches which conditional compilation statements belong
together. For instance, in Figure 4.5 this would identify that the #ifdef in line 3 is closed
by the #else in line 5; the #else is closed by the #endif in line 7. This matching also
considers that conditional compilation blocks can be nested inside each other, by using
a stack to keep track of the nesting level. If conditional compilation blocks are missing
siblings (e.g. an #endif without an #ifdef) then the C-preprocessor information is mal-
formed and cannot be parsed by the srcML-extractor. In this case, parsing of the whole
file is aborted.

After all matching conditional compilation statements are found, the nesting structure
is transformed. The basic approach is to move all XML nodes that appear between the
opening and closing conditional compilation statements into the opening XML node. For
instance, the <1literal> in line 4 of Figure 4.5 appears between the opening #ifdef in
line 3 and its closing #else in line 5. Thus, it is moved into the <cpp:ifdef> node as seen
in Figure 4.6. The #else itself opens another block where the <1iteral> from line 6 is
moved into. The #endif in line 7 only ends the previous #else block. Since the nesting
structure now fully reflects which elements are nested inside the conditional compilation
blocks, the <cpp:endif> node is removed.

Note that in the simplified figures used to illustrate this example the locations of the
XML nodes change. For example, the <1iteral> that is originally in line 6 of Figure 4.5 is
moved to line 7 of Figure 4.6. This is only because the figures are simplified and formatted
for readability; the actual implementation takes care that location information is fully
preserved. This allows the code model that is eventually created in the srcML-extractor
to have correct references to the original locations in the source file. Also, the C-pre-
processor tokens (e.g. the #ifdef A) in Figure 4.5 have been transformed to condition
attributes in Figure 4.6. This is only done for illustration purposes and does not reflect
the implementation of the srcML-extractor.

Figure 4.5 does not exactly reflect the nesting structure of Figure 4.3. The actual nesting
structure is shown in Figure 4.7. The <cpp:endif> is not nested inside the <expr> that the
other C-preprocessor directives are nested in, but as a sibling of the <expr> statement. This
is a commonly occurring scenario in the output of the srcML tool. srcML detects that the
expression is finished after the last expression element (the second <literal>) and closes
the <expr> tag. The <cpp:endif> is inserted after this, even though all its corresponding
siblings are inside the <expr>. A similar scenario can happen with an opening #ifdef at
the start of a statement or expression: srcML first inserts the <cpp:ifdef> node, before the
statement or expression node is opened. These scenarios occur because srcML only does
low-level markup and does not consider where the siblings of a C-preprocessor directive
are located.

The scenarios, where the opening or closing conditional compilation directive are on the
wrong nesting level, cause problems for the transformation process. For instance, in Fig-
ure 4.7 there is now a closing </expr> node in line 8 between the <cpp:else> and the
<cpp:endif>. Moving all nodes that are enclosed by the <cpp:else> and <cpp:endif>
is not possible anymore, as the closing </expr> node cannot be moved without its corre-
sponding opening node in line 2. For this kind of scenario, the srcML-extractor has a special
correction mechanism: if such a scenario is detected, the nesting structure is adapted so
that the normal process can continue. In the case of Figure 4.7, the <cpp:endif> in line 9

95

© 0 N o o W N R

—
S}

Variability-Aware Analysis of C Source Code

<expr_smt>
<expr>
<Kl-- .. ==>
<cpp:ifdef>#ifdef A</cpp:ifdef>
<literal>1</literal>
<cpp:else>#else</cpp:else>
<literal>2</literal>
</expr>
<cpp:endif>#endif</cpp:endif>
;</expr_smt>

Figure 4.7: Problematic C-preprocessor markup created by srcML (simplified)

is moved into the <expr>, as for example shown in Figure 4.5. The normal transformation
of the nesting structure of the C-preprocessor statements can then proceed.

Another problematic scenario occurs when the conditional compilation structure causes
the AST structure to change depending on the variability. This can happen, for instance, if
the header of an if-statement is inside an #ifdef, but the body of that if-statement is not.
Figure 4.8 illustrates this problem. If the #ifdef is selected, the block with the statement
has to be nested inside the if-statement. However, if the #ifdef is deselected, the block
with the statement has to be nested directly under the parent root node. This creates
a problem for the code model that the srcML-extractor creates: both possible variations
have to be represented in the AST, but the block with the statement can only have one
parent in the AST.

#ifdef A

if (cond)
#endif
{

stmt ;

[N B N U C R

}

(a) C-source code (b) Resulting AST variations

Figure 4.8: Code with changing structure depending on conditional compilation

Figure 4.9 shows the (simplified) markup that the srcML tool generates for the code in
Figure 4.8a. The srcML tool parses the code as if there were no C-preprocessor directives.
Thus, the block with the statement is marked-up to belong to the if-statement. However,
the sreML-extractor cannot simply keep this structure as this does not adequately reflect
the case that the block with the statement can also occur outside of the #ifdef. For this
kind of scenario, the srcML-extractor has a special mechanism that is applied when three
conditions are met:

(a) the opening conditional compilation directive (the <cpp:ifdef> in this case) is in
front of a structure (the <if> in this case), and

(b) the closing conditional compilation directive is somewhere nested inside that struc-
ture (the <cpp:endif> is nested inside the <if>), and

56

W N e

© 0o N o o

10

11

N o oo w N

©

10

11

12

13

Extraction of Source Code Combined with Variability

<cpp:ifdef>#ifdef A</cpp:ifdef>
<if>if
<condition>(cond)</condition>
<then>
<cpp:endif>#endif</cpp:endif>
<block>{
<statement>
stmt ;
</statement>
}</block>
</then>
</if>

Figure 4.9: srcML markup of Figure 4.8a (simplified)

(c) there are further elements after the closing conditional compilation directive nested
inside the structure (in this case, the <block> follows the <cpp:endif>).

When all three conditions are met, the srcML-extractor preprocessing transforms the XML
structure so that both possible variations of the AST are reflected. The closing conditional
compilation block and the following nodes (i.e. the <cpp:endif> and <block> nodes in
Figure 4.9) are moved behind the structure that they were previously nested in (the <if>
in this case). In the place of the nodes following the conditional compilation block (the
<block> node), special reference nodes are created that indicate that the nodes may occur
in either place of the AST.

<cpp:ifdef>#ifdef A</cpp:ifdef>

<if>if
<condition>(cond)</condition>
<then>
<reference refid="1" />
</then>
</if>

<cpp:endif>#endif</cpp:endif>
<block id="1">{
<statement>
stmt ;
</statement>
}</block>

Figure 4.10: Transformation result with reference node (simplified)

Figure 4.10 shows the result of such a transformation for the example in Figure 4.9. The
<cpp:endif> and <block> are moved behind the closing </if> node. In the original place
of the <block> node (line 5), a special <reference> node is created that refers to the
<block> node.! This XML structure closely reflects the information that is present in
the original source code (Figure 4.8a). The if-statement is enclosed by an #ifdef. The

'For this illustration, the <block> node got an id attribute and the <reference> node got a refid
attribute with the same ID. However, in the actual implementation of the srcML-extractor, the reference
is implemented in a different way (using the UserData API of the Java XML API). The different
approach using IDs in this illustration was chosen for better readability in text-form.

o7

® N e oA W N

Variability-Aware Analysis of C Source Code

following block with a statement is not inside that #ifdef. However, the if-statement has
a reference to the block, as it represents the body of the if-statement if it is compiled-in.

While the standard process and the two specialized mechanisms for transforming the
variability nesting structure can handle many common cases of variability, there are C-
preprocessor constructs possible that cannot be handled by the srcML-extractor. This is
because the C-preprocessor does arbitrary text-based modifications on the source code.
This can lead to constructs where the conditional compilation blocks cannot be integrated
with the AST structure of the source code. If this is the case, parsing of the whole file
is aborted; the srcML-extractor is not able to create a model where the AST and the
variability information are combined.

if (
#ifdef A
condl)
stmtl;
#else
cond?2)
#endif
stmt2;

Figure 4.11: Example C-preprocessor construct that cannot be transformed

Figure 4.11 shows a C-preprocessor construct that cannot be transformed by the srcML-
extractor. The problem here is that the #ifdef and the #else blocks cover different
elements of the AST. The #ifdef contains the condition of the if-statement (line 3) and
the then-statement (line 4), while the #else block only contains the condition of the
if-statement (line 6). If both blocks would only contain an if-condition (and the then-
statement would not be nested inside a C-preprocessor block), then the conditional com-
pilation blocks could be inserted into the AST. However, it is not possible with the AST
structure of the srcML-extractor that the #ifdef block surrounds both, the condition
and the then-statement of the if-statement. Technically, the transformation process of the
C-preprocessor blocks fails because the opening #ifdef in line 2 starts nested inside the
if-condition, while its closing #else appears on a higher level after the then-statement.

This problem of C-preprocessor directives that do not integrate into the AST structure
is known as wundisciplined preprocessor annotations [LKA11]. Liebig et al. define disci-
plined annotations as C-preprocessor directives that cover whole statements or functions.
Consequently, undisciplined C-preprocessor directives are inside statements, or break up
structures like if-statements and function definitions. The code in Figure 4.11 falls into
this definition of undisciplined annotations. Liebig et al. found in an empirical analysis of
40 software projects, that while most C-preprocessor directives are disciplined, there are
undisciplined occurrences in almost all projects. Medeiros et al. propose a catalog of refac-
torings to turn undisciplined C-preprocessor directives into disciplined ones [MRG+17].
They also found that developers are generally in favor of disciplined C-preprocessor direc-
tives, as opposed to undisciplined ones.

Another problem in the handling of C-preprocessor blocks is caused by the way the srcML
tool parses code around C-preprocessor blocks. srcML parses the C-tokens as if there were
no C-preprocessor directives. The problem that results from this is illustrated in Fig-
ure 4.12. On the left (Figure 4.12a), the source code shows two alternative then-statements
(lines 4 and 8) for an if-statement (line 1). On the right (Figure 4.12b), the (simplified)

58

Extraction of Source Code Combined with Variability

parsing result of the srcML tool is shown. Lines 5 and 6 show that the then-block and
the if-statement are closed after the first possible then-statement in line 4. The srcML
tool ignores the C-preprocessor directives and thus cannot parse line 8 as another possible
then-statement; the second statement (line 8) is not included in the if-statement.

1 |if (cond) 1 |<if>if <condition>(cond)</condition>
2 2 <then>
3 |#ifdef A 3 <cpp:ifdef>#ifdef A</cpp:ifdef>
4 stmtl; 4 <expr_stmt>stmtl;</expr_stmt>
5 5 </then>
6 6 |</if>
7 |#else 7 |<cpp:else>#else</cpp:else>
8 stmt2; 8 |<expr_stmt>stmt2;</expr_stmt>
o |#endif 9 |<cpp:endif>#endif</cpp:endif>
(a) C-source code (b) Markup by srcML (simplified)

Figure 4.12: Example C-preprocessor construct that srcML marks-up incorrectly

In cases like this, where the srcML tool does not detect alternatives and instead only
considers the first element, the resulting AST structure does not correctly represent the
source code content. Only the first element is marked-up with the correct semantic infor-
mation, while the second element is considered to occur after the construct in question. In
Figure 4.12 this means that only the first statement is marked-up to be a then-statement
for the if-statement; the second statement appears after the if-statement. Since this error
in the markup is created by the srcML tool, it is carried through the srcML-extractor
transformation process. Such errors will still appear in the final code model that the
srcML-extractor creates.

In summary, the srcML-extractor can correctly transform the nesting structure for all
disciplined C-preprocessor directives as defined by Liebig et al. This makes up most of
the variability in real-world software projects. Undisciplined C-preprocessor directives can
often be transformed via two specialized mechanisms: fixing of the nesting location for
opening and closing directives, and introducing reference nodes. However, there are also
undisciplined C-preprocessor directives that cannot be handled as they go against the AST
structure. Additionally, some undisciplined C-preprocessor directives that are transformed
by the srcML-extractor do not reflect the original source code as the srcML tool creates
incorrect mark-up.

4.3.2 XML to AST Conversion

The final step in the transformation process of the srcML-extractor is the conversion of
the XML to an AST structure that implements the KernelHaven code model interface (cf.
Figure 4.4). The basic concept in this step is to stay close to the structure that is created
by srcML. In many cases, nodes in the XML structure are converted directly to Java
objects. For this, a class hierarchy that can represent the AST structure and implements
the KernelHaven code model interface is implemented.

Figure 4.13 shows an excerpt of the class diagram for the AST structure of the srcML-
extractor. The SourceFile class and the CodeElement interface (marked orange) are the
required structure of the code model for KernelHaven. All code model extractors have to
create a data structure that implements this interface. A SourceFile is an aggregation

99

Variability-Aware Analysis of C Source Code

[KernelHaven interface

SourceFile elements O C AST
+path T
[Unparsed code
* [C-preprocessor variability
<<interface>>
CodeElement
+lineStart: int
+lineEnd: int
+condition: Formula
+presenceCondition: Formula
* - *
> +getNestedElementCount(): int <
+getNestedElement (index:int): CodeElement
nested 4 nested
, T T TTTTT =" y, T Tt TS r---=-=-=-=-=-=
1
BranchStatement| |SingleStatement| |[<<interface>> CppBlock
+type +type ICode 4_ - +type
o | code {l\]/\lA
condition |
1
Code

+code: String

Figure 4.13: AST class diagram of srcML-extractor (simplified excerpt)

of CodeElements. A CodeElement represents an element in the source code file. It has a
location (start and end line number), an immediate condition (the condition of the closest
surrounding C-preprocessor block), and a presence condition (cf. Section 3.3). Further
CodeElements can be nested inside a CodeElement. In the AST structure of the srcML-
extractor, all elements in the AST implement this interface.

The BranchStatement and SingleStatement in Figure 4.13 represent an excerpt of the
classes that are used to build the C-AST (marked turquoise). The BranchStatement is
used to represent if-, else-if-, and else-statements. The SingleStatement class is used to
represent all kinds of statements that stand on their own: among others, the <expr_stmt>,
<continue>, <break>, and <return> XML nodes created by srcML are converted to
SingleStatements. As different XML nodes in the srcML markup are converted to the
same class, the classes have a type attribute that allows to differentiate between the
different semantic meanings. The BranchStatement has a list of nested elements that
represent the body of the branch, e.g. the then-statements of an if-statement. The class
structure allows arbitrary CodeElements as nested elements, although semantically only
statements are allowed here. This follows the lenient approach of the srcML tool, which
allows constructs in the AST which represent invalid programs.

The CppBlock class in Figure 4.13 represents conditional compilation blocks of the C-pre-
processor (marked blue). Its type attribute represents the type of directive for the block
(e.g. #ifdef or #else). It implements the CodeElement interface, so it can be inserted
in arbitrary positions in the nesting structure of the AST. This is an advantage of the
lenient approach, that allows arbitrary CodeElements to be nested in parent elements (as
seen above with the BranchStatement). The conditions and presence conditions for C-
preprocessor blocks are calculated following the same rules as defined in Section 3.3. The
srcML-extractor re-uses the expression parsing component of the CodeBlockExtractor.

60

Extraction of Source Code Combined with Variability

The AST structure created by the srcML-extractor only represents the srcML markup
up to a statement-level of granularity. The more fine-grained level of expressions is not
represented as an AST, but rather kept as an unparsed code string. For instance, the
condition of a BranchStatement and the content of a SingleStatement are represented
as such unparsed text. In the class structure in Figure 4.13, this is implemented via the
ICode interface and the implementing class Code (marked red). The Code class has a
string attribute that contains unparsed code. Unparsed code may contain C-preprocessor
blocks, which need to be represented in the AST. This is realized by the CppBlock class
implementing the ICode interface. This way, conditional compilation blocks in expressions
can be accurately represented by CppBlocks, while the content of the expression remains
as unparsed code. If a CppBlock appears in an expression, the text content can be split
into multiple Code elements to accurately represent which parts of the condition are nested
in the CppBlock.

The main driver for the decision to limit the granularity of the srcML-extractor AST was
the reduction of implementation effort. A large portion of an AST representation for the
C-programming language is dedicated to representing the expressions. This includes oper-
ators, literals, function calls, etc. The effort to implement the required AST structure and
the conversion routines for the corresponding srcML nodes was spared in the implementa-
tion of the srcML-extractor. Additionally, this approach makes the srcML-extractor more
accepting, as there can be no conversion errors for the code that is only kept as text. This
was possible as almost no metrics in MetricHaven, which is the use-case for the srcML-
extractor, require information from the AST beyond the statement-level. The metrics that
do require information from inside expressions can be implemented heuristically on the
unparsed code string.

The preprocessing step that converts the variability nesting may insert <reference> nodes
to transform some C-preprocessor constructs (cf. Section 4.3.1). These <reference> XML
nodes are converted to the ReferenceElement class in the srcML-extractor AST. This
class has an attribute referenced that points to the referenced element in the AST.
However, in the primary nesting structure of the AST (i.e. the getNestedElementx* ()
methods), the referenced element is not a child of the ReferenceElement. If this was
the case, the referenced element would appear twice in the AST hierarchy. Instead, the
referenced attribute constitutes a non-primary relation across the AST.

In some cases, C-preprocessor blocks can lead to constructs in the srcML structure that
cannot be converted to the srcML-extractor AST. This is because the attributes of some
AST elements require special childreen in the XML structure. For instance, a <function>
node in the srcML markup has to have a <name> child, which is stored in the name attribute
in the srcML-extractor AST. However, due to C-preprocessor blocks, the <name> child may
not appear directly inside the <function> node. Also, multiple <name> nodes may appear
for a single function. In these cases, the name attribute for the function in the srcML-
extractor AST cannot be determined; the srcML-extractor cannot convert this part of the
AST.

For cases where the srcML-extractor cannot convert the srcML markup, it implements a
graceful back-off strategy. As opposed to errors in the preprocessing step that converts the
variability nesting (cf. Section 4.3.1), the parsing of the whole file is not aborted. Instead,
a special ErrorElement is inserted in the AST to represent the XML node that cannot
be converted. After this, normal conversion for its children is resumed. This way, the rest
of the file, including the children of the problematic XML node, can still be converted.
When an ErrorElement is inserted, a flag is set for all parent elements (recursively) that

61

Variability-Aware Analysis of C Source Code

indicates that they contain an ErrorElement. If analyses require assurance that the code
is parsed correctly, they can check this flag which indicates whether any nested element
was not parsed correctly. This makes the srcML-extractor more accepting, and leaves the
decision on the required accuracy for the analysis.

4.4 Alternative Approaches

This section introduces three alternative approaches that build models of source code
containing variability. All of the approaches have in common that they enable variability-
aware analysis of the source code. The use-case of this chapter, the MetricHaven framework
for implementing variability-aware software product line metrics, is such a variability-
aware analysis. It requires a code model that includes traditional syntactical information
about the code and information about the variability. The three presented alternative
approaches will be compared to the srcML-extractor, with respect to the application for
the MetricHaven use-case.

As part of the TypeChef project, a variability-aware parsing approach for programming
languages, including C-code with C-preprocessor variability, was developed [KGR+11]. The
basic concept of this approach is to create an abstract syntax tree (AST) representation of
the source code, which contains choice nodes that represent the variability. This data struc-
ture allows different variability-aware analyses to be conducted, including type-checking.

Source Code Token Stream

Figure 4.14: Parsing approach of TypeChef

The parsing of TypeChef is split into two components, a lexer and a parser. Figure 4.14
illustrates this: the lexer creates a stream of tokens that is passed to the parser. The lexer
is variability-aware, that means it considers C-preprocessor directives while reading the
C-source code file. It evaluates the C-preprocessor directives; for instance, file inclusions
and macro expansions are performed before the token stream is created. In the case of
conditional compilation blocks, the lexer annotates the tokens inside the block with a
presence condition. The tokens of all alternatives are included in the stream. Tokens that
are not nested in conditional compilation blocks have the presence condition true. This
can be seen in the token stream in Figure 4.14: the + token is inside an #ifdef A block,
thus it has the presence condition A. Similarly, the - token has the presence condition —A
as it is inside the #else block. All other tokens have the presence condition true, which
is omitted in this illustration.

The parser converts the token stream into an AST representation. Variability is represented
by choice nodes in the AST. In the AST at the right-hand side of Figure 4.14, the choice
node is represented as a red diamond. If the variability variable A is true, the left sub-tree
with the + operator is used; if A is false, the right sub-tree with the - operator is used.
When the parser encounters tokens with a new presence condition, different parsers are

62

Extraction of Source Code Combined with Variability

created for the possible variants. In the example of Figure 4.14, the parser encounters the
+ token with the presence condition A. Two parser are created, one for the variant where A
is true and one for the variant where A is false. The first parser creates the sub-tree with
the + operation, the second parser creates the sub-tree with the - operation. Both parsers
use the literal tokens 1 and 2. At the ; token, the two parsers are joined together as the
two variants converge again. In the AST, the choice node represents the location where the
two parsers where split, with both child sub-trees as the results of the individual parsers.
When splitting parsers, the constraints of the variability model are used to exclude parsers
for variants that are not allowed. This reduces the number of necessary splits.

The TypeChef parser creates a syntactically sound and complete AST for the source
code. In contrast, the srcML-extractor and its underlying srcML tool have a more lenient
approach, which even allows them to parse some syntactically incorrect programs. The
AST created by the TypeChef parser allows for sophisticated analysis of the source code,
like type-checking. However, this requires that the AST is built with relatively strict
constraints. For instance, variability is not inserted where it occurs in the original source
code file, but rather where the parser requires it. Because of this, the AST only semantically
reflects the content of the original source code file. In the AST in Figure 4.14, the variation
point for the #ifdef in the source code is in a different location than in the original source
code. The literals 1 and 2 occur multiple times in the AST, while they each only occur
once in the source code. In contrast, the srcML-extractor builds a model that faithfully
reflects the locations and structures in the source code file, including variability.

The MetricHaven use-case requires a code model that closely reflects the contents of the
source code file (cf. Section 4.1). The TypeChef parser does not fulfill this requirement. The
location and structure of C-preprocessor blocks is lost during parsing and is only vaguely
represented by choice nodes. For metrics that are defined on the conditional compilation
block structure, the representation of TypeChef is not useful. Additionally, some tokens
or even entire sub-trees are duplicated to build a syntactically sound AST. The srcML-
extractor creates a code model that preserves all C-preprocessor directives and integrates
them with the traditional AST structure in a way that closely reflects the original source
code file. This is a better fit for the MetricHaven use-case.

The configuration lifting approach creates a meta-program that represents all variants of
the original program containing variability [PS08]. The underlying idea is to integrate the
variability information into source code by representing them with the standard program-
ming language structures. For instance, conditional compilation directives of the C-prepro-
cessor are converted into standard if-statements of C. The configuration lifting approach
thus converts compile-time variability into run-time variability.

The meta-program created by the configuration lifting approach enables existing, non-
variability-aware static analyses to be conducted. As all variability mechanisms have been
converted to constructs in the programming language, the static analysis tools can parse
and analyze the meta-program without modification. This way, the static analysis tool
can analyze all possible variants at once. The results found by the static analysis in the
meta-program can be transferred to the underlying source code containing variability.

Not all conditional compilation blocks of the C-preprocessor can be trivially converted to
if-statements in C-code. For example, Figure 4.15a shows an excerpt of a C-program where
the type of the variable x depends on the variability variable CONFIG_A (lines 1 through 6).
Figure 4.15b shows the meta-program that is created by the configuration lifting approach.
Both declaration variants are present in the meta-program as different variables (lines 2

63

© 0 N o o s W N R

=
S S

-
N

Variability-Aware Analysis of C Source Code

#ifdef CONFIG_A 1
int 2 |int x_CONFIG_A = 3;
#else 3
float 4 |float x_NOT_CONFIG_A = 3;
#endif 5
x = 3; 6
7
int y = x + 2; 8 |int y =
o (CONFIG_A 7
10 x_CONFIG_A
11 x_NOT_CONFIG_A)
12 + 2;
(a) C-source code (b) Resulting meta-program

Figure 4.15: Non-trivial lifting of C-preprocessor variability

and 4). The postfixes indicate which configuration they correspond to. The variability
variable CONFIG_A is available as a run-time variable in the meta-program. The reference
to variable x in the statement in line 8 is transformed to a conditional reference: the
ternary operator is used to select, based on CONFIG_A, which variant of x is referenced. In
this meta-program, a compiler or type-checker would find an error: x_NOT_CONFIG_A is of
type float, but the statement in line 8 tries to assign it to variable y of type int.?

The meta-program created by the configuration lifting approach does not fulfill the re-
quirement of MetricHaven that the source file content should be accurately represented.
The information what elements in the code constitute variability is lost, as all variability
is converted to standard structures in the programming language. In the meta-program,
conditional compilation directives cannot be distinguished from standard if-statements.
For metrics that are defined on the hierarchy of conditional compilation blocks, this rep-
resentation is not useful. Additionally, the creation of a syntactically sound meta-program
requires modifications to the code that diverge from the content of the original source file.
This can be seen in Figure 4.15: the #ifdef disappears and the declaration and assignment
statement of x is duplicated. In contrast, the srccML-extractor creates a model that more
accurately represents the content of the original source code file.

A variability-aware code property graph builds a model of the source code by ex-
tending code property graphs with variability information [GS19]. Code property graphs
combine three graph representations of source code: AST, control flow graph, and pro-
gram dependence graph [YGA+14]. Nodes in a code property graph represent elements
of the sourc e code. Edges represent relations between the source code elements. There
are edges that represent the AST structure (e.g. is-parent-of relations), control flow edges,
and program dependence edges. Such a graph representation contains more information
than the relatively simple low-level syntactical markup created by the srcML tool.

Gerling et al. extend the traditional code property graphs with variability information
[GS19]. Additional nodes are introduced that represent the C-preprocessor directives used
to implement variability. A new kind of edge connects the variability information with the

2Strictly speaking, this is not an error as C allows implicit conversions from float to int. gcc only
prints a warning when the flag ~-Wconversion is set. For this illustration this distinction is not relevant.
The point is that existing, non-variability-aware static analyses can find (potential) problems in the
meta-program.

64

Extraction of Source Code Combined with Variability

code elements. For instance, an edge from an #ifdef node to a statement node represents
that the statement is nested inside that #ifdef block. The C-preprocessor directive nodes
are not integrated into the AST structure, that is, there are no AST edges to these nodes.

The authors do not explicitly describe how variability that changes the AST structure is
handled. A discussion with the authors and an inspection of their tool implementation
reveals that the the C-source code is parsed as if there were no C-preprocessor directives.
The variability information is added as an addition to the traditional code property graph.
This means that undisciplined C-preprocessor directives are not accurately handled by this
approach. For instance, undisciplined C-preprocessor constructs can lead to changing the
control flow depending on the variability. In this case, it would be required to annotate con-
trol flow edges in the code property graph with variability. However, this is not considered
in the approach by Gerling et al.

Overall, variability-aware code property graphs offer a richer representation of source code,
compared to the simple syntactical structure offered by the srcML-extractor. A richer rep-
resentation can be helpful in the creation of code metrics. For instance, a metric for the
control flow structure of source code could be implemented more easily when the con-
trol flow graph of the program is present in the code model. With the model created by
the srcML-extractor, the metric first has to create the control flow structure based on the
AST. However, the richer representation of the variability-aware code property graphs also
requires more detailed parsing of the underlying code. At least with the current imple-
mentation of this approach, this leads to problems when parsing code with undisciplined
conditional compilation directives.

Technically, Gerling et al. implemented their approach by writing the extracted code prop-
erty graph to a graph database. Analyses of the code model are then implemented as
queries to the graph database. For example, metrics could be implemented by queries that
count certain elements in the graph. This poses a technical challenge to the integration
in the KernelHaven architecture, which has a different approach for implementing anal-
yses. In KernelHaven, the models are available as Java objects to the analyses, which
are implemented in imperative Java code. Implementing analyses as queries on a graph
databases cannot be integrated into this structure in a simple way. This means that the
existing tooling developed by Gerling et al. can most likely not be re-used as-is. In contrast,
for the srcML-extractor the srcML tool was re-used without modification, which saved a
significant amount of development effort.

65

Variability-Aware Analysis of C Source Code

5 Evaluation

This chapter evaluates different components that were implemented in the context of
this thesis. Each of the following sections contains the evaluation of a single component:
Section 5.1 evaluates the non-Boolean transformation implemented for the Bosch PS-EC
product line; Section 5.2 evaluates the CodeBlockExtractor, which parses C-preproces-
sor conditional compilation blocks for KernelHaven; Section 5.3 evaluates the approaches
to simplify Boolean formulas that are applied in the Bosch PS-EC analysis; Section 5.4
evaluates the srcML-extractor that parses C-source code for KernelHaven.

The individual evaluation sections are all structured in the same way. After a short in-
troduction of the component that is evaluated, the setup of the evaluation is described.
This explains which parts of the component are evaluated and what measurements are
conducted. After that, the results of the measurements are presented. Finally, the results
of the evaluation and broader aspects of the evaluated component are discussed. The last
section of this chapter, Section 5.5, will discuss the threats to validity of the evaluations.
This is combined for all evaluations, as many of the arguments apply to more than one
evaluation section.

5.1 Non-Boolean Transformation

This section evaluates the NonBooleanPreperation implementation for the KernelHaven
infrastructure [KE18c]. This preprocessing components transforms the integer-based vari-
ability conditions of the PS-EC product line to propositional logic (cf. Section 3.2). Here,
the conversion of the C-preprocessor conditions is evaluated, which is performed while
copying the whole source code tree.

5.1.1 Setup

The NonBooleanPreperation implementation is evaluated twice: in the context of a full
execution of the KernelHaven pipeline and on generated artificial test cases. For the first
evaluation, the full KernelHaven pipeline is run on two product variants of the PS-EC
product line. This very closely reflects a realistic usage scenario. In this scenario, the
NonBooleanPreperation will copy the source code tree and replace all integer-based C-pre-
processor conditions with propositional ones. In the process, two aspects will be evaluated:
the required runtime, and the growth of the propositional formulas compared to the original
inter-based ones.

The measurement of the runtime will give a rough idea of the overhead that is required
for the conversion from integer-based to propositional logic. The runtime measurements
will be conducted by our industry partners at Bosch; we do not have control over the
execution circumstances. The measurements will be done four times, and the median will
be reported to remove some unwanted influences. The following individual timings will be
measured for each of the product variants:

66

Evaluation

e The total runtime of the preprocessing component (Measurement 1). This includes
all steps that are performed as part of the preparation (extracting the variability
variable information, copying files, converting conditions).

e The total runtime spent on converting conditions (Measurement 2). The individ-
ual runtime of every single conversion of a C-preprocessor condition will be measured.
This involves the three steps described in Section 3.2: parsing, transformation, and
converting back to a C-preprocessor string. The sum of these individual measure-
ments represents the total conversion time.

e The total runtime spent on copying source code files (Measurement 3). The in-
dividual runtime of every single source code file copy will be measured. The sum
of these individual measurements represent the total time required for copying the
source code files. Source code files are all files in the source code tree that end with
.c or .h; copying of other files is not included in this measurements. This measure-
ment also includes the conversion of C-preprocessor conditions, which is performed
during the source file copying.

The growth of the condition sizes will be measured (Measurement 4). As explained
in Section 3.2, an increase in the size of conditions is expected when converting from
integer-based to propositional logic. This is because, generally, many Boolean variables are
required to encode the same satisfiability properties as the original integer-based formula.
The size of the conditions here will be simply measured as the number of characters in the
C-preprocessor line. This includes the C-preprocessor directive at the beginning of the line
(e.g. #if). Line continuations (via a \ at the end of the line) will be appended together
before measuring the length, so that the whole condition is captured. The length of the
condition before and after the conversion are measured. The condition growth is calculated
by dividing the length of the propositional condition by the length of the original, integer-
based condition.

In addition to the growth and the runtime, the number of skipped conditions will be
measured (Measurement 5). This will be conducted by counting the number of relevant
exceptions that are present in the log file created by KernelHaven. The exceptions rep-
resent C-preprocessor lines that cannot be parsed, constructs in the AST that cannot be
transformed, or other errors in the implementation (cf. Section 3.2 for a discussion of the
limitations of the implementation).

In the second evaluation scenario, the NonBooleanPreperation is executed on artificially
generated test cases [KES18a]. The test cases consist of 100 generated C-source code files
which contain #if conditions. The conditions are generated in a way that all transforma-
tion rules described in Section 3.2 are covered. Five integer variability variables are used
in the conditions, which all have a defined set of allowed values.

With these artificial test cases, the runtime of the non-Boolean transformation process is
evaluated. Two different measurement series are conducted that measure how the runtime
changes when generation parameters of the test cases are modified:

e The runtime of the NonBooleanPreperation with different numbers of #if condi-
tions to transform will be measured (Measurement 6). For this, 20 test cases will
be generated that have a varying number of #if conditions in each source code file.
The number of conditions is increased in steps of 50, starting from 50 and up to 1000
conditions per file. With 100 files per generated test case, this results in a range of
5,000 to 100,000 total #if conditions. The set of allowed values for the 5 integer

67

Variability-Aware Analysis of C Source Code

variability variables is R(VAR) = {1,2,3,4} and remains constant throughout all
generated test cases.

e The runtime of the NonBooleanPreperation with different numbers of allowed val-
ues per integer variability variable will be measured (Measurement 7). For this, 17
test cases will be generated that have sets with varying sizes for the allowed values
of variability variables. In a test case, all 5 variability variables have the same set of
allowed values: R(VAR) = {1, ...,n}, where n starts at 2 for the first generated test
case and goes up to 18 for the last test case. The number of #if conditions stays
constant, with 10 conditions in each of the 100 files.

The non-Boolean transformation has a fixed upper limit for the number combinations
that are computed per integer operation (cf. Section 3.2). The measurements in this
series will be conducted two times, once with the limit enabled and once with the limit
disabled. The measurement with the limit enabled will show the runtime behavior
that will occur in actual applications of the non-Boolean transformation, where this
limit is enabled. The measurement with the limit disabled will show the runtime
behavior of the underlying approach.

The execution time of the full NonBooleanPreperation, that is copying the generated
source code files and converting all #if conditions, is measured for these two series. The
measurements are conducted on a machine running Windows 7 with an Intel Core i7-6700
CPU with 8 cores @ 3.40 GHz and 16 GiB of RAM. For each of the generation settings
described above, a test case is created and the NonBooleanPreperation is executed four
times on it. The median runtime of these four measurements is then reported as the
runtime for that setting.

5.1.2 Results

This section presents the results of the measurements described in the previous section.
Table 5.1 shows the results for Measurement 1 through Measurement 5 for both
PS-EC product variants. Note that, for Measurement 4 and Measurement 5, the
absolute number of C-preprocessor conditions cannot be reported due to confidentiality
reasons. Thus, only the aggregate values shown here are available.

2500
2000 X
X
X
—= 1500 o x xx
g
o) x X x X X
£ 1000
= X X
% X
500 x X
X
0
0 20000 40000 60000 80000 100000
Conditions

Figure 5.1: Runtime with varying number of conditions [KES18a

68

Evaluation

Product Variant

(condition size)

med: 121.21 %
avg: 142.51 %
max: 8675 %

Variant 1 Variant 2
Measurement
Measurement 1 49.9 s 956.1 s
(total preprocessing runtime)
Measurement 2 0.6 s 0.7 s
(C-preprocessor conversion runtime)
Measurement 3 13.8 s 16.2 s
(copying source code files runtime)
Measurement 4 min: 14.71 % min: 9.26 %

med: 125.00 %
avg: 150.98 %
max: 8675 %

Measurement 5

0.6 %

0.08 %

(unparseable conditions)

Table 5.1: Non-Bolean transformation measurements for two product variants.

Figure 5.1 shows the results of Measurement 6. The x-axis shows the total number
of #if conditions in the generated test case and the y-axis shows the runtime of the
NonBooleanPreperation. Each mark shows the median runtime of four executions for a
generated test case.

3500

3000 X
2500

2000 X

1500

Time [ms]

1000 x
500 < X

0

10 12 14 16 18

Values per Variable

Figure 5.2: Runtime with varying number of allowed values [KES18a]

Figure 5.2 shows the results of Measurement 7 with the combinatorial limit disabled.
The x-axis shows the number of allowed values per integer variability variable and the
y-axis shows the runtime of the NonBooleanPreperation. Each mark shows the median
runtime of four executions for a generated test case. With the combinatorial limit enabled,
the runtime for all test cases stays below 500 milliseconds.

5.1.3 Discussion

The NonBooleanPreperation runs as a preprocessing step to adapt the Bosch PS-EC
product line to analyses that are defined for Boolean variability. Its runtime can be con-
sidered to be a pure overhead for the analysis; the transformations performed by it do

69

Variability-Aware Analysis of C Source Code

not help the analysis goal, but simply enable the analysis to be conducted at all. A fair
assessment of the overhead would be to compare it to the effort of an analysis that directly
handles integer-based variability itself. As explained in Section 3.2, an existing analysis
would need to be technically adapted to handle the more powerful integer-based logic. This
involves adapting the parser, data model (i.e. the abstract syntax tree required to repre-
sent the parsed conditions), and the SAT-solvers used on the conditions. The performance
of such an adapted analysis could then be compared to the overhead of the non-Boolean
transformation component.

However, Section 3.2 also explains another dimension where existing analysis approaches
need to be adapted: the analysis need to be conceptually extended, to be able to handle
integer-based variability. This is because they were previously defined on propositional
logic only. This is especially a challenge for the feature-effect analysis, which has a basic
assumption in its core definition that variability variables are Boolean. Comparing the non-
Boolean transformation to the adaption of existing analyses would also need to consider
this conceptual level, which cannot be measured like the technical runtime overhead. We
argue that adapting an analysis to handle more than propositional logic likely involves
more effort than the non-Boolean transformation approach that was developed in this
thesis. The non-Boolean transformation also has the benefit that it allows all existing
SAT-based analyses to be executed on the Bosch PS-EC product line. Adapting all these
analyses to integer-based variability would require even more effort.

The non-Boolean transformation also has a few disadvantages compared to analyses that
directly support integer-based variability. The non-Boolean transformation can only be
applied on product lines where the integer variability variables mostly have only a small set
of allowed values. While this is true for the Bosch PS-EC product line, this is not necessarily
the case for all product lines with integer-based variability. Additionally, the non-Boolean
transformation has cases where it cannot transform a condition exactly, beacuse it contains
unrestricted integer variables (cf. Section 3.2). In this case, an analysis that can handle
integer-based variability directly may be able to more accurately handle these cases. Also
the analyses may need to be slightly extended, as the non-Boolean transformation has
implicit constraints on the introduced artificial Boolean variables. For the feature-effect
analysis, for instance, this involves additional steps that set some variables to false and
aggregate feature-effects together (cf. Section 3.4).

Due to the lack of an adapted analysis that can directly handle integer-based variability,
the overhead of the non-Boolean transformation cannot be compared to such an analysis.
Instead, the overhead is compared to the overall runtime of the non-adapted analysis (in
this evaluation, this is the feature-effect analysis presented in Section 3.4). In the Bosch
PS-EC use-case, the runtime heavily depends on which simplification strategy is selected.
With the fastest simplification approach (the “prune constants” approach from Section 3.5)
the complete runtime of the KernelHaven pipeline is 57 seconds for the first and 1 minute
42 seconds for the second measured product variant. In this scenario, the 49.9 seconds and
56.1 seconds runtime (Measurement 1) of the NonBooleanPreperation make up about
87.5 % and 55.0 % of the runtime. However, as discussed in Section 3.5, this simplification
strategy creates inadequate results. The next simplification level that can be configured
(enabling the simplifiying disjunction) increases the runtime of the KernelHaven pipeline
to 51 minutes and 3 seconds for the first and 3 minutes and 26 seconds for the second
measured product variant. In this scenario, the NonBooleanPreperation only makes up
1.2 % of the runtime for the first and 24.8 % of the runtime for the second product
variant. For the first product variant, this can be considered to be insignificant. For the

70

Evaluation

second product variant, this already shows a significant reduction in the relative runtime
of the preparation. Further simplification levels decrease this even further. Additionally,
our experience with other SAT-based analyses of product lines in the past showed that an
added overhead of under a minute is usually not significant.

The next two measurements give insight on the runtime of individual steps inside the
preprocessing. Measurement 3 shows that the copying of source code files takes 13.8
and 16.2 seconds for the two product variants, which leaves 36.1 and 39.9 seconds of the
complete preprocessing runtime (Measurement 1) for other tasks. These other tasks
are copying non-source code files and waiting for the variability model to be extracted.
The NonBooleanPreperation requires the variability model as it needs the set of allowed
integer values for the transformation of variability variables.

Measurement 2 shows that the actual conversion of C-preprocessor conditions takes
only 0.6 or 0.7 seconds (depending on the product variant), that is only about 4.3 % of
the runtime required for copying source code files (Measurement 3). This comparison
shows that a large overhead comes from the strategy to copy the source tree completely
and then running the source code extractor on that copy. This strategy was chosen as
it opaquely preprocesses the source code files for the extractor and does not modify the
original files. Different strategies here could be implemented that reduce the overhead of the
non-Boolean transformation. For example, the C-preprocessor conditions could be replaced
in the original source code files, instead of copying the whole file. Alternatively, the non-
Boolean transformation could be implemented in the source code extractor. This would
then remove the need for a preprocessing component that modifies files; the transformation
could be done on-the-fly in-memory, while the conditions are read from the source code
files.

Measurement 4 compares the size of the original, integer-based C-preprocessor condition
to the propositional replacement. In most cases, the formulas grow a bit; in the first
measured product variant the median is 121.21 % and the average is 142.51 %, which
signify a growth rate of 21.21 % and 42.51 % respectively. For the second measured product
variant, the median growth rate is 25.00 % and the average growth rate is 50.98 %. These
are slightly higher than the ones for the first product variant, but remain in the same
magnitude. In some cases, the formula even shrinks in size, with a reduction of 90.74 %
marking the extreme case in the second product variant. This may be due to legacy
variability being pruned and unsatisfiable parts of the condition, which are detected during
the transformation, being dropped or replaced by constants. On the other side, some
conditions grow heavily, with a growth of more than 85 times. However, the lower median
compared to the average indicates that the bulk of formulas is skewed towards smaller
growth, with fewer bad cases increasing the average. Overall, these growth rates indicate
that the general approach of Boolean replacements for integer-based conditions is feasible.
A few very high growth rates create extreme cases, but the PS-EC use-case shows that
these large formulas can be handled by the following feature-effect analysis.

Measurement 5 measures how many C-preprocessor conditions cannot be parsed or trans-
formed by the NonBooleanPreperation implementation. We consider a ratio of 0.6 % of
unparseable conditions (or even 0.08 % for the second product variant) to be acceptable,
considering the quirks of the C-preprocessor (cf. Section 3.2). The parsing and transforma-
tion issues do not stem from conceptual problems with the non-Boolean transformation
approach, but rather they are problems of the specific implementation. With more engi-
neering effort, the implementation could be extended to correctly handle all corner cases
of the C-preprocessor and transformation approach.

71

Variability-Aware Analysis of C Source Code

Measurement 6 shows that the non-Boolean transformation approach scales linearly
with the number of #if conditions in the product line [KES18a]. This is because each
condition is transformed independently of the others. For a full product line, this means
that the approach scales linearly with the size of the product line, as generally the number
of variability conditions increases with the size of the product line. The complexity of the
individual variability conditions, which would increase the runtime of the transformation
approach, does not necessarily increase with the size of the product line. Thus, the ap-
proach is also applicable for large-scale software product lines. This was also confirmed in
the Bosch PS-EC use-case, where the size of the product variants that were analyze did
not cause runtime problems for the non-Boolean transformation.

Finally, Measurement 7 shows how the non-Boolean transformation approach scales
when the integer variability variables have larger sets of allowed values [KES18a]. When
an integer operator has variability variables on both sides, the transformation approach
considers all combination of the allowed values for both variables. This leads to a quadratic
growth of combinations that need to be considered, which can be seen in the increase of
required runtime in Figure 5.2. The underlying idea of the non-Boolean transformation
approach is to introduce Boolean variables for each allowed value of the integer variables.
This is only feasible if the majority of variability variables only have a small set of allowed
values. For Measurement 7, test cases were generated where all variability variables
have larger amounts of allowed values. The measured runtime supports that the approach
is only feasible for smaller sets of allowed values.

Figure 5.2 of Measurement 7 shows the runtime with the combinatorial limit of the
transformation approach disabled. If it is enabled, the implementation has a defined cut-off
point, where integer operators that need to compare more than this amount of combina-
tions will not be evaluated exactly. Measurement 7 showed that if the limit is enabled,
the runtime of all the generated test cases stays below 500 milliseconds. The limit helps to
mitigate the performance problems of larger sets of allowed values, but it comes at the cost
of a less exact transformation (cf. Section 3.2). The test cases for Measurement 7 are
generated in a way that almost all #if conditions trigger cases where many combinations
need to be considered. This is because all variability have the same (large) set of allowed
values.

In practice, the majority of variability variables in the PS-EC product line have a small set
of allowed values. Only some variability variables have larger sets of allowed values and they
mostly do not appear in the same #if condition. Because of this, only a very small amount
of #if conditions can cause performance problems in the non-Boolean transformation.
The combinatorial limit mitigates the runtime problems of these few cases by using a less
exact transformation. However, the vast majority of conditions can be transformed with
the default exact approach.

5.2 CodeBlockExtractor

This section evaluates the CodeBlockExtractor implementation in KernelHaven [Kral§],
which is introduced in Section 3.3. The CodeBlockExtractor reads the C-source code files
of a software product line and builds a model representing the variability conditions in
the conditional compilation blocks of the C-preprocessor. It supports variability conditions
in propositional logic, with Boolean variability variables implemented by defining or not
defining a C-preprocessor symbol.

72

Evaluation

5.2.1 Setup

The CodeBlockExtractor is evaluated on the Linux Kernel, a large open-source software
product line [Lin19]. Using an open-source product line as the basis for evaluation allows
for transparent reporting of measurements and makes the measured results reproducible
by others. The variability in the Bosch PS-EC product line (cf. Section 3.1) is transformed
to the variability implementation used in the Linux Kernel (cf. Section 3.2). Thus, the
insights gained by evaluation the CodeBlockExtractor on the Linux Kernel are applicable
for the Bosch PS-EC use-case.

The latest Linux Kernel version as of writing, version 5.3.5, will be used to evaluate the
CodeBlockExtractor. As the Linux Kernel tends to grow in size with each new release, this
likely represents the version with the most files and C-preprocessor conditions to parse. The
CodeBlockExtractor is configured to parse all files ending in . c or .h. The total number of
these files will be measured (Measurement 1). In addition, the total number of conditions
in the C-preprocessor blocks will be measured (Measurement 2). This measurement is
conducted on the parsing results of the CodeBlockExtractor. Thus, files that could not be
parsed are not included in this measurement. The CodeBlockExtractor can be configured
to insert artificial top-blocks for source code files that contain code outside of all C-prepro-
cessor blocks. This influences the number of conditions that the extractor creates. Thus,
Measurement 2 will be reported for both possible settings. Further measurements will
be conducted to assess the performance and the robustness of the parser.

For the performance, the total runtime required to extract all source code files will be
measured (Measurement 3). This measurement is performed in a virtual machine run-
ning Ubuntu 16.04 with 40 logical CPU cores of an Intel Xeon E5-2650V3 @ 2.3 GHz and
314 GiB RAM. The extractor is configured to only use a single execution thread. The
extraction will be run once as warmup, and then be repeated 4 times.

The performance of the CodeBlockExtractor will be compared to the UndertakerExtrac-
tor. The UndertakerExtractor is another code model extractor in KernelHaven [KE17]. It
has similar capabilities to the CodeBlockExtractor, as it also represents the C-preproces-
sor variability of source code files as a hierarchy of conditional compilation blocks with
presence conditions. It uses the parser of the Undertaker tool [TLS+11] to extract the
block information from the source code files. Measurement 3 will also be conducted for
the UndertakerExtractor: the setting is exactly the same, except the UndertakerExtractor
instead of the CodeBlockExtractor is used as the code extractor in KernelHaven.

To assess the robustness of the CodeBlockExtractor, two measurements will be done to
check where the parser cannot parse something. The CodeBlockExtractor may fail to parse
a file; this can be due to an incorrect nesting structure of C-preprocessor blocks, or due to
bugs in the implementation of the extractor. The number of files that cannot be parsed
will be measured (Measurement 4). The CodeBlockExtractor can also fail to parse con-
ditions of C-preprocessor blocks. To measure the amount of unparseble conditions, the
extractor is configured to insert a special artificial variable in place of the unparseble con-
ditions. In the parsing results, the number of occurrences of this variable will be counted
(Measurement 5). A special parsing mode called fuzzy parsing can be enabled for the
CodeBlockExtractor, which can handle integer comparisons in the C-preprocessor condi-
tions (cf. Section 3.3). Measurement 5 will be conducted twice, once with the mode
enabled and once with it disabled.

73

Variability-Aware Analysis of C Source Code

5.2.2 Results

The results for the measurements on Linux 5.3.5 are as follows: the total number of .c and
.h files in the Linux Kernel is 47,749 (Measurement 1). 0 files could not be parsed by the
extractor (Measurement 4). The total number of C-preprocessor conditions created by
the extractor, including artificial top-blocks, is 129,985 (Measurement 2). With artificial
top-blocks disabled, the total number of C-preprocessor conditions is 100,999; thus 28,986
artificial top-blocks are created if that setting is enabled. The total number of C-pre-
processor conditions includes the conditions that could not be parsed: 5,132 conditions
(about 5.1 % of the total, excluding top-blocks) were replaced by an error variable because
they could not be parsed (Measurement 5). With fuzzy parsing enabled, the number of
unparseable conditions drops to 753 (about 0.7 % of the total).

22.30%

M Unparseable (5,132)
Top-Blocks (28,986)
M Other Conditions (95,867)

73.75%

Figure 5.3: Ratio of extracted condition types

Figure 5.3 compares the amounts of different types of conditions. The total amount of
conditions, used as the 100 % baseline, is all conditions extracted by the CodeBlock-
Extractor, including the artificial top-blocks (Measurement 2). Of these, the relative
amount of unparseable (Measurement 5 without fuzzy parsing) conditions (3.95 %) and
artificial top-blocks (22.30 %) is shown. This leaves 73.75 % of the conditions that are
parseable and extracted from the source code files (i.e. they are not artificially created).

Measurement 3 was performed four times, with a preceding warmup execution. The
individual runtimes of the CodeBlockExtractor on a single thread were: 10.133 s, 10.375 s,
10.793 s, and 10.070 s. This results in a median execution time of 10.254 seconds. On aver-
age, each of the 47,749 files (Measurement 1) was parsed in about 0.215 milliseconds.

Measurement 3 was also performed for the UndertakerExtractor. The individual run-
times on a single thread were: 11 minutes 30.006 seconds, 11 minutes 30.225 seconds, 11
minutes 30.396 seconds, and 11 minutes 30.107 seconds. This reults in a median execution
time of 11 minutes 30.166 seconds. On average, each of the 47,749 files (Measurement 1)
was parsed in about 14.454 milliseconds.

74

Evaluation

5.2.3 Discussion

The CodeBlockExtractor parses C-preprocessor conditional compilation blocks in source
code files to a hierarchical structure. For this, the conditions in the C-preprocessor blocks
are parsed as Boolean formulas. They are combined to form the presence condition of each
block (cf. Section 3.3). One of the main concerns of the extractor is to create an accurate
representation of the variability in the source code. The correctness of the hierarchical
structure and computation of presence conditions is tested by a test suite that was created
during the development of the extractor. This test suite also tests the parser for the
C-preprocessor conditions. However, in real-world product lines like the Linux Kernel,
there is a wide variety in the C-preprocessor condition usage. The C-preprocessor allows
many different constructs in #if conditions, many of which cannot be parsed as Boolean
operations (e.g. number arithmetic). Compared to that, the correct creation of the block
hierarchy and computation of presence conditions is relatively easy. Thus, a main concern
of the conducted measurements is to evaluate how many conditions can be correctly parsed
by the extractor.

The CodeBlockExtractor was implemented to raise exceptions in all cases where it does
not detect that it can correctly parse a given construct. For example, if unknown operators
or macro calls are detected in a condition, an exception is created. The extractor does not
try to parse constructs where it already partially failed. Because of this, the evaluation uses
the exceptions created by the extractor as a basis to asses how many constructs cannot
be parsed. Measurement 4 showed that all files of the Linux Kernel could be parsed.
This means that were no parsing errors outside of unparseable C-preprocessor conditions.
The unparseable conditions are replaced by special error variable; all other errors during
parsing cause the parsing of the whole file to be aborted.

Measurement 5 showed that 5.1 % of all C-preprocessor conditions in the source code
files (Measurement 2, excluding artificial top-blocks) cannot be parsed. The ratio of
unparseable conditions drops to 0.7 % when fuzzy parsing is enabled, which can handle
some cases of numeric comparison operators. This shows that at least 85.3 % of the
unparseable conditions are due to numeric operations in the C-preprocessor condition.
Manual inspection of the remaining unparseable conditions reveals that the vast majority
of the still unparseable conditions fall into one of two categories:

e Numeric operations that cannot be handled by fuzzy parsing. Fuzzy parsing can
only handle some cases of numeric comparison, e.g. when a variable is compared
to a literal (cf. Section 3.3). However, C-preprocessor conditions can also contain
arithmetic operators. For instance, a condition that cannot be handled by fuzzy
parsing is:

#if (IDP_CPLD_VIRT + IDP_CPLD_SIZE) > 0xfc000000

Such a condition with numeric operations cannot be directly parsed as a Boolean
formula. Parsing this is out-of-scope for the CodeBlockExtractor, which is only meant
to support Boolean variability.

e Custom macro calls in conditions cannot be handled. The C-preprocessor allows to
define macros via the #define directive. Macros are functions which can be used in
#if conditions. For example, a condition calling a macro function is:

#if OCTEON_IS_MODEL (OCTEON_CN38XX)

75

Variability-Aware Analysis of C Source Code

Support for parsing custom macros to Boolean formulas would require to evaluate
previous #define directives. These can occur in header files that are included via
#include statements. Additionally, there may be alternative definitions of macros
in different conditional compilation blocks. Accurate evaluation of macros from
#define directives quickly results in a very high complexity. Késtner et al. propose a
variability-aware lexer, which can handle C-preprocessor macros in a software product
line [KGR+11]. However, for the relatively simple CodeBlockExtractor, supporting
custom macros is out-of-scope. It only has hard-coded support for three macros that
are used throughout the Linux Kernel (cf. Section 3.3).

The CodeBlockExtractor was developed with the goal to replace the UndertakerExtrac-
tor. The UndertakerExtractor is based on the parser of the Undertaker tool [TLS+11]. It
has similar capabilities, as both extractors parse the C-preprocessor blocks into a hierar-
chy with presence conditions. Two aspects motivated the creation of a successor for the
UndertakerExtractor: portability and performance.

The Undertaker tool is developed in C++. To integrate it into the KernelHaven pipeline,
which is written in Java, the UndertakerExtractor starts a new process for each source code
file that is parsed. Undertaker can only be compiled and executed on a Linux machine;
it does not support other platforms. Thus, the whole UndertakerExtractor, which starts
an Undertaker parser process internally, can only run on Linux machines. KernelHaven
itself is platform independent; it can run on all platforms that can run a Java virtual
machine. In contrast to the limited UndertakerExtractor, the CodeBlockExtractor is fully
implemented in Java. Thus, it supports all platforms that KernelHaven runs on.

The performance of the CodeBlockExtractor (0.215 milliseconds per file, Measurement 3)
is more than 67 times higher than the performance of the UndertakerExtractor (14.454
milliseconds per file, Measurement 3). A part of that difference stems from the addi-
tional overhead the UndertakerExtractor has: it starts a new parser process for each source
code file. The results of the parsing are serialized as text and sent over the standard out-
put of the parsing process to the Java implementation. There, the result is deserialized
and converted into the data model of KernelHaven. In contrast, the CodeBlockExtractor
does not need to start any process and can directly use the data model of KernelHaven to
represent the parsing results.

5.3 Formula Simplification

This section evaluates the Boolean formula simplification that is performed as part of the
feature-effect analysis of the Bosch PS-EC product line. Section 3.5 introduced different
approaches for simplifying formulas. Some of them are general (i.e. they can simplify any
Boolean formula that is given to them), while others are specific to the feature-effect
computation. This section evaluates all the approaches in the context of the feature-effect
computation.

5.3.1 Setup

The Boolean formula simplification will be evaluated in the context of a full execution of
the KernelHaven pipeline on two product variants of the PS-EC product line. This very

76

Evaluation

closely reflects a realistic usage scenario. In this scenario, the simplification will be used
throughout the feature-effect computation process, as shown in Figure 3.9.

Four different simplification settings can be set in the KernelHaven pipeline configuration
file. Each of them uses one or more of the simplification approaches that were presented
in Section 3.5. The runtime and resulting formula sizes will be measured for each of the
settings. For this, a the full KernelHaven analysis pipeline with a feature-effect analysis
will be executed per simplification setting on each of the two PS-EC product variants. The
four settings are:

Simple This setting only enables the “prune constants” simplifications for the XOR terms
and the final simplification of the feature-effect. This is the most basic form of
simplification. A setting which disables all simplifications does not exist, as such
a configuration is nonsensical in the context of feature-effect computations (cf. the
introductory example of Section 3.5). Thus, this lowest possible simplification setting
will serve as a baseline to compare the other, more sophisticated approaches. This
setting is achieved by setting
analysis.simplify_conditions = NO_SIMPLIFICATION and
logic.simplifier = SIMPLE in the KernelHaven configuration.

Simplifying Disjunction This setting uses the “prune constants” approach for all simpli-
fication steps in the computation process (i.e. also presence conditions are simplified
with it). The setting additionally enables the simplifying disjunction strategy. This
way, all simplification steps shown in Figure 3.9 are enabled in their most simple
form. This setting is achieved by setting
analysis.simplify_conditions = PRESENCE_CONDITIONS and
logic.simplifier = SIMPLE in the KernelHaven configuration.

Visitor This setting basically equals the previous one, but uses the more sophisticated
“simple Boolean algebra” approach for general formula simplification, instead of the
“prune constants” one. This setting is achieved by setting
analysis.simplify_conditions = PRESENCE_CONDITIONS and
logic.simplifier = VISITOR in the KernelHaven configuration.

AAS This setting uses the “combined approach”, which internally makes use of all other
general simplification approaches. It also has the simplifying disjunction enabled,
like the two previous settings. This is the most sophisticated simplification setting
possible in KernelHaven. This setting is achieved by setting
analysis.simplify_conditions = PRESENCE_CONDITIONS and
logic.simplifier = ADAMS_AWESOME_SIMPLIFIER in the KernelHaven configura-
tion.

The runtime of the feature-effect computation will be measured (Measurement 1), which
contains all simplification steps except the preliminary presence condition simplification.
The number of feature-effects that are computed cannot be reported due to confidentiality
reasons. Thus, only the total runtime of this step can be disclosed. The runtime of the
simplification of presence conditions is measured separately (Measurement 2), as it is
implemented in a different analysis component than the feature-effect. In contrast to these
measurements, which are collected for all settings, the following measurements are only
collected for some of the settings that they are applicable for:

e The total runtime spent in the general formula simplification is measured for the
Visitor and AAS settings (Measurement 3). This involves all “simplification” steps

77

Variability-Aware Analysis of C Source Code

shown in Figure 3.9, that is the simplification of presence conditions, XOR trees,
and the resulting feature-effect formula. Additionally, the simplification after the
aggregation of feature-effects (cf. Section 3.4) is also included.

e The runtime spent in the simplifying disjunction is measured for the settings that
have it enabled (i.e. the Simplifying Disjunction, Visitor, and AAS settings). For
this, the total runtime spent in the simplifying disjunction (Measurement 4) and
the individual runtimes for each term that is added to a simplifying disjunction
(Measurement 5) are measured.

e For the AAS setting, i.e. the “combined approach”, the total runtime spent on each
of the individual steps (cf. Section 3.5) is measured (seven steps, Measurement 6
through Measurement 12). Additionally, the runtime of the individual steps of the
“equal sub-formula detection” approach, which is used as a part of the “combined
approach”, are measured. These steps are:

1. Searching for equal sub-formulas (Measurement 13)
2. Replacing of equal sub-trees with a temporary variable (Measurement 14)

3. Simplifying with the “more complex Boolean algebra” approach (Measure-
ment 15)

4. Checking if the formula has changed during simplification (Measurement 16)
5. Replacing of the temporary with the original sub-formula (Measurement 17)

The runtime measurements will be conducted by our industry partners at Bosch; we do
not have control over the execution circumstances. The feature-effect implementation is
parallelized over multiple execution threads. The runtime measurements are conducted on
each thread and summed up to get the total runtime. For example, 10 threads running 1
minute each would result in a total measured runtime of 10 minutes.

In addition to the runtime, the resulting feature-effect formula sizes will be measured for
each of the four settings. This will allow a comparison of how much the different approaches
can simplify formulas. The main goal of the simplification is to create understandable
formulas, but as explained in Section 3.5 this can be reduced to the problem of formula size.
Due to confidentiality reasons, no absolute numbers for the size or number of variability
variables can be given. Instead, all measurements will be given as ratios. The following
measurements will be conducted on the final feature-effect formulas that are created by
the analysis:

e The number of feature-effects that are true (i.e. top-level /independent variables) will
be measured (Measurement 18).

e The total number of Boolean operators in all feature-effects will be counted (Mea-
surement 19).

e The total number of variables in all feature-effects will be counted (Measure-
ment 20)

78

Evaluation

5.3.2 Results

Measuremeont Setting Simple Si.m.plifyi.ng Visitor AAS
Disjunction

Measurement 1 44.095s | 2:18:17.244 | 2:17:52.525 | 37:28:58.372
(total feature-effect runtime)
Measurement 2 0s 0.822 s 0.822 s 17:17.913
(presence condition simplifica-
tion)
Measurement 3 — — 5.058 s 37:12:19.292
(total general formula simplifi-
cation runtime)
Measurement 4 — 2:18:13.285 | 2:17:46.722 | 1:48:44.652
(total simplifying disjunction
runtime)
Measurement 5 — med: 0.003 s | med: 0.002 s | med: 0.001 s
(simplifying disjunction, indi- avg: 0.082 s | avg: 0.083 s | avg: 0.063 s
vidual terms) max: 8.880 s | max: 9.595 s | max: 7.675 s

Table 5.2: Runtime measurements of different simplification settings (variant 1)

Measuremont Setting Simple Si'm.plifyi'ng Visitor AAS
Disjunction

Measurement 1 1:12.854 | 8:57.950 11:06.876 53:23.414

(total feature-effect runtime)

Measurement 2 0s 0.581 s 1.221 s 15:57.728

(presence condition simplifica-

tion)

Measurement 3 — — 6.159 s 1:15:28198

(total general formula simplifi-

cation runtime)

Measurement 4 — 8:53.130 10:58.630 3:29.422

(total simplifying disjunction

runtime)

Measurement 5 — med: 0.001 s | med: 0.001 s | med: 0.000 s

(simplifying disjunction, indi- avg: 0.004 s | avg: 0.005 s | avg: 0.001 s

vidual terms) max: 0.637 s | max: 0.997 s | max: 7.693 s

Table 5.3: Runtime measurements of different simplification settings (variant 2)

Table 5.2 shows the results for the runtime measurements Measurement 1 through
Measurement 5 for the first product variant. Table 5.3 shows the results for the second
product variant. The measurements are presented in different formats, depending on their
magnitude. If they are under a minute, the timings are formatted as seconds, with mil-
lisecond precision as decimals. If they are under an hour, they are formatted as

minutes : seconds.milliseconds. The measurements greater than one hour are format-
ted as hours :minutes :seconds.milliseconds.

79

Variability-Aware Analysis of C Source Code

Product Variant

Variant 1 Variant 2
Measurement
Measurement 6 2.276 s 2.573 s
(Step 1 of “combined approach”,
simplify with “prune constants” ap-
proach)
Measurement 7 0.774 s 0.954 s
(Step 2 of “combined approach”,
move negations inwards)
Measurement 8 3.573 s 3.992 s
(Step 3 of “combined approach”, sim-
plify with “simple Boolean algebra”
approach)
Measurement 9 22.852 s 26.670 s
(Step 4 of “combined approach”, sim-
plify with “more complex Boolean al-
gebra” approach)
Measurement 10 20:11:44.942 1:02:36.921
(Step 5 of “combined approach”, sim-
plify with “equal sub-formula” ap-
proach)
Measurement 11 5.045 s 5.443 s
(Step 6 of “combined approach”,
move negations outwards)
Measurement 12 16:59:59.830 12:11.645
(Step 7 of “combined approach”, sim-
plify with “equal sub-formula” ap-
proach)
Measurement 13 56.304 s 46.256 s
(Step 1 of “equal sub-formula” ap-
proach, search equal sub-formulas)
Measurement 14 13:45.539 4:10.686
(Step 2 of “equal sub-formula” ap-
proach, replace with temporary vari-
able)
Measurement 15 57:35.966 22:07.272
(Step 3 of “equal sub-formula” ap-
proach, simplify with “more complex
Boolean algebra” approach)
Measurement 17 35:59:09.887 47:31.691
(Step 4 of “equal sub-formula” ap-
proach, check if formula has changed
during simplification)
Measurement 17 2.989 s 2.609 s

(Step 5 of “equal sub-formula” ap-
proach, replace temporary variable
with original sub-formula)

Table 5.4: AAS setting-specific runtime measurements (both variants)

80

Evaluation

The AAS setting-specific runtime measurements for both product variants are shown in
Table 5.4. For the first product variant, the total time spent in the “combined approach”
simplification is about 37 hours and 12 minutes (Measurement 3). 99.97 % of that is
spent on steps 5 and 7 (Measurement 10 and Measurement 12). These two steps are
the “equal sub-formula detection” simplification approach. For the second product variant,
the relative time spent in the “equal sub-formula detection” approach is 99.12 %.

The time spent in the “equal sub-formula detection” approach for the first product vari-
ant is 37 hours, 11 minutes, and 44.772 seconds. 96.76 % of that is spent in step 4
(Measurement 17). For the second product variant, the relative time spent in step
4 of the “equal sub-formula detection” approach is only 63.67 %.

100.0%

36.8% 67.8% 68.0% 68.6%
80.0%
60.0%

Independent
40.0% M Dependent
20.0% 32.0%
0.0% —
Simple Simplitying Visitor AAS

Disjunction
Figure 5.4: Ratio of dependent vs. independent variables for different simplifications

Figure 5.4 shows the results of Measurement 18 for the first product variant. For each
simplification setting, the relative amount of dependent and independent variability vari-
ables is shown. The absolute number of variability variables is equal for all simplification
settings. The number of independent variables for the Simple setting (about 37 %) is lower
than the number of independent variables for the other settings (about 68 %). The results
for Measurement 18 for the second product variant show a similar growth in the num-
ber of independent variables: about 17 % are independent with the Simple setting, while
about 36 % are independent with the other settings.

Figure 5.5 shows the results of Meaurement 19 and Meaurement 20 for the first prod-
uct variant. The number of operators and variables in all resulting feature-effect formulas
were measured. The results for the Simple setting are used as baseline. The results for the
other settings are shown in Figure 5.5 as relative percentages of that baseline. The Simple
setting would have values of 100 % for both, the number of operators and variables; it is
not shown in this diagram. The settings Simplifying Disjunction and Visitor have simi-
lar results, with about 4.1 % the number of operators and 3 % the number of variables
compared to the Simple setting. The AAS setting reduces these values further to 1.57 %
(about 60 % improvement over the Visitor) and 1.34 % (about 55 % improvement over
the Visitor) respectively.

For the second product variant, Meaurement 19 and Meaurement 20 show similar
relations between the different simplification settings. The Simplifying Disjunction and

81

Variability-Aware Analysis of C Source Code

4.50%
4.00% 4.18%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

4.09%

3.03%

No. of Operators
M No. of Variables

S[mplifyi_ng Visitor AAS
Disjunction

Figure 5.5: Total number of operators and variables relative to Simple simplification

Visitor settings drastically reduce the size compared to the Simple setting. The AAS
setting has further improvements over the Visitor setting of about 70 % for both, the
number of variables and operators.

5.3.3 Discussion

The simplification of Boolean formulas was introduced to counteract the tendency of the
feature-effect approach to create large formulas. The feature-effect computation inherently
creates formulas that contain many true and false constants (cf. Section 3.4). Thus,
the “prune constants” approach was introduced to simplify the resulting feature-effect
formulas. It uses the Boolean algebra rules identity and annihilator to remove all constants
and simplify the formula a bit.

However, for the Bosch PS-EC use-case the formulas were still too large. The goal is to
create concise feature-effect formulas that serve as a basis for domain experts to create
variability model constraints. The formulas thus have to be understandable by humans,
which for the case of Boolean formulas boils down to the size of the formulas (cf. Sec-
tion 3.5). The feature-effects simplified with the “prune constants” approach were still
too large for our industry partners at Bosch. Thus, further simplification strategies were
developed.

Finding the smallest possible equivalent Boolean formula for a given feature-effect is not
feasible for the number of variables that commonly occur in the feature-effect formulas.
As Section 3.5 discussed, the exact Quine-McCluskey approach [Qui52; Quibb; McC56] to
find the smallest equivalent is NP-complete. Common heuristics that reduce the runtime
behavior, like the the Espresso logic minimizer [BHH+82], still require the full truth-table
as an input. Creating this for the arbitrary Boolean feature-effects is unfeasible, as it grows
exponentially in size. We found that existing research tends to focus on formulas with few
unique variables or on specialized cases (e.g. read-once Boolean functions, where each
variable only occurs once). Thus, we developed our own simplification heuristics, which
are based on Boolean algebra rules.

82

Evaluation

The “simplifying disjunction” is a specialized simplification approach, which is tailored
to the specifics of the feature-effect definition (cf. Section 3.5). The core idea is to detect
which terms of the main disjunction in the feature-effect definition (Formula 3.2) can be
left out. Measurement 19 and Measurement 20 show that the Simplifying Disjunction
setting greatly reduces the formula sizes, compared to the Simple setting. In addition,
Measurement 18 shows that this approach also leads to about twice as much feature-
effects being simplified to true. These are then classified as independent /top-level variables.
The detection of independent variability variables is a main concern of the feature-effect
analysis (cf. Section 3.6), so increasing the detection rate is a benefit of the simplification
approach.

The results of the Simplifying Disjunction setting (and the Visitor setting, which has
similar results) can be further improved with the AAS setting. The AAS setting enables
the “combined approach”, which internally utilizes all other simplification approaches. It is
the only setting where the “equal sub-formula detection” approach is used, which increases
the detection rate of Boolean algebra transformation rules that can be applied. While
Measurement 18 only shows a marginal increase of the feature-effects that are simplified
to true, Mleasurement 19 and Measurement 20 show a significant improvement in the
formula sizes. In the first product variant of the evaluation, the AAS setting lead to a
further reduction of 55 % to 60 %. In the second product variant, the reduction is even
higher at 70 %.

However, all simplification approaches have a significantly increased runtime. Measure-
ment 1 shows the runtime of the feature-effect computation, which includes all simplifi-
cations shown in Figure 3.9 except the preliminary presence condition simplification. For
the first product variant of the evaluation, the runtime of the feature-effect computation
for the Simplifying Disjunction setting is about 187 times longer than with the Simple
setting. The runtime with the AAS setting is more than 3,000 times longer (15 times
longer than with the Simplifying Disjunction setting). For the second product variant in
the evaluation, the increase is much lower but still significant: the runtime of the feature-
effect computation for the Simplifying Disjunction setting is about 6 times longer than
with the Simple setting. The runtime with the AAS setting is about 43 times longer (5
times longer than with the Simplifying Disjunction setting).

The benefit of the smaller feature-effect sizes has to be weighed against the increase in
computation runtime. If the goal to create smaller formulas is more important than the
runtime, the most powerful simplification approach should be configured. This is for ex-
ample the case in the Bosch PS-EC use-case: the product variants are analyzed once to
create feature-effects that serve as a basis for domain experts to create variability model
constraints. Here, the most important goal is that the constraints can be used by humans.
The analysis is only conducted once, thus a longer runtime is tolerable. However, a differ-
ent context may have different priorities. For instance, the feature-effect analysis could be
conducted regularly to ensure consistency of the feature-effects with the variability model
constraints during development. In this case, the runtime may be more important, as the
analysis is executed many times. Additionally, the formula size may not be as relevant,
as the consistency checking could be automated. Automated systems can deal better with
larger formulas than humans. In this scenario, a lower simplification setting is advisable.

An open question remains why the runtime of the first product variant in the evaluation is
so much higher than the second product variant. Both have a similar number of variability
variables and feature-effect formula size. One possible explanation is that the formulas in
the first product variant have a structure that is harder to simplify. The formulas may

83

Variability-Aware Analysis of C Source Code

have a structure where simplification opportunities cannot easily be found. If a condition
that is hard to simplify appears in a parent conditional compilation block or file presence
condition, the presence conditions of all the nested blocks also become hard to simplify.
This could explain that the same number and size of feature-effect formulas for one product
variant takes longer to simplify than for another one. We regrettably do not have access
to the product variants to analyze this due to confidentiality reasons.

An interesting observation is that most of the runtime of the AAS setting is spent in a
single step of the “equal sub-formula detection” approach. For the first product variant,
more than 96 % of the time spent in the “combined approach” (Measurement 3 for
AAS setting) stems from step 4 (checking if formula changed) in the “equal sub-formula
detection” approach (Measurement 17). For the second product variant, this ratio is
89 %. This is remarkable, as step 4 of the “equal sub-formula detection” approach is only
a small utility step that checks if the preceding simplification changed the formula (i.e. if
there was a simplification at all). It is not obvious why this step should take such a large
portion of the overall runtime. This may indicate that the implementation has a bug in
this step. Further investigation is required here, as fixing such a bug has the potential to
greatly decrease the runtime of the AAS simplification setting.

5.4 srcML-Extractor

This section evaluates the srcML-extractor implementation for KernelHaven [KE19b],
which is introduced in Chapter 4. The srcML-extractor parses C-source code files and
creates a code model for them. The code model combines the syntactical information
of a traditional abstract syntax tree (AST) with variability information (i.e. conditional
compilation blocks implemented via the C-preprocessor). The srcML-extractor uses the
srcML tool [CDM11; CMD+17] for the basic syntactical markup of the source code and
transforms this markup to a code model for KernelHaven.

5.4.1 Setup

The srcML-extractor is evaluated on the Linux Kernel, a large open-source software prod-
uct line [Linl9]. The Linux Kernel is the use-case of the MetricHaven infrastructure
[EKS19], which the srcML-extractor was developed for. The latest Linux Kernel release as
of writing, version 5.3.5, will be used (the same version is also used in the evaluation of the
CodeBlockExtractor in Section 5.2). The srcML-extractor parses all .c files of the Linux
Kernel individually and creates a code model for each of the files. The total number of
these files will be measured (Measurement 1). Further measurements will be conducted
to asses the performance and robustness of the srcML-extractor.

For the evaluation of the performance, the total runtime of the extraction process will be
measured (Measurement 2). This includes the parsing of all source code files in the Linux
Kernel. The srcML-extractor will be configured to use only a single thread, that means
that files will be parsed after one another. Additionally, the runtime of the three steps
performed in the srcML-extractor transformation process (cf. Figure 4.4) will be measured
individually: XML parsing (Measurement 3), preprocessing (Measurement 4), and
conversion (Measurement 5). As the XML parsing requires the complete output of
the XML markup created by the srcML tool, this measurement includes the runtime of
the srcML tool. The performance measurements will be performed on a virtual machine

84

Evaluation

running Ubuntu 16.04 with 40 logical CPU cores of an Intel Xeon E5-2650V3 @ 2.3 GHz
and 314 GiB RAM. The measurement setup will be executed once as warmup. After that,
three measurement executions will be performed and the one with the median execution
time will be reported.

For the evaluation of the robustness, multiple measurements will be conducted to asses
how many constructs the srcML-extractor cannot parse. These measurements rely on
self-reported errors that the srcML-extractor detects during parsing. First, the number
of unparseable files is measured (Measurement 6). These are cases where the srcML-
extractor cannot parse the file at all. This may be due to constructs in the C-preprocessor
that cannot be handled in the preprocessing step (cf. Section 4.3.1). Additionally, the
number of files that contain an ErrorElement are measured (Measurement 7). If the
srcML-extractor encounters a problem in the AST conversion step (cf. Section 4.3.2), it
inserts a special ErrorElement that indicates that the transformation for this part of the
AST has failed. The rest of the file, including the nested elements, are still transformed
normally. The C-preprocessor condition parser component is re-used from the CodeBlock-
Extractor (cf. Section 3.3). It is configured to handle Linux-specific macros, fuzzy parsing
is enabled, and exceptions are thrown for all unparseable conditions. This means that
unparseable C-preprocessor conditions will create ErrorElements.

The metrics in the MetricHaven framework are implemented on a per-function basis
[EKS19]. As this is the use-case of the srcML-extractor, its robustness will also be measured
on a per-function basis. For this, the total number of functions in the code model created
by the srceML-extractor will be measured (Measurement 8). Another measurement will
count how many of these functions contain an ErrorElement (Measurement 9). These
measurements indicate how many functions can be supplied to the metric framework and
how many of those contain inaccurate parsing results.

5.4.2 Results

The measurement results for the Linux Kernel version 5.3.5 are as follows: The total
number of .c files in the Kernel is 27,416 (Measurement 1). Table 5.5 summarizes
the results of the performance measurements. Timings of more than 1 minute are given
in the format minutes:seconds.milliseconds. For the measurements that consist of
multiple timings per execution, the minimum, median, average, maximum, and sum of the
individual timings is given. Measurement 2 is only a single timing, so this value is given
in the sum column. The last column shows the relation of the sum column to the total
runtime (Measurement 2).

Min Med Avg Max Sum Relative
Measurement 2 — — — — 18:55.861 100 %
(total extraction time)
Measurement 3 0.003s | 0.023s | 0.038 s | 1.817 s | 17:41.676 95.5 %
(XML parsing)
Measurement 4 0.000 s | 0.000 s | 0.001 s | 0.073 s | 21.880 s 1.9 %
(Preprocessing)
Measurement 5 0.000 s | 0.000 s | 0.001 s | 0.209 s | 40.644 s 3.6 %
(Conversion)

Table 5.5: Runtime of srcML-extractor transformation steps

85

Variability-Aware Analysis of C Source Code

M Unparseable (142)
With ErrorElement (1,380)
M Correctly Parsed (25,894)

94.45%

Figure 5.6: Ratio of files parseable by the srcML-extractor

Figure 5.6 shows the results of Measurement 6 and Measurement 7 in relation
with Measurement 1. 142 files cannot be parsed at all (Measurement 6), that is
about 0.52 % of the total number of files (Measurement 1). 1380 files contain an
ErrorElement (Measurement 7), that is about 5.03 % of the total number of files
(Measurement 1). The number of functions is also measured: 488,707 functions are
in the files that were parsed (Measurement 8). Of these, 2,321 functions contain an
ErrorElement (Measurement 9), which is about 0.47 % of the total amount of func-
tions.

5.4.3 Discussion

The srcML-extractor parses C-source code files to a code model that combines a traditional
abstract syntax tree (AST) representation with variability information from the C-prepro-
cessor. This enables analyses that require a combined model of the syntactical structure
of the code and the variability information. The specific use-case that motivated the de-
velopment of the srcML-extractor is the MetricHaven framework. MetricHaven allows the
implementation of variability-aware metrics for software product lines. For this use-case it
is important that the code model created by the extractor closely represents the contents
of the original source code file. This is because the metrics aim at quantifying aspects of
the variability and the code that the developer has to work with.

The AST code model created by the srcML-extractor enabled the implementation of a
large number of metrics in the MetricHaven framework [EK19]. As of the time of writing,
9 classes of code metrics have been implemented. Many of them have variations and
allow to be combined with one or multiple of 7 variability weights. Variability weights are
metrics for the variability model; their results can be used as weights in the calculation of
the code metrics. Overall, this leads to a total of 42,796 individual metrics. This includes
some traditional code metrics and a large number of variability-aware metrics designed
for software product lines.

86

Evaluation

Most of the metrics in MetricHaven could be implemented straightforward with the AST
created by the srcML-extractor. However, for some metrics the AST structure did not
provide enough information. This is because the AST only represents the syntax down
to the statement-level and leaves expressions as unparsed code strings. This can lead
to problems for metrics that need information from the expressions-level. For instance,
metrics that analyze the call graph require information when a function is called in an
expression. With the AST structure of the srcML-extractor, this can only be implemented
heuristically: if a name of a known function appears directly in front of an opening bracket
then it is assumed that the function is called here. In practice, this approximation leads
to good results.

The srcML-extractor has a back-off strategy for some constructs that it cannot parse.
In such a case, an ErrorElement is created in the AST at the problematic location.
Measurement 6 and Measurement 7 show that in total 1,522 files could not be parsed
correctly. However, 1,380 (90.7 %) of these (Measurement 7) could still be handled due
to the back-off strategy. Only 142 files (0.52 % of the total number of .c files) could
not be parsed due to constructs that the preprocessing step cannot handle. The back-
off strategy greatly decreases the amount of unparseable files, but it leads to files that
contain incorrectly parsed parts (the ErrorElements). A flag in all parent elements of an
ErrorElement allows the analysis to decide if it wants to consider these incorrectly parsed
files.

The MetricHaven framework decides on a per-function basis whether to consider incor-
rectly parsed ASTs. The metrics are implemented on a per-function basis and the Met-
ricHaven framework splits the ASTs up into individual functions. The user can configure
whether functions that have the ErrorElement flag set should be considered or not. Even if
the incorrectly parsed functions are discarded, the back-off strategy still has an advantage:
if one function from a file cannot be correctly parsed, only that function is marked with
the ErrorElement flag. All the other functions in the same file that are parsed correctly
can still be considered in the metric computation. Without the back-off strategy, the whole
file would need to be discarded and all functions, including the ones that can be parsed
correctly, would be lost. Measurement 8 shows that 488,707 functions are parsed by the
srcML-extractor. Only 2,321 of these (about 0.47 %) contain an ErrorElement which a
user may want to discard before the metric computation (Measurement 9).

The unparseable files and ErrorElement back-off strategy rely on the fact that the parser
detects constructs that it cannot correctly transform. These self-reported errors do not fully
reflect the correctness of the parser. There may be constructs that the sreML-extractor
transforms without reporting an error, but the resulting code model is wrong. The example
in Figure 4.12 in Section 4.3.1 shows a case where the srcML tool creates wrong markup. In
this example, the srcML-extractor can transform the XML markup without an error, but
the resulting model does not represent the source code correctly. During the development
of the srcML-extractor, a small test-suite with common code constructs was created to
check that these constructs are converted correctly. Additionally, manual inspections of the
parsing result for real-world source code from the Linux Kernel were conducted throughout
the development to check the correctness of the created models. The findings of these
inspections were considered in the development of the srcML-extractor and are the basis
for the illustrated edge-cases in Section 4.3.

Measurement 2 through Measurement 5 show the performance of the srcML-extractor
implementation. The total runtime of about 18 minutes and 56 seconds (Measurement 2)
means that, on average, parsing of each of the 27,416 .c files (Measurement 1) took

87

Variability-Aware Analysis of C Source Code

about 41.4 milliseconds. For comparison, this is two orders of magnitude slower than the
CodeBlockExtractor, which takes 0.215 milliseconds per file (cf. Section 5.2). However,
the CodeBlockExtractor only parses the C-preprocessor conditional compilation blocks
and does not consider the C-code.

The XML parsing step of the srcML-extractor transformation process makes up about
95.5 % of the total runtime (Measurement 3). The XML parsing requires the complete
output of the srcML tool, thus this measurement includes the runtime of the srcML tool.
Also, as XML parsing usually has a high performance, most of the measured time for that
step likely stems from waiting for the output of the srcML tool. The following preprocessing
and conversion steps, the main parts of the srcML-extractor implementation, only make
up a small amount of the total runtime (5.5 %, Measurement 4 and Measurement 5).
Thus the overhead of the transformation from srcML to a code model compatible with
KernelHaven is relatively small.

5.5 Threats to Validity

This section discusses the threats to the validity of the evaluations in the previous sections.
This discussion is combined for all previous sections as many points apply to more than
one evaluation. It is split into three validity categories: internal, external, and construct
validity. The fourth validity category, conclusion validity, has been left out. This is because
conclusion validity is concerned with application of statistical analysis, but no statistical
tests have been performed on the measured results. Additionally, for applied research like
the evaluations conducted in this chapter, conclusion validity is considered to have the
least priority [WRH+00, p. 74ff.]. The internal validity section discusses some points that
could also be seen as related to conclusion validity.

5.5.1 Internal Validity

The internal validity of an evaluation represents that the measurement results are caused
by the aspect that is intended to be measured [WRH+00, p. 63ff.]. This can be threatened
by unintended influences while conducting measurements. For instance, if an evaluation
compares two tools, the two tools have to be run under the same conditions. If other
(external) influences are only present during the execution of one tool, the comparison of
the two tools is inadequate.

Performance measurements are especially sensitive to unintended external influences, as
many aspects may have an influence on modern computers. Other processes, the operating
system (interrupts, etc.), and caches can, among other aspects, influence the momentary
performance of the system. To mitigate some of these problems, most performance mea-
surements were performed multiple times and the median is reported. While this does not
prevent any external influences, it removes influences that cause individual measurements
to be higher or lower than the “average” execution scenario. For the performance mea-
surements of the simplification approaches in Section 5.3 it was regrettably not possible
to execute the measurements multiple times. This is because the overall runtime of the
evaluations was relatively long and the measurements were conducted by our industry
partners at Bosch.

88

Evaluation

Most of the measurements in the evaluations were implemented by inserting probes into
the evaluated component. For example, performance probes measure the elapsed time of
a certain task. The measurement results of the individual probes are stored in-memory
during the execution and are printed to the log file after the KernelHaven pipeline finished.
The performance probes introduce side-effects into the performance measurements, as they
use CPU an memory resources. They are implemented to be lightweight, but they nev-
ertheless may influence the performance measurements, as a single KernelHaven pipeline
execution can result in several tens of millions of individual probe measurements. While
this factor is present during all executions of a specific evaluation, some of the evaluated
settings contain more probes than others. For example, the AAS setting of the evaluation
in Section 5.3 has more probes than the Simple setting.

The performance probes rely on the accuracy of the underlying time reporting that they
use to calculate the elapsed time. In the evaluations here, the System.nanoTime () method
of the Java virtual machine (JVM) is used to get timestamps for the start and end of a
task. The elapsed time of the task is calculated by subtracting the start from the end.
The documentation for the nanoTime method only grantees a precision of at least 1 mil-
lisecond [JAS14], although the JVM implementations used in the evaluations have higher
precision. The aggregation of the individual probe measurements is implemented on the
nanosecond scale that is returned by the nanoTime method and the results are reported
with millisecond precision.

In the evaluation of the non-Boolean transformation (Section 5.1) a considerable portion
of the runtime is spent on copying files. The performance of file operations generally has
a high variance. This is because storage hardware is typically orders of magnitudes slower
than the CPU and RAM, and its performance largely depends on caches, which could not
be controlled by us. Thus, the measured runtime of the preprocessing component, which
copies a large amount of files, will be heavily influenced by these aspects. This is somewhat
mitigated by the approach to execute the component four times and report the median
runtime. However, there was no further analysis of the impact of file operations on the
component as a whole.

The measurements conducted by our industry partners at Bosch (the simplification ap-
proach evaluation in Section 5.3 and the evaluation of the non-Boolean transformation on
the PS-EC product line in Section 5.1) could not be controlled by us. We only prepared a
KernelHaven pipeline with performance probes, which was then executed by our partners
at Bosch. We could not control the circumstances of the execution, like the hardware or
potential external influences. This could have had an effect on performance measurements.
We instructed our partners at Bosch that performance measurements were conducted to
partially prevent some negative influences. Another aspect here, that could not be con-
trolled by us, is the selection of the product variants used for the evaluation. We instructed
our partners at Bosch to use “representative” product variants. However, as the results in
Section 5.3 show, there is a huge variance in the two selected product variants.

5.5.2 External Validity

The external validity of an evaluation represents how well the results are applicable outside
of the specific evaluation [WRH-+00, p. 63ff.]. This can be threatened by aspects in the
evaluation that are not generalizable but only hold within the evaluated context. For
example, if a tool is only evaluated on a certain type of input, the results may not apply
to other types of input.

89

Variability-Aware Analysis of C Source Code

The evaluations for the non-Boolean transformation (Section 5.1) and the formula simpli-
fication approaches (Section 5.3) were only conducted on two product variants. At least
for the formula simplification runtimes, these two product variants also show a relatively
large variance. This small sample of product variants threatens the generalization of the
evaluation results to other product variants. We instructed our industry partners at Bosch
to select “representative” product variants, which slightly remedies the concerns here.
However, a better measure to lessen this threat would be to evaluate on more product
variants. Due to the high effort required for that, this was not possible in this thesis.

The formula simplification approaches (Section 5.3) were only evaluated in the context of
the feature-effect analysis of the PS-EC product line. However, most of the simplification
approaches introduced in Section 3.5 are general approaches in the sense that they can be
applied to any arbitrary Boolean formula. The feature-effect formulas represent a special
group here, as they are all created using the same formula (Formula 3.2). Thus, the feature-
effect formulas that are used in the evaluation all have a similar structure. Additionally,
the variability conditions of the product line, which the feature-effects are based on, are
results of the non-Boolean transformation preprocessing (cf. Section 3.2). This is another
source where similar structures are introduced systematically in the formulas. Because of
these two points, the results of the evaluation cannot be easily generalized to arbitrary
Boolean formulas.

The non-Boolean transformation was evaluated on generated test-cases, in addition to
the two PS-EC product variants (Section 5.1). While this somewhat extends the external
validity beyond the scope of the PS-EC product variant, the artificial generation is not
based on any real-world product line. The goal of the test-case generation is to cover all
transformation rules; it does not represent any distribution of variability in a real-world
product line. Additionally, it only generates integer variability variables with a fixed range;
it does not generate unrestricted variables as one would expect in a real-world product
line. The evaluation with the generated test-cases gives some insight on the behavior of the
underlying approach, but it does not generalize to other product lines with integer-based
variability.

The CodeBlockExtractor was only evaluated on the Linux Kernel (Section 5.2). How many
conditions the extractor can correctly parse largely depends on the kind of variability that
is present in the product line. Thus, the specific percentages of this aspect of the evalua-
tion do not generalize beyond the Linux Kernel. The further analysis of the unparseable
conditions revealed that it is mostly caused by numeric operations and custom macro
calls. This result can be transferred to other product lines: the CodeBlockExtractor can
correctly parse pure Boolean variability. Additionally, the results of the runtime evaluation
are expected to generalize to other product lines. This is because the runtime depends on
the size of the product line and not on the kind of variability. The CodeBlockExtractor lin-
early runs through all source code files and parses each variability condition independently.
This is in line with our qualitative observations when running the CodeBlockExtractor on
the PS-EC product line. The ratio of unparseable conditions is different, but the runtime
behavior is similar to the Linux Kernel.

The srcML-extractor was also only evaluated on the Linux Kernel (Section 5.4). The
threats to external validity regarding the variability are the same as for the CodeBlockEx-
tractor. Additionally, the srcML-extractor parses the C-source code. Here, the limitation
to a single product line as the evaluation basis can also threaten the external validity.
This is because the specific domain and coding conventions of the Linux Kernel can have

90

Evaluation

an influence on the constructs that appear in the C-code. Other projects may have con-
ventions that cause certain constructs in the code to appear more or less often than in
the Linux Kernel. This can have an effect on the robustness that was evaluated for the
srcML-extractor.

5.5.3 Construct Validity

Construct validity of an evaluation represents how well the conducted measurements reflect
the attribute that is intended to be evaluated [WRH-00, p. 63ff.]. This can be threatened
by measurements that only partially (or not at all) reflect the intended abstract attribute.
For instance, an evaluation intends to quantify the usability of a software product, but
uses the number of buttons as a measurement. This measurement does not reflect the
intended abstract attribute (usability).

A general threat to the the construct validity is that only the implementation can be mea-
sured, while the general approach is meant to be evaluated. This could lead to discrepancies
when the measurements are influenced by implementation details that are not inherent to
the theoretical approach itself. For instance, in the evaluation of the non-Boolean trans-
formation (Section 5.1), a large amount of the total runtime is spent on copying files and
waiting for the variability model. These tasks are implementation-specific decisions that
are not inherent to the transformation approach presented in Section 3.2. To lessen this
threat, we tried to take care to identify influences that stem from the implementation and
not from the approach itself. The reported measurements are specific to the implemen-
tations, while the discussions argue which conclusions can be drawn for the underlying
approaches.

Throughout all evaluations, the effort or overhead of the implementations is quantified by
measuring the runtime. Other aspects that also could be considered to be “effort”, like the
memory footprint, are not considered. This approach, that only runtime is measured to
evaluate research prototypes, is common in our experience. Additionally, no other aspect
that constitutes “effort” was conspicuous in typical applications of the implementations.
If, for example, we would have encountered memory problems, a memory measurement
would have been included in the evaluation.

In the evaluation of the non-Boolean transformation (Section 5.1), the size of the condition
formulas is measured as the number of characters in the C-preprocessor line. The length
of the formula string is only a rough estimation of the size. It is mainly influenced by the
number of variables, as these are typically many characters long. In contrast, the number
of operators only has little effect on the length of the string. Additionally, variables that
happen to have a longer name influence the formula string length more than variables
with shorter names. A better measurement here would be the number of operators or
number of variables, like the measurements for the formula size in Section 5.3. However,
the formula string length was chosen as it is easy to implement with relatively little
overhead. Additionally, the ratio of the pre- and post-transformation condition lengths is
reported to indicate the growth rate, which makes the absolute length of the conditions
less relevant.

The evaluations of the non-Boolean transformation (Section 5.1), the CodeBlockExtrac-
tor (Section 5.2), and the srcML-extractor (Section 5.4) measure the number of elements
that could not be transformed or parsed. This is used to indicate how robust the imple-
mentations are against the variety of possible inputs. This is measured by counting how

91

Variability-Aware Analysis of C Source Code

many exceptions the implementations themselves report. This measurement does not in-
clude cases where the implementations should raise an exception, but instead incorrectly
transform or parse the element. The number of conditions where the implementations fail
to correctly transform or parse the element may be higher than the measured results.
Thus the reported robustness may be too high. To lessen this threat, we implemented the
approaches defensively to throw exceptions in all cases where it is not clear that the input
can be handled correctly. Additionally, the test-suites that are developed together with
the implementations aim at a high coverage of different input classes to ensure that all
successfully transformed or parsed elements are correct.

The formula simplification approaches, evaluated in Section 5.3, aim at increasing the
understandability of the feature-effect formulas. As discussed in Section 3.5, this prob-
lem is reduced to the size of the propositional formulas. This is because the formulas are
constructed using only three simple operators (A, V, and —), parenthesis, variables, and
constants (true and false). However, understandability is a quality where human percep-
tion and cognitive abilities play a major role. There may be aspects involved beyond simply
the size of the formula. A study with human subjects that evaluates the understandability
of the simplified and unsimplified formulas will result in a more accurate representation.
However, this greatly increases the effort required for this evaluation and is not feasible
in the context of this thesis. We believe that the approximation using the formula size
is reasonable in the evaluation of the simplification approaches. This is also in line with
the requirements of our industry partners at Bosch, who said that the original size of the
feature-effect formulas was the main obstacle for their domain experts.

Another threat to the construct validity of the evaluation of the simplification approaches
is that the approaches were not evaluated individually. Instead, the settings offered by the
KernelHaven infrastructure are used, which combine different approaches. For example,
the “simplifying disjunction” approach is enabled in three of the settings: Simplifiying
Disjunction, Visitor, and AAS. This closely represents real-world use-cases, where multiple
of the approaches are combined to simplify the resulting feature-effect formulas. However,
it limits drawing conclusions for the individual simplification approaches.

92

Conclusion

6 Conclusion

This thesis presented two approaches for statically analyzing C-source code with variability.
The common focus was on the extraction and representation of the necessary information
from the source code artifacts. The two approaches have different goals with respect to
which kind of information is extracted. They enable different kinds of analyses based on
their created code models.

The first approach is the analysis of C-preprocessor variability in a software product line
(cf. Section 3). The goal of this analysis is to extract domain knowledge that is implicitly
encoded in the variability in the source code. It is based on the feature-effect approach
by Nadi et al. [NBK+14]. The result of this analysis are preconditions for the variability
variables that define when they have an effect on the product generation. This means,
that the preconditions encode when changing the configuration of a variability variable
also changes the product that is generated.

The use-case for this approach was the industrial Bosch PS-EC product line (cf. Sec-
tion 3.1). The goal for this use-case was that the preconditions created by the feature-effect
analysis serve as a basis for the creation of variability model constraints for this product
line. The application of the analysis identified independent and dependent variability vari-
ables (cf. Section 3.6). The independent variables always have an effect on the product
derivation, regardless of the configuration of the other variability variable. The depen-
dent variability variables have a precondition that defines under which circumstances they
influence the final product.

The analysis pipeline implementation for this approach consists of several steps. First,
the integer-based variability used in the PS-EC product line is converted to propositional
logic (cf. Section 3.2). This is required as the feature-effect approach and the existing
tooling only work with Boolean formulas. Then, a parser creates a model of the C-pre-
processor variability in the source code files (cf. Section 3.3). This model is a hierarchy of
the conditional compilation blocks with their presence conditions. Combined with other
models of variability from different assets of the product line, it is then analyzed with
the feature-effect approach. This approach had to be slightly adapted to this use-case,
as the transformation of the integer-based variability introduces some constraints on the
propositional replacements (cf. Section 3.4). Finally, the results computed by the feature-
effect approach need to be simplified.

The simplification of the resulting formulas is required as they are meant to be understand-
able by the domain experts (cf. Section 3.5). Established approaches and tools for Boolean
formula simplification are not applicable as their runtime behavior and assumptions on
the formula structure are not feasible. Thus, several heuristic approaches have been de-
veloped that reduce the size of the resulting formulas. Some of them are generic, that is
they can simplify arbitrary Boolean formulas, while others are specific to the feature-effect
computation. The evaluation showed that the simplification step required the most run-
time in the analysis pipeline (cf. Section 5.3). Generally, the more time is invested in the
simplification the smaller the formulas become.

93

Variability-Aware Analysis of C Source Code

This analysis pipeline demonstrates that there is useful domain knowledge encoded in the
variability implementation in a real-world product line. Extraction of this promises useful
applications, like creation of variability model constraints, improvement of the configu-
ration process, and detection of mismatches between variability model constraints and
implementation. Future work could look at further applications of the computed feature-
effects, for example to check adherence to architectural constraints. Another possible di-
rection can be exploring alternative analysis concepts to extract domain knowledge from
the variability in the implementation artifacts. One possible idea could be to analyze how
much a variability variable changes the final product. This could be used to classify the
variability variables into ones that have a large impact (e.g. variables that control whole
features) and others that only modify small aspects (e.g. variables that modify a small
aspect within a larger feature).

Another finding from the application of this approach is that analyses have to be adapted
to the specific product line. Variability is implemented differently in different product lines,
so at least the variability extractors have to be adapted to this. It may also be required to
adapt the analysis itself. In the case of the Bosch PS-EC product line, the integer-based
variability was converted to propositional logic. In addition to changes in the extraction
process, this also introduced a new aggregation step to the feature-effect computation (cf.
Section 3.4). Another aspect where analyses have to be adapted to product lines is the
types of assets that need to be analyzed. In the Bosch PS-EC use-case we found that
considering more sources of variability information improves the results. Thus, analyses
have to consider which artifact types exist in a product line and how their variability
information can be integrated into the analysis process. Future work in this area can adapt
existing analysis approaches to more real-world use-cases. This broadens the knowledge of
possible adaptations and may lead to a generic model of variability information sources
that analyses can use.

The second approach presented in this thesis is a parser for C-source code that combines
the syntactical structure of the code with variability information (cf. Chapter 4). The
result is an abstract syntax tree (AST) representation of the code with additional nodes
that represent the C-preprocessor variability. This enables static analyses that require the
information from both, the code structure and the variability. The specific use-case for the
implementation in this thesis is a framework for computing variability-aware metrics for
software product lines (cf. Section 4.1). This use-case requires that the code model closely
reflects the content of the original source code file.

The parser is based on the srcML tool [CDM11; CMD+17], which creates low-level syn-
tactical markup while leaving the original content of the source file intact (cf. Section 4.2).
The approach developed in this thesis integrates the variability information into the hi-
erarchical AST structure of the code and transforms it into a combined code model (cf.
Section 4.3). In this process, a challenge arises from undisciplined C-preprocessor direc-
tives, i.e. directives that go against the structure of the code AST. Representing this with
the constraint that the resulting model closely reflects the source code structure requires
special transformation rules (cf. Section 4.3.1). However, some constructs still cannot be
transformed by this approach.

The AST that is created by the parser only represents the syntactical structure down to
the statement-level (cf. Section 4.3.2). More fine-grained information, like expressions, are
left as unparsed code strings. This reduced the required development effort to create the
data structure and transformation process for the AST. Additionally, it makes the parser
more accepting as syntactical errors in the expressions can be ignored. However, this has

94

Conclusion

the disadvantage that analyses that require expression-level syntactical information cannot
easily be implemented with this code model. In the use-case of the metric framework, a
few metrics had to be implemented heuristically on the code strings of expressions.

Three alternative approaches that also build combined models of source code with vari-
ability information were explored (cf. Section 4.4). These approaches do not fulfill the
requirement of the metric framework that the code model should closely reflect the source
file content. Two of the approaches change the AST structure of the code so that the in-
tegration of variability is easier. This results in syntactically correct ASTs, but it diverges
from the original source code content. The third approach does not integrate undisciplined
C-preprocessor directives into the AST structure at all.

The parser developed in Chapter 4 does not implement any analysis itself. Instead, it
enables new static analysis approaches to be developed based on the created AST. The
AST structure offers a model that combines the syntactical structure of the code with the
variability information that changes code depending on the product configuration. This
representation is very close to the contents of the original source code file. This allows
analyses to consider the developer perspective on the source code containing variability.
Analyses developed with this AST will likely aim at supporting the developer working with
the source, for example with regard to understandability. For instance, there is ongoing
work with the variability-aware metric framework with the goal to detect how variability
influences the amount of errors in the code.

95

Bibliography

Bibliography

[ABK+13]

[BHH+82]

[Bry86]

[BSL+13]

[CDM11]

[CMD+17]

[Col05]

[EDK+18]

[EK19]

[EKS17]

Sven Apel, Don Batory, Christian Kéastner, and Gunter Saake. Feature-
oriented software product lines: concepts and implementation. Springer Sci-
ence & Business Media, 2013. DOI: 10.1007/978-3-642-37521-7.

Robert K. Brayton, Gary Hachtel, L. H. Hemachandra, Richard Newton,
and Alberto Sangiovanni-Vincentelli. “A comparison of logic minimization
strategies using ESPRESSO: An APL program package for partitioned logic
minimization”. In: Proceedings of the International Symposium on Circuits
and Systems. 1982, pp. 42-48.

Randal E. Bryant. “Graph-based algorithms for boolean function manipu-
lation”. In: IEEE Transactions on Computers C-35.8 (1986), pp. 677-691.
DOI: 10.1109/TC.1986.1676819.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. “A study of variability models and languages in the systems soft-
ware domain”. In: IEEE Transactions on Software Engineering 39.12 (2013),
pp. 1611-1640. DOL: 10.1109/TSE.2013.34.

Michael L. Collard, Michael J. Decker, and Jonathan I. Maletic. “Lightweight
transformation and fact extraction with the srcML toolkit”. In: 2011 IEEE
11th international working conference on source code analysis and manipu-
lation. IEEE. 2011, pp. 173-184. poI: 10.1109/SCAM.2011.109.

Michael L. Collard, Jonathan I. Maletic, Michael J. Decker, et al. srcML
Tool. https://www.srcml.org/. Last visited: 21.10.2019. 2017.

Michael L. Collard. “Addressing source code using sreml”. In: IEEE Inter-
national Workshop on Program Comprehension Working Session: Textual
Views of Source Code to Support Comprehension (IWPC’05). Citeseer. 2005.

Sascha El-Sharkawy, Saura Jyoti Dhar, Adam Krafczyk, Slawomir Duszyn-
ski, Tobias Beichter, and Klaus Schmid. “Reverse Engineering Variability in
an Industrial Product Line: Observations and Lessons Learned”. In: Proceed-
ings of the 22nd International Systems and Software Product Line Confer-
ence (SPLC’18). Vol. 1. - ACM, 2018, pp. 215-225. DOI: 10.1145/3233027.
3233047.

Sascha El-Sharkawy and Adam Krafczyk. MetricHaven plug-in.
https://github.com/KernelHaven/MetricHaven. Last visited: 21.10.2019.
University of Hildesheim, Software Systems Engineering, 2019.

Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. “An empirical
study of configuration mismatches in linux”. In: Proceedings of the 21st In-
ternational Systems and Software Product Line Conference- Volume A. ACM.
2017, pp. 19-28. poI: 10.1145/3106195.3106208.

97

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/SCAM.2011.19
https://www.srcml.org/
https://doi.org/10.1145/3233027.3233047
https://doi.org/10.1145/3233027.3233047
https://github.com/KernelHaven/MetricHaven
https://doi.org/10.1145/3106195.3106208

Variability-Aware Analysis of C Source Code

[EKS19]

[EYS18]

[GBA+19]

[GS19]

[JAS14]

[KE+19]

[KE17]

[KE18a]

[KE18b]

[KE18¢]

[KE19a]

[KE19b)

Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. “MetricHaven -
More Than 23,000 Metrics for Measuring Quality Attributes of Software
Product Lines”. In: Proceedings of the 23rd International Systems and Soft-
ware Product Line Conference. Vol. B. ACM, 2019. po1: 10.1145/3307630.
3342384.

Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. “Metrics
for analyzing variability and its implementation in software product lines:
A systematic literature review”. In: Information and Software Technology
(2018). por: 10.1016/j.infsof.2018.08.015.

Sten Griiner, Andreas Burger, Hadil Abukwaik, Sascha El-Sharkawy, Klaus
Schmid, Tewfik Ziadi, Anton Paule, and Felix Suda. “Demonstration of Tool
Chain for Feature Extraction, Analysis and Visualization on an Industrial
Case Study”. In: Proceedings of the 17th IEEE International Conference on
Industrial Informatics. 2019.

Lea Gerling and Klaus Schmid. “Variability-aware semantic slicing using
code property graphs”. In: Proceedings of the 23rd International Systems
and Software Product Line Conference-Volume A. ACM. 2019, p. 12. DOT:
10.1145/3336294.3336312.

Java API System.nanoTime Documentation. https://docs.oracle.com/
javase/8/docs/api/ java/lang/System. html#nanoTime. Last visited:
21.10.2019.

Adam Krafczyk, Sascha El-Sharkawy, et al. KernelHaven infratructure repos-
itory. https : // github . com/KernelHaven / KernelHaven. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2019.

Adam Krafczyk and Sascha El-Sharkawy. UndertakerExtractor plug-in.
https://github.com/KernelHaven/UndertakerExtractor. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2017.

Adam Krafczyk and Sascha El-Sharkawy. KbuildMinerExtractor plug-in.
https://github.com/KernelHaven/KbuildMinerExtractor. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2018.

Adam Krafczyk and Sascha El-Sharkawy. KconfigReaderExtractor plug-in.
https://github. com/KernelHaven/KconfigReaderExtractor. Last vis-
ited: 21.10.2019. University of Hildesheim, Software Systems Engineering,
2018.

Adam Krafezyk and Sascha El-Sharkawy. NonBooleanUtils plug-in.
https://github.com/KernelHaven/NonBooleanUtils. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2018.

Adam Krafezyk and Sascha El-Sharkawy. FeatureFEffectAnalysis plug-in.
https://github.com/KernelHaven/FeatureEffectAnalysis. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2019.

Adam Krafezyk and Sascha El-Sharkawy. sreML-Extractor plug-in.
https://github.com/KernelHaven/srcMLExtractor. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2019.

98

https://doi.org/10.1145/3307630.3342384
https://doi.org/10.1145/3307630.3342384
https://doi.org/10.1016/j.infsof.2018.08.015
https://doi.org/10.1145/3336294.3336312
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime
https://github.com/KernelHaven/KernelHaven
https://github.com/KernelHaven/UndertakerExtractor
https://github.com/KernelHaven/KbuildMinerExtractor
https://github.com/KernelHaven/KconfigReaderExtractor
https://github.com/KernelHaven/NonBooleanUtils
https://github.com/KernelHaven/FeatureEffectAnalysis
https://github.com/KernelHaven/srcMLExtractor

Bibliography

[KES18a

[KES18D]

[KES18c]

[KGR+11]

[KKH+10]

[Kral8|

[Lin19]
[LKAT1]

[McC56]

[McC76]

[MRG+17]

[NBK+14]

Adam Krafczyk, Sascha El-Sharkawy, and Klaus Schmid. “Reverse engineer-
ing code dependencies: converting integer-based variability to propositional
logic”. In: Proceeedings of the 22nd International Conference on Systems
and Software Product Line-Volume 2. ACM. 2018, pp. 34—41. DOI: 10.1145/
3236405.3237202.

Christian Kroher, Sascha El-Sharkawy, and Klaus Schmid. “KernelHaven:
an experimentation workbench for analyzing software product lines”. In:
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. ACM. 2018, pp. 73-76. DOI: 10.1145/3183440.
3183480.

Christian Kroher, Sascha El-Sharkawy, and Klaus Schmid. “KernelHaven: an
open infrastructure for product line analysis”. In: Proceedings of the 22nd In-
ternational Systems and Software Product Line Conference- Volume 2. ACM.
2018, pp. 5-10. DOI: 10.1145/3236405.3236410.

Christian Kéastner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg,
Klaus Ostermann, and Thorsten Berger. “Variability-aware parsing in the
presence of lexical macros and conditional compilation”. In: ACM SIGPLAN
Notices 46.10 (2011), pp. 805-824. DOI: 10.1145/2076021.2048128.

Andy Kenner, Christian Késtner, Steffen Haase, and Thomas Leich. “Type-
Chef: toward type checking #ifdef variability in C”. In: Proceedings of the 2nd
International Workshop on Feature-Oriented Software Development. ACM.
2010, pp. 25-32. DOT: 10.1145/1868688.1868693.

Adam Krafezyk. CodeBlockExtractor plug-in.
https://github. com/KernelHaven/CodeBlockExtractor. Last visited:
21.10.2019. University of Hildesheim, Software Systems Engineering, 2018.

Linux Kernel Archive. https://www.kernel.org/. Last visited: 21.10.2019.

Jorg Liebig, Christian Késtner, and Sven Apel. “Analyzing the discipline of
preprocessor annotations in 30 million lines of C code”. In: Proceedings of
the tenth international conference on Aspect-oriented software development.
ACM. 2011, pp. 191-202. DOT: 10.1145/1960275 . 1960299.

Edward J. McCluskey Jr. “Minimization of Boolean functions”. In: Bell sys-
tem technical Journal 35.6 (1956), pp. 1417-1444. por: 10.1002/j.1538-
7305.1956.tb03835.x.

Thomas J. McCabe. “A complexity measure”. In: IEEFE Transactions on
software Engineering SE-2.4 (1976), pp. 308-320. DOI: 10.1109/TSE. 1976.
233837.

Flavio Medeiros, Marcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Késtner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. “Discipline matters:
Refactoring of preprocessor directives in the #ifdef hell”. In: IEFE Transac-
tions on Software Engineering 44.5 (2017), pp. 453-469. DOI: 10.1109/TSE.
2017.2688333.

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki.
“Mining configuration constraints: Static analyses and empirical results”. In:
Proceedings of the 36th International Conference on Software Engineering.
ACM. 2014, pp. 140-151. por: 10.1145/2568225.2568283.

99

https://doi.org/10.1145/3236405.3237202
https://doi.org/10.1145/3236405.3237202
https://doi.org/10.1145/3183440.3183480
https://doi.org/10.1145/3183440.3183480
https://doi.org/10.1145/3236405.3236410
https://doi.org/10.1145/2076021.2048128
https://doi.org/10.1145/1868688.1868693
https://github.com/KernelHaven/CodeBlockExtractor
https://www.kernel.org/
https://doi.org/10.1145/1960275.1960299
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1145/2568225.2568283

Variability-Aware Analysis of C Source Code

[PS08]

[Qui52]

[Quib5)

[SEK19]

[SHF07]

[STB+04]

[STL+10]

[TAK+14]

[TBM+12]

[TLS+11]

[VSRO7]

[WRH+00]

Hendrik Post and Carsten Sinz. “Configuration lifting: Verification meets
software configuration”. In: Proceedings of the 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering. IEEE Computer
Society. 2008, pp. 347-350. DOI: 10.1109/ASE.2008.45.

Willard V. Quine. “The problem of simplifying truth functions”. In: The
American mathematical monthly 59.8 (1952), pp. 521-531. DOI: 10.1080/
00029890.1952.11988183.

Willard V. Quine. “A way to simplify truth functions”. In: The American
Mathematical Monthly 62.9 (1955), pp. 627—631. DOI: 10.1080/00029890 .
1955.11988710.

Klaus Schmid, Sascha El-Sharkawy, and Christian Kroher. “Improving Soft-
ware Engineering Research Through Experimentation Workbenches”. In:
From Software Engineering to Formal Methods and Tools, and Back. Springer,
2019, pp. 67-82. DOL: 10.1007/978-3-030-30985-5_6.

SPLC Hall of Fame member Bosch. https://splc.net/fame/bosch/. Last
visited: 21.10.2019. SPLC, 2007.

Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Miiller, Oliver Pertler,
Wolfgang Stolz, and Stefan Ferber. “Introducing PLA at Bosch Gasoline Sys-
tems: Experiences and practices”. In: International Conference on Software
Product Lines. Springer. 2004, pp. 34-50. DOI: 10.1007/978-3-540-28630-
1_3.

Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schroder-
Preikschat. “Efficient extraction and analysis of preprocessor-based variabil-
ity”. In: ACM SIGPLAN Notices. Vol. 46. 2. ACM. 2010, pp. 33—42. DOI:
10.1145/1942788.1868300.

Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter
Saake. “A classification and survey of analysis strategies for software product
lines”. In: ACM Computing Surveys (CSUR) 47.1 (2014), p. 6. DOI: 10.1145/
2580950.

Christian Tischer, Birgit Boss, Andreas Miiller, Andreas Thums, Rajneesh
Acharya, and Klaus Schmid. “Developing long-term stable product line ar-
chitectures”. In: Proceedings of the 16th International Software Product Line
Conference-Volume 1. ACM. 2012, pp. 86-95. DOI: 10 . 1145 /2362536 .
2362551.

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schréder-
Preikschat. “Feature consistency in compile-time-configurable system soft-
ware: facing the linux 10,000 feature problem”. In: Proceedings of the sizth
conference on Computer systems. ACM. 2011, pp. 47-60. por: 10. 1145/
1966445.1966451.

Frank J. Van der Linden, Klaus Schmid, and Eelco Rommes. Software prod-
uct lines in action: the best industrial practice in product line engineering.
Springer Science & Business Media, 2007. DOI: 10.1007/978-3-540-71437~
8.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell,
and Anders Wesslén. Fxperimentation in Software Engineering. An Introduc-
tion. Kluwer Academic Publishers, 2000. Do1: 10.1007/978-1-4615-4625-
2.

100

https://doi.org/10.1109/ASE.2008.45
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.1007/978-3-030-30985-5_6
https://splc.net/fame/bosch/
https://doi.org/10.1007/978-3-540-28630-1_3
https://doi.org/10.1007/978-3-540-28630-1_3
https://doi.org/10.1145/1942788.1868300
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2362536.2362551
https://doi.org/10.1145/2362536.2362551
https://doi.org/10.1145/1966445.1966451
https://doi.org/10.1145/1966445.1966451
https://doi.org/10.1007/978-3-540-71437-8
https://doi.org/10.1007/978-3-540-71437-8
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2

Bibliography

[YGA+14]

[ZWN+06]

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. “Modeling
and discovering vulnerabilities with code property graphs”. In: 2014 IEEFE
Symposium on Security and Privacy. IEEE. 2014, pp. 590-604. DOI1: 10.
1109/SP.2014.44.

Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P.
Hudepohl, and Mladen A Vouk. “On the value of static analysis for fault
detection in software”. In: IEEFE transactions on software engineering 32.4
(2006), pp. 240-253. DOI: 10.1109/TSE.2006. 38.

101

https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/TSE.2006.38

	List of Figures
	List of Tables
	Introduction
	Background
	Variability in Source Code
	Software Product Lines
	Static Analysis of Variability
	KernelHaven Analysis Framework

	Analysis of Integer-Based C-preprocessor Variability
	Use-Case
	Non-Boolean Transformation
	Extraction of C-preprocessor Conditions
	Feature-Effect Analysis
	Result Simplification
	Analysis Results

	Extraction of Source Code Combined with Variability
	Use-Case
	srcML Parsing Tool
	Transformation of srcML
	Alternative Approaches

	Evaluation
	Non-Boolean Transformation
	CodeBlockExtractor
	Formula Simplification
	srcML-Extractor
	Threats to Validity

	Conclusion
	Bibliography

