_\qersita‘;

Q % S

2003

G

%{\&Xu ng

Hildesheimer Informatik-Berichte

Sascha El-Sharkawy, Adam
Krafczyk, Nazish Asad, and Klaus
Schmid

Analysing the KConfig Semantics and
Related Analysis Tools

October 22, 2015

Report No. 1/2015, SSE 1/15/E

Software Systems Engineering e Institut fiir Informatik
Universitat Hildesheim eUniversitatsplatz 1 e D-31134 Hildesheim

Abstract

The Linux Kernel is often used as real world use case to demonstrate novel Software
Product Line Engineering techniques. The large open source repository facilitates the
analysis of the variability model, the instantiation process, the instantiable artefacts, and
the evolution of all of them.

This report focusses on the analysis of undocumented KConfig functionalities. These
functions have to be considered while applying any variability management technique
to the Linux Kernel. Hence, this report will contribute to a better understanding how
variability is handled in KConfig files.

Further, we analyse existing work, which also analysed KConfig. Based on the weak
documentation of KConfig, these works contain errors. These errors threat the validity
of many existing analysis of the Linux Kernel.

Contents

1 Introduction

2 KConfig

2.1
2.2
2.3

24

Concepts
Systematic Analysis of KConfig’s Capabilities
Non-Critical Observations
2.3.1 Hierarchies inside String/Numerical Config Options
2.3.2 Depends for Tristate Config Options
2.3.3 Numbers with String Defaults
2.3.4 Range of Numerical Config Options
2.3.5 Choices with nested Strings/Numerical Config Options
2.3.6 Choices Nested in Other Choices
2.3.7 Prohibited Attributes for Choices
2.3.8 If Used in Constraint Hierarchies
2.3.9 Selected Config Option of a Constraint Hierarchy
Critical Observations
2.4.1 Selection of Nested Config Options
24.2 Default Valuemo
2.4.3 Tristate Choice with Boolean Config Options.
2.4.4 Structured Choices
2.4.5 Recursive Dependency inside a Choice
2.4.6 Empty Choices
2.4.7 Choices Without a Prompt
2.4.8 Recursive Dependency inside a Choice via an if
2.4.9 Multiple Attributes inside a Config Option

3 Tool Analysis

3.1

3.2

Analysed Tools
3.1.1 Undertaker
3.1.2 KConfig Reader + KConfig Reader (XML)
3.1.3 LVAT . .
3.1.4 Tool Summary
Handling Attribute option modules
3.2.1 Undertaker
3.2.2 KConfig Reader
3.2.3 KConfig Reader (XML),

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

324 LVAT . . o 63

Constraint Precedence 65
3.3.1 Undertaker 65
3.3.2 KConfigReader 67
3.3.3 KConfig Reader (XML) 68
3.3.4 LVAT .. 68
Missing Config Options 70
3.4.1 Undertaker 70
34.2 KConfig Readero 71
3.4.3 KConfig Reader (XML) 72
3.4.4 LVAT .. 72
Selection of Nested Config Options 73
3.5.1 Undertaker 73
3.5.2 KConfigReader o 75
3.5.3 KConfig Reader (XML) 76
3.5.4 LVAT . . 78
Default Value m for Booleans 79
3.6.1 Undertaker 79
3.6.2 KConfig Reader 81
3.6.3 KConfig Reader (XML) 82
3.6.4 LVAT 82
Default Value m for Tristates 84
3.7.1 Undertaker 84
3.7.2 KConfig Reader 86
3.7.3 KConfig Reader (XML) 87
3.7.4 LVAT . . o 87
Tristate Choice with Boolean Config Options 88
3.8.1 Undertaker 88
3.8.2 KConfig Reader 92
3.8.3 KConfig Reader (XML) 93
3.8.4 LVAT . . . 94
Boolean Choice with Tristate Config Options 96
3.9.1 Undertaker 96
3.9.2 KConfig Reader 99
3.9.3 KConfig Reader (XML) 100
3.94 LVAT . . . 102
Structured Choices 103
3.10.1 Undertaker 103
3.10.2 KConfig Reader L 105
3.10.3 KConfig Reader (XML) 107
3.10.4 LVAT 109
Recursive Dependency inside a Choice 110
3.11.1 Undertaker 110
3.11.2 KConfig Reader 113
3.11.3 KConfig Reader (XML) 115
3.11.4 LVAT 116

3.12 Empty Choices 118

3.12.1 Undertaker 118
3.12.2 KConfig Reader 121
3.12.3 KConfig Reader (XML) 122
3.12.4 LVAT . . . o 122

3.13 Choices Without a Prompt 124
3.13.1 Undertaker 124
3.13.2 KConfig Reader 127
3.13.3 KConfig Reader (XML) 128
3.13.4 LVATo 129

3.14 Recursive Dependency inside a Choice viaan if 130
3.14.1 Undertaker 130
3.14.2 KConfig Reader oL 133
3.14.3 KConfig Reader (XML) 136
3.14.4 LVAT 137

3.15 Multiple Default Values inside a Config Option 139
3.15.1 Undertaker 139
3.15.2 KConfig Reader Lo 141
3.15.3 KConfig Reader (XML) 142
3.15.4 LVAT 142

3.16 Summary ... e 144
4 Summary 146

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37

KConfig code for a hierarchy inside a string config option 18
Menuconfig execution of Figure 2.1 19
KConfig code for a tristate config option with only two states 19
Menuconfig execution of Figure 2.3 20
KConfig code of numerical config options with a string as default value. 20
Saved .config file of the example from Figure 2.5. 20
KConfig code of a range specification 21
Menuconfig execution of Figure 2.7 21
KConfig code of a corrupt choice holding a string config option. 22
Saved .config file of the example from Figure 2.9. 22
KConfig code for creating choice nested in another choice. 24
Menuconfig execution of Figure 2.11. 25
KConfig code for breaking a constraint hierarchy. 26
Fixed hierarchy of example from Figure 2.13. 26
KConfig code for an inoperable selection of a nested config option 28
Menuconfig execution of Figure 2.15. 29
Saved .config file of the example from Figure 2.16 29
KConfig code for specifying m as default value 30
Menuconfig execution of Figure 2.18 31
Saved .config file of the example from Figure 2.19 (no user input). . . . 32
KConfig code for creating a tristate choice with nested boolean config options. 32
Menuconfig execution of Figure 2.21 33
Saved .config file of the example from Figure 2.22 34
KConfig code for creating a structured choice 35
Menuconfig execution of Figure 2.24 36
Saved .config file of the example from Figure 2.25 37
KConfig code for creating a structured choice with a dead config option . 38
Menuconfig execution of Figure 2.27 39
Log file for compiling the model of Figure 2.27 40
KConlfig code for creating an empty choice (no config item can be choosen). 41
Menuconfig execution of Figure 2.30 (no value can be selected). 41
Saved .config file of the example from Figure 231 42
KConfig code of an invisible choice. 42
Saved .config file of the example from Figure 2.33 43
Saved .config file of the example from Figure 2.33 + prompt 43
KConfig code for creating a structured choice with a dead config option . 44
Menuconfig execution of Figure 2.36 45

2.38
2.39
2.40

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39

KConfig code of an invisible choice.
Menuconfig execution of Figure 2.38 L.
Saved .config file of the example from Figure 2.39.

Small KConfig example for explaining the translated logical models
dumpcont’s translation of Figure 3.1 on page 48.
rsf2model’s translation of Figure 3.1 on page 48.
Satyr’s translation (excerpt) of Figure 3.1 on page 48.
KConfig Reader’s RSF translation of Figure 3.1 on page 48.
KConfig Reader’s Model translation of Figure 3.1 on page 48.
KConfig Reader’s CNF translation of Figure 3.1 on page 48.
Intermediate format of LVAT (translated only the menu from Listing 3.1).
LVAT’s CNF translation of Figure 3.1 on page 48
KConfig example for testing the translation the option modules attribute.
dumpconf’s translation of Figure 3.10 on page 60 (error).
rsf2model’s translation of Figure 3.10 on page 60 (error in line 3).

Satyr’s CNF translation of Figure 3.10 on page 60 (error).
KConfig Reader’s RSF translation of Figure 3.10 on page 60 (error). . . .
KConfig Reader’s Model translation of Figure 3.10 on page 60 (error) . .
KConfig Reader’s CNF translation of Figure 3.10 on page 60 (error in line
D)
LVAT’s CNF translation of Figure 3.10 on page 60 (error in line 62). . . .
KConfig example for testing the translation the constraint precedence. . .
dumpconf’s translation of Figure 3.18 on page 65 (correct).
rsf2model’s translation of Figure 3.18 on page 65 (error in line 3).

Satyr’s CNF translation of Figure 3.10 on page 60 (correct).
KConfig Reader’s RSF translation of Figure 3.18 on page 65 (correct). . .
KConfig Reader’s Model translation of Figure 3.18 on page 65 (correct). .
KConfig Reader’s CNF translation of Figure 3.18 on page 65 (correct).
LVAT’s CNF translation of Figure 3.18 on page 65 (correct).
KConfig example for testing the translation of a dependency to a config
option, which is not part of the KConfig model.
dumpconf’s translation of Figure 3.26 on page 70 (correct).
rsf2model’s translation of Figure 3.27 on page 70 (correct).
Satyr’s CNF translation of Figure 3.26 (correct).
KConfig Reader’s RSF translation of Figure 3.26 (correct).
KConfig Reader’s Model translation of Figure 3.26 (correct).
KConfig Reader’s CNF translation of Figure 3.26 on page 70 (correct).
LVAT’s CNF translation of Figure 3.26 on page 70 (correct).
dumpconf’s translation of Figure 2.15 (problematic).
rsf2model’s translation of Figure 3.34 on page 73 (error in line 3).

Satyr’s CNF translation of Figure 2.15 on page 28 (correct).
KConfig Reader’s RSF translation of Figure 2.15 on page 28 (problematic).
KConfig Reader’s Model translation of Figure 2.15 on page 28 (error) . .
KConfig Reader’s CNF translation of Figure 2.15 on page 28 (error) . . .

46

26

65

3.40

3.41

3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.5
3.56
3.57
3.58
3.59

3.60
3.61
3.62
3.63
3.64
3.65

3.66

3.67
3.68

3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79

KConfig Reader (XML)’s Model translation of Figure 2.15 on page 28

(errorin line 7). 7
KConfig Reader (XML)’s CNF translation of Figure 2.15 on page 28 (error

inline 7). 7
LVAT’s CNF translation of Figure 2.15 on page 28 (error). 78
Modification of Figure 2.18 (no user input is possible). 79
dumpconf’s translation of Figure 3.43 on page 79 (problematic). 79
Satyr’s CNF translation of Figure 3.43 on page 79 (correct). 80
rsf2model’s translation of Figure 3.44 on page 79 (error in line 5). 81

KConfig Reader’s RSF translation of Figure 3.43 on page 79 (proplematic). 81
KConfig Reader’s Model translation of Figure 3.43 on page 79 (correct). . 82

KConfig Reader’s CNF translation of Figure 3.43 on page 79 (correct). . 82
LVAT’s CNF translation of Figure 3.43 on page 79 (error). 83
Modification of Figure 2.18 with permanently selected config option . . . 84
dumpconf’s translation of Figure 3.51 on page 84 (correct). 84
rsf2model’s translation of Figure 3.52 on page 84 (correct). 84
Satyr’s CNF translation of Figure 3.51 (error in lines 33 and 36). 85
KConfig Reader’s RSF translation of Figure 3.51 on page 84 (correct). . . 86
KConfig Reader’s Model translation of Figure 3.51 on page 84 (correct). . 86
KConfig Reader’s CNF translation of Figure 3.51 on page 84 (correct). . 86
LVAT’s CNF translation of Figure 3.51 on page 84 (error). 87
KConfig example for testing the translation of a tristate choice with nested

boolean config options. 88
dumpcont’s translation of Figure 3.59 on page 88 (correct). 88
rsf2model’s translation of Figure 3.60 on page 88 (correct). 89
Satyr’s CNF translation of Figure 3.59 on page 88 (correct). 91
KConfig Reader’s RSF translation of Figure 3.59 92
Stacktrace while trying to translate Figure 3.63 into CNF and Model . . 92
KConfig Reader (XML)’s Model translation of Figure 3.59 on page 88

(correct). 93
KConfig Reader (XML)’s CNF translation of Figure 3.59 on page 88 (cor-

TECH). « o o 94
LVAT’s CNF translation of Figure 3.59 on page 88 (error). 95
KConfig example for testing the translation of a boolean choice with nested

tristate config options. 96
dumpconf’s translation of Figure 3.68 on page 96 (correct). 96
rsf2model’s translation of Figure 3.69 on page 96 (correct). 97
Satyr’s CNF translation of Figure 3.68 on page 96 (error in lines 24 and 25). 98
KConfig Reader’s RSF translation of Figure 3.68 on page 96 (correct). . . 99
KConfig Reader’s Model translation of Figure 3.68 (error in lines 10 & 12). 99
KConfig Reader’s CNF translation of Figure 3.68 on page 96 (error). . . 100

KConfig Reader (XML)’s Model translation of Figure 3.68 on page 96 (error).101
KConfig Reader (XML)’s CNF translation of Figure 3.68 on page 96 (error).101

LVAT’s CNF translation of Figure 3.68 on page 96 (error). 102
dumpconf’s translation of Figure 2.24 on page 35 (error). 103
rsf2model’s translation of Figure 3.78 on page 103 (error in line 1).. . . . 104

3.80 Satyr’s CNF translation of Figure 2.24 on page 35 (correct).
3.81 KConfig Reader’s RSF translation of Figure 2.24 on page 35 (correct). . .

106

3.82 KConfig Reader’s Model translation of Figure 2.24 on page 35 (error in 13).106

3.83 KConfig Reader’s CNF translation of Figure 2.24
3.84 KConfig Reader (XML)’s Model translation of Figure 2.24 on page 35

(correct).
3.85 KConfig Reader (XML)’s CNF translation of Figure 2.24 on page 35 (cor-

3.86 LVAT’s CNF translation of Figure 2.24 on page 35 (correct).
3.87 Modification of Figure 2.27 on page 38: SUB_VAL will not be selectable.
3.88 dumpconf’s translation of Figure 3.87 (error).

107

109
110
110

3.89 Displayed warning of dumpconf and rsf2model while translating Figure 3.87.111

3.90 rsf2model’s translation of Figure 3.88 on page 110 (correct).
3.91 Satyr’s CNF translation of Figure 3.87 on page 110 (correct).
3.92 Displayed warning of Satyr while creating Figure 3.91 on page 112.
3.93 KConfig Reader’s RSF translation of Figure 3.87 on page 110 (correct). .
3.94 Displayed warning of KConfig Reader while translating Figure 3.87
3.95 KConfig Reader’s Model translation of Figure 3.87 on page 110 (correct).
3.96 KConfig Reader’s CNF translation of Figure 3.87 on page 110 (correct). .
3.97 KConfig Reader (XML)’s Model translation of Figure 3.87 (correct). . . .
3.98 KConfig Reader (XML)’s CNF translation of Figure 3.87 (correct).
3.99 LVAT’s CNF translation of Figure 3.87 on page 110 (correct).
3.100Modification of Figure 2.30 on page 41: The choice still does not contain
any selectable nested config options. L.
3.101dumpconf’s translation of Figure 3.100 on page 118 (correct)..
3.102rsf2model’s translation of Figure 3.101 on page 118 (error in line 1). . . .
3.103Satyr’s CNF translation of Figure 3.100 (error in lines 23 — 36).
3.104KConfig Reader’s RSF translation of Figure 3.100 (correct).
3.105Stacktrace while trying to translate Figure 3.104 into CNF and Model . .
3.106LVAT’s CNF translation of Figure 3.100 on page 118 (error).
3.107dumpconf’s translation of Figure 2.33 on page 42 (error).
3.108Displayed warning while translating Figure 2.33 into RSF and Model
3.109rsf2model’s translation of Figure 3.107 on page 124 (error in line 4). . . .
3.110Satyr’s CNF translation of Figure 2.33 on page 42 (error).
3.111KConfig Reader’s RSF translation of Figure 2.33 on page 42 (correct). . .
3.112Displayed warning while translating Figure 2.33 on page 42.
3.113KConfig Reader’s Model translation of Figure 2.33
3.114KConfig Reader’s CNF translation of Figure 2.33
3.115KConfig Reader (XML)’s Model translation of Figure 2.33 (correct). . . .
3.116KConfig Reader (XML)’s CNF translation of Figure 2.33 (correct).
3.117Modification of Figure 2.36 on page 44: SUB_VAL will not be selectable.
3.118dumpconf’s translation of Figure 3.117 (error in line 5).
3.119rsf2model’s translation of Figure 3.118 on page 131 (error).
3.120Satyr’s CNF translation of Figure 3.117 on page 130 (correct).
3.121kcReader’s RSF translation of Figure 3.117
3.122KConfig Reader’s Model translation of Figure 3.117 on page 130 (error).

111
112
113
113
114
114
115
115
116
117

118
118
119
120
121
121
123
124
124
125
126
127
127
128
128
129
129
130
131
131
133
134
135

3.123KConfig Reader’s CNF translation of Figure 3.117 on page 130 (error).
3.124KConfig Reader (XML)’s Model translation of the fixed version of Fig-
ure 3.117 on page 130 (correct).
3.125KConfig Reader (XML)’s CNF translation of the fixed version of Fig-
ure 3.117 on page 130 (correct).
3.126LVAT’s CNF translation of Figure 3.117 on page 130 (error).
3.127KConfig model for testing the translation of multiple default values. . .
3.128dumpconf’s translation of Figure 3.127 (error in line 1).
3.129rsf2model’s translation of Figure 3.128 (error).
3.130Satyr’s CNF translation of Figure 3.127 on page 139 (correct).
3.131Satyr’'s CNF translation of Figure 3.127 on page 139 (excerpt), with
changed ordering of the default values (correct).
3.132KConfig Reader’s RSF translation of Figure 3.127 on page 139 (correct).

3.133KConfig Reader’s Model translation of Figure 3.127 on page 139 (correct).

3.134KConfig Reader’s Model translation of Figure 3.127 on page 139, with
changed ordering of the default values (correct).
3.135KConfig Reader’s CNF translation of Figure 3.127 on page 139 (correct).
3.136 KConfig Reader’s CNF translation of Figure 3.127 on page 139, with
changed ordering of the default values (correct).
3.137LVAT’s CNF translation of Figure 3.127 on page 139 (correct).
3.138LVAT’s CNF translation of Figure 3.127 on page 139, with changed order-
ing of the default values (correct).

10

135

136

137
138
139
139
139
140

140
141
141

141
141

142
142

List of Tables

2.1 Systematic Analysis of Undocumented Functionalities

3.1 Summary of tool capabilities

3.2 Summary of tool analysis

11

Chapter 1

Introduction

The Linux kernel is often used as a real world case study to demonstrate novel Software
Product Line Engineering research methods. Its large open source repository facilitates
the analysis of the variability model, the instantiation process, the instantiable artefacts,
and the evolution of all of them. An important point in this is often the analysis of the
KConfig semantics, the variability management system of Linux. However, we detected
that the semantics of KConfig is rather unclear and has many special cases, which are not
documented in its short specification. This leads to an incomplete understanding of the
KConfig semantics in the scientific research community, which may result in incorrect
analysis of KConfig variability models and hence be a threat to validity for existing
research.

In this technical report, we uncover hidden aspects of the KConfig semantics to im-
prove the understanding of the modelled variability of the Linux kernel. We demonstrate
how the configuration front—ends of KConfig handle these aspects and we analyse how far
these corner cases are considered by existing research tools to support their improvement.
We included the translators of Undertaker [Und], KConfig Reader [kcob], and the Linux
Variability Analysis Tools (LVAT) [lin] in our analysis, as these are the existing tools for
KConfig translation into formal representations. With our research we predominantly
aim at improving the understanding of the KConfig semantics. In addition, our results
can be used for improving existing analysis tools and identifying potential problems for
analysis that have been done in the past. The results serve also as a basis for selecting
an incomplete analysis tool, which may be sufficient for analysing a specific aspect. In
summary, we contribute to a better understanding of KConfig and related analysis tools.

Chapter 2 introduces KConfig, the textual variability language of Linux. We present
the concepts of KConfig together with an example how they can be modelled. Further,
we present our systematic analysis to find undocumented corner cases of the KConfig
semantics. In Chapter 3, we show how well these corner cases are supported by analysis
tools used for scientific work. In Section 4, we conclude and show future work.

12

Chapter 2
KConfig

KConfig is a textual language, which was developed to manage the variability of the
Linux Kernel. Although it never became a standalone project, it was also used in several
other projects [BSL*12]. Meanwhile KConfig has been analysed in multiple studies. This
work often relies on the language description of KConfig [KCo14]. However, this language
description is rather informal and ambiguous, which might be the reason that existing
research papers do not always cover its real behaviour.

This chapter is intended to provide a better and clear understanding of the behaviour
of KConfig. In the following section, we briefly describe the concepts of KConfig based
on its language description. Section 2.2 is used to detect systematically potential mis-
understandings related to the KConfig language specification. These misunderstandings
are further elaborated in Section 2.4. In Chapter 3, we analyse and discuss how existing
tools and papers handle our findings of Section 2.4.

2.1 Concepts

In this section, we briefly describe the most important variability management concepts
of KConfig based on its language specification [KCo14]. We do not include concepts which
do not affect KConfig’s variability management logic, like help, comments, or mainmenu.

Config options
Config options (and also menuconfigs') are the most used elements of the language
and can be seen as variables. These config options can be of type tristate, bool,
string, hex, or int. All but the first are known from typical programming lan-
guages (with the exception that bool ranges from y to n). Hence, we only describe
tristate further.

Tristate config options encode the following alternatives:

n — The related feature will not be part of the resulting system.
y — The related feature will be a permanent part of the resulting system.

m — The related feature will be compiled as a module, which means that it can be
flexibly loaded or unloaded at runtime.

' A menuconfig is similar to the simple config option, but it also gives a hint to configuration front-ends,
that all sub options (cf. Hierarchies) should be displayed in a separate sub menu.

13

Constraints can restrict tristate config options in such a way that they can only be
disabled or configured as modules.

There exist a special boolean config option MODULES?, which modifies the semantics
of the whole tristate support globally. If MODULES is set to n (false), all tristate
config options become boolean config options, meaning that m is treated in all
tristate configs as y.

Any config option can also be augmented with (conditional) attributes:

e A prompt displays a name to the user and makes the config option visible to
him. A config option without a prompt can not be configured by the user.

e The default attribute specify default values of a config option. These defaults
can be changed by the user if the config option is visible. Furthermore, a config
option can contain any number of (conditional) defaults.

e A range specifies a upper and a lower bound for config options of type int or
hex.

e KConfig specifies 2 different kind of constraints to restrict the possible values
of a config option. Also these constraints can be conditional, i.e. whether the
constraint exist or not:

— depends on is used to describe whether a config option can be config-
ured or is disabled. These kind of constraints can also be used to restrict
tristate config options to be selected only as n or m. The Kernel devel-
oper name this kind of constraints as the restriction of the upper limit of
a config option. Contrary to the other attributes, this attribute can not
be made conditional.

— select is used to specify a lower bound. The current value of the sur-
rounding config option will be used as lower bound for the selected config
option. If a config option is selected multiple times, it is set to the largest
selection. It is also possible to select a config option without fulfilling its
depends on constraints.

e option env="<environment variable>" can be used to load the value an
environment variable into KConfig as a default value for a config option. Cur-
rent Kernel versions use this functionality to load the Kernel version and the
target architecture from its makefiles.

e We omitted further functionalities which could be used to support the user
during the configuration process, but which do not affect the configuration
logic of KConfig. For instance defconfig list or allnoconfig_y. It is also
possible to use undefined config options inside of conditions or constraints,
e.g. because they are part of another architecture. Such config options will be
interpreted as n (false).

2While older versions of KConfig need at least a config option which is named as MODULES, the current
version of KConfig needs that at at most one arbitrary config option is attributed with option modules
for controlling the tristate semantics. The Linux Kernel still uses the (attributed) MODULES config option
for doing this.

14

Choices

A choice groups several config options and can only be of type bool or tristate.
In case of a boolean choice, exactly one config option must be selected. A tristate
choice allows the selection of multiple elements as modules. Thus, a choice can
be treated as a XOR-decomposition (boolean choice) or as an OR-decomposition
(tristate choice). A choice can be attributed with the same attributes as a config
option. A choice can be optional, which allows to set the choice to n (false) and
none of the contained config options may be selected.

Hierarchies
KConfig offers two possibilities to structure config options in hierarchies:

e Any number of config options (and other elements like choices) can be sur-
rounded by the keywords menu and endmenu to place them in a sub menu.
These sub menu can also contain other menus. Hence, this concept allows to
model arbitrary hierarchical structures.

The visibility of these menus can be restricted with the attribute visible
if. This attribute is only applicable for menus and restrict the whole menu
including all nested elements. However, these elements still exists. Hence,
they can be selected or modified by constraints or default values, but not by
the user.

e Constraints and if-Statements offer an alternative to model hierarchies. If the
visibility of a config option B depends on another config option A and B is
directly written below A in a KConfig file, than B will also be displayed in a
hierarchical structure below A inside configuration front-ends.

File inclusions
KConfig allows to split a huge variability model into separate files. The source
statement includes the contents of another KConlfig file into the current file. This
concept facilitates arbitrary nested KConfig files.

if-Statements
It is possible to surround the elements from above with if and endif to make their
existence depending from a condition. For instance, this is used for defining the
same config option twice with different attributes or for including different KConfig
files depending on the target architecture.

Constraint logic
KConfig uses a tristate logic instead of a boolean logic for creating and evaluating
expressions. This kind of logic is hard to translate into a pure boolean logic, which
is the objective of many tools from Chapter 3. The most important distinctions to
the usual boolean algebra are:

e The tristate logic of KConfig has three constants: n (=0), m (=1), and y (=2).
e Comparisons (= and !=) can be applied on all type of config options.

e Bool and tristate config options are evaluated to their current values. All
other config options (string, hex, and int) are treated as n.

e !<expression> returns the result of 2 - expression. This means that 'm
has the same value as m.

15

e <expression 1> && <expression 2> returns the result of min(<expression
1>, <expression 2>).

e <expression 1> || <expression 2> returns the result of max(<expression
1>, <expression 2>).

2.2 Systematic Analysis of KConfig’s Capabilities

In Table 2.1 on the following page, we analyse how different concepts of KConfig do
interact if they are combined. Interactions which are not obvious and may lead to mis-
understandings are discussed in more detail in Section 2.3. Critical observations which
must be considered during translating the KConfig model to another logical model like
boolean formula are discussed in Section 2.4.

In Table 2.1, we show how the different concepts of Section 2.1 interact if they are
combined. There, we tried to include the elements of the columns into the elements of
the rows. For instance (“Config options” x “Choices”) shows that choices cannot be
embedded into config options, while the other way round is a well defined functionality
of KConfig.

The meaning of “Hierarchies” and “Constraints” inside the table need further expla-
nation to be understand correctly. While “Constraints” is used to check whether depends
on or select statements can be nested inside other elements to restrict the visibility or to
set a specific value of other elements, we also analysed whether hierarchies can be created
using depends on or if statements. The later one is expressed with “Hierarchies — via
Constraints”. For instance, (“Hierarchies — menu” x “Hierarchies — via Constraints”)
denotes that it is not possible to structure config options defined outside of the menu
structure via depends on or if statements into the menu structure. But (“Hierarchies
— menu” X “depends”) show that in general depends on statements can be used directly
inside a menu without additional config options between them.

For a complete understanding it is also important to know how the different types
of constraints do interact. In Section 2.1 we already mentioned that select statements
are able to select config options without fulfilling their depends on constraints. if state-
ments can be ignored in the same way. Thus, if and depends on constraints have a
lower precedence than select statements and are only evaluated if no select statement
is selecting the same config option. if and depends on statements can be combined
arbitrary to model a dependency between different config options. Multiple depends on
and if statements are combined via a logically AND relation. Thus, if and depends
on statements have the same precedence. Attributes like defaults and prompts become
only active if all depends on and if statements got fulfilled. Invisible config options with
a default value will be set automatically to this default value. Thus, attributes have
the lowest precedence and default values of a invisible config option can be treated as an
assignment.

The precedence of the different constraint types can be summarized as follows:

1. select
2. if, depends on
3. No prompt + default

16

L1

has no impact; v = well defined by KConfig).

Config options Choices Hierarchies Constraints Attributes If
2
£
®
— ~
contains — 8 E 0 h=
Q o= Q el = =
! . s ¥ 8| |z S : 5] E L
) 3 2| B |38 & | & o a 9 o & g 5
< o 5 3 o o & 7] i) = [5) = 2
2 & & & |2| & |E& > o @ a o = >
bool v switch visibility | Sec. 2.4.1 Sec. 2.4.2 —
Cor}ﬁg tris‘tate X X X v 'Sec. 232 Sec. 2.4.1 v Sec. 2.4.2 — X X
options string Sec. 2.3.1 | switch visibility — v —
numerical Sec. 2.3.1 | switch visibility — Sec. 2.3.3 | Sec. 2.3.4
. bool v Sec. 2.4.3 Sec. 2.4.4 &
Choices tristate Seo 943 7 Sec. 2.3.5 | Sec. 2.3.6 | X Sec. 2.4.5 Sec. 2.4.6 Sec. 2.3.7 | Sec. 2.4.7 v Sec. 2.3.7 Sec. 2.4.8
menu X X X X v v
Hi hi _—
1erarcilles —Eonstraints v v v v v v v v v X | Sec. 2.3.8
. depends — v X
Constraints select v X | Sec.2.3.9 x x v
prompt
Attributes default X X X X Sec. 2.4.9 v
range
visible if
If v v v | Sec.2.3.8 X X v
Table 2.1: Systematic Analysis of Undocumented Functionalities (X = not supported by the grammar; — = can be modelled, but

2.3 Non-Critical Observations

In this section, we describe observations, which are not critical for a formal transforma-
tion. These are capabilities of modelling inconsistent models, graphical representations
or unimportant inconsistencies of the KConfig language specification. We also show capa-
bilities of KConfig which are mentioned in its language specification, but are not obvious
for non KConfig experts. In Section 2.4, we describe more critical observations, which
must be considered during a formal transformation.

2.3.1 Hierarchies inside String/Numerical Config Options

It is possible to use non bool/tristate config options inside depends on constraints,
but this will lead in permanently visible/invisible config options. The reason behind this
lies inside the constraint logic of KConfig (cf. Section 2.1 on page 15), which treats all
non boolean/tristate elements as n constants:

e A config option will become permanently invisible if it depends on a string, int,
or hex config option (e.g. depends on STR_OPTION).

e A config option will become permanently visible if it depends not on a string,
int, or hex config option (e.g. depends on !'STR_OPTION).

Nonetheless, this kind of constraints can still be used to model hierarchies. The
depending config options will still indented below the non bool/tristate config option,
but the selection of the non bool/tristate config option will not affect the visibility of
the nested config options.

config STRING_ VARI
string "lst String Variable"

config SUB VAR 1
bool "l1st Boolean Sub Variable'
depends on !STRING VARI

config STRING_ VAR2
string "2nd String Variable"

config SUB VAR 2
bool "2nd Boolean Sub Variable'
depends on STRING VAR2

Figure 2.1: KConfig code for a hierarchy inside a string config option.

Figure 2.2 on the following page shows that “1st Boolean Sub Variable” is intended
below “1st String Variable”. But this config option is permanently visible independent of
the value of “1st String Variable”.

18

suh@ubunku: fdata/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus
---> (or empty submenus ----). Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M>
modularizes features. Press <Esc><Esc> to exit, <?= for

()] 1st String Variable (NEW
[1st Boolean Sub Variable (NEW)
(A string Value) 2nd String Variable

< Exit = < Help = < Save > < Load =

Figure 2.2: Menuconfig execution of Figure 2.1. Selection of “1st/2nd String Variable”
has no affect to the visibility of “1st/2nd Boolean Sub Variable”.

Comparisons in form of string/numerical config option = or != <value> can be
used for modelling evaluable constraints. Such constraints will not be treated as constant
n and will be evaluated like constraints on config options of type bool or tristate.

2.3.2 Depends for Tristate Config Options

depends on constraints can be used to specify conditional visibility of a symbol, e.g.
a config option, rather this kind of constraints restrict the upper bound of a symbol.
However, only the range of tristate config option can be restricted, since they are the
only one symbols with more than two states. For instance, the constant m can be used to
avoid the permanent selection (y), but this will also completely deselect the config option
if module support is globally disabled.

config MODULES
bool "En—/Disable Tristate Support'
option modules

config TRISTATE_ VAR
tristate "A Tristate Variable"
depends on m

Figure 2.3: KConfig code for a tristate config option with only two states (y is no longer
available).

Figure 2.4 on the next page demonstrates how menuconfig handles depends on con-

straints for tristate config options (cf. Figure 2.3). The constraint in line 7 avoids that
“A Tristate Variable” is set to y.

19

)

w

IS

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <¥Y> includes, <N> excludes, <M> modularizes features.
Press <Esc><Esc> to exit, <?> for Help, </> for Search.

E* En—iDisable Tristate Support
4= A Tristate Variable

< Exit = < Help = < Save > < Load =

Figure 2.4: Menuconfig execution of Figure 2.3. If “En-/Disable Tristate Support” is
selected, “A Tristate Variable” can only be selected as n or m (otherwise it is permanently
selected as n).

2.3.3 Numbers with String Defaults

Since KConfig is not a real type-safe language, it is possible to specify a default value
which is not suitable for the type of the config option. An example is shown in Figure 2.5.

config INT VAR
int "Integer Variable'
default 'Hello World"

config HEX VAR
hex "Hex Variable'
default "Hello World"

Figure 2.5: KConfig code of numerical config options with a string as default value.

Figure 2.6 shows how the model from Figure 2.5 is saved if the user does not change
the default values. The saved values do not match to the type of the config options.
Further, the string values are not surrounded by quotes as it is usually the case (cf.
Figure 2.10 on page 22).

#
Automatically generated file; DO NOT EDIT.

Linux Kernel Configuration
#

CONFIG_INT_VAR=Hello World
CONFIG_HEX VAR=Hello World

Figure 2.6: Saved .config file of the example from Figure 2.5.

20

Note: Since the KConfig logic does not check such constructs, a good analysis tool
could find such constructs and display a warning.

2.3.4 Range of Numerical Config Options

int and hex config options can also be attributed with an attribute range <lower
bound> <upper bound>. This will limit the user to enter values which are larger than
or equal to the <lower bound> and smaller than or equal to the <upper bound>. The
<lower bound> is also used as default value, if the variable is visible to the user.

config NUM_ LOWER,_ BOUND
int "Lower Bound'
default 2

config NUM UPPER,_BOUND
int "Upper Bound"'
default 16

config NUM VAR
int "A Numerical Variable"
range NUM LOWER BOUND NUM UPPER,_BOUND

Figure 2.7: KConfig code of a range specification.

Figure 2.8 demonstrates how menuconfig handles range definitions (cf. Figure 2.7).
The value of “Lower Bound” is also used as the default value for “A Numerical Variable”.
The “(new)” behind its name indicates that there was no user input.

suh@ubuntu: /datafsrc/Linux-Releases/Test

File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?= for Help, </> for

ﬁz Lower Bound (NEW

(16) Upper Bound (NEW)
(2) A Numerical Variable (NEW)

< Exit = < Help = < Save > < Load =

Figure 2.8: Menuconfig execution of Figure 2.7. Although “A Numerical Variable” has
not an explicit specification of a default value, it is set to 2 through its range definition.

21

oW N

o s W N R

[<)

It is also possible to specify an illegal range where the <lower bound> has an higher
value than the <upper bound>. Also in this case, the <lower bound> is used as a default
value, but the user is no longer able to change the value.

Note: Since the KConfig logic does not check such conditions, a good analysis tool
could find such situations and display a warning.

2.3.5 Choices with nested Strings/Numerical Config Options

KConlfig’s language specification [KCo14] specifies only choices of type bool or tristate,
which allows the selection of config options of the same type. Nonetheless, the grammar
does not avoid the creation of nested string or numerical config options. But after the
user has changed the value of the choice, he is no longer able to reselect the string value.
He is also not able to change the value of the string config option.

choice
bool "A Choice"
default STR VAL

config STR VAL
string "A String Value'
default '"Hello World"

config BOOL_VAL
bool "A Boolean Value"
endchoice

Figure 2.9: KConfig code of a corrupt choice holding a string config option.

Figure 2.9 illustrates how a nested string option yield in a corrupt model. The nested
string config option is selected by default. This string value will also be saved to the
.config file, if the user does not change the value of the choice (cf. Figure 2.10).

-

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

i

CONFIG_STR VAI="Hello World"

CONFIG_BOOL_VAL is not set

Figure 2.10: Saved .config file of the example from Figure 2.9.

Note: Since the KConfig logic does not check such illegal constructs, a good analysis
tool could find such constructs and display a warning.

22

2.3.6 Choices Nested in Other Choices

Description
It is not possible to nest choices directly in other choices. The grammar is not
supporting nesting choices directly in other choices. Only by using an if, it is
possible to make a choice dependant of the selection of a nested config option and
nest it together with the config option inside the surrounding choice.

Real world example from Linux

e Kernel version: 3.19
e File: drivers/usb/gadget/legacy/Kconfig
e Line(s): 446 — 464, nested in
e File: drivers/usb/gadget/Kconfig
e Line(s): 199 — 428
e Location inside the menu of menuconfig:
Prompt: EHCI Debug Device mode
—-> Device Drivers
-> USB support (USB_SUPPORT [=y])
-> USB Gadget Support (USB_GADGET [=m])
-> USB Gadget Drivers (<choice> [=m])
-> EHCI Debug Device Gadget (USB_G_DBGP [=m])
Depends on: <choice> && USB_G_DBGP [=m]
Selected by: <choice> && USB_G_DBGP [=m] && m

23

Minimal example

=

V]

config MODULES
def bool y
option modules

choice
tristate "Top Level Choice'

config VAL 1
tristate "Value 1"

config VAL 2
tristate "Value 2"

if VAL 2
choice
tristate "Nested Choice"

config SUB VAL 1
tristate "Nested Value 1"

config SUB VAL 2
tristate "Nested Value 2"
endchoice
endif

5| endchoice

Figure 2.11: KConfig code for creating choice nested in another choice.

24

Behaviour of KConfig

_—

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus
---> (or empty submenus ----). Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M>
modularizes features. Press <Esc><Esc> to exit, <?> for

<M> Top Level Choice

< > Value 1 (NEW)

<M= Value 2

|l Nested Choice

< > Nested Value 1 (NEW)
< > Nested Value 2 (NEW)

= Exit = < Help = < Save > < Load =

Figure 2.12: Menuconfig execution of Figure 2.11.

Figure 2.12 shows how menuconfig displays the example from Figure 2.11. “Nested
Choice” is intended below “Value 2”. Such constructs do only affect the presentation
inside the configuration front-ends and do not differ logically from a choice which
is dependant of another choice but not modelled inside a hierarchy.

2.3.7 Prohibited Attributes for Choices

Although KConfig [KCo14] specifies that all attributes can be used inside a choice group,
the application of some attributes is prohibited by the grammar. These are attributes
which usage would not make sense inside a choice group, like select or range.

2.3.8 1If Used in Constraint Hierarchies

if statements can be used to make the existence of a config option conditional. This
kind of constraints can also be used to model constraint hierarchies like depends on
statements. However, the combination of both kinds of statements can break the con-
straint hierarchy. Figure 2.13 on the following page gives an example, where the combi-
nation of both statements breaks such a constraint hierarchy. Although the existence of
NESTED_VAR_1, NESTED_VAR_2, and NESTED_VAR_3 are dependant of VAR_2 (see depends
on constraints) and they are written below this config option, only NESTED_VAR_1 will be
indented below VAR_2.

25

1| config VAR 1

2 bool "Variable 1"
3

1

1 config VAR 2
bool "Variable 2"

6

7 config NESTED VAR 1

8 bool "Nested Variable 1"
9 depends on VAR 2

1 if VAR 1

12 config NESTED VAR 2

13 bool "Nested Variable 2"
14 depends on VAR 2

15 endif

17 config NESTED VAR 3
18 bool "Nested Variable 3"
19 depends on VAR 2

Figure 2.13: KConfig code for breaking a constraint hierarchy:.

The condition of the if statement in line 11 must use VAR_2 in order that the hierarchy
becomes restored. This is shown in Figure 2.14. The depends on constraint from line 14
has been removed as this is now part of the if condition in line 11.

1| config VAR 1

2 bool "Variable 1°'
3

2\

1/ config VAR 2
bool "Variable 2"

6

7 config NESTED VAR 1

8 bool "Nested Variable 1"
9 depends on VAR 2

11 if VAR 1 && VAR 2

12 config NESTED VAR 2

13 bool "Nested Variable 2"
14 endif

16 confi g NESTED7VAR73

17 bool "Nested Variable 3"

18 depends on VAR 2

Figure 2.14: Fixed hierarchy of example from Figure 2.13.

26

Usually this behaviour should not be a problem as this only affects the presentation
inside the configuration front-ends. However, inside a choice (cf. Section 2.4.5) both
kinds of constraints cause a different logical behaviour, which has to be considered.

2.3.9 Selected Config Option of a Constraint Hierarchy

KConfig [KCol4] specifies that select statements will select a variable independently
whether existing depends on constraints get violated. Hence, it is possible to select a
config option of a constraint hierarchy, while its parent is still deselected. In this case, the
selected config option will not be displayed as long the hierarchy constraints are violated,
but the correct value will be part of the .config file. Menuconfig is also displaying a
warning. Also the the Kernel developers [KCol4] warn that select statements should
be used with care and should not select config options having a prompt.

27

2.4 Critical Observations

In this section, we describe critical observations which must be considered during for-
mal transformations of KConfig models to other languages, e.g. boolean formula. The
observed behaviour of KConfig does not follow clearly from its language specification.

2.4.1 Selection of Nested Config Options

Description
A select constraint should take the value from the containing bool/tristate
config option and should set this value as minimal value for the selected config
option independent of existing depends on constraints. However, this does not
apply for config options which are nested inside a choice.

Real world example from Linux

e Kernel version: 3.19

e File: arch/x86/Kconfig.cpu

e Line(s): 2 - 279

e File: arch/x86/Kconfig

e Line(s): 529 — 538

e Location inside the menu of menuconfig:
Prompt: 486
-> Processor type and features

-> Processor family (<choice> [=y])

Depends on: <choice> && X86_32 [=y]
Selected by: X86_RDC321X [=y] && X86_32 [=y] &&
X86_EXTENDED PLATFORM [=y]

Minimal example

1| config BOOL_VAR

2 bool "A Boolean Variable"

3 select BOOL VAIL2

4

5| choice

6 bool "A Choice"

8 config BOOL_VALI

9 bool "l1st Boolean Value'
10

11 config BOOL_VAI2

12 bool "2nd Boolean Value"
13| endchoice

Figure 2.15: KConfig code for an inoperable selection of a nested config option
inside a choice.

28

Behaviour of KConfig

Figure 2.16 shows that the select statement of Figure 2.15 on the previous page is
inoperable. Even if “A Boolean Variable” is set to y, the select statement in line
3 will have no effect (cf. Figure 2.17). However, this behaviour avoids the multiple
selection of nested config options of the same choice. Thus, we assume that this
behaviour was indeed indented by the developers.

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </= for

ﬂ* A Boolean Variable

A Choice (1st Boolean Value) ---=>

< Exit = < Help > < Save > < Load >

Figure 2.16: Menuconfig execution of Figure 2.15

Resulting .config file

[un

N

IS

ot

N

#
Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

i
CONFIG_BOOL VAR=y

| CONFIC BOOL, VALl=y

CONFIG_BOOL_VAI2 is not set

Figure 2.17: Saved .config file of the example from Figure 2.16 (“A Boolean
Variable was selected”).

29

2.4.2 Default Value m

Description
It is possible to specify m as default value for bool as well as for tristate config

options, even if the the third state is not activated (cf. Section 2.1 on page 14).

Real world example from Linux

e Kernel version: 3.19
e File: net/netfilter/Kconfig
e Line(s): 63 — 74
e Location inside the menu of menuconfig:
Prompt: Connection tracking security mark support
-> Networking support (NET [=y])
-> Networking options
-> Network packet filtering framework (Netfilter) (NETFILTER
(=yD)
—-> Core Netfilter Configuration
Depends on: NET [=y] && INET [=y] && NETFILTER [=y] &&
NF_CONNTRACK [=m] && NETWORK_SECMARK [=y]

Minimal example

config MODULES
2 bool "Enable Tristate Support'
3 option modules

5| config VARI1
6 bool "Boolean Variable"
7 default m

config VAR2
10 tristate "Tristate Variable'

11 default m

©

Figure 2.18: KConfig code for specifying m as default value for a config option of
type bool.

Behaviour of KConfig
The default expression is evaluated to y for both kinds of config options as long
the third state is deactivated. If the third state is enabled, tristate config options
will be set to m. bool config options will still be set to y.

30

suh@ubunktu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc»<Esc> to exit, <?> for Help, </= for

ﬂ Enable Tristate Support (NEW

[*] Boolean Variable (NEW)
[*] Tristate Variable (NEW)

< Exit > < Help > < Save > < Load >

suh@ubunku: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <¥Y> includes, <N> excludes, <M> modularizes
features. Press <Esc=<Esc> to exit, <?> for Help, </= for

ﬁ* Enable Tristate Support

[*] Eoolean Variable (NEW)
<M> Tristate Variable (NEW)

< Exit > < Help > < Save > < Load >

Figure 2.19: Menuconfig execution of Figure 2.18

Consequence

The real value of a “default m” expression depends from the type of the config
option and whether the thrid state was activated. This is illustrated in Figure 2.19,
which shows how the model from Figure 2.18 on the previous page is handled
by menuconfig. The upper image shows how the default values are handled by
tristate/bool config options without any user interaction. The saved configura-
tion is shown in Figure 2.20 on the following page. After the user has activated the
third state (2nd image), the default value of the tristate config option has been
changed automatically.

J

31

Resulting .config file

#
Automatically generated file; DO NOT EDIT.

Linux Kernel Configuration
S

CONFIG_MODULES is not set
CONFIG_VARI=y

CONFIG_VAR2=y

N

w

o

-~

Figure 2.20: Saved .config file of the example from Figure 2.19 (no user input).

2.4.3 'Tristate Choice with Boolean Config Options

Description
Choices can be either of type bool or tristate. However, a tristate choice must
not necessarily contain only bool config options. It is also possible to nest tristate
config options in a choice of type bool and vice versa.

Real world example from Linux
No example found in Kernel 3.19.

Minimal example

1| config MODULES
2 bool "Enable Tristate Support'
3 option modules

5| choice
6 tristate "Tristate Choice"

8 config TRISTATE VAL 1

9 tristate "Tristate Value 1"
10 config TRISTATE VAL 2

11 tristate "Tristate Value 2"
12 confi g BOOLi\/'ALil

13 bool "Boolean Value'
12| endchoice

Figure 2.21: KConfig code for creating a tristate choice with nested boolean config
options.

Behaviour of KConfig
Nested bool config options will only be selectable if a the choice is set to y (cf.
Figure 2.22, upper image). In this case, the selected config option will aslo be
set to y, independently whether the config option is of type bool or tristate (cf.
Figure 2.23 on page 34). If the choice is set to m, only the tristate config options will
be selectable as modules and all bool config options become permanently invisible
(cf. Figure 2.22, 2nd image).

32

A choice of type bool containing tristate config options, facilitates the selection
of exact one config option. The selected config option will be set to y independent
of its type (same result as in Figure 2.23 on the following page).

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Tristate Choice
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

Exﬂ Tristate Value 1
() Tristate Value 2
() eoolean Value

< Help >

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=>
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes features.
Press <Esc><Esc> to exit, <?> for Help, </> for Search.

HM> Tristate Choice
< = Tristate Value 1 (NEW)
< > Tristate Value 2 (NEW)

< Exit > < Help > < Save > < Load >

Figure 2.22: Menuconfig execution of Figure 2.21. Selection of “Boolean Value” is
only possible, if the choice is set to y.

33

Resulting .config file

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

H I FHF

5| CONFIG_MODULES=y

s/ CONFIG_TRISTATE VAL 1=y

7|# CONFIG TRISTATE VAL 2 is not set
s|# CONFIG_BOOL_ VAL 1 is not set

Figure 2.23: Saved .config file of the example from Figure 2.22. The selection
form the upper image was saved.

2.4.4 Structured Choices

Description
Config options of a choice can hold arbitrary depends on constraints. This depends
on constraints may also be used to model dependencies between config entries of
the same choice. In this case, the depended config options may only be selected
if the affiliated config option was selected before. This is used for a more detailed
configuration of selected config options of a choice (cf. Hierarchies in Section 2.1 on
page 15).

Real world example from Linux

e Kernel version: 3.19

e File: drivers/usb/gadget/Kconfig

e Line(s): 199 — 428

e Location inside the menu of menuconfig:
Prompt: USB Gadget Drivers
->Device Drivers

— USB support (USB\SUPPORT [=y])
— USB Gadget Support (USB\GADGET [=m])

34

Minimal example

choice
bool "A structured Choice"

=

V]

4 config VAL 1
bool "Value 1"
6 config VAL 2
7 bool "Value 2'

config SUB VAL

10 bool "A sub value'
11 depends on VAL 2
12| endchoice

©

Figure 2.24: KConfig code for creating a structured choice (“A sub value” can only
be selected together with “Value 27).

Behaviour of KConfig
Figure 2.25 demonstrates how KConfig handles the minimal example from Figure
2.24. As documented, exactly one of the first two config options has to be selected.
Through the depends on constraint in line 11, “A sub value” may also be selected
if “Value 2”7 was selected before. This scenario allows the selection of two config
options for a boolean choice.

35

.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N=> excludes, <M> modularizes
features. Press <Esc»<Esc> to exit, <?> for Help, </= for

I A structured Choice (Value 1 -==>

< Exit > < Help > < Save > < Load >

.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc»<Esc> to exit, <?= for Help, </= for

I A structured Choice (Value 2 -—-3
Value 2

[1] A sub value (NEW)

< Exit > < Help > < Save > < Load >

Figure 2.25: Menuconfig execution of Figure 2.24. Selection of “Value 2” facilitates

the selection of “A sub value” (2nd screen shot).

Consequence

Exactly one of VAL 1 or VAL 2 will be selected inside the resulting .config file.
The .config may also contain the selection of SUB_ VALUE if “A sub value” was

selected together with “Value 2”7 during the configuration process.

36

Resulting .config file

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

Ty

5|17 CONFIG_VAL 1 is not set
CONFIG_VAL 2=y
CONFIG_SUB_VAl~=y

o

.

Figure 2.26: Saved .config file of the example from Figure 2.25 (“A sub value”
was selected).

37

2.4.5 Recursive Dependency inside a Choice

Description
In Section 2.4.4, we already described how depends on constraints can be used
inside a choice to create hierarchical dependencies inside a choice, which will also
enable the multiple selection of nested config options inside the same choice. For
such hierarchies it is important, that all nested config options are written directly
below the containing config option. If a not nested config option is written between
the containing and the nested config option, the whole hierarchy will be broken.

Minimal example

1| choice
2 bool "A Structured Choice"

4 config VAL 1

5 bool "Value 1"

6

7 config SUB VAL 1

8 bool "Visible Sub Value 1"

9 depends on VAL 1

11 config SUB_ VAL 2

12 bool "Visible Sub Value 2'
13 depends on VAL 1

14

15 config VAL 2

16 bool "Value 2"

17

18 config DEAD SUB VAL

19 bool "Dead Sub Value'

20 depends on VAL 1

22| endchoice

Figure 2.27: KConfig code for creating a structured choice with a dead config option
(“Dead Sub Value” will never be selectable).

38

Behaviour of KConfig

Figure 2.28 demonstrates how KConfig handles the minimal example from Fig-
ure 2.27 on the previous page. Because there was a top level config option inserted
in line 15 between the nested config options of “Value 17, “Dead Sub Value” is not
longer part of the hierarchy. Thus, “Dead Sub Value” will not be selectable as it
is also part of a choice of type bool. Moreover, KConfig is detecting a “recursive
dependency” (cf. Figure 2.29 on the following page) and will remove the complete
hierarchy from the choice as shown in the upper image from Figure 2.28.

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=>
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </= for

I A Structured Choice (Value 1 --->
[] Value 1

= Exit = < Help = < Save > < Load =

suh@ubuntu: /data/src/Linux-Releases/Test
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </= for

I A Structured Choice (Value 1 -- -3

Value 1
[1] visible Ssub value 1
[]

Visible Sub Value 2

< Exit = < Help > < Save > < Load >

Figure 2.28: Menuconfig execution of Figure 2.27 (first screen shot). Only the
removal of “Value 2” from the KConfig model in Figure 2.27 (lines 15 — 16) facilitates
the selection of nested elements below “Value 17 (2nd screen shot).

39

The hierarchy will only be displayed correctly after removing the dead config option
from the KConfig model (Figure 2.27 on page 38, lines 18 — 20). The resulting menu
is shown in the lower image of Figure 2.28 on the previous page.

i|suh@ubuntu:/data/src/Linux—Releases/Test$ make menuconfig
olmake[1]: Entering directory ‘/data/src/Linux—Releases/Test’
simake [1]: Leaving directory ‘/data/src/Linux—Releases/Test’
iimake[1]: Entering directory ¢‘/data/src/Linux—Releases/Test’
s|scripts/kconfig /mconf Kconfig

6l Kconfig:4:error: recursive dependency detected!

7| Kconfig:4: choice <choice> contains symbol DEAD SUB VAL

s Kconfig:21: symbol DEAD SUB VAL depends on VAL 1

ol Kconfig:7: symbol VAL 1 is part of choice <choice>

Figure 2.29: Log file for compiling the model of Figure 2.27

2.4.6 Empty Choices

Description
Choices as well as their included config options can be made dependant of other
config options. These depends on constraints need not necessarily to be same.
This allows the creation of empty boolean choices. Although the KConfig language
specification specifies the selection of exactly one variable, KConfig is able to handle
such situations and will not force the selection of a non existing config option.

Real world example from Linux

e Kernel version: 2.6.33.3

e File: drivers/mmc/host/Kconfig

e Line(s): 194 - 218

e Location inside the menu of menuconfig:
Prompt: Atmel SD/MMC Driver

-> Device Drivers
-> MMC/SD/SDIO card support (MMC [=y])

40

Minimal example

1| choice

2 bool "An Empty Choice"

3

4 config VAL 1

5 bool "Value 1"

6 depends on NOT EXISTING
7 config VAL 2

8 bool "Value 2"

9 depends on NOT EXISTING
10| endchoice

Figure 2.30: KConfig code for creating an empty choice (no config item can be
choosen).

Behaviour of KConfig
The choice “An Empty Choice” is still part of the configuration menu, but the
configuration front-ends do not allow the selection of one of its nested config options.
Figure 2.31 demonstrates how the empty choice is displayed in menuconfig. The
absence of brackets behind its name indicates that there is no further selection of
nested config options possible.

suh@ubuntu: /data/src/Linux-Releases/Example

File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---=
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc»<Esc> to exit, <?> for Help, </= for

I An Empty Choice

= Exit = < Help = < Save > < Load =

Figure 2.31: Menuconfig execution of Figure 2.30 (no value can be selected).

Consequence
The configuration of the model presented in Figure 2.30 will always produce an
empty .config file, since the empty choice does now allow the selection of a nested
config item. The complete .config file is presented in Figure 2.32.

41

Resulting .config file

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

H I FHF

Figure 2.32: Saved .config file of the example from Figure 2.31 (no value could
be selected).

2.4.7 Choices Without a Prompt

Description

The prompt attribute is also for choices only optional or can be conditional. A
choice which is not visible to the user, will also not part of the configuration even
if the choice should be present (not optional and all depends on constraints are
fulfilled) and a default value was specified.

Real world example from Linux

e Kernel version: 3.19
e File: arch/x86/Kconfig
e Line(s): 1204 — 1236
e Location inside the menu of menuconfig:
Prompt: Memory split
-> Processor type and features
Depends on: X86_32 [=y]
Selected by: X86_32 [=y] && EXPERT [=y] && m

Minimal example

-

V]

choice
bool
default BOOL VALl

config BOOL_VALI
bool "lInd Boolean Value"

config BOOL_ VAIL2
bool "2nd Boolean Value'
endchoice

Figure 2.33: KConfig code of an invisible choice.

Behaviour of KConfig

A (mandatory) choice with no prompt will not be displayed inside the configuration
front-ends. The default value has no impact as it will be ignored.

42

Consequence

Figure 2.34 and Figure 2.35 demonstrate how menuconfig handle the default value
of the mandatory choice from Figure 2.33 on the preceding page. For Figure 2.35,
we added a prompt to Figure 2.33 in line 2; everything else remained unchanged.
Both times, we did not changed anything inside menuconfig before we saved the
configuration.

Resulting .config file

W N =

oW N =

iR S S

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

R S S

Figure 2.34: Saved .config file of the example from Figure 2.33 (no value could
be selected).

In Figure 2.34 was nothing saved. In Figure 2.35, the default value was used to
save the configuration of the nested config options.

Automatically generated file; DO NOT EDIT.
Linux Kernel Configuration

CONFIC BOOL, VALl=y

5|7 CONFIG_BOOL_VAIL2 is not set

Figure 2.35: Saved .config file of the example from Figure 2.33 (no value was
selected). The model from Figure 2.33 was extended with a prompt in line 2.

43

2.4.8 Recursive Dependency inside a Choice via an if

Description
In Section 2.4.5, we already described how depends on constraints can create a
recursive dependency inside a choice, which will remove the complete nested hier-
archy from the KConfig model. Further, we showed in Section 2.3.8 that an if
statement can also break a hierarchy, even if the constraints are modelled correctly.

Minimal example

config EXT VAR
bool "Not nested Variable'

choice

5 bool "Choice"

6 config VAR 1

bool "Variable 1"

config VAR 2

10 bool "Variable 2"

11

12 config NESTED VAR 1

13 bool "Nested Variable 1"
14 depends on VAR 2

15 if EXT VAR

16 config NESTED VAR 2

17 bool "Dead Sub Value'
18 depends on VAR 2

19 endif

20 confi g NESTED_VAR_3

21 bool "Nested Variable 3"
22 depends on VAR 2

23| endchoice

Figure 2.36: KConfig code for creating a structured choice with a dead config option
via an if (“Dead Sub Value” will never be selectable).

Behaviour of KConfig
Figure 2.37 on the next page demonstrates how KConfig handles the minimal exam-
ple from Figure 2.36. Although NESTED VAR_2 is dependant of VAR_2 and written
correctly below this config option, the whole hierarchy is removed, since VAR_2 is
not also used inside the if statement. Further, menuconfig also displays a warning
while creating the menu similar to the warning already shown in Figure 2.29 on
page 40.

44

menuconfFig
File Edit View Search Terminal Help
.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </= for

*]1 Not nested Variable
Choice (Variable 2 -—=3
[]

Vvariable 2

< Exit > < Help > < Save > < Load >

Figure 2.37: Menuconfig execution of Figure 2.36. The complete hierarchy below
“Variable 27 is missing.

The hierarchy will only be displayed correctly after involving VAR_2 inside the if
statement in line 15.

2.4.9 Multiple Attributes inside a Config Option

Description
Config options may nest multiple attributes of the same type, e.g. multiple default
value definitions. Inside the KConfig model of Linux, multiple conditional attributes
are used to specify different values under different conditions. In cases were multiple
interacting attributes of the same type become active, only the first one is used.

Real world example from Linux

e Kernel version: 3.19

e File: arch/x86/Kconfig

e Line(s): 1334 — 1343

e Location inside the menu of menuconfig:
Prompt: Maximum NUMA Nodes (as a power of 2)

-> Processor type and features
Depends on: NEED MULTIPLE_NODES [=y]

45

Minimal example

1| config VAR

2 string "A String Variable'
3 default "Value 1"

4 default "'Value 2"

Figure 2.38: KConfig code of an invisible choice.

Behaviour of KConfig
In Figure 2.38 multiple default values are specified for the same config option.
Menuconfig will take the first default value (line 3) during the configuration as
shown in Figure 2.39.

™ suh@ubuntu: /data/src/Linux-Releases/Test

File Edit View Search Terminal Help

.config - Linux Kernel Configuration

Linux Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus
---> (or empty submenus ----). Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M=>
modularizes features. Press <Esc><Esc> to exit, <?> for

ﬂValue 1) A String Variable (NEW

< Exit = < Help > < Save > < Load >

Figure 2.39: Menuconfig execution of Figure 2.38 (the first default was set as
default value).

Consequence
If the default value was not changed, e.g. because the config option was also not

visible to the user, the first default value will automatically written into the .config
file (cf. Figure 2.40).

Resulting .config file

[N

#
Automatically generated file; DO NOT EDIT.

Linux Kernel Configuration

#
CONFIG VAR="Value 1"

N

w

IS

ot

Figure 2.40: Saved .config file of the example from Figure 2.39.

46

Chapter 3

Tool Analysis

In this section, we show how the existing tools and approaches handle the findings from
Chapter 2. In Section 3.1, we give a brief introduction into the analysed tools. In Section
3.2 to Section 3.4, we analyse how the tools handle some important concepts of Section
2.1, which differ fundamentally to boolean logic. In sections 3.5 to 3.15, we show how
the tools handle the observations of Chapter 2. Finally, in Section 3.16 we summarize
the findings of our analysis.

3.1 Analysed Tools

We analysed three tools: Undertaker, KConfig Reader, and LVAT. Further we analysed
KConfig Reader in two different versions. All but LVAT are capable of translating KConfig
into three logical models. LVAT offers mechanisms for printing statistical information
about a given KConfig model like, hierarchies, permanent visible variables, visibility
conditions, or different kinds of dependency analyses (OR, XOR, Mutex groups). Here,
we analysed LVAT’s capabilities of translating a KConfig models into DIMACS—format.
In Section 3.1.1, we introduce Undertaker and its tools responsible for the generation
of the logical models. Section 3.1.2 introduces both versions KConfig Reader, which use
parts of Undertaker for an alternative translation. Section 3.1.3 explains how LVAT stores
the variability information of KConfig models in DIMACS-format.

We will also briefly describe the generated output files of the analysis tools based on
the KConfig model from Figure 3.1 on the next page. This model contains a menu with
3 nested config options and a choice with two nested config options. Inside the menu, a
constraint is used to model a hierarchy. Through the constraint in line 10, STR_VAR will
be indented below MODULES. TRI VAR is a config option of type tristate, which can only
be selected to m, if MODULES was set to y before, because it contains the option modules
attribute (cf. line 5). Selecting VAL2 inside the choice will force the permanent selection
(y) of TRI_VAR, because of the modeled select constraint in line 24.

47

menu 'A Menu'
config MODULES
bool "Enable third state"
default y
option modules

config STR VAR
string
prompt "A string variable"
depends on MODULES

config TRI VAR
tristate "A tristate wvariable'

n

endmenu

;| choice

bool "Like an enumeration’

config VALIL
bool "Value 1'

config VAL2
bool "Value 2"
select TRI VAR

5| endchoice

Figure 3.1: Small KConfig example for explaining the translated logical models.

3.1.1 Undertaker

Undertaker [Und] is a tool set developed to check the structure of preprocessor directives
of the Linux Kernel against its configuration model to find code blocks, which are per-
manently (de-)selected in all configurations. This analysis is done in two steps. First,
all KConfig files are translated into logical models. In the second step, the preprocessor
directives are also translated into logical models and passed directly together with the
logical translations of KConfig to a (SAT) solver to find code, which is not configurable.

Undertaker embeds two alternative tool chains for translating Kconfig into boolean
formula:

e dumpconf is a modified version of menuconfig. This tool translates the KConfig
files first into an intermediate format. This intermediate information is saved as
RSF files (*.rsf), which are Tab Separated Value files (TSV) with a fixed set of used
elements to describe the information of the KConfig files in a more structured way.
The RSF files mainly contain the same logical information as the KConlfig files, but
dumpconf already adds some extra information for downstream analysis tools, e.g.
depends on constraints between nested config options and the containing choices.

48

Choice CHOICE_ 1 required boolean
Choiceltem VAL1L CHOICE 1
Choiceltem VAL2 CHOICE 1
Default MODULES "y "y
Depends STR. VAR "MODULES"
Depends VAL1 "CHOICE_1"
Depends VAL2 "CHOICE_1"
HasPrompts MODULES 1
HasPrompts STR. VAR 1
HasPrompts TRI_VAR 1
HasPrompts VALl 1
HasPrompts VAL2 1
Item MODULES boolean
ItemSelects VAL2 "TRI VAR "CHOICE 1"
Item STR. VAR string
;| Item TRI_VAR tristate
Item VAL1 boolean
Item VAL2 boolean

Figure 3.2: dumpconf’s translation of Figure 3.1 on the preceding page.

An example for such a RSF file is given in Figure 3.2. Each row can be interpreted
as a tuple:

(Item, <name>, <type>) declares a config option (cf. lines 13 and 15 — 18).
(HasPrompts, <name>, <No.>) indicates how many (conditional) prompts
are associated to the config option (cf. lines 8 — 12).

(Choice, CHOICE <No.>, required|optional, boolean|tristate) de-
clares a choice (cf. line 1).

(Choiceltem, <name of an Item>, <name of a Choice>) denotes that a
config option is nested inside a choice (cf. lines 2 and 3).

(Default, <name of an Item or Choice>, <default value>,
<expression>) defines a (conditional) default value (cf. line 4).

(Depends, <name of an Item or Choice>, <expression>) defines a de-
pendency between a config option or choice and other elements of the KConfig
model (cf. lines 5 — 7).

(Has Prompts, <name of an Item>, <No.>) shows how many (conditional)
prompts are defined for the related config option (cf. lines 8 — 12).

(ItemSelects, <name of holding Item>, "<name of target Item>",
<expression>) defines a (conditional) select statement between two config
options (cf. line 14).

ifs are translated into Depends elements.

Even expressions based on Strings and Numbers are translated. But string values
are not surrounded by quotes, thus, it is not possible to clearly determine start and
ending of string values inside complex constraints.

49

w

rsf2model is than used to create boolean formula based on the RSF files. These
files are saved as Model files (*.model).

An example for such a Model file is given in Figure 3.3. The first lines are used to
declare the config options and choices of the KConfig model (cf. lines 1 — 7). These
lines may contain a quoted expression, which must be fulfilled if the element was
selected. Tristate elements are translated into two elements (CONFIG_<NAME> and
CONFIG_<NAME>_MODULE), with the following semantics:

— CONFIG_<NAME> = false and CONFIG_<NAME> MODULE = false denote that
the related element inside the KConfig model was permanently deselected (n).

— CONFIG_<NAME> = true and CONFIG_<NAME> MODULE = false denote that
the related element inside the KConfig model was permanently selected (y).
— CONFIG_<NAME> = false and CONFIG_<NAME> MODULE = true denote that
the related element inside the KConfig model was configured as a module
(m).
— CONFIG_<NAME> = true and CONFIG_<NAME> MODULE = true is not allowed.
The statement in line 8 lists elements which are permanently set to y (true).

Constraints based on comparisons of String or Numerical config options are not
considered during the translation.

CONFIG_CHOICE_1 " ((CONFIG_VALI && !CONFIG_VAL2) |
(!CONFIG_VAL1 && CONFIG_VAL2))"

CONFIG_MODULES

CONFIG_STR_VAR "CONFIG_MODULES"

CONFIG_TRI_VAR "!CONFIG _TRI VAR MODULE"

CONFIG_TRI VAR MODULE "!CONFIG_TRI VAR && CONFIG_MODULES"

CONFIG_VAL1 "CONFIG_CHOICE 1"

CONFIG_VAL2 "CONFIG_CHOICE 1"

UNDERTAKER, SET ALWAYS ON "CONFIG_CHOICE_1"

UNDERTAKER, SET SCHEMA_ VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.3: rsf2model’s translation of Figure 3.1 on page 48.

Satyr is an alternative to dumpconf + rsf2model, which was introduced in
Undertaker 1.5 [Und]. This tool translates the KConfig files directly into DIMACS-
format [Sat93].

An example for the output produced by Satyr is given in Figure 3.4.
— The first lines are comments, presenting a mapping of the KConfig elements
to DIMACS variables, which are only numbers.

— The first line below the comments declares how many boolean variables and
how many disjunction constraints are used inside the DIMACS file (cf. line 27:
p cnf <number of variables> <number of constraints>).

20

© 0 -~ [=] wt - w [N =

o
=T 0O 0000000000000 00000000000O0

[
O

15

17
18
19

20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

— The rest of the file contains the disjunction constraints.

— Constraints using such non—Boolean—/Tristate—elements are translated into
separate variables in the form of CONFIG___FREE__(NE | EQ)<Number>.
These variables are used correctly to translate constraints, but Satyr does
not model a dependency between this assignment variable and the related
String/Numerical element.

— Tristate elements are translated in the same way as in Model-files.

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:
enum {S _BOOLEAN=1, S TRISTATE=2, S_INT=3, S HEX=4, S_STRING=5, S_OTHER=6}
variable names:

¢ var <variablename> <cnfvar>

meta_ value ALWAYS ON CONFIG CHOICE 0
sym CHOICE_0 1

sym MODULES 1

sym STR,_VAR 5

sym TRI VAR 2

sym UNAME RELEASE 5

sym VALL 1

sym VAL2 1

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG CHOICE 0 1

var CONFIG MODULES 9

var CONFIG_STR VAR 15

var CONFIG TRI VAR 17

var CONFIG_TRI VAR MODULE 18

var CONFIG UNAME RELEASE 14

var CONFIG VALI 2

var CONFIG VAL2 3

var CONFIG MODULES MAGIC INTERNAL VAR 8
cnf 21 43

0

-4 20

-4 -3 0

4 -2 30

-5 -2 0

-5 30

52 -30

6 —4 0

6 =5 0

-6 450

710

7 —6 0

-7 -160

Figure 3.4: Satyr’s translation (excerpt) of Figure 3.1 on page 48.

For the analysis we used Undertaker in version 1.6.1. We analysed all three tools
in independent from each other, since they can be executed independently of the whole

51

Undertaker tool set, which facilitates the usage in other projects outside of the context
of Undertaker.

3.1.2 KConfig Reader + KConfig Reader (XML)

KConfig Reader [kcob] was designed for converting the KConfig files into boolean formulas
for reasoning. In this analysis we tested two versions KConfig Reader:

e In the following, we use KConfig Reader to refer to the latest version of KConfig
Reader, which produces RSF files as intermediate format. This version uses a
patched version of Undertaker’s dumpconf for creating RSF files, which must be
downloaded from a separate repository!. These files are than used to create boolean
formulas. These boolean formulas are stored in Model files (*.model). However,
KConfig Reader’s Model files are different to Undertaker’'s Model files. KConfig
Reader optionally offers the possibility to create CNF formula, which is also saved
in DIMACS-format [Sat93].

For the analysis, we used the latest version of the patched dumpconf tool, which
was from 30.06.2014. KConfig Reader was a version from 12.09.2014. We analysed
the correctness of generated RSF, Model, and DIMACS files.

e In the following, we use KConfig Reader (XML) to refer explicitly to a younger
version of KConfig Reader. This version relies on a reimplemented version of the
patched dumpconf tool, which is already part of KConfig Reader (XML). Contrary
to the older implementation, this version uses XML as an intermediate format
instead of the common RSF structure. However, the XML files are still named as
* rsf files. The structure of Model and DIMACS files has not been changed.

For the analysis, we used KConfig Reader (XML) from 03.06.2015. We analysed
the correctness of generated Model and DIMACS files. We did not checked the
correctness of the generated XML files, as they are only an intermediate format,
used by KConfig Reader (XML) only.

Both tools are able to create all three model types with one execution step. Hence,
we analysed the produced files without identifying potential sub components:

e RSF-files produced by older versions of KConfig Reader contain additional infor-
mation compared to the RSF-files produced by dumpconf. An example is given
in Figure 3.5 on the next page:

— It seems to keep the ordering of the config options and choices inside the
KConfig files. Each time, the elements of the translated RSF files had the
same ordering as inside the source KConfig files.

— It does not only count how many prompts are related to an item (HasPrompts,
<name>, <No.>), it also shows under which situation a prompt becomes active
(Prompt, <name>, <expression>).

— These RSF files contain further information, which was not part of this analy-
sis, like the comments (cf. lines 12, 16, 22, 29, and 30), and ranges for numer-

Thttps://github.com/ckaestne/undertaker

52

ical config options (Range, <name>, "[<lower bound> <upper bound>]",

<expression>).
1| Item MODULES boolean
2| Prompt MODULES "y
3| HasPrompts MODULES 1
1| Default MODULES "yt "y
5| [tem STR, VAR string
;| Depends STR. VAR "MODULES"
7| Prompt STR_VAR "MODULES"
s| HasPrompts STR. VAR 1
o| Item TRI VAR tristate
Prompt TRI_VAR "y
HasPrompts TRI_VAR 1
sl#startchoice
3| Choice CHOICE 1 required boolean
1| Prompt CHOICE_ 1 "y
5| HasPrompts CHOICE_ 1 1
#choice value
7| Choiceltem VAL1L CHOICE 1
s| Item VAL1 boolean
ol Depends VALL "CHOICE_1"
Prompt VAL1 "CHOICE_1"
1| HasPrompts VALl 1
2|#choice value
3| Choiceltem VAL2 CHOICE 1
14| Item VAL2 boolean
25| Depends VAL2 "CHOICE_1"
j| Prompt VAL2 "CHOICE_ 1"
HasPrompts VAL2 1
ItemSelects VAL2 "TRI VAR "CHOICE 1"
o|#choice value
#endchoice

Figure 3.5: KConfig Reader’s RSF translation of Figure 3.1 on page 48.

Model files produced by KConfig Reader and KConfig Reader (XML) can not
be compared with Model files produced by Undertaker. An example is given in
Figure 3.6 on the next page. These Model files contain Boolean formula, which are
not necessarily in CNF form:

— Each variable is surrounded by !'def (<variable>) or def (<variable>) de-
noting whether the variable is deselected (= false) or selected (= true).

— Tristate config options / choices are translated into two variables: <variable>
and <variable> MODULE.

% <variable> = false and <variable> MODULE = false denote that the
related element inside the KConfig model was permanently deselected (n).

23

oW [

< e

-~

15

=

17

18

19

20

2

fart

2

N

28

w

x <variable> = true and <variable> MODULE = false denote that the
related element inside the KConfig model was permanently selected (y).

* <variable> = false and <variable> MODULE = true denote that the
related element inside the KConfig model was configured as a module (m).

* <variable> = true and <variable> MODULE = true is not allowed.

— String and Numerical elements are translated in several variables in form of

def (KNAME>=<value>). Kconfig Reader is creating such a construct for each
value comparison found in KConfig constraints and creates constraints to avoid
multiple value selections for the same config option. Further variables are
created as follows:

x def (KNAME>=) — Config option <NAME> was assigned to an emtpy String.

x def (KNAME>=n) — Config option <NAME> is not part of the configuration,
i.e. a dependency was not fulfilled.

* def (KNAME>=nonempty) — A value was assigned, which was not covered
by one of the def (KNAME>=<value>) variables, i.e. a value which was not

used inside a constraint.

Kconfig Reader resolves dependencies for config options which are indirectly de-
pendent of other config options. As a consequence, a dependency graph would be
flattened, but the constraints become unnecessary complex as more variables are

involved in constraints.

| (!def

#item CHOICE_1

def (CHOICE 1)

#item MODULES

#item STR_VAR

(!'def (MODULES) |! def (STR_VAR=n))

(def (STR_VAR=) | def (STR_VAR=nonempty) | def (STR_VAR=n))
(def (MODULES) | (! def (STR_VAR=)&!def (STR_VAR=nonempty)))
(def (MODULES) | (! def (STR_VAR=)&!def (STR_VAR=nonempty)))
(!'def (STR_VAR=) |! def (STR_VAR=nonempty))

(!'def (STR_VAR=) |! def (STR_VAR=n))

(!'def (STR_VAR=nonempty) |! def (STR_VAR=n))

#item TRI VAR

(!'def (TRI VAR MODULE) | def (MODULES))

(!'def(TRI_VAR) |! def (TRL VAR _MODULE))

(!'def(VAL2) |! def (CHOICE 1) | def(TRL VAR) | def (TRL VAR MODULE))
VAL2) |! def (CHOICE 1) | def(TRIL VAR))

#item VALI

#item VAIL2

#choice CHOICE 1

(def(VAL2) | def (VAL1) |! def (CHOICE 1))

(! def (VAL2) | def (CHOICE 1))

(!'def(VALL) | def (CHOICE 1))

(!def(VAL2) |! def (VALL))

P R e

Figure 3.6: KConfig Reader’s Model translation of Figure 3.1 on page 48.

o4

e KConfig Reader and KConfig Reader (XML) are also able to translate the KConfig
model into CNF formula and save this as a DIMACS—file. An example is given in
Figure 3.7:

— Also this translation contains a variable mapping at the beginning of the file,
like the translation of Satyr.

x Tristate elements are translated into two variables: <variable> and
<variable> MODULE. These variables have the same meaning as inside
the Model translation of KConfig Reader and KConfig Reader (XML).

* Non Boolean/Tristate elements are translated as in Model-files.
— The first line below the comments declares how many boolean variables and

how many disjunction constraints are used inside the DIMACS file (cf. line 5:
p cnf <number of variables> <number of constraints>).

— The rest of the file contains the disjunction constraints.

TRL VAR, MODULE
CHOICE_ 1
MODULES

TRI VAR

VALIL

STR._ VAR=

VAL2
STR_VAR=nonempty
STR. VAR=n

cnf 9 18

oI TN SO U R R
OO W N O

T O 000600000

o -5
[
W =
| ™o
—_

an)
jen)

20 —

21/ =7 =8 0
2(—7 —6 0
23| —8 —6 0
24/ 5 0

514 9 =5 0
26/—4 5 0
271—9 5 0
28/—4 —9 0

Figure 3.7: KConfig Reader’s CNF translation of Figure 3.1 on page 48.

3.1.3 LVAT

The Linux Variability Analysis Tools (LVAT) translates KConfig models in CNF formula
and saves this as a DIMACS-file, but LVAT is not able to translate the KConfig files

95

directly into DIMACS format. First the models must be translated into an intermediate
format, which should simplify parsing. The developers offer two tools for generating the
intermediate format [Kcoa]:

exconf translates KConfig into a text format. This extractor is marked as compatible
with KConfig models prior to Linux v3.0. An example is given in Listing 3.8, where
we translated the KConfig model from Listing 3.1, the referenced KConfig model
in drivers was empty.

protoconf translates KConfig into a binary format and is compatible with more recent
versions of Linux. We do not show an example here, as the binary format is not
readable.

In our analysis, we used protoconf for translating KConfig into the needed intermediate
format. Further, we used vmm2bool for generating the DIMACS-files. This tool was also
developed by the developers of LVAT to simplify the generation of DIMACSfiles.

menu "A Menu" {

config MODULES boolean {

prompt "Enable third state' if []
default [y] if []
config STR VAR string {
prompt "A string variable" if [MODULES]
depends on [MODULES]
inherited [MODULES]

I S

w N o W

9 }

10 }
11| config TRI VAR tristate {

12| prompt "A tristate variable" if []
3|}

14}
15| choice boolean {

16| prompt "Like an enumeration"' if []
17| config VALl boolean {

15| prompt "Value 1" if [<choice>]

19| inherited [<choice>]

20 }

21| config VAL2 boolean {

22| prompt "Value 2" if [<choice>]

23) select TRL_ VAR if [<choice>|

21/ inherited [<choice>|

25 }

26| }
o7l if [STR_VAR="Hello World"] {

Figure 3.8: Intermediate format of LVAT (translated only the menu from Listing 3.1).

26

KConfig elements are translated into two variables: <variable> and <variable> m:

e For Boolean elements only two states are valid:

— <variable> and <variable> m both being false means that the element is
permanently deselected (n).

— <variable> and <variable> m both being true means that the element is
permanently selected (y).

For instance, this behaviour is achieved for the variable MODULES via lines 25 and
26 in Figure 3.9 on the next page.

e For Tristate elements three states are valid:

— <variable> and <variable> m both being false means that the element is
permanently deselected (n).

— <variable> and <variable> m both being true means that the element is
permanently selected (y).

— <variable> being true and <variable> m being false means that the element
is selected as a module (m). This state is only valid if the third state of Tristate
elements is enabled, as described in Section 2.1 on page 14.

For example, this behaviour is achieved for the variable TRI_VAR via lines 44 and
45 in Figure 3.9 on the next page.

e Non Boolean/Tristate elements are translated exactly like Booleans. Literal com-
parisons are not considered, thus almost all translations of constraints with non
Boolean/Tristate elements are wrong.

LVAT also uses auxiliary variables, which are marked with a $ in the variable mapping
at the beginning of the DIMACS file [Pro].

o7

0w N O U A W N =

e
N R O ©
T OO0 00 0000000000000

w

14

1$ X5

2% Xl m

38 X5 m

4 TRI VAR m
5$ X7 m

6% X2

7$ X1

8% _X6

9 MODULES m
10 MODULES
11$ X3

128 X4 m
13$ X7

14%$ X3 m
15 X4

168 X6 m
17 TRI VAR
183 X2 m
cnf 18 34

[
NCIEN
o o

=710 9 0

-2 10 9 0

-7 -2-109 0
-10 9 0

5110 =9 0

-6 0

Figure 3.9: LVAT’s CNF translation of Figure 3.1 on page 48 (translated on lines 2 — 5

and 12 — 13).

3.1.4 Tool Summary

Table 3.1 on the following page summarizes the capabilities of the analysed translators.
It has to be considered that rsf2model’s Model-files are completely different to KConfig

Reader’s Model-files.

o8

—-18 0

-6 10 0

-6 9 0

—-11 0

—-14 0

—11 =10 7 0
=11 =7 10 0
5/ —11 =9 2 0

-11 -2 9 0

—-15 0

—-12 0
ol=1 0

-3 0

-1 17 4 0
2|=3 17 4 0
3l—1 =3 =17 4 0

17 -4 0

—-17 4 10 0

-8 0

—16 0

-8 =171 0
9|—=8 =1 17 0

-8 -430

-8 -340

—-13 0

-5 0

6¢

Translator Output | Strings & | Note Last Com- | Repository
Numbers mit
dumpconf RSF Partially Modified version of menu- https://vamos.
E supported | config, reorders config op- | 01.06.2015 informatik.uni-
< tions erlangen.de/trac/
g | rsf2model Model Not sup- | Uses RSF-files as input undertaker
'S ported
= Satyr DIMACS | Partially
supported
KConfig Reader RSF, 4 Testet version from | 12.09.2014 | https://github.
Model, 12.09.2014, which was | (latest ver- | com/ckaestne/
DIMACS the latest version wus- |sion using | kconfigreader,
ing modified version of | the old | https://github.com/
dumpconf dumpconf ckaestne/undertaker
implemen-
tation)
KConfig Reader XML, 4 Testet version from | 03.06.2015 | https://github.
(XML) Model, 03.06.2015, which was the com/ckaestne/
DIMACS latest version kconfigreader
Linux Variabil- DIMACS | Not sup- 01.04.2013 | https://code.
ity Analysis ported (LVAT), google.com/p/linux-
Tools (LVAT) 30.05.2015 | variability-
(vim2bool) | analysis-tools/,

https://bitbucket.
org/tberger/vm2bool

Table 3.1: Summary of tool capabilities.

https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/undertaker
https://github.com/ckaestne/undertaker
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://code.google.com/p/linux-variability-analysis-tools/
https://code.google.com/p/linux-variability-analysis-tools/
https://code.google.com/p/linux-variability-analysis-tools/
https://code.google.com/p/linux-variability-analysis-tools/
https://bitbucket.org/tberger/vm2bool
https://bitbucket.org/tberger/vm2bool

N S

w N o v

3.2 Handling Attribute option modules

In Section 2.1 on page 14, we explained that the third state of tristate config options
can be controlled by a config option with the name MODLUES. However, the current version
of KConfig facilitates renaming this config option. If the responsible config option is not
named as MODULES, it must be attributed with option modules to control the third state
of all tristate config options.

Figure 3.10 presents our KConfig model for testing the correct translation of the
option modules attribute. This example still contains a config option with the name
MODLUES, but the third state will be controlled by the attributed variable UNNAMED VAR.

config MODULES
bool "A simple variable"

config UNNAMED VAR
bool "Enable third state"
option modules

config TRISTATE VAR
tristate "A tristate wvariable'

Figure 3.10: KConfig example for testing the translation the option modules attribute.

3.2.1 Undertaker

dumpconf

HasPrompts MODULES 1
HasPrompts TRISTATE VAR 1
HasPrompts UNNAMED VAR 1

Item MODULES boolean
Item TRISTATE VAR tristate
Item UNNAMED VAR boolean

Figure 3.11: dumpconf’s translation of Figure 3.10 (error).

Figure 3.11 shows how dumpconf translates the example from Figure 3.10. The trans-
lation does not contain any information which of the variables is used to control the third
state of all tristate config options.

rsf2model

Line 3 in Figure 3.12 on the following page shows that the third state of TRISTATE_VAR
is dependant of MODULES. This is not correct, since UNNAMED VAR was used to control the
third state.

60

[

w

w

=)

oo

[N

T OO 000000000000 00000

CONFIG_MODULES

CONFIG_TRISTATE VAR " !CONFIG_TRISTATE VAR MODULE"
CONFIG_TRISTATE VAR, MODULE " !CONFIG_ TRISTATE VAR && CONFIG MODULES"
CONFIG_UNNAMED VAR

UNDERTAKER, SET SCHEMA_ VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.12: rsf2model’s translation of Figure 3.10 on page 60 (error in line 3).

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:

enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>

sym MODULES 1

sym TRISTATE_VAR 2

sym UNAME_RELFASE 5

sym UNNAMED VAR 1

sym __ MODULES MAGIC_INTERNAL VAR 1

var CONFIG MODULES 7

var CONFIG_TRISTATE VAR 8

var CONFIG TRISTATE VAR MODULE 9

var CONFIG_UNAME RELEASE 6

var CONFIG UNNAMED VAR 2

var CONFIG MODULES MAGIC_INTERNAL_VAR,___ 1

cnf 10 14

w
—_
e}

3 -20
-3 -120
420

514 =1 0
i|—4 —2 1 0

=530
-5 40
5 -3 40
5 0
—-10 8 0
-10 9 0
10 -8 -9 0
—-10 0

Figure 3.13: Satyr’s CNF translation of Figure 3.10 on the preceding page (error).

61

s W N =

w

Figure 3.13 shows that Satyr does not use the option modules attribute for creating
the CNF formula. There is no connection between TRISTATE_VAR and UNNAMED VAR. This
allows to set TRISTATE_VAR to module (TRISTATE_VAR_MODULE = true) while setting
UNNAMED_VAR to false.

3.2.2 KConfig Reader

RSF
Item MODULES boolean
Prompt MODULES "y
HasPrompts MODULES 1
Item UNNAMED VAR boolean
Prompt UNNAMED VAR 'y'

;| HasPrompts UNNAMED VAR 1
Item TRISTATE VAR tristate
Prompt TRISTATE_VAR 'y'
HasPrompts TRISTATE_VAR 1

Figure 3.14: KConfig Reader’s RSF translation of Figure 3.10 on page 60 (error).

Figure 3.14 shows that also KConfig Reader does not take the option modules at-
tribute into the RSF format.

Model

#item MODULES

#item TRISTATE VAR

(! def (TRISTATE VAR _MODULE) | def (MODULES))

(!def (TRISTATE _VAR) |! def (TRISTATE _VAR_MODULE))
#item UNNAMED VAR

Figure 3.15: KConfig Reader’s Model translation of Figure 3.10 on page 60 (error in line
3).

In Figure 3.15, TRISTATE_VAR_MODULE is dependant of MODULES. UNNAMED_ VAR is not
used inside the complete translated model.

62

o U oA W N =

CNF

¢ 1 TRISTATE_ VAR, MODULE
¢ 2 MODULES

¢ 3 TRISTATE VAR

p cnf 3 2

Figure 3.16: KConfig Reader’s CNF translation of Figure 3.10 on page 60 (error in line
5).

Figure 3.16 shows exactly the same formula as Figure 3.15 on the previous page, and
thus, the same error.

3.2.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML)’s Model and CNF translations of Figure 3.10 on page 60 are
identical to KConfig Reader’s translations (cf. Section 3.2.2) and therefore incorrect.

3.2.4 LVAT

In line 62 of Figure 3.17 on the next page, the third state of TRISTATE_VAR is allowed if
MODULES is set to true. There is no reference to UNNAMED VAR, thus the translation is not
correct.

63

0w N O U A W N =

T OO0 000000000000 00000000o0

WoWw W W W W N NN N NN NN NN R R e e e e e e
g R W N H O O 0N O Uk W N RO O NN O W NN RO

1$ X9

28 X5

3% Xl m

4% X5 m

5 UNNAMED VAR
6$ X7 m

7$ X2

8% X1

9 TRISTATE VAR
10$ X6

11 MODULES m
12 MODULES

13$ _X3

14$ X4 m

15 TRISTATE VAR m
16$ X7

17 UNNAMED VAR m
18 X3 m

198 X4

20$ X8 m

21$ X6 m

22% X9 m

23% X8

24% X2 m

cnf 24 45

|
o
o

-3 0

-8 12 11 0O

-3 12 11 0

-8 =3 —-12 11 0
—12 11 0O

12 =11 0

=70

-24 0

-7 =12 8 0

Figure 3.17: LVAT’s CNF translation of Figure 3.10 on page 60 (error in line 62).

o o o o o » o o ;. U o ot o ;o
=W NN =2 O v N s W NN

(=]
9

66
67
68
69
70

64

-7 -812 0
-7 -11 3 0
-7 -311 0
—-13 0
—18 0
-19 0
—-14 0
—-19 5 17 0O

4| =14 5 17 0
5/—19 =14 —5 17 0
5| =5 17 0

5 =17 0

-2 0

-4 0

-2 -519 0
-2 -1950
-2 —-17 14 0
-2 -14 17 0
—-10 0

5| —21 0

—16 0

-6 0

—-16 9 15 0

-6 9 15 0

—-16 =6 =9 15 0
9 -15 0

-9 15 12 0

-23 0

4 —20 0
5| —23 =9 16 0

—-23 =16 9 0
—-23 =156 0
-23 =6 15 0
-10
—-22 0

9

-~

3.3 Constraint Precedence

In Section 2.1 on page 14, we explained that select constraints have a higher precedence
than if or depends on constraints. That means that a config option can be selected
even if some of its depends on constraints are not fulfilled.

We used the model of Figure 3.18 to analyse whether such contrary constraints are
translated correctly. Figure 3.18 shows a model with 3 config options: VAR1, VAR2, and
CONST_FALSE. VAR2 is dependant from CONST_FALSE. However, if VAR1 is selected it will
also select VAR2 and set it to true. Thus, VAR1 and VAR2 are always equal. CONST_FALSE
will still not be part of the configuration file .config.

config CONST FALSE
def bool n

config VARI1
bool "Selecting variable"
select VAR2

config VAR2
bool "Selected variable"
depends on CONST FALSE

Figure 3.18: KConfig example for testing the translation the constraint precedence.

3.3.1 Undertaker

dumpconf
Default CONST_FALSE "n' "y
Depends VAR2 "CONST _FALSE"
HasPrompts CONST_FALSE 0
HasPrompts VARI1 1
HasPrompts VAR2 1

;| [tem CONST FALSE boolean
ItemSelects VAR1 "VAR2" "y
Item VARI1 boolean
Item VAR2 boolean

Figure 3.19: dumpconf’s translation of Figure 3.18 (correct).
Figure 3.19 shows exactly the same information as encoded in Figure 3.18. Thus, we
categorized the translation as correct.
rsf2model

Line 3 in Figure 3.20 on the next page means that if VAR2 was selected also CONST_FALSE
has to be selected. However, this is contradictory to the information of the KConfig
model from Figure 3.18.

65

-

N

w

w

-

CONFIG_CONST _FALSE ' (CONFIG_n)"
CONFIG_VARI1 "CONFIG_VAR2'
CONFIG_VAR2 "CONFIG_CONST FALSE"
UNDERTAKER, SET SCHEMA_VERSION 1.1
CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.20: rsf2model’s translation of Figure 3.18 (error in line 3).

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:

enum {S BOOLEAN=1, S TRISTATE=2, S_INT=3, S HEX=4, S_STRING=5, S_OTHER=6}
variable names:

¢ var <variablename> <cnfvar>

sym CONST FALSE 1

sym UNAME_RELFASE 5

sym VARI 1

sym VAR2 1

sym _ MODULES MAGIC INTERNAL VAR 1

var CONFIG_CONST FALSE 5

var CONFIG_UNAME_ RELEASE 2

var CONFIG VARI1 3

var CONFIG VAR2 4

var CONFIG MODULES MAGIC INTERNAL VAR, 1
cnf 8 13

T OO0 00000000000 0000

\
—
o

6 40
6 -5 0
-6 —450
7 —6 0

5|7 =3 0

-76 30
70
8§ 30
8§ -4 0
-8 -340
8 0
-5 0

Figure 3.21: Satyr’s CNF translation of Figure 3.10 on page 60 (correct).

The boolean formula of Figure 3.21 force the selection of VAR2 when VAR1 was selected.
Also CONST_FALSE is permanently set to false (cf. line 32). Thus, the translation is
correct.

66

oW [

=

3.3.2 KConfig Reader

RSF
Item CONST FALSE boolean
HasPrompts CONST FALSE 0
Default CONST _FALSE "n’" "y
Item VARI1 boolean
Prompt VARI1 "y

;| HasPrompts VARI1 1
ItemSelects VARI1 "VAR2" "y
Item VAR2 boolean
Depends VAR2 "CONST_ FALSE"
Prompt VAR2 "CONST _FALSE'
HasPrompts VAR2 1

Figure 3.22: KConfig Reader’s RSF translation of Figure 3.18 on the previous page
(correct).

Figure 3.22 shows the same information as Figure 3.19 on page 65. KConfig Reader

additionally calculates when the variable is visible to the user and can be configured by
him (Prompt). Also this extra information is correct.

Model

#item CONST FALSE

I def (CONST _FALSE)
#item VARI

#item VAR2

(def (CONST_FALSE) | def (
(def (CONST_FALSE) | def (
(!def(VAR1) | def (VAR2))
(!def(VAR1) | def (VAR2))

VARL) | ! def (VAR2))
VARL) |! def (VAR2))

Figure 3.23: KConfig Reader’s Model translation of Figure 3.18 on page 65 (correct).

The constraint in line 5 and 6 of Figure 3.23 will only be violated if CONST_FALSE and
VAR2 are set to false (depends on constraint fulfilled) and VAR1 is set to true (select
constraint violated). Thus, the precedence of the select and depends on constraints is
translated correctly.

67

CNF

1 CONST FALSE
2 VARI1

3 VAR2

4 MODULES
cnf 4 6
12 -30
12 -30
-230

-2 30

-10

-4 0

T o o0 oo

Figure 3.24: KConfig Reader’s CNF translation of Figure 3.18 on page 65 (correct).

Figure 3.24 contains the same constraints as Figure 3.23 on the previous page plus a
constraint denoting that the third state of tristate config options cannot be activated (cf.
line 11). Thus, this translation is correct.

3.3.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML)’s Model and CNF translations of Figure 3.18 on page 65 are
identical to KConfig Reader’s translations (cf. Section 3.3.2) and therefore correct.

3.3.4 LVAT

After removing all constant variables (e.g. line 30) and resolving related constraints (e.g.
line 32) from Figure 3.25 on the next page there are only constraints left, that require
that VAR1 and VAR2 are equal. Thus, this translation is correct.

68

0w N O U A W N =

WoWw W W W NN NN NN NN NN E R R e R e e
AR R R O © ® N9 O A W N FH O © 0 N O Ok W N = O ©

35
36
37
38
39
40
41
42
43
44

1$ X9

2% X5

38 X1 m
4% X10

5% Xi1

6$ X5 m
7$ X7 m
8% X2

9% Xi

10$ X11 m
11$ X6

12 VARI1

13 VARL m
14 CONST FALSE
15$ X10 m
16$ X3
17$ X4 m
18 VAR2
19% X7

20 VAR2 m
21% X3 m
22% X4
23% X8 m
24% X6 m
25% X9 m
268 X8

27 CONST FALSE m
288 X2 m
cnf 28 61

T OO0 0000000000000 0 0000060000000

|
©
o

-3 0
-9 14 27 0
-3 14 27 0

=9 =3 =14 27 0

—-14 27 0
14 =27 0

8 0

—-28 0

-8 -14 9 0
-8 -9 14 0
-8 =27 3 0
-8 =3 27 0
—-16 0

-21 0

5|—16 =14 9 0

Figure 3.25: LVAT’s CNF translation of Figure 3.18 on page 65 (correct).

S S, S B B
=2} [= w N

oo

(SIS, TG B, B S B
2 :

©

60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88

90

69

5| —16 =9 14 0

—-16 —-27 3 0
—-16 =3 27 0
-22 0

—-17 0

-2 0

-6 0

-2 12 13 0
—6 12 13 0
-2 -6 —-12 13 0
—12 13 0

12 -13 0
—-11 0

—-24 0

—11 -12 2 0
—11 -2 12 0
—11 =13 6 0
—-11 -6 13 0
—-19 0

51 —7 0

—-26 12 0

—12 26 0

-23 13 0

—-13 23 0

-26 10

-1 26 0

-23 25 0

-25 23 0

-1 18 20 0

—25 18 20 0O

-1 —-25 —18 20 O
—18 20
18 —-20
14 -27
12 -13
-4 —-14
-4 =27
14 27 4 0
-15 0

-4 -18 10
-4 -1 18 0
—4 =20 25 0
—4 =25 20 0
-5 0

—-10 0

OO OO OO

oW [

o

3.4 Missing Config Options

In Section 2.1, we explained that KConfig is also able to handle constraints containing
not existing config options. This is needed, since different architectures may reuse some
but not all KConfig files. In this case, the missing config variables will be treated as n
(false).

Figure 3.26 shows the example, which we used to analyse whether the tools are capable
of handling constraints containing such missing config options. VAR is dependant of
NOT_EXISTING. Since NOT_EXISTING does not exist in this model, VAR will be permanently
deselected.

config VAR
bool "A variable'
depends on NOT EXISTING

Figure 3.26: KConfig example for testing the translation of a dependency to a config
option, which is not part of the KConfig model.

3.4.1 Undertaker

dumpconf

Depends VAR "NOT EXISTING"
HasPrompts VAR 1

Item VAR boolean

Figure 3.27: dumpconf’s translation of Figure 3.26 on the next page (correct).

Figure 3.27 contains the same logical information as the related KConfig model. Thus,
we categorized this translation as correct.

rsf2model

CONFIG_VAR "CONFIG_NOT _ EXISTING"
UNDERTAKER, SET SCHEMA_VERSION 1.1
CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.28: rsf2model’s translation of Figure 3.27 (correct).

Figure 3.28 makes CONFIG_VAR dependant of CONFIG_NOT_EXISTING, which is also
not part of the translated model. Thus, we categorized this translation as correct.

70

S N

® N O o

-

Satyr

¢ File Format Version: 2.0

¢ Generated by satyr

¢ Type info:

¢ ¢ sym <symbolname> <typeid>

¢ with <typeid> being an integer out of:

¢ enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
¢ variable names:

¢ ¢ var <variablename> <cnfvar>

¢ sym UNAME_RELFASE 5

¢ sym VAR 1

¢ sym __ MODULES MAGIC INTERNAL VAR 1

¢ var CONFIG UNAME RELEASE 2

¢ var CONFIG VAR 3

¢ var CONFIG MODULES MAGIC INTERNAL VAR 1
p cnf 3 2

-10

-3 0

Figure 3.29: Satyr’s CNF translation of Figure 3.26 (correct).

Figure 3.29 on the next page does not translate NOT_EXISTING, but it creates a con-
straint for the permanent deselection of CONFIG_VAR in line 17. Thus, we categorized also
this translation as correct.

3.4.2 KConfig Reader

RSF

Item VAR boolean

Depends VAR "’NOT EXISTING "
Prompt VAR "’NOT EXISTING’"
HasPrompts VAR 1

Figure 3.30: KConfig Reader’s RSF translation of Figure 3.26 (correct).

Figure 3.30 contains the same logical information as the related KConfig model. Thus,
we categorized this translation as correct.

Model

#item VAR
I'def (VAR)
I'def (VAR)

Figure 3.31: KConfig Reader’s Model translation of Figure 3.26 (correct).

Figure 3.31 shows how KConfig Reader translates the model from Figure 3.26 on
the previous page. The constraint in lines 2 and 3 permanently deselects VAR, which is
correct.

71

CNF

¢ 1 VAR

¢ 2 MODULES
p cnf 2 3
-10

-10

-2 0

Figure 3.32: KConfig Reader’s CNF translation of Figure 3.26 on page 70 (correct).

Figure 3.32 shows how KConfig Reader translates the KConfig model of Figure 3.26
on page 70 into CNF formula. The constraint in lines 4 and 5 permanently deselects VAR,
which is correct.

3.4.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML)’s Model and CNF translations of Figure 3.26 are identical to
KConfig Reader’s translations (cf. Section 3.4.2 on the previous page) and therefore cor-
rect.

3.4.4 LVAT

6]—4 -1 =9 5 0
c 1$ XIm 1711=9 5 0
¢ 2 NOT EXISTING 159 =5 0
c 3% X2 192 =8 0
c 4% X1 200—2 0
¢ 5 VAR m 21—3 =2 0
C 6$ 7X3 2[—3 =8 0
C 7$ 7X37H1 2312 8 3 0
¢ 8 NOT EXISTING m ou| —10 0
¢ 9 VAR 251—3 =9 4 0
C 10$ 7X27H’1 %6 —3 —4 9 0
p cnf 10 19 271—3 =5 1 0
—4 0 28/ —3 —1 5 0
-10 20/ —6 0
—4 950 30l —7 0
-1 950

Figure 3.33: LVAT’s CNF translation of Figure 3.26 on page 70 (correct).
In Figure 3.33 NOT_EXISTING is correctly set to be permanently false in line 20. VAR

depends on NOT_EXISTING via X2 and thus can only be false. Thus, this translation is
correct.

72

3.5 Selection of Nested Config Options

In Section 2.4.1, we showed that it is also possible to model a select constraint to a
nested config option of a choice. However, such a select constraint is inoperable. We

used the model from Figure 2.15 on page 28 for our analysis.

3.5.1 Undertaker

dumpconf

Choice CHOICE_ 1 required boolean
2| Choiceltem BOOL VAL1 CHOICE 1
3| Choiceltem BOOL VAIL2 CHOICE 1
4| Depends BOOL_VALI1 "CHOICE_1"
5| Depends BOOL_ VAIL2 "CHOICE 1"

s HasPrompts BOOL_VALI1 1

HasPrompts BOOL_VAL2 1

HasPrompts BOOL_VAR 1
ol Item BOOL_VAL1 boolean

Item BOOL_VAIL2 boolean

Item BOOL VAR boolean
2| [temSelects BOOL_VAR "BOOL_ VAL2" "y

Figure 3.34: dumpconf’s translation of Figure 2.15 (problematic).

Figure 3.34 shows that the select constraint was translated (cf. line 12). However,
the constraint was not be rewritten. Downstream analysis tools must be aware of the
KConfig behaviour described in Section 2.4.1, otherwise the interpretation of such RSF
files will result in an inconsistent model. Thus, this strict translation of the unused
select constraint is not wrong per se, but it could lead to translation errors at the next
analysis step. Hence, we categorized this translation as problematic.

rsf2model

oW N =

© W N o W

CONFIG_BOOL_VALL "CONFIG_CHOICE 1"

CONFIG_BOOL_VAL2 "CONFIG_ CHOICE 1"

CONFIG_BOOL_VAR "CONFIG_BOOL_VAIL2"

CONFIG_CHOICE_1 " ((CONFIG_BOOL_VALI && !CONFIG BOOL VAL2) ||
(!CONFIG_BOOL_VALIL && CONFIG_BOOL_VAL2))"

UNDERTAKER, SET' ALWAYS ON "CONFIG_CHOICE 1"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.35: rsf2model’s translation of Figure 3.34 (error in line 3).

73

o 0 ~ [=] wt - w [—

o
=T 0O 00 0000000000000 00000

[
S

15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Figure 3.35 on the preceding page shows that the select constraint was translated
into boolean formula (cf. line 3). The selection of BOOL_VAR causes the automatic selection
of BOOL_VAL2, which is not correct.

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:
enum {S _BOOLEAN=1, S TRISTATE=2, S_INT=3, S HEX=4, S_STRING=5, S_OTHER=6}
variable names:

¢ var <variablename> <cnfvar>
meta_value ALWAYS ON CONFIG CHOICE 0
sym BOOL_VALI 1

sym BOOL_VAIL2 1

sym BOOL_VAR 1

sym CHOICE 0 1

sym UNAME RELEASE 5

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG_BOOL_VAILL 2

var CONFIG BOOL VAI2 3

var CONFIG BOOL VAR 10

var CONFIG CHOICE 0 1

var CONFIG _UNAME RELEASE 9

var CONFIG MODULES MAGIC INTERNAL VAR 8
cnf 12 23

0

-4 20

-4 -3 0

4 =230

-5 =20

-5 30

52 =30

6 —4 0

6 -5 0

—6 450

710

7 -6 0

-7 -160

70

-8 0

11 3 0

11 -1 0

—-11 -3 10

11 0

12 2 0

12 -1 0

—-12 -2 1 0

12 0

Figure 3.36: Satyr’s CNF translation of Figure 2.15 on page 28 (correct).

74

"

V]

ot

Figure 3.36 on the preceding page shows that BOOL_VAR (No. 10) is not included in
one of the constraints. Consequently the select constraint between the top level config
option BOOL_VAR and the nested config option of the choice BOOL_VAL2 was not translated.
Thus, the translation of select constraints to config options nested in a choice is correct.

3.5.2 KConfig Reader

RSF
Item BOOL_ VAR boolean
Prompt BOOL_VAR "y
HasPrompts BOOL_VAR 1
ItemSelects BOOL_VAR "BOOL_ VAL2" "y
#startchoice
;| Choice CHOICE_1 required boolean
Prompt CHOICE 1 "y
HasPrompts CHOICE_ 1 1
#choice value
Choiceltem BOOL VAL1 CHOICE 1
Item BOOL VAL1 boolean
Depends BOOL VAL1 "CHOICE 1"
Prompt BOOL VAL1 "CHOICE 1"
HasPrompts BOOL_VAL1L 1
#choice value
;| Choiceltem BOOL VAIL2 CHOICE 1
Item BOOL_VAIL2 boolean
Depends BOOL_VAI2 "CHOICE_1"
Prompt BOOL_ VAIL2 "CHOICE 1"
| HasPrompts BOOL_VAI2 1
1|#choice value
s|#endchoice

Figure 3.37: KConfig Reader’s RSF translation of Figure 2.15 on page 28 (problematic).

Figure 3.37 shows that KConfig Reader is handling the select constraint in the
same way as dumpconf does (cf. line 4). Thus, also this translation is categorized as
problematic.

Model

Lines 3 and 4 of Figure 3.38 on the following page show that the selection of BOOL_VAR
implicates the selection of BOOL_VAL2. Thus, the select constraint was translated in-
correctly.

75

#item BOOL_VALI

#item BOOL_VAL2

(! def (BOOL_VAR) | def (BOOL_VAL2))

(!def (BOOL_VAR) | def (BOOL_VAL2))

#item BOOL_ VAR

#item CHOICE 1

def (CHOICE 1)

#choice CHOICE 1

(def (BOOL_VAL2) | def (BOOL_VALL) |! def (CHOICE_1))
(!def (BOOL_VAL2) | def (CHOICE_1))

(!def (BOOL_VAL1) | def (CHOICE_1))

(!def (BOOL_VAL2) |! def (BOOL_VALL))

Figure 3.38: KConfig Reader’s Model translation of Figure 2.15 on page 28 (error in line
3 and 4).

CNF

¢ 1 BOOL_VAR
¢ 3 CHOICE 1
¢ 2 BOOL VAI2
¢ 4 BOOL_VALIL
¢ 5 MODULES
p cnf 5 8

Figure 3.39: KConfig Reader’s CNF translation of Figure 2.15 on page 28 (error in line
7 and 8).

Lines 7 and 8 of Figure 3.39 show that the selection of BOOL_VAR implicates the
selection of BOOL_VAL2. Thus, the select constraint was translated incorrectly.

3.5.3 KConfig Reader (XML)
Model

In Figure 3.40 on the following page, line 7 contains the same incorrect constraint as
KConfig Reader’s Model translation (cf. Section 3.5.2 on the previous page). Thus, this
translation is also incorrect.

76

=

0 N o U A W N e

= R R ok e
B W N = O ©

15

#item BOOL_VALI

(!def (BOOL_VAL1) | def (CHOICE_1))
(!def (BOOL_VALL) | def (CHOICE_1))
#item BOOL_VAL2

(def (CHOICE_1) | def (BOOL_VAR) |! def (BOOL_VAL2))
(def (CHOICE_1) | def (BOOL_VAR) |! def (BOOL_VAL2))
(!def (BOOL_VAR) | def (BOOL_VAL2))
(! def (BOOL_VAR) | def (BOOL_VAL2))
#item BOOL_VAR

#item CHOICE_1

def (CHOICE 1)

#choice CHOICE_1

(def (BOOL_VAL2) | def (BOOL_VALL) |
(! def (BOOL_VAL2) | def (CHOICE_1))
(!def (BOOL_VALL) | def (CHOICE_1))
(

) 7
| def (BOOL_VAL2) | ! def (BOOL_VALL))

I def (CHOICE 1))

Figure 3.40: KConfig Reader (XML)’s Model translation of Figure 2.15 on page 28 (error
in line 7).

CNF

In Figure 3.41, line 7 contains the same incorrect constraint as KConfig Reader’s CNF
translation (cf. Section 3.5.2). Thus, this translation is also incorrect.

¢ 2 CHOICE 1
¢ 3 BOOL_VAR
¢ 1 BOOL_VALIL
¢ 4 BOOL_VAI2
¢ 5 MODULES
p cnf 5 12

Figure 3.41: KConfig Reader (XML)’s CNF translation of Figure 2.15 on page 28 (error
in line 7).

7

3.5.4 LVAT

In Figure 3.42, BOOL_VAR selects BOOL_VAL2 via _X7 and _X8. Thus, the translation is
incorrect, as the select constraint is not ignored.

121 —19 0
ile 1$ X9 431 —20 0
2| ¢ 2 BOOL VAR 14| —16 0
slec 3% X5 451 —20 21 18 0
alc 4% X1 m 16| —16 21 18 0
51 C 5$ 7X10 47 —20 —]_6 —21].8 0
6/c 6 BOOLi\/YARim 48| —21 18 0
71c 78 X5 m 1921 =18 0
slc 8% X7 m 500 —3 0
9]¢ 9 BOOL_VAL2 m 511—=7 0
ojc 108 X2 52| —3 =21 20 0O
1je 11% _ X1 530 —3 —20 21 0O
12lc 128 X6 54/ —3 —18 16 0
13)c 13$ X10 m 55—3 —16 18 0
14| ¢ 14 BOOL_ VAIL2 56| —12 0
15)c 158 X3 571 =23 0
16| C 16$ 7X47II1 s8] —17 2 0
17le 17$ X7 s50l—2 17 0
18 ¢ 18 BOOL VALL m 60| —8 6 0
lc 198 X3 m 61|—6 8 0
200c 208 X4 62| —17 25 0
21/ ¢ 21 BOOL_VALIL 63l —25 17 0
2(c 22% X8 m 64| —8 22 0
23/c¢ 23% X6 m 65| —22 8 0
24| C 24$ 7X97H1 66| —25 14 9 0
25/c 25% X8 67| —22 14 9 0
26/c 268 X2 m 68| =25 =22 —-14 9 0
27|p cnf 26 54 60| —14 9 0
28| —11 0 70|14 =9 0
201 —4 0 7112 —6 0
300—11 2 6 0 72[—1 0
311—4 2 6 0 731 —24 0
32/ —11 —4 =2 6 0 74)—1 =14 25 0
330—2 6 0 7s—1 —25 14 0
34/2 —6 0 76l—1 —9 22 0
35/ —10 0 77l—1 =22 9 0
36| —26 0 75| —5 0
371—10 =2 11 0 79 —13 0
38 —10 =11 2 0 s0|21 14 0
39 —10 —6 4 0 s1|—21 =14 0
20[—10 —4 6 0
21| —15 0

Figure 3.42: LVAT’s CNF translation of Figure 2.15 on page 28 (error).

78

3.6 Default Value m for Booleans

In Section 2.4.2, we demonstrated how config options of type bool or tristate handle
the default value m. In this section, we show how the different tools cope with this default
value if the third state is enabled. We modified the example from Figure 2.18 on page 30
and tested the translation with the example of Figure 3.43. The modified example does
not allow any user input to fore the tools to create more meaningful outputs.

config MODULES
def bool y

option modules

config VARI1
def bool m

config VAR2
def tristate m

Figure 3.43: Modification of Figure 2.18 (no user input is possible).

The model of Figure 3.43 does not allow the user to perform any changes. Although
the third state was permanently activated (cf. lines 2 and 3), VAR1 may not be selected
to m as it is of type bool. The resulting .config file will always contain the selection of
MODULES and VAR1 to y. VAR2 will always be set to m.

3.6.1 Undertaker

dumpconf

Default MODULES "y "y
Default VARI1 "m" "y
Default VAR2 "m" "y
HasPrompts MODULES 0

HasPrompts VARI1 0

HasPrompts VAR2 0

Item MODULES boolean

Item VAR1 boolean

Item VAR2 tristate

Figure 3.44: dumpconf’s translation of Figure 3.43 (problematic).

Figure 3.44 shows that dumpconf does translate the default statements as well as
the types directly 1:1 into the RSF format. Thus, the downstream analysis tool have to
handle the default statements correctly.

Note: The translated RSF file does not contain the complete information to handle
the default values correctly, because of the absence of the option modules information
inside the translated RSF file. However, this was already analysed in Section 3.2.

79

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39

40

42
43
44

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:
enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>
meta_value ALWAYS ON CONFIG VARl CONFIG MODULES
sym MODULES 1

sym UNAME RELFASE 5

sym VARI 1

sym VAR2 2

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG MODULES 2

var CONFIG UNAME RELEASE 6

var CONFIG _VAR1 7

var CONFIG VAR2 8

var CONFIG_VAR2 MODULE 9

var CONFIG MODULES MAGIC INTERNAL VAR 1
cnf 12 23

10

-2 0

-3 -120

420

4 -10

-4 -2 10

-5 30

540

5 -3 —-40

50

70

10 =8 0

10 =9 0

—-10 8 9 0

—-11 -8 0

—11 10 O

11 8 —=10 0

11 0

—12 8 0

-12 90

12 -8 -9 0

-12 0

20

W WD OO0 6 0 06 0 0 00 0 0 00 0 006 0 00

Figure 3.45: Satyr’s CNF translation of Figure 3.43 on the previous page (correct).

Figure 3.45 forces the permanent selection of MODULES, VAR1, and VAR2_MODULE.
Therefore, the translation is correct.

80

rsf2model

CONFIG_MODULES " (_ FREE
CONFIG_VAR1 "(__FREE 0)"

CONFIG_VAR2 " !CONFIG VAR2 MODULE"

CONFIG_VAR2 MODULE "!CONFIG VAR2 && CONFIG MODULES'"
UNDERTAKER SET ALWAYS ON "CONFIG MODULES"

1)

;/UNDERTAKER, SET SCHEMA VERSION 1.1

CONFIG_X86 ""
CONFIG n
CONFIG_y
CONFIG m

Figure 3.46: rsf2model’s translation of Figure 3.44 on page 79 (error in line 5).

In Figure 3.46, line 5 should also list VAR1 as permanently selected (always on). Un-
dertaker will list this variable as permanently selected, if the default value of VAR1 in
Figure 3.43 on page 79 is changed to y. But KConfig will handle both default values
exactly in the same manner. We categorized this translation as incorrect, because Un-
dertaker treats both default values differently.

3.6.2 KConfig Reader

RSF
Item MODULES boolean
HasPrompts MODULES 0
Default MODULES "yt "y
Item VAR1 boolean
HasPrompts VARI1 0

sl Default VARI1 "m’" "y
Item VAR2 tristate
HasPrompts VAR2 0
Default VAR2 "m’" "y

Figure 3.47: KConfig Reader’s RSF translation of Figure 3.43 on page 79 (proplematic).

Figure 3.47 contains the same information as Figure 3.44 on page 79. Thus, also this

translation is categorized as problematic.

81

oW N e

© o N o

IS - NS O SO R =

Model

#item MODULES
def (MODULES)
#item VARI
def (VAR1)

s|#item VAR2

(! def (VAR2. MODULE) | def (MODULES))
(! def (VAR2) |! def (VAR2. MODULE))
(def (VAR2) | def (VAR2 MODULE))

(! def (MODULES) | ! def (VAR2))

Figure 3.48: KConfig Reader’s Model translation of Figure 3.43 on page 79 (correct).

The translated model shown in Figure 3.48 defines MODULES and VAR1 as permanently
selected. The constrains of lines 7 and 8 force that VAR2 is either set to m or y, which is
the correct translation of a default m statement of a tristate config option. Finally, line
9 forces VAR2 set to m, if the third state is enabled. Thus, this translation is correct.

CNF

¢ 1 VAR2 MODULE
¢ 2 MODULES

¢ 3 VAR2

¢ 4 VARI

p cnf 4 6

Figure 3.49: KConfig Reader’s CNF translation of Figure 3.43 on page 79 (correct).

Figure 3.49 contains the same constraines as Figure 3.48. Thus, also this translation
is correct.

3.6.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML)’s Model and CNF translations of Figure 3.43 on page 79 are
identical to KConfig Reader’s translations (cf. Section 3.6.2) and therefore correct.

3.6.4 LVAT

After removing all constant variables (e.g. line 32) and resolving related constraints (e.g.
line 34) from Figure 3.50 on the next page there are constraints left that permanently set

82

15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43
44

VAR1 to true and VAR1 _MODULE to false. This is an invalid state for Boolean variables

(cf. Section 3.1.3 on page 55). Thus, the translation is incorrect.

1$ X9

2% X5

38 X12 m
4% X1 m
5% X10

6% Xi11

7$ X5 m
8% X7 m
9% X2

108 X1
11$ X11 m
12% X6

13 VARI

14 MODULES m
15 VARL m
16 MODULES
17$ X10 m
18% X3
19 X4 m
20 VAR2
21$ X7

22 VAR2 m
23% X3 m
24% X4
25 X8 m
268 X6 m
27% X12
28% _X9 m
29% X8
308 X2 m
cnf 30 59

T OO0 0000000000000 0000006000000 000

|
—
o
o

-4 0

—-10 16 14 0
—4 16 14 0
-10 -4 —-16 14 0
—16 14 0

16 —14 0

90

-30 0

-9 16 0

-9 14 0

—-18 0

-23 0

—-18 —16 10 0

69

86
87
88
89

90

Figure 3.50: LVAT’s CNF translation

83

5| —18 =10 16 0

—18 —-14 4 0
—18 —4 14 0
—-24 0

—-19 0

-2 0

-7 0

-2 13 15 0

-7 13 15 0

-2 -7 -13 15 0

5| —13 15 0

13 =15 0

12 0

—-26 0

—-12 13 0

—-12 —-15 7
—-12 -7 15

o o

31—21 0

-8 0
—-21 —-13 2
—-21 -2 13
—21 —-15 7
—-21 -7 15
-29 0
-25 0
-10

o O oo

2 —28 0
3—1 20 22 0

—28 20 22 0

5|—1 =28 =20 22 0

20 =22 0
—20 22 16 O
5 0

ol =17 0

-5 20 0
-5 —22 28 0
-5 —28 22 0

3]—6 0

—11 0
-6 =20 10
-6 -1 20 0
—6 —22 28 0
—6 —28 22 0
27 0
-3 0

of Figure 3.43 on page 79 (error).

A W N =

w

N S

w N o v

3.7 Default Value m for Tristates

In Section 2.4.2, we demonstrated how config options of type bool or tristate handle
the default value m. In this section, we analyse how the tools handle default values of
tristate config options if the third state is disabled.

config MODULES
def bool n
option modules

config VAR
def tristate m

Figure 3.51: Modification of Figure 2.18 on page 30: The tristate config option will be
permanently selected (no user input possible).

3.7.1 Undertaker

dumpconf

Default MODULES "n' "y
Default VAR "m" "y
HasPrompts MODULES 0

HasPrompts VAR 0

Item MODULES boolean

Item VAR tristate

Figure 3.52: dumpconf’s translation of Figure 3.51 (correct).

The translated model of Figure 3.52 contains exactly the same information as the
origin model from Figure 3.51. Downstream analysis tools need to be aware that the
third state of tristate config options is dependant of the MODULES variable, but this
should not be problematic since this is a fundamental concept of KConfig. Therefore, we
categorized this translation as correct.

rsf2model

CONFIG_MODULES " (CONFIG_n) "

CONFIG_VAR " !CONFIG_VAR_MODULE'

CONFIG_VAR MODULE " !CONFIG_ VAR && CONFIG_MODULES"
UNDERTAKER,_SET SCHEMA_ VERSION 1.1

CONFIG_X86 "'

CONFIG n

CONFIG_y

CONFIG m

Figure 3.53: rsf2model’s translation of Figure 3.52 (correct).

84

(S L SV R R

LW WD oo oo o o060 0060000600 00

25
26
27
28
29
30
31
32

34
35
36
37
38
39

In Figure 3.53 on the previous page, CONFIG_VAR (VAR = y) was made dependant of
the deselection of CONFIG_MODULES (cf. line 2). We categorized this translation as correct,
since CONFIG_MODULES is also permanently deselected (cf. line 1).

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:
enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>

sym MODULES 1

sym UNAME RELFASE 5

sym VAR 2

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG_MODULES 2

var CONFIG UNAME RELEASE 6

var CONFIG VAR 7

var CONFIG VAR MODULE 8

var CONFIG MODULES MAGIC INTERNAL VAR 1
cnf 11 22

10

-2 0

-3 -120

420

4 -1 0

4—4 =21 0

-5 30
540
5 -3 40
5 0
-2 0
9 =70
9 80
-9 780
-10 =7 0
-10 9 0
107 -90
10 0
-11 7 0
—-11 8 0
11 -7 -8 0
—-11 0

Figure 3.54: Satyr’s CNF translation of Figure 3.51 (error in lines 33 and 36).

Line 36 of Figure 3.54 specifies that variable no. 10 should be permanently set to
true. Variable no. 10 is used to model some non CNF constraints via implications. In
line 33, variable no. 10 is used to permanently deselect CONFIG_VAR (VAR = n), which is
incorrect.

85

oW N —

w

o

oW [

ot

o

~

SIS TS R R

[|

3.7.2 KConfig Reader

RSF

Item MODULES boolean
HasPrompts MODULES 0

Default MODULES "p’" "y
Item VAR tristate
HasPrompts VAR 0

Default VAR "'m’" "y

Figure 3.55: KConfig Reader’s RSF translation of Figure 3.51 on page 84 (correct).

Figure 3.55 contains the same information as Figure 3.52 on page 84. Thus, also this
translation is categorized as correct.

Model

#item MODULES

' def (MODULES)

#item VAR

(! def (VAR_MODULE) | def (MODULES))
(!def(VAR) |! def (VAR _MODULE))
(def(VAR) | def (VAR_MODULE))

(!def (MODULES) |! def (VAR))

Figure 3.56: KConfig Reader’s Model translation of Figure 3.51 on page 84 (correct).

Lines 5 and 6 of Figure 3.56 encode VAR XOR VAR_MODULE. Line 4 specifies that if
VAR_MODULE was selected that MODLUES has also to be selected, but this variable is per-
manently deselected. As a consequence, VAR_MODULE must also be deselected and VAR
must be permanently selected. Thus, the translation is correct.

CNF

¢ 1 VAR MODULE
¢ 2 MODULES

¢ 3 VAR
p

Figure 3.57: KConfig Reader’s CNF translation of Figure 3.51 on page 84 (correct).

Figure 3.57 contains the same constrains as Figure 3.56. Thus, also this translation
is correct.

86

w N o ot R W N e

NN N R R R e R R R el e e
N = O © 0 N O U A W N = O ©

3.7.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML)’s Model and CNF translations of Figure 3.51 on page 84 are
identical to KConfig Reader’s translations (cf. Section 3.7.2 on the preceding page) and

therefore correct.

3.7.4 LVAT
- 32|—5 —6 10 0

¢ 1% X5 33]—5 =9 2 0
c 28 Xl m 34/ =5 =2 9 0
¢c 3% X5 m 35/ —11 0
¢ 4% X7 m 36| —14 0
c 5% X2 371—11 =10 6 O
c 6% X1 3] —11 —6 10 0
c 7% _X6 39 —11 =9 2 0
c 8 VARJH 20|—-11 =2 9 0
¢ 9 MODULES m 1] =15 0
¢ 10 MODULES 42 —12 0
c 11$ X3 430—1 0
¢ 12$ X4 m 14| —=3 0
c 13%$ X7 450—1 18 8 0
c 143 X3 m 16|—3 18 8 0
C 15$ 7X4 471—1 =3 =18 8 0
C 16$ 7X87m 48] 18 =8 0
c 179% 7X67Hl 19| —18 8 10 0
¢ 18 VAR 5007 0
c 19% X8 51| —17 0
c 208 X2 m 52| —7 18 0
p cnf 20 41 53)—=7 =8 3 0
—6 0 54 —7 =3 8 0
-2 0 55| —13 0
—6 10 9 0 56| —4 0

51—2 10 9 0 s571—13 =18 1 0
-6 -2 —10 9 0 55 —13 —1 18 0
—-10 9 0 50l —13 =8 3 0
10 =9 0 60l —13 =3 8 0
50 61| —19 0
—-20 0 62| —16 0
-5 —10 6 0O

Figure 3.58: LVAT’s CNF translation of Figure 3.51 on page 84 (error).
After removing all constant variables (e.g. line 22) and resolving related constraints

(e.g. line 24) from Figure 3.58, there are constraints left that permanently set VAR to the
Tristate state, regardless of the MODULES variable. Thus, this translation is incorrect.

87

10

11

12

3.8 Tristate Choice with Boolean Config Options

In Section 2.4.3, we discussed how KConfig handles choices with config options of a
different type than the surrounding choice. In this section, we analyse how the tools
handle the combination of tristate choices with nested config options of type bool. In
Section 3.9 we analyse the contrary combination.

Figure 3.59 shows the KConfig model, which we used for the analysis of this section.
BOOL_VAL may only be selected if the surrounding choice was set to y (permanently
selected). In this case, also TRISTATE_VAL may only be selected as y and only if BOOL_VAL
was not selected. If the choice was selected as m, TRISTATE_VAL maybe selected as m and
BOOL_VAL must not be selected.

config MODULES
def bool y
option modules

choice
tristate "Tristate Choice"

config TRISTATE VAL
tristate "Tristate Value'
config BOOL VAL
bool "Boolean Value'
endchoice

Figure 3.59: KConfig example for testing the translation of a tristate choice with nested
boolean config options.

3.8.1 Undertaker

dumpconf

Choice CHOICE_ 1 required tristate
Choiceltem BOOL VAL CHOICE 1

Choiceltem TRISTATE VAL CHOICE 1

Default MODULES "y "y
Depends BOOL_ VAL "<choice>=y && CHOICE_ 1"
Depends TRISTATE VAL "CHOICE 1"

HasPrompts BOOL_ VAL 1

HasPrompts MODULES 0

HasPrompts TRISTATE VAL 1

Item BOOL VAL boolean

Item MODULES boolean

Item TRISTATE VAL tristate

Figure 3.60: dumpconf’s translation of Figure 3.59 (correct).

88

-

¥

w

ot

10

11

12

Figure 3.60 shows how dumpconf translates the KConfig model from 3.59 on the
previous page into RSF format. In Lines 2 and 3, BOOL_VAL and TRISTATE VAL are
specified as nested elements of the choice. Lines 5 and 6 model the situations when the
nested elements can be selected. While TRISTATE_VAL is only dependant from the choice,
BOOL_VAL was explicitly made dependant of the situation that the choice is permanently
selected (<choice>=y). Thus, the translation is correct.

rsf2model

CONFIG._BOOL VAL "CONFIG.CHOICE 1"

CONFIG._CHOICE 1 "!CONFIG CHOICE 1 MODULE && CONFIG CHOICE 1 META &&
((CONFIG._BOOL_VAL && !CONFIG._TRISTATE VAL) || (!CONFIG_BOOL VAL
&& CONFIG_TRISTATE VAL))"

CONFIG._CHOICE 1 META ' ((CHOICE 1 && !CHOICE 1 MODULE) || (!CHOICE 1
&& CHOICE 1 MODULE))"

CONFIG._CHOICE 1_MODULE ' |CONFIG. CHOICE 1 && CONFIG_MODULES &&
CONFIG._CHOICE 1 META && !CONFIG BOOL VAL && !CONFIG TRISTATE VAL'

CONFIG_MODULES ' (_ FREE 0)"

;| CONFIG_TRISTATE VAL "!CONFIG TRISTATE VAL MODULE && CONFIG CHOICE 1"

CONFIG_TRISTATE VAL MODULE "!CONFIG_ TRISTATE VAL && CONFIG MODULES
&& CONFIG_CHOICE 1 _MODULE"

UNDERTAKER, SET ALWAYS ON "CONFIG CHOICE 1 META" "CONFIG MODULES"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG_m

Figure 3.61: rsf2model’s translation of Figure 3.60 on the preceding page (correct).

Figure 3.61 shows how rsf2model translates the KConfig model from 3.59 on the
previous page into Model format. Lines 2 and 4 list the possible combinations of BOOL_VAL
and TRISTATE_VAL if the choice was set to y or m respectively. Lines 3 and 8 specify that
the choice has to be selected either as y or as m, which is also correct since the choice does
not contain the optional attribute to allow the permanently deselection (cf. Section 2.1
on page 14). Thus, this translation is correct.

Satyr

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:

enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>

meta_value ALWAYS ON CONFIG MODULES

sym BOOL_VAL 1

O 0O o0 6 o0 o060 o6 o0 o6 o0

89

sym CHOICE 0 2

sym MODULES 1

sym TRISTATE VAL 2

sym UNAME RELFASE 5

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG BOOL VAL 6

var CONFIG CHOICE 0 1

var CONFIG CHOICE 0 MODULE 2

var CONFIG MODULES 16

var CONFIG TRISTATE VAL 5

var CONFIG TRISTATE VAL MODULE 11

var CONFIG UNAME RELEASE 20

var CONFIG MODULES MAGIC INTERNAL VAR 15
cnf 29 75

11

13
14

16

17

19
20
21
22
23
24
25

WWT OO0 6 0 o0 o o6 o0 006 0 00

26

|
NI
N OO

27

w
o

28
0
0
-2 0

29

| \
IENETEN w
N — —

30

[N
|
[y

31
32 —4 0

33/ =7 5 0

34| =7 —6 0

3517 =5 6 0

36| —8 =5 0
371—8 6 0

38/|8 b —6 0

39019 =7 0

209 =8 0

11[—9 7 8 0
4210 1 0

43110 =9 0

14/ =10 =1 9 0
45010 0

46/12 1 0

47012 11 0

48| —12 —1 —11 0
10(12 0
50013 =1 0
510113 =2 0
52| —13 1 2
53113 0

54| —14 1 0
55| —14 2 0
56/ 14 —1 =2 0
571 —14 0

55/ 17 15 0

59| 17 —16 0

60| —17 —15 16 0
61118 16 0

62| 18 —15 0

63| —18 —16 15 0
6a| —19 17 0

65| —19 18 0

0

90

66

79

90

93

94

96

19 -17 =18 0

19 0
21 5 0
21 -1 0
-21 =510
21 0
22 11 0
22 -1 0
-22 -11 10
23 =22 0
23 -2 0
71—23 22 2 0
23 0
-24 50
-24 11 0
24 =5 —-11 0
-24 0
3116 0
25 6 0
5026 =1 0
5| —25 =6 1 0
71—26 2 0
-26 1 0
26 -2 -1 0
27 -1 0
27 =2 0
27120
—-28 26 0
—-28 27 0
5028 =26 =27 0O
29 =25 0
29 =28 0
—-29 25 28 0
29 0

Figure 3.62: Satyr’s CNF translation of Figure 3.59 on page 88 (correct).

The model in Figure 3.62 facilitates the selection of either CONFIG_CHOICE O
or CONFIG_CHOICE O MODULE. If CONFIG_CHOICE O was selected, exactly one
of CONFIG_TRISTATE VAL or CONFIG_BOOL VAL must also be selected. CON-
FIG_TRISTATE VAL MODULE may only be selected if CONFIG_CHOICE_O_MODULE is also
selected. In this case, CONFIG_TRISTATE VAL and CONFIG_BOOL VAL must not be se-
lected. It is also possible to select CONFIG_CHOICE_O_MODULE without selecting CON-
FIG_TRISTATE_VAL_MODULE. Thus, the behaviour of the choice from Figure 3.59 on
page 88 was translated correctly.

91

-

V]

ot

o

®

©

ot

[

-

N

3.8.2 KConfig Reader

o|#choice value
1|1#endchoice

RSF
Item MODULES boolean
HasPrompts MODULES 0
Default MODULES "yt "y
#startchoice
Choice CHOICE_ 1 required tristate
;| Prompt CHOICE_1 !
HasPrompts CHOICE 1 1
#choice value
Choiceltem TRISTATE VAL CHOICE 1
Item TRISTATE VAL tristate
Depends TRISTATE VAL "CHOICE 1"
Prompt TRISTATE VAL "CHOICE 1"
HasPrompts TRISTATE VAL 1
#choice value
Choiceltem BOOL VAL CHOICE 1
;| [tem BOOL VAL boolean
Depends BOOL_VAL "<choice >="y’ && CHOICE 1"
Prompt BOOL_ VAL "<choice>="y’ && CHOICE 1"
HasPrompts BOOL_ VAL 1

Figure 3.63: KConfig Reader’s RSF translation of Figure 3.59 on page 88 (correct).

Figure 3.63 contains the same information as Figure 3.60 plus some additional informa-

tion under which conditions prompts are displayed. Thus, we categorized this translation
also as correct.

Model & CNF

(run—main—6) java.lang.Exception: error parsing <choice>="y’ &&
‘77 expected but ‘<’ found
error parsing <choice>="y’ && CHOICE 1 ‘’’

[error]
CHOICE_ 1
java.lang.Exception:
but ‘<’ found
at de.fosd.typechef.kconfig. RSFReader§ConstraintParser. parseExpr (
RSFReader.scala:157)

expected

Figure 3.64: Stacktrace while trying to translate Figure 3.63 into CNF and Model (error).

Figure 3.64 shows that KConfig Reader was not able to parse the <choice>=’y’ part
from the constrains in line 17 and 18. Thus, KConfig Reader was not able to create
correct Model or CNF representations from the KConfig model shown in Figure 3.59 on
page 88.

92

N

w

S

17

19

2

21

22

23

24

26

27

28

3.8.3 KConfig Reader (XML)
Model

In Figure 3.65, lines 2 and 18 ensure that BOOL_VAL and TRISTATE VAL are only selectable
if CHOICE_1 is permanently selected and line 25 ensures that TRISTATE_VAL_MODULE is
only selectable when CHOICE_1 is selected as module. Thus, this translation is correct.

#item BOOL_VAL

((def (CHOICE_1)&!def (CHOICE 1 MODULE)) | (def (CHOICE 1)&!def (
CHOICE_1 _MODULE) &(def (CHOICE 1) | def (CHOICE 1_MODULE))) |! def(
BOOL_VAL))

((def (CHOICE 1) &!def (CHOICE 1 _MODULE))
CHOICE_1 MODULE) &(def (CHOICE_1) | def
BOOL_VAL))

#item CHOICE_ 1

| (def (CHOICE 1)&!def (
(CHOICE 1 MODULE))) | ! def (

5| (def (CHOICE 1) | def (CHOICE 1 MODULE))

(!def (CHOICE 1 _MODULE) | def (MODULES))

(!def (CHOICE 1) |!def (CHOICE 1 _MODULE))
#item MODULES

def (MODULES)
#item TRISTATE VAL

(! def (TRISTATE_VAL MODULE) | def (MODULES))

(! def (TRISTATE_VAL) |! def (TRISTATE VAL MODULE))

(!def (TRISTATE_VAL) | def (CHOICE_1) | (! def (CHOICE_1)&!def (

CHOICE_1 _MODULE)))
(def (CHOICE_1) | def (CHOICE_1_MODULE) | def (MODULES) |! def (TRISTATE_VAL))

5| (def (CHOICE 1) | def (CHOICE 1 MODULE) |! def (MODULES) | ! def (

TRISTATE VAL _MODULE))

| (def (CHOICE_1) | def (CHOICE 1 _MODULE) |! def (MODULES) | ! def (TRISTATE_VAL)

)
(def (CHOICE 1) |def (CHOICE 1 MODULE) |! def (TRISTATE VAL MODULE))

(! def (TRISTATE_VAL) | def (CHOICE_1))
#choice CHOICE_ 1

(! def (CHOICE 1 _MODULE) | def (MODULES))

(!def (CHOICE 1) |! def (CHOICE_1_MODULE))

(def (BOOL_VAL) | def (TRISTATE VAL) |! def (CHOICE_1))
(def (CHOICE_1) | def (CHOICE_1_MODULE) |! def (BOOL_VAL))
(def (CHOICE_1) | def (CHOICE 1 _MODULE) | (! def (TRISTATE_VAL) &!def (

TRISTATE _VAL_MODULE)))

(! def (TRISTATE_VAL MODULE) | def (CHOICE_1 MODULE))
(!'def (BOOL_VAL) |! def (TRISTATE_VAL))

(!def (BOOL_VAL) |! def (TRISTATE VAL_MODULE))

(! def (TRISTATE_VAL) |! def (TRISTATE VAL MODULE))

Figure 3.65: KConfig Reader (XML)’s Model translation of Figure 3.59 on page 88 (cor-
rect).

93

oW o e

N=TD O o0 o0 o o0 o0

CNF

In Figure 3.65 on the preceding page, lines 9 and 24 ensure that BOOL_VAL and TRIS-
TATE VAL are only selectable if CHOICE_1 is permanently selected and line 34 ensures
that TRISTATE_VAL_MODULE is only selectable if CHOICE 1 is selected as module. Thus,
this translation carries the same logical information as Figure 3.65 on the previous page
and is therefore correct.

MODULES
CHOICE 1 MODULE
TRISTATE VAL
CHOICE 1
TRISTATE VAL MODULE
BOOL_ VAL

cnf 6 30

0

-3 0

24 -30

-4 2 -30

-4 -3 0

2 -30

24 -30

W Ut DN O = =

51—4 2 =3 0
i|—4 =3 0

=510
—6 =5 0
-6 2 —40
241 -60
24 -1-50
24 -1-60
24 -50
-6 20

512 40
5|—4 1 0
1—2 -4 0

410

0| =2 —4 0

36 -2
2 4 =3
2 4 -5
2 4 -6

o O oo

4/—=5 4 0
5|—3 —6 0

-3 50

71—6 =5 0

Figure 3.66: KConfig Reader (XML)’s CNF translation of Figure 3.59 on page 88 (cor-
rect).

3.8.4 LVAT

Figure 3.67 on the following page does not contain any variable to control the choice,
thus this translation is incorrect.

94

0w N O U A W N =

T OO 000000000000 00000000000o0

W W W W W W W W W N NNNNNN NN N =R e R e e e e
0w N O g s W N EH O W 0w g O g & W N O VW 0w g9 0 U Bk W NN = o

~ X9

X5

X1 m

~ X10

58 X5 m
X7 m

- X2

X1

9 BOOL VAL
10$ X6

11 MODULES m
12 MODULES
13$ X10 m
14% X3

158 X4 m

16$ X7

17 TRISTATE VAL m
18 TRISTATE VAL
19 X3 m

208 X4

21$ X8 m

22% X6 m

23 BOOL VAL m
24% X9 m

25% X8

268 X2 m

cnf 26 49

~N

0]
L L L L L P P P

|
0
o

-3 0

-8 12 11 0

-3 12 11 0

-8 -3 —-12 11 0
—12 11 0O

12 =11 0

70

—-26 0

-7 12 0

-7 11 0

65

69
70
71
72
73
74
75
76

Figure 3.67: LVAT’s CNF translation

95

—14 0
—-19 0
—14 -12 8 0
—-14 -8 12 0

3)—14 —-11 3 0

-14 -3 11 0

5| =20 0

—-15 0

-2 0

-5 0

-2 18 17 0

-5 18 17 0

-2 -5 —-18 17 0
18 =17 0

—-18 17 12 0
—-10 0

-22 0

5| —10 =18 2 0

—-10 =2 18 0
—-10 =17 5 0
—-10 =5 17 0O
—-16 0
-6 0
=25 0

30—21 0

-259 23 0

-21 9 23 0

-25 =21 -9 23 0
-9 23 0

519 =23 0

-10
—-24 0
-1 -9250
-1 -2590
-1 -23 21 0
-1 -21 23 0
-4 0
—-13 0

of Figure 3.59 on page 88 (error).

3.9 Boolean Choice with Tristate Config Options

In Section 2.4.3, we discussed how KConfig handles choices with config options of a
different type than the surrounding choice and in Section 3.8 we analysed how the different
analysis tools handle a tristate choices containing config options of type bool. In this
section, we analyse how boolean choices containing tristate config options are handled.

We used the model from Figure 3.68 for our analysis. This model allows to perma-
nently select either TRISTATE VAL or BOOL_VAL. Conceptually, it does not matter whether
TRISTATE_VAL is of type tristate or bool, since it is nested inside a choice of type
bool.

config MODULES
def bool y
option modules

choice
bool "Boolean Choice"

config TRISTATE VAL
tristate "Tristate Value'
config BOOL_ VAL
bool "Boolean Value'
endchoice

Figure 3.68: KConfig example for testing the translation of a boolean choice with nested
tristate config options.

3.9.1 Undertaker

dumpconf

Choice CHOICE 1 required boolean
Choiceltem BOOL VAL CHOICE 1
Choiceltem TRISTATE VAL CHOICE 1

Default MODULES "y "y
Depends BOOL VAL "CHOICE 1"

Depends TRISTATE VAL "CHOICE 1"
HasPrompts BOOL_ VAL 1

HasPrompts MODULES 0

HasPrompts TRISTATE VAL 1

Item BOOL VAL boolean

Item MODULES boolean

Ttem TRISTATE VAL tristate

Figure 3.69: dumpconf’s translation of Figure 3.68 (correct).

Figure 3.69 contains the same logical information as the related KConfig model. Thus,
we categorized this translation as correct.

96

N

rsf2model

CONFIG_BOOL_VAL "CONFIG_CHOICE 1"

CONFIG_CHOICE 1 " ((CONFIG_BOOL VAL && !CONFIG TRISTATE_ VAL) ||
(!CONFIG_BOOL_VAL && CONFIG_TRISTATE VAL))"

CONFIG_MODULES " (__ FREE__0)"

CONFIG_TRISTATE VAL "!CONFIG_TRISTATE VAL MODULE && CONFIG_CHOICE 1"

CONFIG_TRISTATE VAL MODULE " !CONFIG_TRISTATE VAL && CONFIG MODULES"

UNDERTAKER, SET ALWAYS ON "CONFIG_CHOICE 1" "CONFIG MODULES"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG_m

Figure 3.70: rsf2model’s translation of Figure 3.69 on the preceding page (correct).

Figure 3.70 selects permanently the choice in line 6. Line 2 defines a XOR relation
between CONFIG_BOOL_VAL and CONFIG_TRISTATE_VAL if the choice is selected. Fur-
ther, lines 4 and 5 are defining a XOR relation between CONFIG_TRISTATE_VAL and CON-
FIG_TRISTATE VAL MODULE. Only valid configurations are accepted by the translated
model. Thus, we categorized this translation as correct.

Satyr

Figure 3.71 on the following page demonstrates Satyr’s translation of Figure 3.68 on
the previous page. The constrains in lines 10 — 18 model a XOR relation between CON-
FIG_BOOL_VAL and CONFIG_TRISTATE_VAL. The constrains in lines 19 — 21 define an
implication that if CONFIG_CHOICE O is selected that also the XOR relation from lines 10
— 18 must be fulfilled. The error lies in line 24 and 25. Line 25 defines that the constraint
from 24 must be fulfilled in all configurations. The constraint in line 24 defines an OR rela-
tion between the constraint modelled in lines 10 — 21 and CONFIG_TRISTATE VAL MODULE.
Thus, it is possible to select CONFIG_CHOICE O and CONFIG_TRISTATE_ VAL MODULE with-
out selecting one of the nested boolean config options. Both selections are not correct:

e CONFIG_TRISTATE VAL_MODULE must not be selectable, because TRISTATE VAL can-
not be set to m in the related KConfig model.

e Either one of CONFIG_BOOL_VAL and CONFIG_TRISTATE_ VAL must be selected, since
the containing choice is also permanently selected.

97

[TN T NS BSOS B R
T 0O 0O 0 0 o0 00

WoWw W W W NN NN NN NN NN E R R e R e e
AR R R O © ® N9 O A W N FH O © 0 N O Ok W N = O ©

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

var CONFIG BOOL VAL 3

var CONFIG CHOICE 0 1

var CONFIG MODULES 11

var CONFIG TRISTATE VAL 2

var CONFIG TRISTATE VAL MODULE 8
var CONFIG UNAME RELEASE 15

var CONFIG MODULES MAGIC INTERNAL VAR 10
cnf 19 44

0

-4 20

-4 -3 0

4 -2 30

-5 -2 0

-5 30

52 =30

516 —4 0

6 -5 0
—6 450
710
7 —6 0
-7-160
9 -70
9 -80
-9 780
90

5112 10 0

12 =11 0
—12 -10 11 O
13 11 0

13 =10 0
—13 —11 10 O
—14 12 0
—14 13 0

14 -12 =13 0
14 0

16 2 0

16 -1 0

—-16 =2 1 0
16 0

17 8 0

17 -1 0

-17 -8 1 0
17 0

—-18 2 0

—-18 8 0

18 =2 -8 0
—-18 0

11 0

19 3 0

19 -1 0

-19 -3 10
19 0

Figure 3.71: Satyr’s CNF translation of Figure 3.68 on page 96 (error in lines 24 and 25).

98

oW N =

w N o

10

11

12

13

14

15

16

17

18

2

2

B W N e

® N o v

©

1

11

13

3.9.2 KConfig Reader

RSF

Item MODULES boolean
HasPrompts MODULES 0

Default MODULES "yt "y
#startchoice

Choice CHOICE_ 1 required boolean
Prompt CHOICE_ 1 "y
HasPrompts CHOICE 1 1

#choice value

Choiceltem TRISTATE VAL CHOICE 1
Item TRISTATE VAL tristate
Depends TRISTATE VAL "CHOICE 1'
Prompt TRISTATE VAL "CHOICE 1"
HasPrompts TRISTATE VAL 1

#choice value

Choiceltem BOOL VAL CHOICE 1
Item BOOL VAL boolean
Depends BOOL_ VAL "CHOICE_1"
Prompt BOOL_ VAL "CHOICE_1"
HasPrompts BOOL_ VAL 1

#choice value

#endchoice

Figure 3.72: KConfig Reader’s RSF translation of Figure 3.68 on page 96 (correct).

We categorized Figure 3.72 as correct, because it contains the same logical information
as Figure 3.69 on page 96.

Model

#item BOOL_VAL
#item CHOICE_ 1

def (CHOICE 1)
#item MODULES

def (MODULES)
#item TRISTATE VAL

(! def (TRISTATE_VAL MODULE) | def (MODULES))

(!def (TRISTATE VAL) |! def (TRISTATE VAL MODULE))
#choice CHOICE_ 1

(def (TRISTATE_VAL) | def (TRISTATE_VAL MODULE) | def (BOOL_VAL) |! def (

CHOICE_1))

(!def (BOOL_VAL) | def (CHOICE_1))

(def (CHOICE_1) | (! def (TRISTATE VAL) &!def (TRISTATE VAL MODULE)))
(!'def (BOOL_VAL) |! def (TRISTATE_VAL))

Figure 3.73: KConfig Reader’s Model translation of Figure 3.68 (error in lines 10 & 12).

99

Figure 3.73 on the preceding page contains an error in lines 10 and 12. Both lines
facilitate the selection of CHOICE 1 together with TRISTATE VAL _MODULE.

CNF

¢ 5 BOOL VAL

¢ 2 MODULES

¢ 4 CHOICE 1

¢ 3 TRISTATE VAL

¢ 1 TRISTATE VAL MODULE
p cnf 5 9

31540
540

3l—1 4 0

-3 40
-5 -3 0

Figure 3.74: KConfig Reader’s CNF translation of Figure 3.68 on page 96 (error).

The translated CNF formula shown in Figure 3.74 facilitates the selection of TRIS-
TATE VAL _MODULE and CHOICE_1, which is not a valid configuration. The translated
formula needs a further constraint, that TRISTATE_VAL_MODULE can only be selected if
CHOICE_ 1 is also selected as m, but which is not possible.

3.9.3 KConfig Reader (XML)
Model

In Figure 3.75 on the next page, there is no constraint that forbids TRISTATE_VAL _MODULE
to be set to true if BOOL_VAL is selected. Thus, this translation is incorrect.

100

=

17

N

#item BOOL_VAL

(!def (BOOL_VAL) | def (CHOICE_1))

(!def (BOOL_VAL) | def (CHOICE_1))

#item CHOICE_1

def (CHOICE 1)

#item MODULES

def (MODULES)

#item TRISTATE VAL

(! def (TRISTATE_VAL MODULE) | def (MODULES))

(! def (TRISTATE_VAL) |! def (TRISTATE VAL MODULE))
(def (MODULES) |! def (TRISTATE _VAL) | def (CHOICE_1))
(! def (MODULES) |! def (TRISTATE VAL MODULE) | def (CHOICE 1))
(!def (MODULES) |! def (TRISTATE_VAL) | def (CHOICE_1))
(! def (TRISTATE VAL MODULE) | def (CHOICE 1))

(!def (TRISTATE_VAL) | def (CHOICE_1))

s|l#choice CHOICE 1

(def (BOOL_VAL) | def (TRISTATE _VAL) |! def (CHOICE 1))

(! def (BOOL_VAL) | def (CHOICE 1))

(def (CHOICE 1) | (! def (TRISTATE_VAL)&!def (TRISTATE VAL MODULE)))
(! def (BOOL_VAL) |! def (TRISTATE VAL))

Figure 3.75: KConfig Reader (XML)’s Model translation of Figure 3.68 on page 96 (error).

CNF

Figure 3.76 contains the same logical information as Figure 3.75 and is therefore also
incorrect.

4 CHOICE 1

5 BOOL_ VAL

2 TRISTATE VAL MODULE
3 TRISTATE VAL
1 MODULES

cnf 5 16

0

Figure 3.76: KConfig Reader (XML)’s CNF translation of Figure 3.68 on page 96 (error).

101

3.9.4 LVAT

The translated model of Figure 3.77 allows to select TRISTATE VAL as a module, as
no constraint is added to prevent the Tristate selection of TRISTATE VAL. Thus, the

translation is incorrect.

10 —19 0
1| C 1$ 7X9 410 =14 —-12 8 0
alc 2% _X5 42| —14 -8 12 0
3lc 38 X1 m 131 —14 =11 3 0
4 c 4% X10 44| —14 -3 11 0
sic 5% X5 m 150 =20 0
6lc 6% X7 m 16| —15 0
7le 78 _X2 a7/ =2 0
glc 8% _X1 48| =5 0
9lc 9 BOOL7VAL 19/—2 18 17 0
0]c 108 X6 s00—H 18 17 0
11| ¢ 11 MODULES m s51]—2 =5 —18 17 0
12| ¢ 12 MODULES 52| 18 =17 0
13¢ 13$ _X10_m 53| —18 17 12 0
14| c 14% X3 54/ —10 0
15)c 158 X4 m 551 —22 0
w6lc 168 X7 56| —10 —18 2 0
17| ¢ 17 TRISTATE VAL m 571 —10 =2 18 0
15| ¢ 18 TRISTATE VAL sl —10 =17 5 0
lc 198 X3 m 59| =10 =5 17 0
200c 208 X4 60| —16 0
211¢ 21% _X8 m 611—6 0
2/c 22% X6 m 62| —25 0
23] ¢ 23 BOOL_VAL m 63l =21 0
24/c 24% X9 m 64| =259 23 0
25/c 25% X8 65 —21 9 23 0
26| C 26$ 7X27Hl 66| =25 —21 =9 23 0
27|p cnf 26 51 67|—9 23 0
28] —8 0 65|19 —23 0
291 —3 0 6ol —1 0
30—8 12 11 0 70l —24 0
311—3 12 11 0 711—1 =9 25 0
320—8 =3 —12 11 0 72—1 =25 9 0
331 —12 11 0 73—1 =23 21 0
3412 =11 0 7al—1 =21 23 0
3517 0 75 —4 0
36| —26 0 76 —13 0
371—=7 12 0 77118 9 0
38/ =7 11 0 75 —18 =9 0
39| —14 0

Figure 3.77: LVAT’s CNF translation

102

of Figure 3.68 on page 96 (error).

=

w

[

3.10 Structured Choices

In Section 2.4.4, we demonstrated that KConfig supports dependencies between nested

config options of a choice.

3.10.1 Undertaker

dumpconf

Choice CHOICE_ 1 required boolean
Choiceltem SUB VAL CHOICE 1

Choiceltem VAL 1 CHOICE_1

Choiceltem VAL 2 CHOICE 1

Depends SUB VAL "CHOICE 1 && VAL 2"
Depends VAL 1 "CHOICE_1"

Depends VAL 2 "CHOICE 1"
HasPrompts SUB_VAL 1

HasPrompts VAL 1 1

HasPrompts VAL_2 1

Item SUB VAL boolean

Item VAL 1 boolean

Item VAL 2 boolean

Figure 3.78: dumpconf’s translation of Figure 2.24 on page 35 (error).

Figure 3.78 shows how dumpconf translates a structured choice. In line 5, the De-
pends constraint is calculated correctly. However, dumpconf reorders the elements of the
KConfig model without storing the old information. As a consequence, it is not possible
to distinguish between a “Structured Choice” (cf. Section 2.4.4) and a “Recursive De-
pendency inside a Choice” (cf. Section 2.4.5). Thus, we categorized this translation as
incorrect.

rsf2model

Figure 3.79 on the following page demonstrates that rsf2model is not aware of “Structured
Choices”. Line 1 models a XOR relation between all nested elements of the choice. Thus,
CONFIG_SUB_VAL becomes a dead feature, which is not correct.

103

-

N

w

IS

~

9

©

ICONFIG_VAL_2) (!CONFIG_SUB_VAL && CONFIG_VAL_1 &&
ICONFIG_VAL_ 2) (1CONFIG_SUB_VAL && !CONFIG_VAL 1 &&
CONFIG_VAL_2))"

CONFIG_SUB_VAL "CONFIG_ VAL 2 && CONFIG_ CHOICE 1"

CONFIG_VAL 1 "CONFIG_CHOICE 1"

CONFIG_VAL 2 "CONFIG_CHOICE 1"

5| UNDERTAKER, SET ALWAYS ON "CONFIG_CHOICE 1"

;| UNDERTAKER, SET' SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

CONFIG_CHOICE 1 " ((CONFIG_SUB_VAL && !CONFIG_VAL 1 &&
||
||

Figure 3.79: rsf2model’s translation of Figure 3.78 on page 103 (error in line 1).

Satyr

Figure 3.80 on the following page shows that Satyr is able to handle “Structured Choices”.
Lines 8 — 21 specify that the choice is permanently selected and exactly one of its direct
nested elements must be selected. Further, lines 31 — 37 model constraints to allow the
selection of CONFIG _SUB_VAL if and only if CONFIG VAL 2 is also selected. Thus, we
categorized this translation as correct.

104

0w N O U A W N =

= = e
N o= O ©

w

14

35

var CONFIG CHOICE 0 1

var CONFIG _SUB VAL 12

var CONFIG UNAME RELEASE 9
var CONFIG VAL 1 2

var CONFIG VAL 2 3

var CONFIG MODULES MAGIC INTERNAL VAR 8
cnf 14 30

0

-4 20

-4 -3 0

4 -230

-5 =20

-530

52 =30

6 —4 0

=lio B el e NN e NN e NN e NNe!

516 =5 0

-6 450
710
7 —6 0
-7-160

1|70

-8 0

10 3 0

10 -1 0
-10 -3 1 0

5110 0

11 2 0

11 -1 0
-11 -210
11 0

-13 10
-13 3 0

13 -1 -3 0
14 12 0

14 —-13 0
—14 —-12 13 0
14 0

Figure 3.80: Satyr’s CNF translation of Figure 2.24 on page 35 (correct).

3.10.2 KConfig Reader
RSF

Contrary to dumpconf, KConfig Reader seems to take over the ordering from the KConfig
files to the translated RSF files as shown in Figure 3.81 on the following page. Thus, we
categorized the translation as correct.

105

=

17

V)
w

14

15

#startchoice

Choice CHOICE 1 required boolean
Prompt CHOICE_ 1 "y
HasPrompts CHOICE 1 1
#choice value
Choiceltem VAL 1 CHOICE 1
Item VAL 1 boolean
Depends VAL 1 "CHOICE 1"
Prompt VAL 1 "CHOICE 1"
HasPrompts VAL 1 1
#choice value
Choiceltem VAL 2 CHOICE 1
3| Item VAL 2 boolean
Depends VAL 2 "CHOICE_1"
Prompt VAL 2 "CHOICE 1"
;| HasPrompts VAL_2 1
#choice value
Choiceltem SUB VAL CHOICE_1
Item SUB VAL boolean
Depends SUB VAL "CHOICE 1 && VAL 2"
Prompt SUB VAL "CHOICE 1 && VAL 2"
HasPrompts SUB_ VAL 1
#endchoice

Figure 3.81: KConfig Reader’s RSF translation of Figure 2.24 on page 35 (correct).

Model

#item CHOICE 1
def (CHOICE 1)
#item SUB VAL
(1 def(SUB_VAL) | def (VAL 2

(! def (SUB_VAL) | def (VAL_2

~—

)
)

~—

s|#item VAL 1

#item VAL 2
#choice CHOICE 1
(def (SUB_VAL) | def (VAL_2) | def (VAL _1) |! def (CHOICE_1))
(!def (SUB_VAL) | def (CHOICE_1))

(!def(VAL_2) | def(CHOICE 1))
(!'def(VAL_1) | def(CHOICE_1))
(!def(SUB_VAL) |! def (VAL 2))
(!def(SUB_VAL) |! def (VAL 1))
((

ldef (VAL_2) |! def (VAL 1))

Figure 3.82: KConfig Reader’s Model translation of Figure 2.24 on page 35 (error in 13).

Figure 3.82 demonstrates that KConfig Reader cannot translate “Structured Choices”
into valid Model files. Starting from line 9, KConfig Reader models constraints to force

106

that exactly one nested element must be selected if the surrounding choice is selected.
Line 13 models a mutual exclusive constraint between SUB_VAL and VAL_2, which is not
correct.

Figure 3.83: KConfig Reader’s CNF translation of Figure 2.24 on page 35 (error in line
14).

Also the CNF formula created by KConfig Reader contains the same error as the
related Model file. Line 14 of Figure 3.83 represents a mutual exclusive constraint between
SUB_VAL and VAL _2, which is not correct.

3.10.3 KConfig Reader (XML)
Model

Starting with line 13 in Figure 3.84 on the next page, SUB_VAL is not part of the XOR
constraints of the nested choice items. Line 4 ensures the dependency from SUB_VAL on
VAL_2. Thus, this translation is correct.

107

I S

(
)| (1def (VAL 1) | def (CHOICE 1))
(

#item CHOICE 1

def (CHOICE 1)

#item SUB VAL

(!def (SUB_VAL) | (

(!def (SUB_VAL) | (

#item VAL 1

(!def(VAL_1) | def (CHOICE_1))

(!def(VAL_1) | def(CHOICE 1))

#item VAL 2

(!def(VAL_2) | def(CHOICE_ 1))

(!def(VAL_2) | def (CHOICE_1))

#choice CHOICE_1

(def(VAL_2) | def(VAL_1) |! def(CHOICE_1))
ldef (VAL _2)|def (CHOICE 1))

ef (CHOICE 1)&def (VAL 2)))
£

d
def (CHOICE 1)&def (VAL 2)))

ldef (VAL 2) |! def (VAL 1))

Figure 3.84: KConfig Reader (XML)’s Model translation of Figure 2.24 on page 35 (cor-

rect).

CNF

Figure 3.85 contains the same logical information as Figure 3.84. Thus, this translations

is also correct.

CHOICE 1

—WHRT OO0 o0 o0 o0
o
=
—
ot
—
S

-5 0

Figure 3.85: KConfig Reader (XML)’s CNF translation of Figure 2.24 on page 35 (cor-

rect).

108

0 N o Ut R W N e

R o e
B W N = O ©

15

17
18
19
20
21
22
23
24
25
26
27
28
29

30

32
33
34

36
37
38

3.10.4 LVAT

In Figure 3.86, VAL_1 and VAL_2 are connected via an xor (cf. lines 74 and 75) and
SUB_VAL depends on VAL 2 via _X8. Thus, this translation is correct.

39| —14 0
c 1$ X9 20| —18 0
C 2$ 7X5 411 —19 0
¢ 3% Xl m 120—15 0
¢ 4 VAL 2 43/—19 4 8 0
c 5% X5 m 1|—15 4 8 0
¢ 65 X7 m 150 =19 =15 —4 8 0
¢ 7 SUB VAL m w6—4 8 0
¢c 8 VAL 2 m w714 =8 0
¢ 9 VAL 1 18| —2 0
¢ 108 X2 19 —5 0
c 11$ X1 500—2 —4 19 0
c 128 X6 511—2 —19 4 0
c 13 SUB7VAL 52(—2 —8 15 0
C 14$ 7X3 530 —2 —15 8 0
¢ 158 X4 m 54 —12 0
¢ 16 VAL 1 m 550 —21 0
c 17% X7 56| —17 0
¢ 18% X3 m 571—6 0
c 19% X4 58] —17 13 7 0
¢ 208 X8 m s59l—6 13 7 0
c 21% X6 m 60| —17 —6 =13 7 0
c 22% X9 m 611 =13 7 0
c 23% X8 62| 13 =7 0
c 24% X2 m 634 —8 0
P cnf 24 50 64| =23 —4 0
—-11 0 65| =23 —8 0
-3 0 664 8 23 0
—11 9 16 0 67| —20 0
-39 16 0 65| —23 —13 17 O
—-11 -3 =9 16 0 60| —23 —17 13 0
-9 16 0 70l—23 =7 6 0
9 —16 0 711—=23 =6 7 0
—10 0 72(—1 0
—24 0 731 —22 0
—-10 -9 11 0 7419 4 0
—-10 —11 9 0 751—9 —4 0
—-10 —-16 3 0
—-10 =3 16 0

Figure 3.86: LVAT’s CNF translation of Figure 2.24 on page 35 (correct).

109

B W N =

=

3.11 Recursive Dependency inside a Choice

In Section 2.4.5, we discussed the behaviour of recursive dependencies in KConfig. Even
if KConfig is able to detect such recursive dependencies during the execution, we also
analysed how analysis tools handle such recursive dependencies.

For the analysis, we shortened the example from Section 2.4.5 and used the model
shown in Figure 3.87. SUB_VAL will not be selectable, since it is dependant of VAL_1 but
written below VAL 2 inside the choice.

choice
bool "A structured Choice"

config VAL 1

bool "Value 1'
config VAIL_2

bool "Value 2"

config SUB VAL
bool "A sub value"
depends on VAL 1
endchoice

Figure 3.87: Modification of Figure 2.27 on page 38: SUB_VAL will not be selectable.

3.11.1 Undertaker

dumpconf

Choice CHOICE 1 required boolean
Choiceltem SUB VAL CHOICE 1

Choiceltem VAL 1 CHOICE 1

Choiceltem VAL 2 CHOICE 1

Depends SUB VAL "CHOICE 1 && VAL 1"
Depends VAL 1 "CHOICE_1"

Depends VAL 2 "CHOICE_1"
HasPrompts SUB_VAL 1

HasPrompts VAL 1 1

HasPrompts VAL_2 1

Item SUB VAL boolean

Item VAL 1 boolean

Item VAL 2 boolean

Figure 3.88: dumpconf’s translation of Figure 3.87 (error).
dumpconf and rsf2model display a warning while translating the model from Figure

3.87 (cf. Figure 3.89 on the following page). However, it still produces a complete RSF
file. Figure 3.88 contains exactly the same information in the same structure as Figure

110

3.78 with the exception of the changed constrained in line 5. Thus, we categorized this
translation as incorrect, because of the absence of the correct ordering of the nested
elements.

oA W N =

~

Generating Format 1.0 (RSF) models

Calculating RSF model for x86

using arch x86

arch/x86/Kconfig:1:error: recursive dependency detected!
arch/x86/Kconfig:1: choice <choice> contains symbol SUB_VAL
arch /x86/Kconfig:9: symbol SUB_VAL depends on VAL_1

arch /x86/Kconfig:4: symbol VAL 1 is part of choice <choice>

Figure 3.89: Displayed warning of dumpconf and rsf2model while translating Figure 3.87.

rsf2model

o

w

I

9

o

©

ICONFIG_VAL_2) (!CONFIG_SUB_VAL && CONFIG_VAL_1 &&
ICONFIG_VAL_2) (1CONFIG_SUB_VAL && !CONFIG_VAL 1 &&
CONFIG_VAL_2))"

CONFIG_SUB_VAL "CONFIG_VAL 1 && CONFIG_CHOICE 1"

CONFIG_VAL 1 "CONFIG_CHOICE 1"

CONFIG_VAL 2 "CONFIG_CHOICE 1"

5| UNDERTAKER, SET ALWAYS ON "CONFIG_CHOICE 1"

;| UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

CONFIG_CHOICE 1 " ((CONFIG_SUB VAL && !CONFIG. VAL 1 &&
||
||

Figure 3.90: rsf2model’s translation of Figure 3.88 (correct).

Figure 3.90 has the same structure as Figure 3.79 on page 104. The translated model
also avoids the selection of SUB_VAL, which is correct due to the contained recursive
dependency.

Satyr

Figure 3.91 on the next page demonstrates how Satyr handles recursive dependencies. The
translated formula forces to select either CONFIG_VAL 1 or CONFIG_VAL 2 and avoids the
selection of CONFIG_SUB_VAL. Thus, the translated CNF formula is correct.

111

var CONFIG CHOICE 0 1
var CONFIG _SUB VAL 5
var CONFIG UNAME RELEASE 15
var CONFIG VAL 1 2
var CONFIG VAL 2 3
var CONFIG MODULES MAGIC INTERNAL VAR 14
cnf 19 45

0

-4 20

—4 -3 0

4 -2 30

-6 40

-6 =5 0

4|6 —4 5 0

15| —=7 =2 0

w6]—7 3 0

1717 2 =3 0

18| —8 7 0

19]—8 =5 0

2008 =7 5 0

2119 —6 0

219 =8 0

231—9 6 8 0

24 —10 =2 0

250 —10 =3 0

26/ 10 2 3 0

27/ —11 10 0O

285/ —11 5 0

2911 =10 =5 0

30012 =9 0

31112 =11 0

32/—12 9 11 0

33013 1 0

3413 =12 0

350 —13 —1 12 0

36/ 13 0

371—14 0

38016 3 0

39116 —1 0

10/—16 =3 1 0

41116 0

42017 2 0

43017 =1 0

aa| =17 =2 1 0

45|17 0

16| —18 1 0

a7 —18 2 0

4818 =1 =2 0

29/19 5 0

50019 —18 0

511—19 =5 18 0

52119 0

L T T B S O R C
=lio B el e NN e NN e NN e NNe!

= = e
N o= O ©

w

Figure 3.91: Satyr’s CNF translation of Figure 3.87 on the preceding page (correct).

112

AW N e

N o v

9]

Also Satyr displays a warning while translating the model from Figure 3.87 into the
correct model shown in Figure 3.91. This warning is shown in Figure 3.92.

Generating Format 2.0 (CNF) models

Calculating CNF model for x86

using arch x86

arch /x86/Kconfig:1:error:
arch/x86/Kconfig:1:
s arch /x86 /Kconfig:9:
arch /x86/Kconfig:4:
Calling rsf2cnf for arch x86...

recursive dependency detected!
choice <choice> contains symbol SUB_ VAL
symbol SUB_VAL depends on VAL_1

symbol VAL 1 is part of choice <choice>

Figure 3.92: Displayed warning of Satyr while creating Figure 3.91 on page 112.

3.11.2 KConfig Reader

RSF
i|#startchoice
2| Choice
3| Prompt
1| HasPrompts
s|#choice value
6| Choiceltem
7| [tem
s| Depends
ol Prompt
10| HasPrompts
11|#choice value
12| Choiceltem
13| Item
14| Depends
15 Prompt
16| HasPrompts
17|#choice value
15| Choiceltem
19| Item
20| Depends
21 Prompt
22| HasPrompts
23|#choice value
24|#endchoice

CHOICE _ 1
CHOICE 1
CHOICE 1

VAL 1
VAL 1
VAL 1
VAL_1
VAL 1

VAL 2
VAL 2
VAL 2
VAL 2
VAL 2

SUB VAL
SUB_ VAL
SUB VAL
SUB_ VAL
SUB_ VAL

required boolean

n n

1

CHOICE 1
boolean
"CHOICE 1"
"CHOICE_1"
1

CHOICE 1
boolean
"CHOICE 1"
"CHOICE 1"
1

CHOICE 1

boolean

"CHOICE_1 && VAL 1"
"CHOICE 1 && VAL 1"
1

Figure 3.93: KConfig Reader’s RSF translation of Figure 3.87 on page 110 (correct).

KConfig Reader creates a RSF file which looks very similar to the RSF file of Fig-
ure 3.88 on page 110. However, KConfig Reader keeps the ordering of the config options,
which makes it possible to detect recursive dependencies during a downstream analysis.

113

Thus, we categorized this translation as correct. It also produces a warning like the other
tools (cf. Figure 3.94).

[T T) SO U O

dumping model

setting archusing arch x86

arch /x86/Kconfig:1:error: recursive dependency detected!
arch/x86/Kconfig:1: choice <choice> contains symbol SUB_VAL
arch /x86/Kconfig:9: symbol SUB VAL depends on VAL 1
arch/x86/Kconfig:4: symbol VAL 1 is part of choice <choice>
reading model

getting constraints

checking combined constraint

writing model

writing dimacs

2| done .

Figure 3.94: Displayed warning of KConfig Reader while translating Figure 3.87 on
page 110.

Model

© © 0 N O U s W N —

=

w

#item CHOICE_1

def (CHOICE 1)

#item SUB_ VAL
(!def(SUB_VAL) | def (VAL 1))

)

(!'def(SUB _VAL) | def (VAL 1

#item VAL 1

#item VAL 2

#choice CHOICE 1

(def (SUB_VAL) | def (VAL_2) | def(VAL_1) |! def (CHOICE_1))
I'def (SUB_VAL) | def (CHOICE_1))

~— —

(

(1def (VAL 2) | def (CHOICE 1))
(!'def (VAL 1) | def(CHOIC 1))
(!def(SUB VAL) |! def (VAL 2))
(!def(UBVAL)|'def(1))
(!def(VAL_2) |! def(VAL_1))

Figure 3.95: KConfig Reader’s Model translation of Figure 3.87 on page 110 (correct).

Figure 3.95 has exactly the same structure as Figure 3.82 on page 106 including
the mutual exclusive constraint between SUB_VAL and VAL_1. This time is the constraint
correct, because of the modelled recursive dependency inside the containing choice. Thus,
this translation is categorized as correct.

CNF

Figure 3.96 demonstrates how KConfig Reader translates a recursive dependency into
CNF formula. This translation has the same structure as Figure 3.83 on page 107. The
recursive dependency is translated correctly as a mutual exclusive constraint in line 14.
Thus, we categorized also this translation as correct.

114

oW o =

© o N o »

10
11

13
14

16

W [

=

¢ 1 SUB VAL
¢ 2 VAL 1
¢ 4 VAL 2
¢ 3 CHOICE 1
¢ 5 MODULES
p cnf 5 11

Figure 3.96: KConfig Reader’s CNF translation of Figure 3.87 on page 110 (correct).

3.11.3 KConfig Reader (XML)
Model

Figure 3.97 only differs in line 4 and 5 from KConfig Reader’s Model translation (cf.
Section 3.11.2). KConfig Reader (XML) adds also the containing choice to the implication
constraint, which is also contained in line 14. Both translations do not differ logically
from each other. Thus, this translation is correct.

(

((

((
| (Mdef(

((

((VAL

#item CHOICE_1
def (CHOICE 1)
#item SUB_VAL
(!def (SUB_VAL) | (def (CHOICE_1)&def (VAL_1)))
(!def(SUB_VAL) | (def (CHOICE_1)&def (VAL_1)))
#item VAL 1
(!'def(VAL_1) | def(CHOICE_1))
(!def (VAL 1) |def (CHOICE 1))
#item VAL 2
(!def(VAL_2) | def (CHOICE 1))
(!def (VAL_2) | def(CHOICE 1))
#choice CHOICE_ 1
(def (SUB_VAL) | def (VAL_2) | def (VAL _1) |! def (CHOICE_1))
I'def (SUB_VAL) | def (CHOICE_1))
l'def(VAL_2) | def (CHOICE 1))
l'def (VAL _1) | def(CHOICE 1))
SUB_VAL) |! def (VAL_2))
SUB_VAL) |! def (VAL_1))
, 2) | def (VAL 1))

I'def (S
I'def

Figure 3.97: KConfig Reader (XML)’s Model translation of Figure 3.87 (correct).

115

AW N e

® N O o

CNF

Figure 3.98 contains the same logical information as KConfig Reader’s CNF translation

in Figure 3.96 and is therefore correct.

1 CHOICE 1
4 SUB VAL
5 MODULES
2 VAL 2

3 VAL 1
cnf 5 17
0

SO OO OO OO

Figure 3.98: KConfig Reader (XML)’s CNF translation of Figure 3.87 (correct).

3.11.4 LVAT

In Figure 3.99 on the next page, VAL_1, VAL _2, and SUB_VAL are all connected via an
XOR relation (cf. lines 74 — 77) and SUB_VAL depends on VAL_2 via _X8. As a result,
SUB_VAL is not selectable and the translation is correct.

116

0w N O U A W N =

T OO0 000000000000 00000000o0

WoWw W W W NN NN NN NN NN E R R e R e e
AR RO R O © ® 9 O A W N R O © K N O O A W N = O

35
36
37
38
39

108 X2
11$ X1
12% X6

13 SUB VAL
14% X3
15$ X4 m
16 VAL 1 m
178 X7

18 X3 m
198 X4
20$ X8 m
21$ X6 m
22% X9 m
23% X8
24% X2 m
cnf 24 52

|
—
—
o

-3 0

—-11 9 16 0
-39 16 0
-1 -3 -9 16 0
-9 16 0

9 —-16 0

—-10 0

-24 0

-10 -9 11 0O
-10 =11 9 0
—-10 -16 3 0
-10 -3 16 0O
-14 0

Figure 3.99: LVAT’s CNF translation of Figure 3.87 on page 110 (correct).

o o ot »
O

w

66

70
71
72
73
74
75
76

117

5| —19 —1
5|—4 8 0

—18
—-19
—15
—-19
—15

=k O O O

0
0
—4

ot 00 Co

4 =80

-2 0

-5 0

-2 -419 0
-2 -1940
-2 -815 0
-2 -1580
—-12 0

-21 0

—-17 0

-6 0

—-17 13 7 0
-6 13 70
—-17 -6 —13
=13 70

13 =70

9 -16 0

1| =23 =9 0
5| =23 —16 0

9 16 23 0
—-20 0

-23 —-13 17
—23 —17 13
-23 =76 0
-23 670
-10

—-22 0
9413 0
-9 —-40

-9 -13 0
-4 =13 0

7

0

9

10

11

12

13

3.12 Empty Choices

In Section 2.4.6, we showed that it is allowed to model empty choices, even if exactly one
nested element must be selected. KConfig is able to handle such situations and will not
force the selection of a not existing config option to keep the configuration valid.

For testing the translation, we adapted the model from Figure 2.30 on page 41 and
replaced the NOT_EXISTING config option by a constant config option which was set to
false. The modified model is presented in Figure 3.100.

config CONST FALSE
def bool n

choice
bool "An Empty Choice"

config VAL 1
bool "Value 1"
depends on CONST_ FALSE
config VAL 2
bool "Value 2"
depends on CONST FALSE
endchoice

Figure 3.100: Modification of Figure 2.30 on page 41: The choice still does not contain
any selectable nested config options.

3.12.1 Undertaker

dumpconf

Choice CHOICE 1 required boolean
Choiceltem VAL 1 CHOICE 1

Choiceltem VAL 2 CHOICE 1

Default CONST _FALSE "n" "y

Depends VAL 1 "CHOICE_1 && CONST_ FALSE"
Depends VAL_2 "CHOICE_1 && CONST FALSE"
HasPrompts CONST FALSE 0

HasPrompts VAL 1 1

HasPrompts VAL 2 1

Item CONST FALSE boolean

Item VAL 1 boolean

Item VAL 2 boolean

Figure 3.101: dumpconf’s translation of Figure 3.100 (correct).

dumpconf translates the information of the KConfig file correctly into RSF, which is
shown in Figure 3.101. The existing depends on constraints are extended and contain

118

w V]

w N o v

10

an additional dependency to the containing choice. Thus, we categorized the translation
as correct.

rsf2model

CONFIG_CHOICE_1 " ((CONFIG_VAL_1 && !CONFIG_VAL_ 2) || (!CONFIG_VAL 1
&& CONFIG_VAL 2))"

CONFIG_CONST_FALSE " (CONFIG_n)"

CONFIG_VAL 1 "CONFIG CONST FALSE && CONFIG_ CHOICE 1"

CONFIG_VAL 2 "CONFIG_CONST_ FALSE && CONFIG_CHOICE 1"

UNDERTAKER, SET' ALWAYS ON "CONFIG_CHOICE 1"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

Figure 3.102: rsf2model’s translation of Figure 3.101 (error in line 1).

Figure 3.102 on page 119 demonstrates that rsf2model is not able to handle empty
Choices. The constraint in line 1 forces the selection of either CONFIG_VAL_1 or CON-
FIG_VAL_2 if CONFIG_CHOICE 1 is selected. Further, CONFIG_CHOICE_1 is permanently
selected and CONFIG_CONST_FALSE is permanently deselected. Together with the con-
straints from line 3 and 4, the model becomes unsatisfiable. Thus, the translation is not
correct.

Satyr

Figure 3.103 on the next page demonstrates that also Satyr is not able to handle empty
Choices. The constraint in line 23 forces the permanent selection of the choice. The
constraints in lines 24 — 36 force the selection of either CONFIG_VAL_1 or CONFIG_VAL_2 if
CONFIG_CHOICE_O is selected, which makes the model unsatisfiable. Thus, the translation
is not correct.

119

File Format Version: 2.0
Generated by satyr

Type info:

¢ sym <symbolname> <typeid>
with <typeid> being an integer out of:
enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>
meta_value ALWAYS ON CONFIG CHOICE 0
sym CHOICE 0 1

sym CONST FALSE 1

sym UNAME_RELFASE 5

sym VAL 1 1

sym VAL 2 1

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG_CHOICE 0 1

var CONFIG CONST FALSE 10

var CONFIG UNAME RELEASE 9
var CONFIG VAL 1 2

var CONFIG VAL 2 3

var CONFIG MODULES MAGIC INTERNAL VAR 8
cnf 14 30

0

-4 20

-4 -3 0

514 =2 30

-5 =20

-530

52 =30

6 —4 0

6 =5 0

-6 450

710

7 -6 0

-7 -160

70

-8 0

—-11 10

—11 10 O

11 -1 —-10 0

12 3 0

12 —-11 0

—12 -3 11 0

12 0

45/ —=13 1 0

16 —13 10 0

47013 =1 =10 0

18114 2 0

10014 =13 0

500 —14 —2 13 0

51114 0

52 —10 0

oo ~ =] wt = W [V —

= = e
N o= O ©

BOR R R s W W W W W W W W W W N NN N NN N NN N R e e e
W NP O © 0 N O ks WN R O © 0 9 0 R s W N P O © o N0 s W
=T 0O 00 0000000000000 0000O0

Figure 3.103: Satyr’s CNF translation of Figure 3.100 (error in lines 23 — 36).

120

3.12.2 KConfig Reader

RSF
1| Item CONST FALSE boolean
2| HasPrompts CONST_FALSE 0
3l Default CONST_FALSE "'n’" "y
s|l#startchoice
5| Choice CHOICE 1 required boolean
¢| Prompt CHOICE_ 1 "y
7| HasPrompts CHOICE_ 1 1
g|#choice value
o| Choiceltem VAL 1 CHOICE_1
10| Item VAL 1 boolean
11| Depends VAL 1 "CHOICE_1 && CONST FALSE"
12| Prompt VAL 1 "CHOICE_1 && CONST FALSE"
13| HasPrompts VAL 1 1
u|#choice value
15| Choiceltem VAL 2 CHOICE 1
16| Item VAL 2 boolean
17| Depends VAL 2 "CHOICE_ 1 && CONST FALSE"
18| Prompt VAL 2 "CHOICE_1 && CONST FALSE"
19| HasPrompts VAL_2 1
20|#choice value
21|#endchoice

N

Figure 3.104: KConfig Reader’s RSF translation of Figure 3.100 (correct).

Figure 3.104 contains the same logical information as Figure 3.101 on the preceding
page. Thus, also KConfig Reader’s translation into RSF is correct.

Model & CNF

dumping model

setting archusing arch x86
reading model

getting constraints
checking combined constraint

;| checking each constraint

[error] (run—main—1) java.lang.AssertionError: assertion failed: extracted
model is not satisfiable

java.lang. AssertionError: assertion failed: extracted model is not
satisfiable
at scala.Predef$.assert (Predef.scala:179)

Figure 3.105: Stacktrace while trying to translate Figure 3.104 into CNF and Model
(error).

KConfig Reader is not able to translate an empty Choice into boolean formula. Instead
it produces a stack trace showing that the given model is not satisfiable (cf. Figure 3.105
on page 121). Thus, the translation into Model and CNF files are not correct.

121

3.12.3 KConfig Reader (XML)
Model & CNF

KConfig Reader (XML) aborts the translation of Figure 3.100 on page 118 with the same
stacktrace as KConfig Reader (cf. Section 3.12.2).

3.12.4 LVAT

In Figure 3.106 on the following page VAL_1 and VAL_2 are connected via an xor (cf. lines
85 and 86) and both depend on CONST_FALSE (via _X6 and _X9 respectively). Thus, the
model is not solvable and not correctly translated.

122

0w N O U A W N =

T OO 000000000000 00000000000o0

WoWw W W W NN NN NN NN NN E R R e R e e
AR RO R O © ® 9 O A W N R O © K N O O A W N = O

35
36
37
38
39
40
41
42
43

12$ X6

13 CONST FALSE
14$ X10 m

15% X3

168 X4 m

17 VAL 1 m

18% X7

19 X3 m

208 X4

21$ X8 m

22% X6 m

23% X9 m

24% X8

25 CONST FALSE m
268 X2 m

cnf 26 59

|
W
—
o
o

—11 13 25 0
-3 13 25 0
—11 -3 —-13 25 0
-13 25 0

13 =25 0

10 0

—-26 0

—10 -13 11 0
—10 —11 13 0
-10 =25 3 0
—-10 =3 25 0
—-15 0

-19 0

—15 -13 11 0

Figure 3.106: LVAT’s CNF translation of Figure 3.100 on page 118 (error).

SIS

65

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

123

—15 —11 13 0
—-15 =25 3 0
-15 -3 25 0
—-20 0

—16 0

-2 0

-6 0

-2 917 0

-6 9 17 0

-2 -6 -9 17 0
-9 17 0

9 —-17 0

13 =25 0

—-12 -13 0

—12 =25 0

13 25 12 0
-22 0

-12 -9 2 0
-12 -2 9 0

3—12 =17 6 0

—-12 —6 17 0O
—-18 0

-7 0
—24
—21
—24 8 0

—21 8 0

—-24 =21 -4 80
-4 80

4 -8 0

13 =25 0

-1 -13 0

-1 =250

13 2510

-23 0

-1 -424 0

-1 -24 40

-1 -8 210

-1 -21 80

-5 0

—-14 0

940

-9 -40

=k O O

3.13 Choices Without a Prompt

In Section 2.4.7, we showed that even mandatory choices without a prompt are not
selectable. Even if a default value was specified, the resulting configuration will not
include any selected nested elements. For the analysis, we used the model from Figure 2.33
on page 42.

3.13.1 Undertaker

dumpconf
Choice CHOICE__1 required
2| Choiceltem BOOL VALl CHOICE 1
3| Choiceltem BOOL VAI2 CHOICE 1
4| Depends BOOL VAL1 "CHOICE 1"
5| Depends BOOL_VAIL2 "CHOICE_1"
;| HasPrompts BOOL_VAL1 1
HasPrompts BOOL_VAL2 1
Item BOOL VAL1 boolean
ol Item BOOL_ VAIL2 boolean

Figure 3.107: dumpconf’s translation of Figure 2.33 on page 42 (error).

Figure 3.107 displays the translated RSF file of dumpconf. It does not contain any
information whether the choice has a prompt or not. This is also the case if the choice
has a prompt. Thus, the produced RSF file does not differentiate between a choice with
and without a prompt, which is not correct. However, Undertaker displays a warning
while translating KConfig files (cf. Figure 3.108).

S SO OO

® N O

Generating Format 1.0 (RSF) models

Calculating RSF model for x86

using arch x86

arch/x86/Kconfig:1:warning: choice must have a prompt

suh@Qubuntu:/data/src/Linux—Releases /UndertakerTest$ /tools/installed/
Undertaker —1.6.1/bin/undertaker—kconfigdump —c

Generating Format 2.0 (CNF) models

Calculating CNF model for x86

using arch x86

ol arch /x86 /Kconfig:1: warning: choice must have a prompt

Calling rsf2cnf for arch x86...

Figure 3.108: Displayed warning while translating Figure 2.33 on page 42 into RSF and
Model.

124

rsf2model

N

w

ot

4]

CONFIG_BOOL_VALI "CONFIG_CHOICE_1"

CONFIG_BOOL_VAL2 "CONFIG CHOICE 1"

CONFIG_CHOICE_1 " ((CONFIG_BOOL_VALL && !CONFIG_BOOL_VAL2) ||
(!CONFIG_BOOL_VALI && CONFIG_BOOL_VAL2))"

UNDERTAKER, SET' ALWAYS ON "CONFIG_CHOICE 1"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

| CONFIG n

CONFIG_y

CONFIG m

Figure 3.109: rsf2model’s translation of Figure 3.107 on page 124 (error in line 4).

Figure 3.109 on the next page shows the translated model of rsf2model. The translated
model forces the permanent selection of the choice (cf. line 4), which is not correct, since
the choice has no prompt.

Satyr

Figure 3.110 shows how Satyr translates the model from Figure 2.33 on page 42. It does
not contain a constraint for the permanent selection of the choice, which is usually created
for mandatory choices. However, it also does not contain a constraint for the permanent
deselection of the choice. Thus, we categorized this translation as not correct.

125

File Format Version: 2.0
Generated by satyr

Type info:

¢ sym <symbolname> <typeid>
with <typeid> being an integer out of:
enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>
sym BOOL_VALIL 1

sym BOOL_ VAIL2 1

sym CHOICE 0 1

sym UNAME_RELFASE 5

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG _BOOL VALl 2

var CONFIG BOOL VAL2 6

var CONFIG_CHOICE 0 1

var CONFIG _UNAME RELEASE 12
var CONFIG MODULES MAGIC INTERNAL VAR 11
cnf 14 32

10

-2 0

-3 -120

420

4 —-10

-4 -2 10

i|—5 3 0

-5 40

5 -3 —-40

50

720

-7 -6 0

7 -260

-8 =20

-8 6 0

8 2 -6 0

9 —70

9 -8 0

-9 780

10 1 0

10 -9 0

—-10 -1 9 0

10 0

—11 0

13 6 0

15013 =1 0

16]—13 =6 1 0

47013 0

18114 2 0

19014 —1 0

s00—14 =2 1 0

51114 0

oo ~ =] wt = W [V —

© ©
WWT OO0 6 0 0 6 0 0 00 0 0 00 0 0060

=
= O

BOR R R s W W W W W W W W W W N NN N NN N NN N R e e e
AW N H O © 0 N O Uk WN O © N O kR W N O © N Ot W

Figure 3.110: Satyr’s CNF translation of Figure 2.33 on page 42 (error).

126

-

o

=

3.13.2 KConfig Reader

RSF
#startchoice
Choice CHOICE_ 1 required boolean
HasPrompts CHOICE_ 1 0
Default CHOICE 1 "BOOL_VALL" "y
#choice value
;| Choiceltem BOOL VAL1 CHOICE 1
Item BOOL VAL1 boolean
Depends BOOL VAL1 "CHOICE 1"
Prompt BOOL_VALI1 "CHOICE_1"
HasPrompts BOOL_VAL1 1
#choice value
Choiceltem BOOL VAIL2 CHOICE 1
Item BOOL VAI2 boolean
Depends BOOL_ VAIL2 "CHOICE 1"
Prompt BOOL VAIL2 "CHOICE 1"
il HasPrompts BOOL_VAI2 1

#choice value
#endchoice

Figure 3.111: KConfig Reader’s RSF translation of Figure 2.33 on page 42 (correct).

Contrary to dumpconf (cf. Figure 3.107 on the previous page), KConfig Reader adds
further information about prompts of choices to the written RSF file (cf. line 3). Though
this additional information, the translation becomes correct. However, KConfig Reader
also throws a warning while translating the model (cf. Figure 3.112)

[info] Running de.fosd.typechef.kconfig.KConfigReader —dumpconf /tools/
build /KConfigReader/undertaker/scripts/kconfig/dumpconf —writeDimacs /
data/src/Linux—Releases/UndertakerTest/ /data/results/KConfigReader/
Report/InvisibleChoice

dumping model

setting archusing arch x86

arch /x86/Kconfig:1: warning:

reading model

getting constraints

checking combined constraint

writing model

writing dimacs

done.

[success] Total time: 2 s, completed May 18, 2015 2:28:03 AM

choice must have a prompt

Figure 3.112: Displayed warning while translating Figure 2.33 on page 42.

127

oW N =

N o v

]

Model

#item BOOL_VALI
#item BOOL_VAL2
#item CHOICE 1
def (CHOICE 1)
#choice CHOICE 1

| (def (BOOL_VAL2) | def (BOOL_VALL) |! def (CHOICE 1))

|
(! def (BOOL_VAIL2) | def (CHOICE 1))
(! def (BOOL_VALL) | def (CHOICE 1))

(! def (BOOL_VAL2) |! def (BOOL_VALL))

Figure 3.113: KConfig Reader’s Model translation of Figure 2.33 on page 42 (error in line
4).

The Model translation of KConfig Reader does not use the additional information

about the choice’s prompt and creates a Model with a permanently selected choice (cf.
Figure 3.113 on the next page, line 4). Thus, we categorized the translation as not correct.

CNF

¢ 1 CHOICE 1

¢ 2 BOOL_VAIL2
¢ 3 BOOL_VALI
¢ 4 MODULES

p cnf 4 6
1
2

Figure 3.114: KConfig Reader’s CNF translation of Figure 2.33 on page 42 (error in line
6).

Figure 3.114 demonstrates how KConfig Reader translates a choice without any
prompts. The constraint in line 6 forces the permanent selection of the choice. Thus,
also this translation is categorized as not correct.

3.13.3 KConfig Reader (XML)
Model

Figure 3.115 on page 129 permanently deselects CHOICE 1 in line 8. Lines 2 and 5 force
the deselection of BOOL_VAL1 and BOOL_VAL2, if CHOICE 1 is deselected. Thus, this
translation is correct.

128

w N o oA W N e

= R R e e
B W N = O ©

15

#item BOOL_VALI

(!def (BOOL_VAL1) | def (CHOICE_1))
(!def (BOOL_VALL) | def (CHOICE_1))
#item BOOL_VAIL2

(!def (BOOL_VAL2) | def (CHOICE_1))
(!def(BOOL_VAL2) | def (CHOICE_1))
#item CHOICE_1

I'def (CHOICE 1)

(!def (BOOL_VAL1) | def (CHOICE_1))
(def (BOOL_VALL) |! def (CHOICE_1))
#choice CHOICE 1

(def (BOOL_VAL2) | def (BOOL_VALL) |! def (CHOICE_1))
(!def (BOOL_VAL2) | def (CHOICE_1))

(!def (BOOL_VALL) | def (CHOICE_1))

(!def (BOOL_VAL2) |! def (BOOL_VALL))

~— —

Figure 3.115: KConfig Reader (XML)’s Model translation of Figure 2.33 (correct).

CNF

1 CHOICE 1
2 BOOL VAL1
3 BOOL_VAILZ2
4 MODULES
cnf 4 12
-10
-2 1
2 -1
-2 1
-2 1
-3 1
-3 1
32-10
-310
210
-3 -20
-4 0

T o o oo

(ool en i an I e B e M @)

Figure 3.116: KConfig Reader (XML)’s CNF translation of Figure 2.33 (correct).

Figure 3.116 on the following page contains the same logical information as Fig-
ure 3.115 on the next page. Thus, this translation is also correct.

3.13.4 LVAT

LVAT fails to translate Figure 2.33 on page 42. The stacktrace contains a message about
a failed regular expression match in a binary file, for which reason we did not show it
here.

129

3.14 Recursive Dependency inside a Choice via an
if

In Section 2.4.8, we discussed the special situation of a recursive dependency caused by
an if expression inside a structured choice.

For the analysis, we shortened the example from Section 2.4.8 and used the model
shown in Figure 3.117. SUB_VAL will not be selectable, since the hierarchy of the nested
elements of the choice is not also considered inside the if expression in line 12.

config VAR
bool "Not nested Variable'

choice
bool "Choice"
config VAL 1
bool "Value 1"

config VAL 2
bool "Value 2"

if VAR
config SUB VAL
bool "Dead Sub Value'
depends on VAL 2
endif
endchoice

Figure 3.117: Modification of Figure 2.36 on page 44: SUB_VAL will not be selectable.

3.14.1 Undertaker
dumpconf

While translating the model from Figure 3.117, dumpconf and rsf2model display the same
warning as already shown in Figure 3.89 on page 111. The if statement of line 12 and
the depends on constraint of line 15 are combined to one Depends statement inside the
resulting RSF file. Hence, the resulting RSF files does not facilitate the detection of the
recursive dependency. Thus, we categorized this translation is incorrect.

130

-

w N

w N o v

11

Choice CHOICE_1 required boolean

Choiceltem SUB VAL CHOICE 1
Choiceltem VAL 1 CHOICE 1
Choiceltem VAL 2 CHOICE 1
Depends SUB VAL "CHOICE_1 && VAR && VAL 2"
Depends VAL 1 "CHOICE 1"
Depends VAL 2 "CHOICE 1"
HasPrompts SUB_VAL 1
HasPrompts VAL 1 1
HasPrompts VAL 2 1
HasPrompts VAR 1
Item SUB VAL boolean

3| Item VAL 1 boolean
Item VAL 2 boolean
Item VAR boolean

Figure 3.118: dumpconf’s translation of Figure 3.117 (error in line 5).

rsf2model

ICONFIG_VAL_2) (!CONFIG_SUB_VAL && CONFIG_VAL 1 &&
ICONFIG_VAL_2) (!CONFIG_SUB_VAL && !CONFIG_VAL 1 &&
CONFIG_VAL 2))"

CONFIG_SUB_VAL " (CONFIG_VAR && CONFIG_VAL_ 2) && CONFIG_CHOICE 1"

CONFIG_VAL 1 "CONFIG_CHOICE 1"

CONFIG_VAL 2 "CONFIG_CHOICE 1"

CONFIG_VAR

UNDERTAKER, SET' ALWAYS ON "CONFIG_CHOICE 1"

UNDERTAKER, SET SCHEMA_VERSION 1.1

CONFIG_X86 ""

CONFIG n

CONFIG_y

CONFIG m

CONFIG_CHOICE 1 " ((CONFIG_SUB_VAL && !CONFIG_VAL 1 &&
||
||

Figure 3.119: rsf2model’s translation of Figure 3.118 on page 131 (error).

Figure 3.119 shows how rsf2model translates the RSF file from Figure 3.118 into
boolean formula. Lines 1 and 2 avoid the selection of CONFIG_SUB_VAL, which is cor-
rect. However, fixing the KConfig model by moving the dependency of line 15 into the
if statement in line 12, will result in the same Model file. Thus, we categorized this
translation as not correct.

Satyr

Also Satyr displays a warning while translating the model from Figure 3.117 into the
model shown in Figure 3.120 on page 133. This model does not allow the selection

131

oo ~ =) ot = W [N —

=T 0O 0000000000000 000000000

AR R R A W W W W W W W W W W NN NN NN NN N N R R e e e e e e
BWw N H O © 0 N O U R W N O O 0O W N HE O O OO W NN E O

45
46
47
48
49
50
51

of CONFIG_SUB_VAL. After fixing the KConfig model as described above, the resulting
DIMACS file allows the selection of CONFIG_SUB_VAL if CONFIG_VAR and CONFIG_VAL 2
are also selected. Thus, we categorized this translation as correct.

File Format Version: 2.0

Generated by satyr

Type info:

¢ sym <symbolname> <typeid>

with <typeid> being an integer out of:
enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
variable names:

¢ var <variablename> <cnfvar>
meta_value ALWAYS ON CONFIG CHOICE 0
sym CHOICE_0 1

sym SUB VAL 1

sym UNAME_RELFASE 5

sym VAL 1 1

sym VAL 2 1

sym VAR 1

sym __ MODULES MAGIC INTERNAL VAR 1
var CONFIG_ CHOICE 0 1

var CONFIG SUB VAL 5

var CONFIG UNAME RELEASE 15

var CONFIG VAL 1 2

var CONFIG VAL 2 3

var CONFIG VAR 18

var CONFIG MODULES MAGIC INTERNAL VAR 14
cnf 21 48

0

i|—4 2 0

-4 -3 0
4 -230
-6 40
—6 -5 0
6 -4 50
-7 -20
=730

a7 2 =30

870

-8 =50

8§ =750

9 60

9 -80
-96 80
-10 -2 0
-10 -3 0
10 2 3 0
—11 10 O
-11 5 0

11 =10 =5 0
12 -9 0

12 =11 0
—-12 9 11 0
1310

13 -12 0

132

66

-13 -1 12 0

13 0

—-14 0

16 3 0

16 -1 0

-16 -3 1 0

16 0

17 2 0

17 -1 0

—-17 -2 1 0

17 0

-19 10

-19 18 0
5119 =1 =18 0

-20 19 0

-20 3 0

20 =19 -3 0

21 5 0

21 =20 0

—-21 =5 20 0

21 0

Figure 3.120: Satyr’s CNF translation of Figure 3.117 (correct).

3.14.2 KConfig Reader
RSF

KConfig Reader creates a RSF file which looks very similar to the RSF file of Figure 3.118.
This translation is not correct, since also KConfig Reader combines the if statement and
the depends on constraint into one Depends statements. KConfig Reader is creating a
warning while writing the RSF file as already shown in Figure 3.94 on page 114.

133

1| Item VAR boolean

2| Prompt VAR "y

3| HasPrompts VAR 1

sl#startchoice

5| Choice CHOICE 1 required boolean
6| Prompt CHOICE _1 !

7| HasPrompts CHOICE 1 1

g|#choice value

o| Choiceltem VAL 1 CHOICE 1

10| Item VAL 1 boolean

11| Depends VAL 1 "CHOICE 1"

12| Prompt VAL 1 "CHOICE 1"

13| HasPrompts VAL 1 1

14|#choice value

15| Choiceltem VAL 2 CHOICE_ 1

16| Item VAL 2 boolean

17| Depends VAL 2 "CHOICE 1"

13| Prompt VAL 2 "CHOICE 1"

19| HasPrompts VAL_2 1

20|#choice value

21| Choiceltem SUB_ VAL CHOICE_1

22| Item SUB VAL boolean

23| Depends SUB_VAL "CHOICE_1 && VAR && VAL_2"
24| Prompt SUB_VAL "CHOICE_1 && VAR && VAL 2"
25| HasPrompts SUB_VAL 1

26|#choice value

27|#endchoice

Figure 3.121: KConfig Reader’s RSF translation of Figure 3.117 on page 130 (error in

line 23).

Model

The produced Model file shown in Figure 3.122 allows the selection of exactly one nested
config option (cf. lines 10 — 16). It also models the dependency between SUB_VAL, VAR
and VAL_2 (cf. lines 4 and 5), which is correct. However, KConfig Reader produces the
same output if the KConfig model was fixed before. Thus, we categorized this translation
as incorrect.

134

I S

#item CHOICE_ 1
def (CHOICE 1)
#item SUB VAL

(!def (SUB_VAL) | (
(!def (SUB_VAL) | (
#item VAL 1
#item VAL 2
#item VAR
#choice CHOICE_ 1
(def (SUB_VAL) | def (VAL_2) | def (VAL _1) |! def (CHOICE_1))
(!def (SUB_VAL) | def (CHOICE_1))
(!def(VAL_2) | def(CHOICE_ 1))
(!def(VAL_1) | def(CHOICE_1))
(!def (SUB_VAL) |! def (VAL_2))
(())
((

(VAR)&def (VAL 2)))

def
def (VAR)&def (VAL_2)))

| def (SUB_VAL) |! def (VAL _1

ldef (VAL 2) |! def (VAL 1))

Figure 3.122: KConfig Reader’s Model translation of Figure 3.117 on page 130 (error).

CNF

VAL 1
VAR
VAL 2
SUB VAL
CHOICE 1
MODULES
cnf 6 13
-2 0

O BN =W Ot

W= wWwHHTYg OO0 o0 o oo

Figure 3.123: KConfig Reader’s CNF translation of Figure 3.117 on page 130 (error).

KConfig Reader produces also the same DIMACS file independently whether the
KConfig model was fixed before. The result is shown in Figure 3.123. Thus, also this
kind of translation is not correct.

135

W [

o o

~

o

1

11

12

13

1

'S

15

16

Jun
|

3.14.3 KConfig Reader (XML)

Model

KConfig Reader (XML)’s Model translation of Figure 3.117 on page 130 is identical to
KConfig Reader’s translations (cf. Section 3.14.2).

Figure 3.124 on the next page shows KConfig Reader (XML)’s Model translation of
the fixed model, which is different from KConfig Reader’s. SUB_VAL is correctly excluded
from the XOR connection on the other choice items. Thus, this translation is correct.

#item CHOICE_ 1
def (CHOICE 1)
#item SUB_ VAL

(Idef (SUB_VAL) | (def (VAR)&def (VAL _2)&def (CHOICE 1)))
(!def (SUB_VAL) | (def (VAR)&def (VAL _2)&def (CHOICE 1)))

#item VAL 1

(!def(VAL_1) | def(CHOICE_1))
(!def(VAL_ 1) |def(CHOICE 1))
#item VAL 2

(!def(VAL_2) | def (CHOICE_1))
(!def (VAL_2) | def(CHOICE 1))
#item VAR

#choice CHOICE_1

(def (VAL 2) | def (VAL 1) |! def (CHOICE 1))

(Idef (VAL _2) | def (CHOICE 1))
(Idef (VAL 1) | def (CHOICE 1))
(

ldef (VAL 2) |! def (VAL 1))

Figure 3.124: KConfig Reader (XML)’s Model translation of the fixed version of Fig-

ure 3.117 on page 130 (correct).

CNF

KConfig Reader (XML)’s CNF translation of Figure 3.117 on page 130 is identical to
KConfig Reader’s translations (cf. Section 3.14.2 on page 135).

Figure 3.125 on the following page shows KConfig Reader (XML)’s CNF translation
of the fixed model, which is different from KConfig Reader’s. It contains the same logical
information as Figure 3.124 and is therefore correct.

136

s5|—1 4
5| =5 4

3 VAR

2 SUB_ VAL
6 MODULES
4 CHOICE 1
1 VAL 2

5 VAL 1
cnf 6 16
—2
—2
-2
-2
-2
-2
-1 4

BN WL RwWRTD OO OO0 o o0

SO OO OO OO oo

-5 4
40
15 -40
-140

11-5 40

-1 -50
-6 0

Figure 3.125: KConfig Reader (XML)’s CNF translation of the fixed version of Fig-
ure 3.117 on page 130 (correct).

3.14.4 LVAT

In Figure 3.126 on page 138 SUB_VAL is not present at all. Usually LVAT keeps not
selectable variables and adds constraints to deselect permanently (e.g. see CONST_FALSE
in Figure 3.25 on page 69). Thus, the translation is considered false, since there are no
constraints that require SUB_VAL to be not selected. Thus, we categorized this translation
as incorrect.

When translating the fixed KConfig model however, SUB_VAL is correctly added to
the CNF model.

137

0w N O U A W N =

T OO0 000000000000 00000000o0

WoWw W W W NN NN NN NN NN E R R e R e e
AR RO R O © ® 9 O A W N R O © K N O O A W N = O

35

36

9% X2
10$ X1
11$ X6
12 VAR m
13$ X3
14$ X4 m
15 VAL 1 m
16$ X7
17 X3 m
18% X4
19 X8 m
208 X6 m
21% X9 m
22 VAR
23% X8
24% X2 m
cnf 24 47

|
—
=
o

-3 0

—-10 22 12 0

-3 22 12 0

—-10 =3 =22 12 0
—22 12 0

22 =12 0

-9 0

-24 0

-9 =22 10 0

-9 —-10 22 0

Figure 3.126: LVAT’s CNF translation of Figure 3.117 on page 130 (error).

37
38
39
40

41
42
43
44

45
46

47

69

138

-9 -12 3 0
-9 -3 120

—-23 -4 16 0
—23 =16 4 0
-23 =76 0
-23 670

-21 0
8§ 40

2(—8 —4 0

[

w

W N =

oW N e

o o

-~

3.15 Multiple Default Values inside a Config Option

In Section 2.4.9, we showed that it is possible that multiple attributes of the same type
can become active. Especially default values can lead in contradictions.

We used the model from Figure 3.127 for our analysis. VAR has two default values
which are permanently active. Only the first one (’y’) is considered by KConfig.

config VAR
def bool y
def bool n

Figure 3.127: KConfig model for testing the translation of multiple default values.

3.15.1 Undertaker

dumpconf

Default VAR "n'" "y
Default VAR "y vy
HasPrompts VAR 0

Item VAR boolean

Figure 3.128: dumpconf’s translation of Figure 3.127 (error in line 1).

Figure 3.128 contains the same logical information than the related KConfig model,
but it reorders the default values. As a consequence, default n becomes the first default
value. Thus, we categorized this translation as not correct.

rsf2model

CONFIG_VAR " (CONFIG_n || _ _FREE 0)"
UNDERTAKER SET ALWAYS ON "CONFIG VAR'
UNDERTAKER, SET SCHEMA_ VERSION 1.1
CONFIG_X86 "'

CONFIG n

;| CONFIG_y

CONFIG m

Figure 3.129: rsf2model’s translation of Figure 3.128 (error).

Figure 3.129 shows how rsf2model handles multiple default attributes. In line 2,
CONFIG_VAR is permanently selected, which reflects a correct translation of the default
y attribute. Line 1, specifies that CONFIG_VAR can be set to CONFIG_n (translated
default n attribute) or to an arbitrary value (|| __FREE__0). Thus, the translated
model allows only valid configurations. However, rsf2model produces the same output
if the ordering of the default attributes are changed in Figure 3.127, probably related
due to the absence of the correct ordering inside the intermediate RSF file. Thus, we
categorized this translation as not correct.

139

Satyr

¢ File Format Version: 2.0

¢ Generated by satyr

¢ Type info:

¢ ¢ sym <symbolname> <typeid>

¢ with <typeid> being an integer out of:

¢ enum {S BOOLEAN=1, S TRISTATE=2, S INT=3, S HEX=4, S STRING=5, S OTHER=6}
¢ variable names:

¢ ¢ var <variablename> <cnfvar>

¢ meta_value ALWAYS ON CONFIG VAR

¢ sym UNAME RELEASE 5

¢ sym VAR 1

¢ sym __ MODULES MAGIC INTERNAL VAR 1

¢ var CONFIG_UNAME RELEASE 2

¢ var CONFIG VAR 3

¢ var CONFIG MODULES MAGIC INTERNAL VAR 1
p cnf 3 2

-10

30

Figure 3.130: Satyr’s CNF translation of Figure 3.127 on page 139 (correct).

Figure 3.130 shows how Satyr translates the model from Figure 2.38 on page 46. The
constraint in line 18 considers the correct default value. This constraint will be changed
correctly, if the default values are reordered inside the related KConfig file (cf. Figure
3.131).

¢ sym VAR 1

¢ sym __ MODULES MAGIC INTERNAL VAR 1

¢ var CONFIG UNAME RELEASE 2

¢ var CONFIG VAR 3

¢ var CONFIG MODULES MAGIC _INTERNAL_VAR,___ 1
p

cnf 3 2

Figure 3.131: Satyr’s CNF translation of Figure 3.127 on the preceding page (excerpt),
with changed ordering of the default values (correct).

140

oW [

=

N

=

N

B W o e

3.15.2 KConfig Reader
RSF

Item VAR
HasPrompts VAR
Default VAR
Default VAR

Figure 3.132: KConfig Reader’s RSF translation of Figure 3.127 on page 139 (correct).

Figure 3.132 shows that KConfig Reader is taking the correct ordering of the default
values while creating the RSF files. The ordering will change, if the ordering inside the
related KConlfig file is changed. Thus, we categorized the translation as correct.

Model

#item VAR
def (VAR)

Figure 3.133: KConfig Reader’s Model translation of Figure 3.127 on page 139 (correct).

Figures 3.133 and 3.134 show that also the correct default value is used for the
creation of the Model files. Thus, also this translation is correct.

#item VAR
I'def (VAR)

Figure 3.134: KConfig Reader’s Model translation of Figure 3.127 on page 139, with
changed ordering of the default values (correct).

CNF

=T o o
S o N =
=
—
[\)
[N}

5/1—2 0

Figure 3.135: KConfig Reader’s CNF translation of Figure 3.127 on page 139 (correct).

Figures 3.135 and 3.136 show that KConfig Reader is also considering the correct
ordering of the default values while creating CNF formula. Thus, also this translation

1s correct.

141

(S SV R SR

¢ 1 VAR

¢ 2 MODULES
p cnf 2 2
-10

-2 0

Figure 3.136: KConfig Reader’s CNF translation of Figure 3.127 on page 139, with
changed ordering of the default values (correct).

3.15.3 KConfig Reader (XML)
Model & CNF

Both translations of KConfig Reader (XML) (Model and CNF) of Figure 3.127 on
page 139 are identical to the related translations of KConfig Reader (cf. Section 3.15.2)
and therefore correct.

3.15.4 LVAT

After removing the constant _X4 in lines 23 and 24 in Figure 3.137, these constraint
show that the correct default value was used. Figure 3.138 shows the translation of the
reverse ordering of the default values. The constraints in lines 23 and 25 force the correct
constant values. Thus, this translation is correct.

20011 —6 0
ile 1% _X5 2114 0
olc 2% _Xl_m 22 —12 0
3lc 38 X5 m 231 —4 11 0
4 c 4% X2 24/—4 6 0
sle 5% X1 25| =7 0
6/c 6 VAR m 26| —9 0
7lc 7$ _X3 271 =7 =11 5 0
glc 88 X4 m 28—7 =5 11 0
olc 9% X3 m 29|—=7 —6 2 0
o]c 108 X4 30/—7 =2 6 0
11l ¢ 11 VAR 311—10 0
120c 128 X2 m 32| —8 0
13|p enf 12 25 330 —10 =11 5 0
14| =5 0 34 —10 =5 11 0
150—2 0 350 —10 —6 2 0
16|—=5 11 6 0 36| —10 =2 6 0
17|—2 11 6 0 371—1 0
18— —2 =11 6 0 38| —3 0
19|—11 6 0

Figure 3.137: LVAT’s CNF translation of Figure 3.127 on page 139 (correct).

142

0w N O U A W N =

= = e
N o= O ©

w

14

1$ X5
2% Xl m
38 X5 m
4% X2

5 Xi

6 VAR m
78 X3
8 X4 m
9$ X3 m
10$ X4
11 VAR
128 X2 m
cnf 12 25

T OO0 000000000

|
o
=

-2 0

5|—=5 11 6 0

-2 11 6 0
-5 -2 =11 6 0
—-11 6 0

Figure 3.138: LVAT’s CNF translation of Figure 3.127 on page 139, with changed ordering

of the default values (correct).

143

11 -6 0
40
—-12 0

3j—4 =11 5 0

-4 -5 11 0

51—4 —6 2 0

-4 -2 6 0
-7 0
-9 0

ol =7 11 0

-760

—10 0

-8 0

-10 =11 5 0O
—-10 =5 11 0O

5/—10 —6 2 0

-10 -2 6 0
-10
-3 0

3.16 Summary

Table 3.2 on the next page summarizes the findings of our tool analysis. None of the
analysed tools was able to handle all observations. Also the option modules attribute,
which is used to control the Tristate semantics instead of the old mechanism, is not sup-
ported by any tool. Instead, all tools are able to handle the correct constraint precedence
(select over depends on / if), which is a fundamental concept of KConfig and, thus,
much more important as the afore mentioned findings. All tools are also able to handle
undefined config options in constraints.

Satyr and KConfig Reader (XML) produce more reliable results than the other tools.
Most of the observations not handled by them are not used inside recent versions of
Linux, e.g. the Tristate semantics is controlled by a config option attributed with option
modules, but also named as MODULES. Only default values of Tristate config options may
violate the CNF formula produced by Satyr, if the containing config option has no prompt
and will not be displayed to the user. Also constraints based on Strings and Numbers are
not considered. The other two corner cases not handled by Satyr, should not be present
in recent version of Linux. KConfig Reader (XML) is not able to handle “Selection of
Nested Config Options” and and “Empty Choices” correctly. While we found examples
for the later one only in an old version of the Linux kernel (version 2.6.33.3), the first one
is still part of a more recent version of Linux (version 3.19). Contrary to Satyr, KConfig
Reader (XML) supports constraints containing comparisons of Strings and Numbers.

Also KConfig Reader’s translation into RSF files can be used for writing own analysis
tools. This tool can handle most of the concepts of KConfig as it relies on a patched
version of dumpconf, which in turn relies on menuconfig. However, it does not cover the
option modules attribute and can not distinguish between a “recursive dependency” and
a structured choice, if an if statement is modelled inside a choice. Both observations
should not be very problematic, since recent versions of Linux still controlled over a
config option named as MODULES and “recursive dependencies” are displayed as warnings
by menuconfig and also during the translation of KConfig Reader. We expect that the
XML files produced by KConfig Reader (XML) have at least the same quality, because
of the improved results of the downstream translations. However, since we did include
the generated XML files into our analysis, we cannot guarantee that.

144

Sl

Undertaker KConfigReader KConfigReader (XML) LVAT
Observation Section || Satyr | dumpconf | rsf2model | CNF | RSF | Model | Model CNF
Handling Attribute | 2.1 X X X X X X X X X
option modules
Constraint Precedence | 2.1 v v X v v v v v v
Missing Config Options | 2.1 v v v v v v v v v
Selection of Nested | 2.4.1 v X X X X X X
Config Options
Default Value m for | 2.4.2 v X v v v v X
Booleans
Default Value m for Tris- | 2.4.2 X v v v v v v v X
tates
Tristate Choice with | 2.4.3 v v v — v - v v X
Boolean Config Options
Boolean Choice with | 2.4.3 X v v X v X X X X
Tristate Config Options
Structured Choices 2.4.4 v X X X v X v v v
Recursive Dependency | 2.4.5 v X v v v v v v v
inside a Choice
Empty Choices 2.4.6 X v X - v - - - X
Choices Without a | 2.4.7 X X X X v X v v -
Prompt
Recursive Dependency | 2.4.8 v X X X X X v v X
inside a Choice via an
if
Multiple Default Val- | 2.4.9 v X X v v v v v v
ues inside a Config Op-
tion

Table 3.2: Summary of tool analysis (— = translation aborted; X = incorrect translation; @

= problematic; v/ = correct translation).

Chapter 4

Summary

In this technical report, we contributed to a better understanding of the Konfig semantics
and analysed existing KConfig translators. We started with a compact introduction of
the documented concepts of KConfig and complemented this with a systematic analysis
of undocumented interactions.

In the second part, we analysed the capabilities of existing analysis tools, used in
scientific research. We started with an introduction of generated output formats and
the resulting capabilities. We presented the results of the analysis in Table 3.2. These
results can be used to select an appropriate tool for performing own analysis, but also
for improvement of these tools.

The results presented in Chapter 3 influence published analysis results, as they were
gathered with the tools analysed here. LVAT was used to analyse the structure of KConfig
models, like breadth and depth of generated Feature Models or the number of XOR groups
[BSLT13]. At least the analysis regarding the breadth and depth of the model should be
correct, because LVAT is considering constraint hierarchies correctly. However, we expect
problems regarding constraint analysis as LVAT is not aware of all corner cases.

146

Acknowledgements

This work is partially supported by the Evoline project, funded by the DFG (German
Research Foundation) under the Priority Programme SPP 1593: Design For Future —
Managed Software Evolution. Any opinions expressed herein are solely by the authors
and not of the DFG.

147

Bibliography

[BSL+12]

[BSL*13]

[Kcoa]

[kcob]

[KCo14]

[lin]

[Pro]

[Sat93]

Thorsten Berger, Steven She, Rafael Lotufo, Andrezj Wasowski, and Krzysztof
Czarnecki. Variability Modeling in the Systems Software Domain. Technical
Report GSDLAB-TR 2012-07-06, Generative Software Development Labora-
tory, University of Waterloo, 2012.

Thorsten Berger, S. She, R. Lotufo, A. Wasowski, and Krzysztof Czarnecki. A
Study of Variability Models and Languages in the Systems Software Domain.
IEEFE Transactions on Software Engineering, 39(12):1611-1640, Dec 2013.

https://code.google.com/p/linux-variability-analysis-tools/wiki/
KconfigExtracts. Last visited 13.06.2015.

kconfigreader. https://github.com/ckaestne/kconfigreader. Last visited
15.05.2015.

KConfig Language Specification. https://www.kernel.org/doc/
Documentation/kbuild/kconfig-language.txt, 2014. Last visited
04.03.2015.

linux-variability-analysis-tools. https://code.google.com/p/linux-

variability-analysis-tools/. Last visited 08.06.2015.

https://code.google.com/p/linux-variability-analysis-tools/wiki/
PropositionalTranslation. Last visited 29.06.2015.

Satisfiability =~ Suggested Format. ftp://dimacs.rutgers.edu/pub/
challenge/satisfiability/doc/satformat.dvi, 1993. Last visited
04.03.2015.

CADOS Undertaker. http://vamos.informatik.uni-erlangen.de/trac/
undertaker. Last visited 15.05.2015.

148

https://code.google.com/p/linux-variability-analysis-tools/wiki/KconfigExtracts
https://code.google.com/p/linux-variability-analysis-tools/wiki/KconfigExtracts
https://github.com/ckaestne/kconfigreader
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://code.google.com/p/linux-variability-analysis-tools/
https://code.google.com/p/linux-variability-analysis-tools/
https://code.google.com/p/linux-variability-analysis-tools/wiki/PropositionalTranslation
https://code.google.com/p/linux-variability-analysis-tools/wiki/PropositionalTranslation
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
http://vamos.informatik.uni-erlangen.de/trac/undertaker
http://vamos.informatik.uni-erlangen.de/trac/undertaker

	Introduction
	KConfig
	Concepts
	Systematic Analysis of KConfig's Capabilities
	Non-Critical Observations
	Hierarchies inside String/Numerical Config Options
	Depends for Tristate Config Options
	Numbers with String Defaults
	Range of Numerical Config Options
	Choices with nested Strings/Numerical Config Options
	Choices Nested in Other Choices
	Prohibited Attributes for Choices
	If Used in Constraint Hierarchies
	Selected Config Option of a Constraint Hierarchy

	Critical Observations
	Selection of Nested Config Options
	Default Value m
	Tristate Choice with Boolean Config Options
	Structured Choices
	Recursive Dependency inside a Choice
	Empty Choices
	Choices Without a Prompt
	Recursive Dependency inside a Choice via an if
	Multiple Attributes inside a Config Option

	Tool Analysis
	Analysed Tools
	Undertaker
	KConfig Reader + KConfig Reader (XML)
	LVAT
	Tool Summary

	Handling Attribute option modules
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Constraint Precedence
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Missing Config Options
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Selection of Nested Config Options
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Default Value m for Booleans
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Default Value m for Tristates
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Tristate Choice with Boolean Config Options
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Boolean Choice with Tristate Config Options
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Structured Choices
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Recursive Dependency inside a Choice
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Empty Choices
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Choices Without a Prompt
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Recursive Dependency inside a Choice via an if
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Multiple Default Values inside a Config Option
	Undertaker
	KConfig Reader
	KConfig Reader (XML)
	LVAT

	Summary

	Summary

