
Engineering Virtual Domain-Specific
Service Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document presents the methodologies, languages, and tools proposed in INDEN-
ICA for the holistic elicitation of requirements. The document is split into four parts:
Part 1 is the Requirement Engineering process derived from Product Line Engineering
and transferred to Platform as a Service, Part 2 is IRENE, the goal-based solution for
stating the actual requirements of the service platform, Part 3 is about user-centric
Requirement Engineering, and Part 4 deals with Return on Invest calculation.

Document ID: INDENICA – D1.2.1
Deliverable Number: D1.2.1
Work Package: 1
Type: Deliverable
Dissemination Level: Public
Status: Final
Version: 1.4
Date: 2011-09-30
Contributing Partners: SIE and PDM

Requirements Engineering
Framework, Language and Tools

for Service Platforms

INDENICA D1.2.1

 2

Version History
0.1 01 July 2011 Initial version

1.0 31 August 2011 Preliminary content

1.1

1.2

1.3

1.4

05 September 2011

10 September 2011

17 September 2011

30 September

IRET added

Almost complete version

Version for internal review

Final Version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents .. 4

List of Acronyms .. 7

1 Introduction... 8

2 Requirements Engineering for Platforms as a Service 10

2.1 RE for Domain Engineering... 11

2.1.1 Requirements Management ... 11

2.1.2 Requirements Development ... 11

2.2 RE for Application Engineering ... 14

2.2.1 Requirements Management ... 14

2.2.2 Requirements Development ... 14

3 IRENE ... 17

3.1 Requirements elicitation .. 17

3.2 KAOS .. 19

3.3 Fuzzy goals ... 24

3.4 Adaptation goals .. 28

3.4.1 Adaptation actions ... 29

3.5 Variability ... 31

3.6 IRET.. 32

3.6.1 IRET and Eclipse.. 33

3.6.2 IRET elements... 35

3.6.3 Graphical interface ... 38

3.6.4 Creating and saving models .. 40

4 User Centred Requirements Engineering ... 43

4.1 Motivation ... 43

4.2 User Centred Design .. 45

4.2.1 Requirements Engineering and User Centred Design 47

4.3 User Centred Dimensions ... 48

4.3.1 User level dimension .. 49

4.3.2 Importance dimension ... 49

4.3.3 Requirements dimension.. 50

4.3.4 Connection to the Requirements Engineering process steps 50

INDENICA D1.2.1

 5

4.3.5 Mosaics of Requirements Priorities .. 51

4.4 Agile Requirements Enineering for PLE... 53

4.4.1 User centric Requirements Engineering with SCRUM 55

4.4.2 Requirements Engineering Organization Options 57

4.4.3 Product Line Engineering Approach Using SCRUM 58

5 ROI Estimation for Service Platforms ... 61

5.1 Estimating the development ROI for PLE .. 61

5.2 How to make the PLE cost calculation usable ... 63

5.3 Estimating the ROI for a migration to PaaS ... 65

5.4 Cost estimation in a migration environment .. 66

5.5 Summary and outlook .. 67

6 References ... 68

Appendix ... 69

Installation .. 69

INDENICA D1.2.1

 6

INDENICA D1.2.1

 7

List of Acronyms

AE
Application Engineering

DE
Domain Engineering

EMF
Eclipse Modeling Framework

GMF
Graphical Modeling Framework

IRENE
Indenica Requirements ElicitatioN mEthod

IRET
IREne Toolset

LTL
Linear Temporal Logic

PaaS
Platform as a Service

PLE
Product Line Engineering

RE
Requirements Engineering

PO
Product Owner

ROI
Return On Invest

INDENICA D1.2.1

 8

1 Introduction

This document presents the methodologies, languages, and tools proposed in IN-
DENICA for the holistic elicitation of requirements. The document is split into four
parts: Part 1 is the RE process derived from PLE and transferred to PaaS, Part 2 is
IRENE, the goal-based solution for stating the actual requirements of the service
platform, Part 3 is about user-centric RE, and Part 4 deals with RoI calculation.

As for the goal-oriented solution, the document proposes IRENE (Indenica Require-
ments ElicitatioN mEthod). This proposal borrows from KAOS, which is a well-known
requirements elicitation framework, and also from some previous work done at
Politecnico di Milano, to provide the user with a “complete” solution to elicit the
“usual” functional and non-functional requirements, but also to state the foreseen
adaptation capabilities and also the requirements in terms of the variability that
should be embedded in the system-to-be. Moreover, requirements can be classified
as either crisp, that is, they are either satisfied or not satisfied, and fuzzy, to embed
flexibility in the system and be able to reason in terms of different degrees of satis-
faction. The idea is to offer a comprehensive and homogenous solution to let users
specify the requirements of their INDENICA platforms, even if the proposal can cover
a wider spectrum.

IRENE offers a set of graphical symbols to let the user state the structure of the re-
quirements, and also some textual annotations to refine and better specify the con-
cepts. As for this last aspect, IRENE can be used in two different ways. Annotations
can be added in the form of natural language, to ease the user in his/her work, but
also to allow for an incremental specification of requirements, but they can also be
stated using formal notations. The current version of IRENE is prescriptive as far as
requirements and adaptation are concerns, while it is still open as for variability.

Even if IRENE could easily be used to specify single applications, the focus on service
platforms imposes a methodological shift. We think that a platform could be speci-
fied as if it were a “conventional” single solution, whose aim is to provide services to
others, which in turn may create different applications. But, it could also come from
the identification of some “reference” applications, which are then used to general-
ize the concepts and define a single and coherent specification. In the first version of
IRENE, this blending process is mainly in the head of the analyst, but we plan to ex-
tend it and provide suitable solutions in the next (and final) version.

A prototype tool called IRET (IREne Toolset) supports all these aspects. IRET is im-
plemented as an Eclipse plugin and fully supports IRENE to allow users easily define
complete and coherent requirements models.

For User Centric Requirements Engineering we focused on the definition and on
methods how to put the user into the centre of the elicitation and prioritization pro-
cess. We propose a new visualization for the prioritized requirements to get better
overview for the overall priority of the requirements and for the decision about plat-
form or application requirement. Also SCRUM as agile method is analysed how it

INDENICA D1.2.1

 9

focuses on the user and how Product Line Engineering (PLE) and platform develop-
ment could be integrated into agile development using SCRUM.

Return on Invest (ROI) calculations are basic for decision support, whether an organi-
zation will spend money on a new system or not. The ROI Estimation method for
Service Platforms is derived from the methodology developed for Product Lines. It is
extended by a set of additional parameters. It allows estimating the base figures and
bringing them into a structured context, represented by a set of formula. The result
is an estimated Return on Investment for introducing a platform approach. The
method allows to clearly identify assumptions and thus helps to understand the in-
fluencing factors, identify risk and thus support the decision process when introduc-
ing a service platform.

The rest of the document is organized as follows. Section 2 provides a brief introduc-
tion to requirements engineering for product lines in the context of INDENICA and
frames the document. Section 3 introduces IRENE, along with its tool support called
IRET. Section 4 introduces user centric requirements engineering. Section 5 presents
the methodology for estimating the return on investment, and Section 6 concludes
the document.

INDENICA D1.2.1

 10

2 Requirements Engineering for Platforms as a Service

As described in [SotA], the main characteristics for Product Line Engineering (PLE)
consist in:

 The existence of two different development processes:
o Domain Engineering (DE):

The process of software product line engineering, in which the common-
ality and the variability of the product line are defined and realized.

o Application Engineering (AE):
The process of software product line engineering, in which the applica-
tions of the product line are built by reusing domain artefacts and exploit-
ing the product line variability

 Variability as a core concept for PLE
 A platform for the product line
 A reference architecture

As one main principle of PLE is building a platform we propose to transfer require-
ments engineering for PLE to the virtual service platform of the Indenica project. In
the Indenica context, the applications of the product line would be the different ap-
plications using the services provided by the platform.

Figure 2.1 shows Requirements Development within PLE process.

Figure 2.1 Domain and Application Requirements Development

For all following considerations regarding “Requirements Development in the con-
text of PLE” we define the workflow in Figure 2.2 as a process basis:

INDENICA D1.2.1

 11

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
Elicitation

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
ElicitationScoping

RE for Application Engineering

RE for Domain Engineering

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
Elicitation

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
ElicitationScoping

RE for Application Engineering

RE for Domain Engineering

Figure 2.2 Requirements Development as process basis for PLE

In the following sections the RE process for product lines is described in more detail,
with challenges for RE arising from product line context. This is the basis for further
research.

2.1 RE for Domain Engineering
Domain Engineering is a specific discipline necessary when developing product lines.
In the Indenica context this discipline will be used to design the virtual service plat-
form

The domain engineering process deals with the development of all parts of the
product line which are common to all applications of the product line or a specific
number of diverse applications of the product line. This has effects on different steps
of the requirements engineering process.

2.1.1 Requirements Management
The main purpose of requirements management in the context of Domain Engineer-
ing is to ensure the consistence of requirements common to all related applications.

Major tasks are consequently:

 Tracing requirements back to their origin
 Managing cross-references between requirements
 Tracing requirements forward to their implementations
 Managing requirements changes

2.1.2 Requirements Development
The main purpose of requirements development in the context of Domain Engineer-
ing is to evolve the requirements common to all related applications or a well-
defined subset of those applications and to document them in a structured manner.

All activities (already well-known for requirements development within product de-
velopment) have to be fulfilled on a higher degree of complexity.

Additionally to those tasks (known for general requirements development), Domain
Engineering requires an additional process step.

All these specific characteristics are described in the following chapter.

INDENICA D1.2.1

 12

Scoping:

First of all it is crucial to define the scope for domain engineering (the platform sys-
tem or core asset base and its boundaries).

Based on the results of the analysis for goals and strategies of the product portfolio
(roadmap and strategy), the product line manager has to determine the scope for
the platform.

Output of this process step is a “Product Line Strategy”, which is the base for the
following Domain and Application Engineering Process.

Elicitation:

The main challenges concerning requirements elicitation within domain engineering
are [Pohl et al. 2005]:

 Identification of requirement sources for the whole product line
First challenge in eliciting requirements for the whole product line is to identify
the range of requirements sources. A promising approach for identification is to
consider all already existing applications and their requirements to the product
line, as in most cases product lines are developed based on already existing ap-
plications.
As a product line may cover many diverse applications, this range of require-
ments sources possibly appears very heterogeneous and even contradictory.
This leads to the next challenge:

 Identification of common requirements (commonality analysis)
The central benefit of PLE is the commonality of artefacts across diverse applica-
tions. For requirements engineering this implies the existence of common re-
quirements for several applications.

o A proven method for the evaluation of common requirements is the "ap-
plication - requirements matrix". In this matrix it is listed which applica-
tion is effected by which requirement. Requirements which appear for all
applications may be identified as common requirements.

o Another method is the priority-based analysis:
Different stakeholders are asked to prioritize a given set of requirements.
A specific algorithm calculating the relevance of each requirement for the
whole product line may give indication of the availability of common re-
quirements.

 Identification of variable requirements (variability analysis)
The complementary analysis to commonality analysis is the variability analysis.
It is performed using the same methods as commonality analysis:

o application - requirements matrix
o priority based analysis

Requirements which are assigned only to a few applications or are high-
rated only by a few stakeholders may be identified as variable require-
ments.

 Monitoring of requirements along their lifecycle
Requirements may change over their lifecycle from common to variable require-

INDENICA D1.2.1

 13

ments. So it is important to monitor the requirements, if the classification of the
requirements is still valid.

Analysis:

The main challenges concerning requirements analysis within domain engineering
are [Pohl et al. 2005]:

 Consistency Check
see [Lauenroth/Pohl]

 Defining Requirements Variability
Based on the results of the commonality and variability analysis, it is essential to
develop a variability model which illustrates:

o variants
o variation points
o variability dependencies

Documentation:

The main challenges concerning requirements documentation within domain engi-
neering are:

 Documenting variability in requirements artefacts
As well as in general requirements engineering, there are different ways of doc-
umenting requirements. In domain engineering the additional challenge lies in
the documentation of variability:

o Natural-language documentation
It is helpful to use graphical elements

o Documentation by graphical models
 Describing requirements variability in a feature tree
 Describing requirements variability in a Use Case model
 Describing requirements variability in other models

 Tracing between artefacts and model
For all options it is essential to define and maintain the traceability from variabil-
ity model to the chosen artefact.

Validation:

The main challenges concerning requirements validation within domain engineering
are:

 High quality for common requirements
As common requirements have an immense impact on several or even all appli-
cations of a product line, the requirements engineer in domain engineering has
to focus especially on the quality of the requirements.
The quality aspects for general requirements engineering are valid to a special
degree.
Due to the complexity in domain engineering, it is an even bigger challenge to
comply quality attributes as "unambiguous" or "consistent".

INDENICA D1.2.1

 14

 Validation of variants
Depending on the relevance of requirements for specific variants, the specific
validation attributes of the requirements have to be set accordingly.
Thus two effects can be noticed:

o All relevant scenarios are covered by validation -> all variants and their
combination can be validated

o Unrealistic scenarios are not considered by validation -> no need for use-
less excessive validation efforts

2.2 RE for Application Engineering
The main characteristic for requirements engineering within application engineering
consists in the presence of already existing requirements artefacts arisen from do-
main engineering. In the INDENICA context this will be the virtual service platform.
The application build by application engineering will be the applications using the
services from the platform.

These results serve as essential input for all RE activities within application engineer-
ing, as the main target of product line engineering is to reuse as many artefacts built
in domain engineering as possible for application engineering.

Thus for requirements engineering that implies the reuse of existing RE artefacts
from domain engineering as [Pohl et al. 2005]:

 Common requirements
 Variable requirements

INDENICA Work Package 2 focus on variability modelling in the specific Indenica ser-
vice oriented context.

2.2.1 Requirements Management
Requirements Management for Application Engineering has to ensure the consist-
ence of all requirements of each specific application to

 other requirements of the same application

 the requirements of the core asset base

 the implementations within the applications

 the changes along the product lifecycle

2.2.2 Requirements Development

Elicitation:

The main challenges concerning requirements elicitation within application engi-
neering are [Pohl 2005]:

 Communication of requirements artefacts from domain engineering to the
stakeholders
Different from elicitation for single product development, in application engi-

INDENICA D1.2.1

 15

neering it is necessary to inform all relevant stakeholders of the applications
about the variety of already existing common requirements and variable re-
quirements assigned to specific variants and the related variability model.
Based on these prerequisites the next activity has to be executed:

 Establishing a set of variants appropriate for specific application
Using now this input from domain engineering, it is necessary to select - beside
the mandatory common requirements - appropriate variable requirements from
different variants.
After this evaluation a certain set of requirements - common requirements and
variable requirements arisen from different variants - is defined which already
fulfil a certain percentage of the original requirements of the stakeholders.
The remaining requirements not covered by the selected domain requirements
are considered in the next step:

 Establish the delta between domain and application requirement artefacts:
Usually not all requirements of the application can be satisfied by domain re-
quirements. These application specific requirements have to be elicited addition-
ally to the domain requirements and are subject of the subsequent analysis activ-
ities.

Analysis:

The main challenges concerning requirements analysis within application engineer-
ing are [Pohl 2005]:

Additionally to the analysis activities like "Consistency checking", as described in the
chapter of domain engineering, it is essential to regard the relationships between
domain and application engineering activities and artefacts. Especially the analysis of
deltas between the domain variability model and the application variability model is
crucial for the further engagement in requirements analysis:

 Impact analysis for deltas between application requirements to existing variabil-
ity model w.r.t. existing variation points:

o If for an already existing variation point a specific option for this applica-
tion is missing, it might be necessary to add a new variant to an existing
variation point.

o If an existing variation point does not cover the correct variants, it might
be necessary to modify these existing variants

 Impact analysis for deltas between application requirements to existing variabil-
ity model w.r.t. common requirements:
A common requirement might convert from common to variable, if a new aspect
- not yet considered in variability model - has been introduced. So a new varia-
tion point has to be added.

 Decision about implementation of deltas
For each identified delta, it has to be decided, if this new part of the variability
model will be developed. Here, structuring and prioritizing activities as described
in the part "Domain Engineering" might be helpful.

Documentation:

INDENICA D1.2.1

 16

The main challenges concerning requirements documentation within application
engineering are [Pohl et al. 2005]:

 Documenting all requirements used from domain engineering:
Either the common requirements mandatory for all applications of this product
line either the variable requirements of the domain variability model used for
this application have to be described here.

 Delta between domain and application requirements
All requirements which have not been derived from domain variability model
(requirements which are new or modified)

 Application variability model:
Also the variability model of this application with its variants has to be described.

INDENICA D1.2.1

 17

3 IRENE

This section introduces the first version of IRENE, the Indenica Requirements Elicita-
tioN mEthod, which we propose for the definition/elicitation of the requirements of
innovative service platforms. IRENE is centred on an extended goal-based solution
for requirements elicitation.

IRENE uses the KAOS model [van Lamsweerde 2009] as a starting point to represent
requirements. This choice is due to the flexibility of goal-oriented methodology, and
also to their ability to show the alignment of the system-to-be with stated objectives
through the re nement relationship among goals. Furthermore, the representation
of the goals’ operations eases the derivation of the functional representation and
the application, but also of the monitoring directives that we want to deploy at
runtime. IRENE extends KAOS is some different directions:

 It adds the notation of adaptation goal to emphasize the importance of adapta-
tion and evolution in modern software systems (service platforms) from the very
beginning of the design process;

 It introduces the notion of crisp and fuzzy goals to distinguish between require-
ments whose satisfaction is either fully true or false, and requirements that can
also be partially satisfied. Fuzzy goals allow us to quantify the degree x (x is be-
tween 0 and 1) to which a goal is satisfied/violated, and provide the flexibility
necessary in systems where some goals cannot be clearly measured (soft goals),
properties are not fully known, their complete specification –with all possible al-
ternatives– would be error-prone, and small/transient violations must be toler-
ated;

 It complements the different notation elements with further information about
variability. In this first version, IRENE only supports annotations that can be asso-
ciated with the different modelling elements to let the analysts concentrate on
the actual variability that they want to embed in the running solution;

 It introduces the notion of family of related specification to better support the
idea of family of applications that in the end must be supported by the same
platform. This concept is only introduced in this first version of IRENE, but it will
be fully developed in the next version.

Adaptation goals can be specified at different degrees. Foreseen adaptations are
fully specified, since they represent the corrective actions that must be performed
for known problems. Partial adaptations are adopted to devise undesired situations
for which a corrective action cannot be identified at design time, but can be only
identified dynamically, depending on the current execution context. Finally, default
adaptations are adopted to solve cases in which foreseen adaptations are not effec-
tive enough, or the way the application designed is not satisfactory to achieve the
global satisfaction of stated goals.

3.1 Requirements elicitation
IRENE supports the elicitation of requirements for service platforms in different
ways. It is prescriptive in the set of graphical elements offered to the user to shape

INDENICA D1.2.1

 18

the requirements specification, but then it becomes quite flexible and liberal in the
way these elements can be used.

Figure 3.1: The two levels of IRENE.

Figure 3.1, explains the two levels of “rigour” offered by IRENE. Users are free to
shape their requirements and provide details in natural language, but they can also
add formal definitions of the different concepts. This two-step process helps users
work incrementally, but the latter also enables validation capabilities and automatic
transformations of specified artefacts. Any possible intertwining of the two levels is
admitted, but the two extremes (natural language only or complete formalization)
should be preferable. It is true however that the analyst may decide to only provide
informal descriptions of easy/well-known parties and concentrate on ---formalize---
the newest, most complex, and most obscure ones.

IRENE is a conventional KAOS-based requirements elicitation notation if the user
only considers “conventional” requirements. It becomes a bit more sophisticated if
the user distinguishes between crisp and fuzzy requirements (see Section 3.3); it is
even more complete when adaptation is taken into account (Section 3.4). Moreover,
since the INDENICA solution provides explicit variability modelling, requirements
must only capture the “variability requirements”, this means that the model must
offer the capability of identifying the needs as for variability is concerned, but not
the actual variability models, which will come after the engineering phase.

Each requirements specification can be organized in different ways. One single mod-
el is usually enough for small-to-medium systems, while different models are manda-
tory for large systems. Given the hierarchical nature of IRENE models, the user can
easily identify suitable slices and deal with them independently. Usually, the high-
level goals define the first view on the system; then the other goals can be devel-
oped in specific models. Again, IRENE does not prescribe any particular template for
organizing requirements, but the users are free to identify the set of models that fit
their needs.

Since IRENE has been conceived to ease the identification of the requirements of
service platforms (both platforms that offer services and platforms as a service), the
user can follow different processes to provide a complete and coherent specification
of the requirements of the platform-to-be. In some cases, the elicitation can easily
be organized around a single model, or a hierarchy of models as described above. It
is also true that the requirements for a complete platform may come after modelling
(some of) the applications it should support. This is why IRENE also envisions the
idea that a single specification in reality originates from some different/independent
models. The actual fusion of these different models could not be easy since different
models (applications) may present conflicting or incomplete requirements. Current-

INDENICA D1.2.1

 19

ly, IRENE does not provide any special purpose solution to ease the assembly, but we
plan to provide better support in the next version.

3.2 KAOS
A KAOS model comprises four sub-models: goal model, object model, agent respon-
sibility model, and operation model, which are related through inter-model con-
sistency rules. They ease the reasoning about the di erent views of the system and
the generation of a direct mapping onto the underlying implementation.

A goal is an objective (of some stakeholders) for the system, which includes both the
software and its environment. The goal model de nes the main objectives the appli-
cation should meet. It defines a hierarchy of goals that relates the high-level goals to
low-level system requirements. Goals can be re ned into conjoined sub-goals (AND-
re nement) or into alternative combinations of sub-goals (OR-re nement). The satis-
faction of the parent goal depends on the achievement of all (for AND-re nement)
or at least one (for OR-re nement) of its underlying sub-goals. Goals decomposition
can be accomplished by means of formal rules [15]. The re nement of a goal termi-
nates when it can be “operationalized” or, in other words, it can be decomposed into
a set of operations.

Figure 3.2: Example goal model.

Goals are formally expressed in terms of LTL (Linear Temporal Logic [Pnueli 77]) ex-
pressions1. Each goal can follow a particular pattern depending on its temporal be-
haviour: achieve/cease goals are speci ed through sometimes in the future/past
operators, while maintain/avoid goals are speci ed through always in the fu-

1 They can be specified through operators like sometimes in the future (), sometimes in the past (),
always in the future (), always in the past (), always in the future unless (W), always in the past
back to (B), always in the future until (U), and always in the past since (S).

INDENICA D1.2.1

 20

ture/past operators. While KAOS prescribes users to state goals in LTL, we think that
this would be too much for IRENE (at least in the first version), and thus we leave the
user the freedom to either specify goal formally or simply identify their main ele-
ments through natural language. Needless to say, the subsequent “use” of these
goals will be very different in the two cases.

Figure 3.2 shows the KAOS goal model of a domain-specific platform in charge of
providing services about news. The general objective of the platform is to provide
news to its customers (G1), which is AND-refined into sub-goals: Achieve[Find news]
(G1.1), Achieve[Show news] (G1.2), Achieve[High customer satisfaction] (G1.3), and
Maintain[Low provisioning costs] (G1.4), expressed in terms of the number of serv-
ers used to provide the service. News can be provided both in text and graphical
mode (see OR-refinement of goal G1.1 into goals G1.1.1 and G1.1.2). Text mode con-
sumes less bandwidth and performs better in case of many requests. Customer satis-
faction is increased by providing news in a nice way and within short response times
(see AND-refinement of goal G1.3 into goals G1.3.1 and G1.3.2).

Goals G1.3 and G1.4, together with their refining goals, represent non-functional
requirements. Goal G1.3.1 is a soft goal, since there is not a clear-cut criterion to
assess whether news have been provided in a nice way. While goal G1.3.2 and G1.4
can be satisfied in different ways depending on the distance between the actual re-
sponse time and the maximum tolerated delays (for goal G1.3.2), or the difference
between the number of used servers and the number of servers available.

Goals are associated with a priority depending on their criticality. For example, goal
G1.1.1 has lower priority (p = 2) than goal G1.1.2 (p = 3), since providing news in
graphical mode is more important than providing news only in text mode. Goals can
also contribute (positively/negatively) to the satisfaction of other goals. This relation
is represented in the goal model through contribution links ---dashed lines in Figure
1--- and an indication of the contribution (with x between -1 and 1). For example,
despite the graphical mode is slower, it positively contributes to the customer satis-
faction (contribution link between goals G1.1.2 and G1.3.1). Short response times
may require the adoption of the text mode to provide the news (see conflict be-
tween goal G1.3.2 and goal G1.1.2) or may increase the provisioning costs since they
may require a higher number of servers.

Even if IRENE is less prescriptive than KAOS, to provide the reader with a „complete
and consistent” example, Table 3.1 presents the formal definitions of the goals of
Figure 3.2. For example, goal G1.1.2 asserts that after a request is received provided
news must be about supplied keywords and date, and must come with images.

INDENICA D1.2.1

 21

Table 3.1: Formalization of the goals of Figure 1

The vocabulary used in the goal model introduces the main elements of the plat-
form. These elements are fully specified in the object model. Objects can be: enti-
ties, associations, events, or agents. Each object is characterized by the following
attributes: name, identifier, type (entity, event, agent, association), domInv, which
lists known domain properties about the object as invariants holding in any object
state; and init, which states the initial value of its attributes and associations. The
object model for the new platform is shown in Figure 3.3.

Entities are objects providing informative content. The previous goal definitions in-
troduce entities: News, Request, and Customer. Each entity is characterized by a
unique identifier (id). News is qualified by text content (attribute text), and a set of
images (attribute images). Request is described by a topic (keyword) and a date
(date). Customer represents the user issuing a request, and s/he is characterized by
a name (user) and a password (pwd).

INDENICA D1.2.1

 22

Figure 3.3: Object model of the example system

Associations are conceptual links between objects, where each linked object plays a
specific role in the association. A multiplicity is given for each role that specifies the
minimum and maximum number of object instances that can be associated. They
also have cardinality, which is the number of objects linked by it2. The associations
devised for our example are NewsRequest and NewsCollection. The former links a
customer to the request he/she has issued; the latter links a request to a set of
matching news.

Both entities and associations can evolve through a set of states, depending on the
values assumed by their attributes. In the example, all entities/associations have
only one state, with the exception of association NewsCollection that has a default
state, in which its news are empty and its request has not been initialized yet, state
req_initialized, when the customer has already issued a request (i.e, role request is
initialized, and state news_received when news are collected (i.e., role news is not
empty).

Events are instantaneous objects, corresponding to something that may happen dur-
ing the execution the services provided by the platform. As for events, the example
requires: ReceiveRequest, that is, a request is issued by the user, Collect, that is,
news can start to be collected, and ShowNews, that is, news are sent to the user.
These events and their corresponding attributes are reported in Figure 3.3.

Agents can be software components, external devices, and humans in the environ-
ment, responsible for the satisfaction of some goals. Agents3 can monitor and control

2 Associations can be reflexive, when the same object appears in the association at multiple positions under

different roles.
3 An agent monitors an object if it can get the values of the object's attributes. An agent controls an object if its

instances can modify the object's attributes. Finally, an agent controls an association if can create/delete the
association instances.

INDENICA D1.2.1

 23

entire objects or only some of their attributes, as shown in Figure 3.4. For example,
agent A4 can monitor association NewsCollection and can modify its news (including
images).

Figure 3.4: Agents for the example system.

Different agents can be responsible for the realization of a goal, depending on the
objects they can monitor/control. This way, the agent responsibility model assigns
goals to agents, responsible for their achievement (see Figure 3.2). As for agents,
agent A1 is the user issuing the requests and to whom news must be shown. Agents
A3 and A4 can find news in both text and graphical mode, while agent A2 can only
find news in text mode. In our platform, an agent will be a service provided by the
platform itself. For example we foresee a service Retailer, which offers products (to
fulfill goal Achieve[ProductFound]), a service Payment, responsible for electronic
payments (goal Achieve[CCPayment]) and one or more mobility services, allowing
users to book a delivery method (goal Achieve[Delivery]).

Leaf goals are also associated with the operations necessary for their achievement
(operation model). An operation is an input-output relationship over a set of ob-
jects. Operations are specified by their effects on the domain: domain pre- and post-
conditions (DomPre and DomPost). A domain pre-condition characterizes the state
before applying the operation; a domain post-condition defines a relationship be-
tween the state before and after applying the operation. Operations are also speci-
fied through required pre-conditions (ReqPre), triggering pre-conditions (TrigPre)
and required post-conditions (ReqPost). Required pre-conditions define those states
in which the operation can be applied. Triggering conditions define those states in
which the operation must be immediately applied, provided the domain precondi-
tion is true. Required post-conditions define additional conditions the application of
the operation must satisfy.

The news provider must support the following operations: Collect Requests, Find
Text Content, Find Graphical Content, and Provide Content. The definition of these
operations is provided in Table 3.2. The definition of operation Find Text Content is
similar to operation Find Graphical Content, except for the required post-condition.

INDENICA D1.2.1

 24

Table 3.2: Definition of the operations of the service platform.

For example, operation Find Graphical Content, shown above moves the system
from a state in which the news that have to be collected are initialized (DomPre) to a
state in which a set of suitable news is available (DomPost). This operation is trig-
gered as soon as the collection of news matching provided keywords and date is
started (TrigPre). The effect of this operation is to collect a set of news that match
the date and keyword provided by the user (ReqPost) and contain images.

3.3 Fuzzy goals
As said before, KAOS only allows one to assess whether goals are fulfilled or not, and
there is no way to say “how much” a goal is satisfied/violated. This may be sufficient
for hard goals, but it is not satisfactory for soft goals, that can be satisfied up to a
given degree, or when we need to tolerate small violations. For example, KAOS is
good for goal G1.2 since we are only interested in knowing whether news are pro-
vided to the user within y time instants after they are collected.

In contrast, the use of KAOS to formalize goals G1.3.1 and G1.3.2 is not sufficient:
since goal G1.3.1 is soft, we can only infer its partial satisfaction (a value between 0
and 1) from the contributing goals (i.e., goal G1.1.2). While for goal G1.3.2 we may
want to tolerate “weak violations” that may happen when the end-to-end response
time of the news provider is a bit greater than what we would like to tolerate. Fur-
thermore, if we were able to track the level of satisfaction of these goals, we would
be able to adjust the behaviour of the system accordingly. For example, since goals
G1.3.2 and G1.4 are in conflict, one may try to find a compromise between the two.

INDENICA D1.2.1

 25

The less critical requirements (G1.4) can be relaxed depending on the satisfaction of
the other one (G1.3.2)4 to provide viable solutions.

This is why IRENE distinguishes between crisp and fuzzy goals. The fulfilment of the
former is boolean, while the latter can be satisfied up to a certain level between 0
and 1. Both types of requirements can be rendered in natural language, but the for-
mal version of IRENE requires that crisp goals be expressed in LTL, and fuzzy goals in
a fuzzy temporal language. This language allows one to state properties that, for ex-
ample, must be verified “almost always”, “within around t time instants”, “always
except for at most some x cases”, and so on. These two types of goals can easily co-
exist: crisp goals represent firm requirements, while fuzzy goals add a flavour of flex-
ibility. As commonly done for LTL we use the set of natural numbers as temporal
domain. Crisp formulas are self-contained, that is, they cannot include any fuzzy sub-
formula, while fuzzy formulas can also contain crisp sub-formulas.

The fuzzy language is based on the idea of membership function: it assigns a degree
of truth to each proposition. Possible values are: absolutely true (1), absolutely false
(0), or an intermediate degree of truth (a value in between 0 and 1). This document
only presents some hints of the formalization of the fuzzy language mainly aimed to
give an idea of how things work.

The semantics of fuzzy relational operators is shown in Figure 3.5(a), while the corre-
sponding crisp operators are presented in Figure 3.5(b). For example, x = 0 is abso-
lutely true only in 0, that is, the point in which the constraint is verified; it is abso-
lutely false in all the other points. Similarly x < 0 is absolutely true in (- , 0) and is
absolutely false in [0,). Fuzzy rela onal operators use a smooth func on to assign
a degree of satisfaction between 0 and 1 to those propositions that do not fully re-
spect the condition, but are close to it. For example, is absolutely true for the
points close to 0 ([-1,1]), has a degree of truth between 0 and 1 in the points near 0
(e.g., [-4,-1) (1,4]), and is absolutely false elsewhere. Given these definitions, crisp
membership functions are a special case of the fuzzy ones and can only assume val-
ues 0 and 1. This means that fuzzy goals can be considered a generalization of crisp
ones.

This language allows us to modify the definition of goal G1.4 and consider the num-
ber of adopted servers to quantify the severity of the violation. Needless to say, the
highest the number is, the worse the violation is. The goal can be redefined as fol-
lows: and the membership function of the relational operator is
similar to the fourth function shown in Figure 3.5(a), where the domain is the num-
ber of servers and the points in which the membership function is completely satis-
fied are those in $(- , N_MAX], while it gradually decreases its truth degree for
those points in (N_MAX,).

4 The less goal G1.3.2 is satisfied, the more goal G1.4 is relaxed.

ser ver s NM A X

x 0
of t rut

sectionanother

x 0
of t rut

sectionanother

[operators
that

areLthe

INDENICA D1.2.1

 26

|
o o o o

| |
x 0 x 0x 0

requirements

| 6x 0

(a)

x = 0 x > 0 x < 0
o o o o

x != 0

(b)

Figure 3.5: (a) Fuzzy membership functions for relational operators and

(b) Crisp membership functions for the same operators.

Different semantics are available for fuzzy boolean connectives. For example, for
operator , one can consider either the minimum of the two addends or their prod-
uct. The actual choice depends on the optimism one wants to embed in the require-
ments.

Besides considering the fuzzy connectives and propositions, we are also interested in
adding an intrinsic vagueness to temporal operators. Table 3.3 shows a brief com-
parison of crisp and fuzzy temporal operators. For example, for goal G1.3.2 we want
to tolerate the situations when the news provider is slightly late, and it takes a bit
more time to provide news. This corresponds to evaluating the satisfaction of goal
G1.3.2 by taking into account also some time instants greater than the maximum
delay. If this is set to t, one may use the membership function of Figure 3.6 to state
that any delay between 0 and t is perfectly acceptable, while the more the delay in-
creases, the acceptance decreases quite quickly.

INDENICA D1.2.1

 27

Table 3.3: Temporal operators.

Figure 3.6: Example membership function.

According to this semantics, goal G1.3.2 is redefined as follows:

Every time the formalization of a goal introduces a new membership function, we
must define its shape by taking into account the preferences of the different stake-
holders. Our approach requires that membership functions be limited and continu-
ous, and, in most of the cases, they have a trapezoidal shape (that can also degener-
ate into triangles). For each of these trapezoidal functions, we must define the do-
main ([d,D]) over which it can assume values between 0 and 1. We must also specify
two key points in the domain: the minimum (m) and maximum (M) values for which
the corresponding crisp formula would be true (i.e., the upper parallel side of the
trapezoid).

The user can tune the severity of these membership functions by expressing the gra-
dient of the segments that go from point (x,0), with x [d,m), to point (m,1), and
from point (M,1) to (y,0), with y (M,D]. Non-expert users can just specify a severity
level among: slow, medium, and high when specifying goals.

INDENICA D1.2.1

 28

3.4 Adaptation goals
During requirements elicitation, one must also define how the system-to-be should
adapt itself at runtime. For example if goal G1.2.1 is violated, since provided news
are not coherent with those requested by the user, the platform-to-be should select
a new agent to perform operation Find Graphical Content to try to meet the goal.
We must also restore the platform in a state in which news have been not collected
yet but a request has been already issued. To this aim, we define adaptation goals,
which state how the system should adapt itself by applying suitable actions. Each
goal is associated with:

 An event that triggers its execution (e.g., goal G1.2.1 is violated). A trigger ex-
presses a constraint on the satisfaction of a leaf goal and activates the execution
of the adaptation goal if the corresponding conditions are satisfied too.

 A condition for its actual activation (there are too many incoherent news). A
condition specifies properties of the system (e.g., satisfaction levels of conven-
tional goals, adaptation goals already performed) or the environment (e.g., do-
main assumptions) that must be true to activate an adaptation goal.

 The actual adaption plan. A plan defines what should be done on the system (and
on the goal model) to satisfy, or at least increase the satisfaction of, the goal that
is violated.

Again, IRENE allows the user to embed adaptation capabilities in two different ways.
Informally, through the use of the natural language, the user can simple provide
comments and suggestions for the designers of the system. If specified more rigor-
ously, triggers and conditions can be properly transformed into monitoring directives
for the actual platform, while adaptation plans define the skeleton of the adapta-
tion/recovery solutions.

In both cases, adaptations can be conceived as activities on the system, without
modifying the goal model, that is, without modifying the requirements behind the
system, and/or as changes in the model, which means that there are new/different
requirements that must taken into account.

Since the identification of all possible situations in which the system must adapt
could be very time consuming, and thus expensive, and in some cases all these pos-
sible situations cannot be foreseen, IRENE let the user free to distinguish between:

 Foreseen adaptations. These cases are those the user knows completely and
s/he wants to fully specify them. This means that they can be either those that
are considered to be more important, or the only ones the user is aware off. As
the name suggests, the adaptation goals that deal with these situations are fully
specified in the way the user prefers.

 Partial adaptations. These cases are more placeholders for possible problems
than complete solutions. The user knows the situation(s) in which there could be
problems, and s/he wants to highlight them, but there is not enough knowledge,
or resources, to specify corrective actions completely. Clearly, if the user decided
to only use natural language specifications, this case could be avoid since very
light definitions may “solve” the problem, at least from a syntactical point of

INDENICA D1.2.1

 29

view. With the full version of IRENE, which will require detailed specification, the
user must find the proper balance between effort spent and provided details.

 Default adaptations. These are the situations the user cannot really foresee.
There is no idea of when and how they may manifest, but there is anyway the in-
terest of saying what the system should do. Since the user does not know when
and how problems may arise, s/he can only identify some kind of general-
purpose solutions to keep the system at least in a consistent ---and safe--- state
also in these cases. These adaptations can be seen as “default” solutions: there is
nothing specific, but the system must try to keep itself alive. Obviously, there are
no triggers associated with these adaptations, but the user can only add condi-
tions to state some (general) conditions that must hold before applying the adap-
tation.

3.4.1 Adaptation actions
Besides the well-known natural language, IRENE allows the use to state adaptation
plans in terms of some predefined actions. If we consider the system level (i.e., the
goal model is not changed), IRENE provides two basic operations:

 perform(g, trans/o, trans), resumes the execution to the first operation of goal g
that is performed (in the first case), or to operation o, directly (in the second
case). The second parameter (trans) indicates whether g or o already belong to
the goal model or they must be added explicitly. In the former case, the execu-
tion must be resumed at the beginning of g/o starts. In the latter case, g/o must
be performed on the fly, without being added to the model.

 substitute(a1, a2/a1, a2, o), substitutes agent a1 with a2 for all operations per-
formed by a1 (in the first case), or only when a1 executes operation o (in the se-
cond case). We assume that both a1 and a2 have been already defined in the ob-
ject model.

If we work at goal level, the actions are:

 add(g1, g2[, ref]), adds conventional goal g1 among the refining goals of g2. If g2
is not refined by any goal, this action also adds a specific refinement (ref) to g2.

 remove(g), removes convention goal g, and if g's parent goal (g1) remain with no
descendants after the removal of g, it also removes the refinement link.

 add/remove(ag), adds/removes adaptation goal ag.
 modify(g, def), modifies the definition of a leaf goal g with another one (def).
 relax(g1, g2/g1, perc), relaxes one of the membership functions used in the def-

inition of goal g1, by reducing its slope depending on the satisfaction of g2 (in the
first case) or according to a given percentage perc (in the second case). Note that
if goal g1 contains more than one membership function in its definition, we as-
sume that this operation relaxes the outermost.

 add(o, g), adds operation o to goal g.
 remove(o), removes operation o.
 substitute(g1, g2 / op1, op2), substitutes conventional goal g1 with g2 (in the

first case), or substitutes operation op1 with op2 (in the second case).
 add/remove(obj), adds/removes an object obj. It can be an entity, an event, an

association, or an agent.

INDENICA D1.2.1

 30

Note that each adaptation can be performed up to a given number of times, config-
ured by the user.

Adaptation actions can be tuned according to the satisfaction level of conventional
goals. For example, if we deal with critical goals, or if a goal largely deviates from the
desired objective, an adaptation that keeps the goal model “as-is” is preferred to
another one that relaxes some membership functions or makes the goal model less
restrictive. In contrast, in those situations in which a goal cannot be completely satis-
fied (i.e., its satisfaction is always under a certain threshold), we must replace a goal
with another one or relax its membership function.

Figure 3.7: Adaptation goals for the News provider.

Some adaptations may require to be applied synchronously, at the execution point in
which the trigger and conditions are true. This can be useful to cope with failures in
the exact moment in which they take place. Otherwise, adaptations are applied
asynchronously.
Adaptation goals may conflict the same ways as conventional goals do. Conflicting
goals are in general associated with different priorities (with the most critical ones
having the highest priority).
The adaptation goals envisioned for our example are shown in Figure 3.7. Adaptation
goal AG1 is triggered when goal G1.1.2 is violated (i.e., its satisfaction is less than 1).
AG1 is performed when the satisfaction of goal G1.1.2 is less than 0.7 (condition) and
it comprises two basic actions: it changes the agent that performs operation Find
Graphical Content (A3), with another one (A4) and repeats the execution of the same
operation. AG1 is synchronous since adaptation must be applied when the trigger
and conditions are verified, since, in this case, we aim to cope with temporal failures
of agent A3. Adaptation goals AG2 and AG3 are triggered when goal G1.3.2 is violat-
ed (trigger). In particular, they are applied when the average value of the end-to-end
response time of the news provider is greater than 3 s (condition). AG2 switches to
text news (i.e., it substitutes goal G1.1.2 with goal G1.1.1 and operation Find Graph-
ical Content with Find Text Content). AG3 is applied if AG2 cannot be performed an-
ymore. It still tries to enforce the satisfaction of goal G1.3.2, by incrementing the

INDENICA D1.2.1

 31

number of servers in the pool according to the severity of violation (it performs op-
eration Increment Servers). Agent A5 can perform operation Increment Servers to
modify the number of servers (entity servers, external to the system) used by the
load balancer.
Adaptation goals AG1 is in conflict with both AG2 and AG3, since they try to enforce
conflicting goals. According to our policy, AG2 and AG3 are triggered first, since they
are associated with goal G1.3.2, which has higher priority (p= 5) than G1.1.2 (p = 3).
Finally, when goal G1.4 is violated (trigger) adaptation goals AG4 and AG5 can be
applied. AG4 is executed only if the satisfaction level of G1.4 is between 0.5 and 0.8.
It relaxes the membership function used to represent goal G1.3.2 depending on the
satisfaction level of goal G1.4. AG5 is applied only if the satisfaction level of goal
G1.4 is less than 0.5: it deletes adaptation goal AG4.
In this example partial adaptations may be necessary to handle context changes or
situations in which foreseen adaptations are not effective. An example of context
information for the news provider can be the device through which the customer
issues a request. For example, news are in general viewed from a laptop, but they
can be also requested from a smartphone. In this last case, the news provider must
offer news with the right resolution. Partial adaptations are also needed when the
response time of the news provider is too high (goal G1.3.2 is not satisfied) and all
possible adaptation goals (AG2, AG3) have been already performed. In this case, a
possible solution can send news via SMS.
The adoption of foreseen adaptations to handle these situations would not be a con-
venient choice. In fact, in the first case, the resolution suitable for a specific device
may be unknown at design time, or the provider may prefer to add an adaptation
only when necessary (e.g., the global satisfaction of the root goal, G1, is under a cer-
tain threshold). In the second case, one may prefer to embed a new adaptation only
when the adaptation goals (AG2, AG3) associated with goal G1.3.2 fail and cannot be
performed anymore. Furthermore, the adoption of a service that sends SMS may be
expensive, and the provider might prefer to stipulate a contract, only when it is
strictly necessary.
Default adaptations are used to embed some general-purpose solutions. For exam-
ple, the user can add suitable adaptation actions when the satisfaction of goal G1 is
under 0.3. The solution is to perform operation Change Resolution on the fly, before
invoking operation Show News. We also need to add object Device that encapsulate
necessary context information and agent A6 in charge of performing operation
Change Resolution.

3.5 Variability
Even if IRENE provides special-purpose constructs to support variability, the user can
actual specify it in two orthogonal ways. Analysts can exploit the OR decomposition
provided by the goal model to identify alternative solutions: functional goals, soft
goals, and also adaptation goals. This way of working is quite natural when the user
wants to emphasise the differences (alternatives) at goal level, but the actual varia-
bility of the system-to-be remains quite hidden. Working at goal level often imposes
a too wide granularity, and the precision (and amount of information) is limited. This
is mainly because variability is not addressed explicitly in the model, but it is inferred
as a consequence on designed models.

INDENICA D1.2.1

 32

In contrast, IRENE considers variability a first class citizen of the requirements elicita-
tion approach and provides suitable means to address it. In this first version, the user
can add variability annotations to each element of the model. We think that this op-
tion is not an alternative to the use of OR refinements, but the two different solu-
tions can easily coexist and should address variability in two different, but comple-
mentary, ways. Decompositions in the goal model should concentrate on what pro-
vided by the system, which would not really define system variants, but actually al-
ternatives that “all” variants should provide. In contrast, annotations let the analyst
concentrate on the differences among alternative configurations, customizations,
deployments, or versions of the system. IRENE does not forbid the use of OR decom-
positions as a means to materialize variability, but we think this would not be
enough, and users should be warned about the particular use of the feature. Again,
this is where annotations can be useful to help the user understand the actual mean-
ing of the different constructs.

The current version of IRENE is quite liberal as far as annotations are concerned.
They can be used to specify:

 Some particular characteristics of a goal. One may easily think of different levels
of qualities (soft goals) or variations of intended functionality (for example, dif-
ferent ways of showing news);

 Differences in the implementation of an operation. For example, requested could
be collected in different ways;

 Alternative values for some parameters of an entity. For example, one may want
to specify different (alternative) resolutions for the images that can be retrieved;

 Different responsibilities in the goal model. For example, goal A1 could be re-
sponsible for different operations under specific conditions;

 Expected behaviours of an actor. For example, again A1 may provide collected
request in different ways according to different modalities;

 The satisfaction of fuzzy goals in particular contexts. For example, the member-
ship function may change according to the different classes of users;

 Variants in the adaptation goals. For example, the adaptation may provide vari-
ants in its behaviour.

Note that some of these elements could also be added as explicit alternatives in the
goal model directly, but this would easily increase the complexity of the design mod-
els with many alternatives and dependences. Moreover, these models would be tan-
gled, and they would also hide the dependencies among the different alternatives.
IRENE provides a simple, but effective, means to allow the user state the elements in
the model the way s/he prefers, thus making possible dependencies become explicit.
The next version of IRENE will be more prescriptive on how to write the different
annotations and also on how to relate them.

3.6 IRET
This section presents the first version of the tool for the goal-based requirement en-
gineering modelling, named IRET (IREne Toolset). The tool has been developed fol-
lowing a model-driven approach, and it is available as a set of plug-ins for the Eclipse

INDENICA D1.2.1

 33

platform. The instructions for download and install the tool are available in the Ap-
pendix.

We decided to build IRET on top of the Eclipse platform for several reasons: the ar-
chitecture of Eclipse is general and flexible enough to develop that kind of applica-
tions (visual editors); additionally, among the projects related to Eclipse there are a
set of tools and frameworks useful for model-driven development. Finally, Eclipse
provides a system to build general-purpose applications, the Rich Client Platform,
allowing us to build and release IRET as stand-alone application.

The following sections briefly describe the development of IRET, present the graph-
ical elements we defined for the model used in this release, introduce the editor
graphical, and provide some instructions for the creation and the management of
IRENE models.

3.6.1 IRET and Eclipse
Eclipse provides a set of tools and frameworks to help the development following a
model-driven approach5. In our development, we considered mainly two frame-
works: the Eclipse Modeling Framework6 (EMF) and the Graphical Modeling Frame-
work7 (GMF). A general schema representing the development process of IRET is
available in Figure 3.8.

EMF is a set of components that help developers define the model (the domain
model) and generate related code. The model can be generated starting from anno-
tated Java classes, XML documents or UML models. Alternatively it is possible to de-
fine the model from scratch by using a graphical tool offered by EMF. The domain
model is stored in an XML file with ecore extension; generally, this file can be used
to generate the Java code of the model, and also as input for other Eclipse modelling
tools to perform a wide range of operations, such as model to model transfor-
mations, model checking, construction of graphical editors, and so on. For our pur-
poses, we used the domain model to generate two plugins:

5 http://www.eclipse.org/modeling/
6 http://www.eclipse.org/modeling/emf/
7 http://www.eclipse.org/modeling/gmp/

INDENICA D1.2.1

 34

Figure 3.8: Development process of IRET.

 Model plug-in contains the Java classes of the elements composing the domain
model and a factory class;

 Edit plug-in contains the base classes useful for building the editor, such as label
providers, property sheet generators and a command framework to manage the
editing of the model (with undo and redo features).

GMF provides a set of tools to build graphical editors based on EMF models. Figure
3.9 represents the GMF development process.

Figure 3.9: Development with EMF and GMF8

As shown in the figure, after the creation of the GMF project, one must develop
three files that will contribute to the definition of the graphical editor:

 the Domain Model: the ecore file describing the model, built with EMF as ex-
plained above;

 the Graphical Definition: a XML file with gmfgraph extension, that defines which
objects will be visualized in the graphical editor (nodes, labels, links) and their
graphical aspects (shape, color, etc.)

8 Image from: http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1

INDENICA D1.2.1

 35

 the Tooling Definition: a XML file with extension gmftool containing the list of
the elements that will be visualized in the palettes of the editor.

After the definition of the model, the graphical elements and the palettes, one must
define a relation model to specify the links between the components of the three
files. In other words, each graphical element of the editor should be related to a
concept of the domain model and, optionally, to an element of the palette (for ex-
ample to create new instances). The output of this step is the production of a XML
file with extension gmfmap.

The mapping file is the input to create the generator model, an XML file (with
gmfgen extension) containing all the required information for the generation of the
graphical editor. This file contains not only the mapping between the domain model
and the elements of the editor, but also other information, such as the menus, the
parsers, the editor metadata (the author, the version) and so on.

Finally, the generator model supports the generation of the Java code: the output is
the third plugin shown in Figure 3.8, the Diagram plugin. It depends on the Model
and Edit plugins and provides the classes to have a complete editor: the graphical
elements, the classes for the creation and the modification of the model (through
invocation of the Editor plugin), the classes to serialize created models in XML files.

Finally, we modified the three plugins to customize the behaviour of the editor.
Some examples of our modifications are the addition of images to the graphical ele-
ments, the creation of a dedicated perspective for the editor, and the definition of
additional features to be visualized in the property sheets for particular model ele-
ments.

3.6.2 IRET elements
As already said, IRET implements IRENE through EMF. An EMF model is pretty similar
to a UML class model: there are classes, representing the concepts of the model,
with attributes and methods. Classes are connected through different kinds of rela-
tions (inheritance, user-defined relation, etc.). Additionally it is possible to insert
rules using the Object Constraint Language (OCL).

Due to the fact that a detailed description of the meaning of the IRENE elements is
supplied in previous sections, here we briefly present the EMF model without going
in depth in the semantics of the components. For the sake of clarity we represent
the main elements of the model in a couple of class diagrams. The first one (Figure
3.10) shows the part of the model related to goals and responsibilities.

INDENICA D1.2.1

 36

Figure 3.10: EMF model of IRENE - Goal and responsabilites.

The main element in the diagram is class Goal; goals can be specialized in behaviour-
al goals (as defined in KAOS) and in adaptation goals. Behavioural goals are related
through refinement and contribution links: the former allows one to split a goal in a
combination of simpler goals, while the latter indicates how much a sub-goal con-
tributes to the satisfaction of the super-goal.

Additionally, leaf goals (goals without refinements) are associated with one or more
operations that decompose the goal; the constraint that only leaf goals can be “op-
erationalized by” operations is expressed though a rule.

Operations are then supplied by agents, which can be humans or automated. The
relation of responsibility, which links agents to goals, is expressed as composition of
relations operationalizedBy and opeart:

responsibleOf opeart operationalizedBy

Figure 3.11 shows the object model: the main class of this diagram is class Object,
characterized by an ID and a name. Object has a set of elements that inherit from it:
as explained above, there are Events (instantaneous actions), Entities (informative
content providers), Agents (goals responsible elements) and, indirectly, Associations
(relations between objects).

INDENICA D1.2.1

 37

Figure 3.11: EMF model of IRENE – Objects.

Finally, Table 3.4 introduces the graphical notation used in the GUI of IRET to identify
the different elements.

IRENE Element IRET
Representation

IRENE Element IRET
Representation

Behavioural goal

Operation

Adaptation goal

Human agent

Contribution rink

Automated agent

AND refinement link

Entity

OR refinement link

Event

Table 3.4: Elements used in IRET GUI.

INDENICA D1.2.1

 38

3.6.3 Graphical interface
IRET provides a full-fledged graphical interface/editor that offers all the elements in
IRENE to let the user design complete and consistent requirements elicitation mod-
els. This perspective, according to the Eclipse jargon, can be selected from the per-
spective list of Eclipse (Window Open perspective Others…).

Figure 3.12 shows a screenshot of the perspective with four main components: Main
panel, Project Explorer, Properties and Outline.

Figure 3.12: Screenshot of the application.

The user designs goal models in the main panel. This panel, Figure 3.13, is further
split in two parts: a Palette, where the user can select the different elements and a
Drawing area, to draw the model.

Figure 3.13: Main stage.

The management of existing elements is done through the Property panel (Figure
3.14). Each object (both nodes and links) has a set of attributes, as defined in the
EMF domain model (described above). Attributes are typed and they are distributed
in one or more tabs: the disposition varies dynamically depending on the element:
for example operations have additional tabs for the definition of preconditions and
effects.

INDENICA D1.2.1

 39

Figure 3.14: Propeties.

With complex models, the amount of existing elements in the Drawing area can be
very high, thus affecting the readability and ease of navigation of the model. To cope
with this problem, the perspective offers the Outline panel. The panel shows a
thumbnail of the whole model, with a rectangle representing the area shown in the
Drawing area (an example in Figure 3.15). The user can move the rectangle to select
the area of interest and visualize it in the Main panel.

Figure 3.15: Outline

The last component of the interface of IRET is the Project explorer (Figure 3.16).

INDENICA D1.2.1

 40

Figure 3.16: Project explorer

On the one hand, this panel allows the user to view the list of the existing projects
and the files composing them; on the other hand, the user can see the list of the el-
ements in each IRET file. For each element, it shows the class of the element (with
the relative icon) and the name.

3.6.4 Creating and saving models
Each model should be related to a project. It means that to create a model, at least a
project should exist in the Eclipse workspace.

Figure 3.17: Creation of a new model.

New models can be created by selecting IRET Diagram in the New dialog (File
New… Other…), as shown in Figure 3.17, by pressing the Next button and by fol-
lowing the wizard procedure. For every model, the tool creates two files: one with
extension iret and one with extension iret_diagram. The first file contains the
information about the model; the second contains the graphical description about

INDENICA D1.2.1

 41

the elements of the model. When a new model is created, the tool automatically
opens it in the Main panel.

Then the user can start designing the model and insert new elements as shown in
Figure 3.18: s/he selects the element of interest from the Palette and then places it
into the model.

Figure 3.18: Insertion of a new element in the model.

When positioned on the canvas, the user can add the name of the element, then
visualized as label. Finally, the user can insert the description of the node in the
Property view.

To insert relations (Figure 3.19) between nodes is similar to what described above:
first the user selects the type of relation among the ones available in the palette, and
then s/he drags the mouse from the starting element to the ending one to create the
relation between them. A set of descriptors in the Property panel allows the user to
modify the attributes of the relation.

Note that the editor verifies whether the relation can be set for the two selected
elements: if the user tried to draw an invalid link, the editor would deny its creation.
Examples of these situations are the incompatibility between the type of the source
element and the domain type of the relation, or the existence of constraints that
would be violated with the new link (e.g. a goal cannot be a refinement of itself).

The deletion of elements (nodes or links) from the model can be done through the
“Delete from Model” command available in the contextual menu of each element
(enabled by right clicking on an element).

INDENICA D1.2.1

 42

Figure 3.19: Insertion of a new relation in the model.

Models are saved by using the Save command (File Save): as explained before,
models are stored in two XML files, with extensions iret and iret_diagram.
The first file contains the list of existing elements, the relations between them, and
the values of the properties of each element, as reported in the following sample:
…
 <hasBehaviouralGoal name="G1.1" refines="//@hasRLink.0" operation-
alizedBy="//@hasOper.0"/>
 <hasBehaviouralGoal name="G1.2" refines="//@hasRLink.0" operation-
alizedBy="//@hasOper.1"/>
 <hasBehaviouralGoal name="G1.3" refines="//@hasRLink.0" operation-
alizedBy="//@hasOper.2 //@hasOper.3"/>
 <hasBehaviouralGoal name="G1.4" refines="//@hasRLink.0"/>
…

The second file contains the graphical description of the elements of the model: the
position in the Drawing area, the font to be used for the visualization of the name
and so on.

…
 <children xmi:type="notation:Shape"
xmi:id="_z5gocOUeEeCbe9VuGRQQ9w" type="2013" fontName="Arial">
 <children xmi:type="notation:DecorationNode"
xmi:id="_z5idoOUeEeCbe9VuGRQQ9w" type="5011"/>
 <element xmi:type="retool:BehaviouralGoal"
href="default3.retool#//@hasBehaviouralGoal.0"/>
 <layoutConstraint xmi:type="notation:Bounds"
xmi:id="_z5goceUeEeCbe9VuGRQQ9w" x="440" y="20"/>
 </children>
…

Since IRET is supposed to be the first tool of a chain, the distinction between the de-
scription of the model and its graphical representation is very useful: this way the
components requiring as input the output of IRET could only receive the iret file,
and ignore the iret_diagram one.

INDENICA D1.2.1

 43

4 User Centred Requirements Engineering

4.1 Motivation
Each time one tries to raise the whole set of requirements from all relevant stake-
holders you are faced with a bunch of challenges.

Apart from the difficulty to identify the complete array of stakeholders, it is overcon-
fident to assume that each single stakeholder is really aware of all aspects of re-
quirements relevant to him in order to get a comprehensive perception of all differ-
ent aspects.

Platforms and service oriented environments add additional complexity to this topic.
So the clear view of the user and his perception of the system under development
get even more importance.

In the 50’s of the last century, two American social psychologists, Joseph Luft and
Harry Ingham developed a method for visualization self and external perception
when executing personality tests, called Johari Window9.

It consists of four distinct areas of perception:

 Open: The most evident area of our consciousness. It is obvious as well to us
ourselves as well to others. Thanks to this own and public awareness of this
area, it is called “Arena”.

 Blind: This area is dangerous, as it covers aspects which are known to others
whereas they are unknown to ourselves. Therefore this area also is called
“Blind spot”.

 Hidden: The third area represents those aspects which are known to our-
selves but unknown to others. It is called “Façade”. Aspects of this are may
actively be concealed from the recognition of other people.

 Unknown: The last area is characterized by a total lack of knowledge by oth-
ers and ourselves. Obviously this section cannot be described extensively.

9 See http://en.wikipedia.org/wiki/Johari_window (accessed 25 May 2011)

INDENICA D1.2.1

 44

Figure 4.1: Johari-Window

Transformed to the challenge of user centred requirements engineering, the Johari
Window may use as a model to describe the different facets of requirements, which
are not visible in the same way to all stakeholders.

Let’s consider any specific scenario:

Each user has his perception of expectations and requirements. But as seen in the
Johari window model, he’s not always aware of all aspects.

 For the first area (Open, “Arena”) the elicitation of requirements is rather
comfortable, as users and their environment know about these issues. Re-
quirements of this group can be documented clearly. They are well-known by
all stakeholders. If the relevance is similar for all stakeholder groups, these
requirements are candidates for members of the core asset base.

 For the second area (Blind, “Blind spot”), elicitation requires high efforts. Of-
ten directly involved stakeholders are not aware of these requirements. One
reason might be that for them requirements of this area seem to be self-
evident. So other stakeholders have to be included to reveal also require-
ments of that area.

 For the third area (Hidden, “Façade”) it may be even harder to detect these
requirements, because the stakeholder – for any reason – may try to hide
these requirements or at least might not admit to have them.

 For the fourth area (Unknown) it is almost impossible to detect these re-
quirements, because no one is aware of the existence of these requirements.

Considering especially the first three areas, the need is obvious to establish a meth-
od for requirements elicitation which puts each individual user or user group into the
centre of reflection.

Only the composition of all different points of view (laying all perspectives on the top
of each other or beside to each other) allows to detect the overall view. On doing so,
the information about

INDENICA D1.2.1

 45

 Origin of requirement

 Priority of requirement for each stakeholder

may not get lost. An approach for ensuring this is presented in chapter 4.3.

4.2 User Centred Design
In an interview with the Digital Web Magazine [Evans, 2002] Peter Merholz and
Nate Shedroff gave definitions of user centred design:

Peter Merholz:

“Contrary to common wisdom, user-centered design is not a process, but a philoso-
phy. User-centered design requires the inclusion of a product's end-users throughout
the design process.”

Nate Shedroff:

“User-Centered Design is an approach to creating experiences for people with their
needs in mind. Usability is one of the primary foci but only one of several. Others
include usefulness, desirability, legibility, learnability, etc. The benefits are that these
experiences are often easier to use and learn; more appropriate in terms of function
and use, and more compatible with existing processes.” [Evans, 2002]

A user centred model contains four dimensions of user participation in the design
process (see Figure 4.2):

Figure 4.2 Dimensions of the User centred Model

The user-centred process places the user as an active participant in the design of the
product.

ISO 13407 defines a standard for a human-centred design process with three areas:

• Human-centred design activities

• Throughout the whole lifecycle

• Interactive computer-based systems

INDENICA D1.2.1

 46

Main activities are:

1. Specify the context of use

• Identify users

• Identify purpose

• Identify circumstances

2. Specify requirements

• Identify business requirements

• Identify user goals

3. Create design solutions (prototypes)

• Develop solution in iterations

4. Evaluate designs

• Usability testing with actual users

Figure 4.3 Human-centred design process

The main principles of User Centred Design are:

• Iterative Approach

• Early concentration on user requirements

• Empirical evaluation of prototype by user

Recommended Methods for User-Centred Design

• Interviews

• Contextual Inquiry

• Online survey

• Persona
(fictional character created to represent a specific user type)

• Use Case

INDENICA D1.2.1

 47

• Prototyping

• Usability Tests

• Review performed by experts

4.2.1 Requirements Engineering and User Centred Design
What is then „User-Centred Requirements Engineering“?

Figure 4.4 RE in the Human-centred design process

User centred Requirements Engineering may be interpreted as a well defined part
within the “User-centred Design”:

The constantly recurring iteration loop the following steps:

 Context of use

 Requirements

can be identified as process steps of the “User-Centred Requirements Engineering”
process.

That includes the following tasks:

 Meet with key stakeholders to set vision

 Include usability tasks in the project plan

 Assemble a multidisciplinary team to ensure complete expertise

 Develop usability goals and objectives

 Conduct field studies

 Look at competitive products

 Create user profiles

 Develop a task analysis

 Document user scenarios

INDENICA D1.2.1

 48

 Document user performance requirements

Hongquin Sun defines “User Centric Requirements Engineering” and derives the
term from “User Centric Software” [Sun 2007]. His work focuses on User Centric
Software, which means software with a high user interaction

 Intensive user-computer interactions.

 Oriented to users’ responsibilities or goals.

 Usability sensitive - appropriate interface, easy operation.

 Users’ HCI satisfaction is a priority.

He refers to User Centric Development:

 The software development team includes some users.

 The user is an equal participant with the developers in making development
decisions.

 The software development team develops the software using an iterative ap-
proach.

 A series of versions or prototypes of the software are developed and deliv-
ered

 With feedback from users of earlier versions of the software driving devel-
opment of later versions.

4.3 User Centred Dimensions
In general, RE could be based on use cases and user stories and therefore also on
involved stakeholders. One challenge in RE is to find the adequate priority for a
common set of requirements, with respect to the different importance of the stake-
holders.

Often RE takes the very end user as starting point and expands the application re-
quirements from the very end user to the next involved user and so on.

Therefore RE could be seen as a more-dimensional relationship diagram of require-
ments. To take into account the different importance of requirements, it’s helpful to
add weight factors (e.g. multi-factor analysis), so that specific requirements (e.g.,
security requirements) may overrule other requirements. Weight could also be as-
signed to certain users, according to their importance for the system. For product
lines an additional challenges consists in

 defining the adequate set of requirements bound for the platform

 and the correlation of functionalities to the specific products.

For user centric RE we define three dimensions as basis:

INDENICA D1.2.1

 49

4.3.1 User level dimension
The main questions regarding these levels are:

 Who is the user?

 Which user groups are on the level?

The sequence of levels could be defined as follows:

1. Level: end user groups- view,

2. and (n+1)th Level: user group before the end user groups, etc. “backwards” which
means “in greater distance to the system under development” (See Figure 4.5).

End user groups

user groups in greater distance
to Application / Product

Next to end user groups

Group 1 Group 2 Group 3

Groups x

Groups y

Application/
Product

End user groups

user groups in greater distance
to Application / Product

Next to end user groups

Group 1 Group 2 Group 3

Groups x

Groups y

Application/
Product

Figure 4.5 User groups in the user level dimension

4.3.2 Importance dimension
Each user has a specific priority for his requirements, but also for the topics these
requirements belong to. Also the importance of these topics varies from user to us-
er. The main questions behind these levels of the importance dimension are:

 What is the centric importance of a topic for the user groups?

 What is the most important topic for the user groups?

The symbol of “centric” could be used to visualize the importance of the topics for
the user. The most important topic for the specific application is closest to the user,
while the others could be placed on concentric circles around the users. See Figure
4.6

INDENICA D1.2.1

 50

Application/
Product

user
interface

perfor-
mance

security
Feature 1

User
Group

Application/
Product

user
interface

perfor-
mance

security
Feature 1

User
Group

Figure 4.6 the user’s perspective as input for user dimension ”centric topic priority”

Hint: This order can be different for the different user groups and user groups’ levels.
Each user group has a different view on the application / product and rates different
topics with different importance.

Samples of centric topics are: performance, user interface, different features, securi-
ty, etc.

4.3.3 Requirements dimension
From the user’s point of view, every user has a set of requirements for the system
under development. These requirements belong to different topics. So requirements
could be clustered according to the topics they belong to. For RE it is also important
to get a consolidated set of requirements, to which all stakeholders are committed
to.

4.3.4 Connection to the Requirements Engineering process steps
User-centered dimensions are means for structuring and categorizing users and re-
quirements. This helps in reducing the complexity of RE. The most useful contribu-
tion will be found in the early steps of RE. The first two process steps are “require-
ments elicitation” and “requirements analysis”.

Requirements elicitation

Requirements elicitation is the first step in the RE process.

The main challenges concerning requirements elicitation are [56]:

 Identification of relevant requirement sources

 Elicitation of existing requirements from the identified sources

 Development of new and innovative requirements

In “elicitation” the user level dimension is used for a systematic approach of collect-
ing requirements.

INDENICA D1.2.1

 51

 User groups on the different user levels help to identify all stakeholders.

 For each user group on each user level requirements should be collected.

The topic importance, it is also used for systematic work on elicitation.

 For each user group find the ranked sequence of topics regarding the centric
importance and execute the Requirements Engineering process for each top-
ic:

 Take user group X. Take the perspective of this user group when looking at
the application / product.

1. step: RE for the most important centric topic.

2. and (n+1)st step: RE for the next important centric topic.

Requirements analysis

Requirements analysis is following “requirements elicitation” as second step in the
RE process. The main focus is on defining a common set of requirements which could
be used for further development. The main challenges concerning requirements
analysis are [56,59]:

 Structure requirements
 Develop a common set of requirements

o Eliminate unnecessary requirements
o Add missing requirements
o Discover requirements overlaps and conflicts
o Analyze the cause for each conflict
o Resolve the conflicts
o Document the resolution and their rationale

 Prioritize requirements
For the prioritization we will introduce a method in chapter 4.3.5.

In platform environments one specific topic is to define the parts belonging to the
platform and the parts specific to the different products. So after building the com-
mon set of requirements, as next step prioritizing and development of platform and
product requirements is necessary. The user centred dimension could be used for
visualizing requirements priorities given by certain user groups.

4.3.5 Mosaics of Requirements Priorities

As first step, each user group has to prioritize the common set of requirements. We
draw a matrix with following axis:

 x-axis: requirements axis
requirements are grouped together according to the topic they belong to

INDENICA D1.2.1

 52

 y
-axis : priority axis
priority in descending order, which means 1 is highest priority, 4 is lowest
priority

Each user level is given a specific colour.

Figure 4.7 Requirements-Priority table

A coloured field is placed at the point, where the user group votes a certain priority
for a requirement.

This rating is done for each user group on each user level. An example result is given
in Figure 4.8. This outcome could be used for further elaboration.

P
rio

rit
y

P
rio

rit
y

P
rio

rit
y

P
rio

rit
y

P
rio

rit
y

P
rio

rit
y

Figure 4.8 Result of voting for 3 user levels and two user groups on each user level

Priority Mosaic as combined result

Each voting of a user group is represented by a tile. User groups could be weighted.
User groups with double weight get tiles in double size.

Each square is divided into as many fields, that the maximum of reachable tiles could
be placed. In our example:

INDENICA D1.2.1

 53

[double size tile (=2 single tiles) for user group1] + [1 single tile for user group
2,3,4,5,6] = (2+5) tiles = 7 tiles

For each user group their tiles are placed in the square of the priority stated for the
requirement.

Figure 4.9 shows the result for the above example.

Pr
io

rit
y

R1
R2

R3
R4

R5
R6

Figure 4.9 Priority mosaic

Expected result:

• Overall priority for a requirement

• What should be included in the core asset base, what is included in specific
products

What we can see:

• How many user groups voted for a requirement at a certain priority

• Also information about the core asset requirements vs. product requirements
is visible. For example R6 is stated from all user groups at nearly the same
priority, which could be a hint for the core asset base. Whereas R5 is only im-
portant for user group three, but nor for the other user groups. This could be
a candidate for a product requirement.

Conclusion:

• Visualization shows which weights are from which user groups at which prior-
ity

• Also shows areas where trade-off has to be made

• Also shows separation of product vs. platform/core asset base requirements.

4.4 Agile RE for PLE
Agile methodologies aim at making the development process more flexible, light-
weight and more focused on the target desired by the customer. Bases are iterative
and incremental proceedings with close collaboration with the customer. Moreover,
the Manifesto for Agile Software Development reads:

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

INDENICA D1.2.1

 54

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.10

Hereby, it is assumed that requirements cannot be fully specified at the start of the
development so that close and continuous collaboration with the customers and
stakeholders is vital.

One of the most common agile methodologies is the project management frame-
work SCRUM.

The iterative and incremental approach is mapped in the Sprints where the output of
each development Sprint is a working increment of the product. In SCRUM the cen-
tral elements regarding RE are the SCRUM role “Product Owner” and the artefacts
“Product Backlog” and “Release Plan”.

The Product Owner (PO) is someone who has best customer and market knowledge
and acts as voice of the customer to the development team. The PO has the vision of
the product, can estimate its business value, ranks the features to be developed by
the development team, and explains the features to them.

The PO writes the features which the customer wishes into the Product- Backlog. The
Product Backlog contains all (product, performance, etc. related) features that the
customer wants and the technical dependencies as well. The product backlog is pri-
oritized, described in user stories where the high priority features are described in
more detail than the low prioritized ones, and contains acceptance criteria for the
user stories, their business value, the risk, rough effort estimation estimated in some
unit (e.g., ideal days), and dependencies.

Then, the Product Backlog Items are assigned to in which Sprint they are going to be
implemented – and this planning is kept in the Release Plan/Release Backlog. For
each Sprint again the development team commits to implement a certain amount
out of the Product Backlog Items based on the information of the Release
Plan/Release Backlog. So, the Release Plan/Release Backlog has to be updated con-
tinuously according to the team’s commitment, and what the team finished in the
Sprint, and the respective feedback of the customer. The part of the product backlog
to that the team commits for a Sprint is called Sprint Backlog.

10 Source: http://agilemanifesto.org/

INDENICA D1.2.1

 55

Figure 4.10: The SCRUM process11

Figure 4.11: Example for Product Backlog Items and a User Story

4.4.1 User centric Requirements Engineering with SCRUM
Since in agile methodologies customer collaboration is a central element, there is a
lot of user feedback and user influence during the whole agile process - during the
Product Owner’s process part and the implementation process part as well: The user
or customer is explicitly asked to give feedback to the working increment of the
product which flows back into an update of the product backlog and release
plan/release backlog. Over these artefacts, the user or customer influences the
sprint backlog and the implementation as well.

With this, agile methodologies, especially SCRUM’s iterative Sprints, enrich the itera-
tive approach of the user-centred RE, described in Section 4.2.

11 Source: http://en.wikipedia.org (accesed 25 May 2011)

INDENICA D1.2.1

 56

Figure 4.12: Users’ feedback in Agile’s iterative process (enriching the iterative approach of the

user-centred RE)

How agile requirements engineering can be organized, what interfaces they face and
how user’s feedback flows into an agile RE is described in the following.

The main decision point for the product’s features in an agile development is the
Product Owner (PO).

In small agile projects, there is one Product Owner who tells the (development) team
what to implement.

In larger organizations however, the Product Owner (PO) does not perform require-
ments engineering into the detail that the developers would need to be able to im-
plement the new product. Often, based on the input from the PO, some specialists
(requirements engineers (RE’s)) care for the (Software) Requirements engineering,
requirements specifications and the features specifications to the necessary degree
of detail for the development. They detail the Product Backlog from the PO into spe-
cific requirements for the development, care for the specific user’s feedback and
face so a lot of interfaces (see Figure 4.13 and Figure 4.14).

Figure 4.13: Agile RE interfaces

INDENICA D1.2.1

 57

Figure 4.14: User Centric RE in Agile’s iterative process (enriching the iterative approach of the user-

centred RE, described in chapter 4.)

More information regarding Agile RE’s’ interfaces to customer, stakeholder, or user
feedback including Figure 4.15 can be found in [Hoffmann 2011].

Figure 4.15 A proposal for integration of users from the Sophist group

Let us assume there is a larger organization with some requirements engineering
specialists (RE’s) supporting the PO and the development team. In order to handle
the interfaces from RE’s to the development team and PO best, RE processes can be
set up in different organizational units.

4.4.2 Requirements Engineering Organization Options
1. RE can be part of a “PO Team” and belong to the Product Owner’s organization
which could be, e.g., Product Management, or

INDENICA D1.2.1

 58

2. RE can be part of the development team that implements the requirements that
come from the PO, and can so be part of the development’s organization, e.g., R&D.
This option has the advantages that close cooperation and clarification of R&D’s
needs is easier with the objective to implement user’s wishes best. Due to RE’s direct
dependency on the product backlog and the user stories in the product backlog, the
communication and exchange with the PO is mostly good as well.

Note that in all cases there strongly should be one PO as decision point for product
vision / product backlog related questions.

Additionally note that PLE is usually a relevant topic in larger organizations.

4.4.3 Product Line Engineering Approach Using SCRUM
The previous sections illustrated different aspects agile RE has to handle (like, e.g.,
organizational or contextual aspects) - in the case of the development of one single
product.

In the case of multi project / more products’ development, there are many stake-
holders for each project. And, for PLE, all stakeholders’ requirements need to be co-
ordinated. So, if PLE wants to be achieved, management decision is necessary,

1. to commit to and support PLE activities, and

2. to establish and empower a PLE Product Owner.

PLE & SCRUM: 1st step

For multi project / more products:

Establish a PLE Product Owner who is responsible for the product backlog and re-
lease plan/release backlog for PLE. This PLE Product Owner needs to clarify the de-
pendencies, PLE, Re-use, different stakeholders’ requirements with the Product
Owners of the affected projects / products.

To support the PLE Product Owner best and to manage the requirements from the
stakeholders of the affected projects / products appropriately, a “Stakeholder Analy-
sis Team” should be established for:

 Coordination

 Which stakeholders are in which project

 Stakeholders’ requirements

 Evaluation & Weighting of the Requirements, e.g., in a matrix.

 Dependencies

 Compatibility

INDENICA D1.2.1

 59

Figure 4.16: PLE Product Owner checks Product Backlogs regarding PLE

PLE & SCRUM: 2nd step

The result of the discussion of the affected Product Backlogs with the respective Product
Owners, the original Product Backlogs and Release Plans/Release Backlogs might need to
be aligned and re-ranked to support the PLE approach best. Also for this, clear management
support for PLE is necessary.

INDENICA D1.2.1

 60

Figure 4.17: PLE Product Owner and POs re-rank product backlogs of the affected products

In further work we will have a closer look the application of SCRUM when introducing a IN-
DENICA Virtual Servie Platform

INDENICA D1.2.1

 61

5 ROI Estimation for Service Platforms

‘Platform as a Service’ (PaaS) has a ‘Product Line Engineering’ (PLE) aspect, in that it
is provided centrally and used as part of other services at many places, like reuse
assets. This comes at the cost of organizing and operating the central installation and
the provision of the network infrastructure.

Therefore, when estimating the ‘Return on Invest’ (ROI) of a PaaS approach, similar
estimation methods as in PLE can be used. One such method is based on results from
the European Union (EU) projects CAFÉ, ESAPS, FAMILIES and is presented in detail in
[Pohl2005]. It delivers quantitative ROI analysis results, serving e.g. as a decision
base for or against a PLE approach. This analysis method compares the cost of appli-
cation development in a PLE environment with the cost of developing the same ap-
plications in separate uncorrelated development projects. Section 5.1 summarizes
this approach. Section 5.2 explains how the formula can be simplified, based on
business case constraints of the domain in scope, to become usable. Refer to [Clem-
ents2005] and [Bayer1999] for additional information regarding ROI for PLE.

The cost estimation in this method focuses on development costs. This is not suffi-
cient in a PaaS environment, because it does not consider operation, maintenance
and infrastructure. Further more the application of PaaS has the potential for addi-
tional applications and therefore additional profit that would not be able with dis-
tributed standalone applications. Therefore, when estimating the ROI of PaaS, this
additional profit should be taken into account too. Chapter 5.3 introduces an en-
hanced approach that takes account of these additional cost aspects.

If PaaS shall be introduced into an environment that already exists, then a migration
strategy is needed and the cost estimation should take this into account. Chapter 5.4
introduces such an approach.

5.1 Estimating the development ROI for PLE
Figure 5.1compares a separated product development with a PLE approach. The blue
parts are product specific developments; the yellow parts represent the develop-
ment of reuse assets.

It is assumed that the development of reuse assets happens in a controlled way, and
that reuse assets are finally stored in a central location (CM System, File System,
etc.), called ‘Core Asset Base’ (CAB) that supports retrieval. Reuse could be (parts of)
requirements, plans, specifications, designs, test cases, manuals, subsystems, code,
drawings, scripts, or anything else that is reusable.

Figure 5.1 also demonstrates the two main ways of reuse: reuse over time and reuse
over space. Reuse over space means that assets are reused across several products
or product lines at (roughly) the same time; i.e. in parallel development projects.
Reuse over time means that assets are reused in several versions; i.e. in sequential
development projects of the same product.

Note that the term ‘Product Line’ has different meanings in different environments. In
a PLE environment covers a ‘Product Line’ usually all products or applications that are

INDENICA D1.2.1

 62

based on a common CAB. In a non-PLE environment is a ‘Product Line’ usually a
product with all its versions (and variants) over time. In this chapter (3) the second
definition is used, even for the PLE approach.

Figure 5.1: Separate product development versus PLE approach

Calculating the cost of (V) versions over (X) product lines is a nested sum over the
cost of each product version (Cprod):

This formula can be directly used to calculate the cost in a non-PLE environment.

In a PLE approach the cost of a product version is divided into three main parts:

Yellow: the cost for developing the reuse assets,

Orange: the cost for using reuse assets (retrieval, adaptation …) and

Blue: the development costs for product specific parts.

When migrating from a non-PLE to a PLE environment there is an additional initial
cost block (purple) that covers the necessary change costs towards a PLE organisa-
tion. Formula 5.2 shows the cost calculation in a PLE environment.

The formula assumes that the number of products or applications using the CAB may
vary over time (X(v)). Figure 5.2 shows an example for 3 versions and constantly 2
product lines. (see Figure 5.3 for an example with changing number of applications
over time).

The formula does not depend on how the CAB development costs (Ccab(v)) are dis-
tributed across the using product lines (e.g. evenly if reuse assets are financed cen-
trally, or depending on grade of usage if financed by licences).

INDENICA D1.2.1

 63

Figure 5.2: Example cost factors for 3 versions of 2 product lines, CAB cost evenly distributed

A ‘Return on Invest’ (ROI) is calculated by: Gain / Invest * 100%. Formula 5.3 shows
this calcultation for the introduction of PLE. Usually the question is how many ver-
sions need to be developed to get a positive ROI.

5.2 How to make the PLE cost calculation usable
Formula 5.2 is generic enough to be applied to any PLE development environment.
But due to the large number of parameters that need to be estimated it is not really
viable. Often the estimation can be simplified by replacing version and product line
dependant parameters with (a few) constant parameters. But, such simplifications
heavily depend on the business environment.

This sub-chapter describes a simplification that was used in a real project. The goal
was to get a rough estimation if it economically makes sense to switch from an exist-
ing non-PLE approach to a PLE approach. The result of the calculations was that only
for a specific solution the transition would have been recommendable, but not in
general.

The business environment had following attributes, which were elaborated together
with the domain experts:

INDENICA D1.2.1

 64

 The number of product lines was assumed to be stable over the timeframe in
scope

 Reuse assets should have been centrally financed and the costs evenly dis-
tributed across the using product lines

 Cost of version development was almost constant for the timeframe in scope,
and a known fraction (Fevo) of the initial product development; this factor also
would have been applicable for the evolution of the core asset base

 Cost for development and test were proportional

 Product cost was dominated by development (incl. test, manuals, …) cost; i.e.
there were no planned field maintenance or repair costs after development

 An estimated fraction of assets (Freuse) could have been developed as reuse
assets

 The development of reuse assets was estimated to be a factor (Foverhead) more
expansive than a specific asset development (enhanced variability, more
documentation, …)

These assumptions translated formula 5.2 to:

In this formula the first version comes at full cost; all other (V-1) versions cost only a
fraction (Fevo) of the initial development.

Corg depended on the number of employees (Nempl) and a medium effort per employ-
ee (Cempl) in relation to working time per year (Wy).

Ccab could have been derived from non-PLE development cost, with the assumed
factors. It should include the scoping costs (Cscoping) to identify the reuse assets.

Using reuse assets was not assumed to be free (retrieval, adaptation, …) and the
costs was estimated to be a fraction (Fadapt) of the specific development cost.

Cspecific depended on the reuse fraction

The factors Nempl, Wy, Cprod and Fadapt were known by the organization. Experience
values from the CAFÉ, ESAPS and FAMILIES projects had been used for the factors
Cempl, and Cscoping . Only the factors Freuse and Foverhead had to be estimated.

This example shows that the generic formula can be effectively adapted to a certain
business case, allowing very efficient PLE migration cost estimations.

Note that this simplification strongly depends on the related domains business case.
The simplification may look very different in another domain or depending on the
organizations maturity; e.g. there may be non-linear relations or maintenance efforts

INDENICA D1.2.1

 65

need to be regarded. Nevertheless cost estimation becomes much easier, if a simpli-
fication can be found that eliminates the parameter dependency from ‘V’ and ‘X’.
Refer also to [Kreuter2008] for further details of this example.

5.3 Estimating the ROI for migration to PaaS
It is assumed, that PaaS will lead to additional business, i.e. increased profit "P", due
to the enhanced application flexibility. The ROI for a migration to PaaS is calculated
in a similar way as for PLE in Formula 5.3.

A possible additional income is completely domain and business dependent.

Regarding lifecycle cost it is a difference if software is operated locally or in a net-
work. Therefore the formula estimating development costs (Cdevelopment) needs to be
enhanced by cost term covering usage costs (Cusage). Ccab represents the ‘platform’
in PaaS.

The development cost is splitted in a reuse and a specific development part, as in
Formula 5.2:

The usage costs describe several aspects, the necessary or possible change in IT
hardware, the rollout costs of applications that may be locally or network based, and
the operation costs of network based applications.

Cost for changes in the IT hardware (Cit_hw) includes:

 code overhead in a ‘service environment’ leading to enhanced performance
needs

 eliminated redundancies leading to reduced performance needs

 enhanced communication needs

Cost for rollout (Crollout) includes:

 trainings of IT service and maintenance

 people change management

 installation and startup

 data migration

Cost for operation (Coperation) includes:

 rights management

 service distribution

INDENICA D1.2.1

 66

5.4 Cost estimation in migration environment
‘Migration environment’ means that existing applications shall be replaced by PaaS
based applications. During the migration phase there will be a fraction of legacy ap-
plications besides the PaaS (or CAB) based application for some time, as shown in
Figure 5.3. Refer to [Böckle2004], [Bosch2000], [Bosch2002], [Krueger2007] and
[Voelter2006] for more information regarding a PLE (migration) strategy.

The migration will also need changes in the development organization, as for PLE,
which come for a cost factor Corg.

Both parameters need to be included in the formula.

The reorganization costs (Corg) include e.g.:

 Reorganization (consider: product management, project management, sys-
tems engineering, development of reuse assets, configuration management,
IT service and maintenance)

 Motivation and trainings

 Reduced productivity during reorganization time

The cost for maintaining legacy applications (Clegacy); include e.g.:

 wrapper code to make it a service in the PaaS world

 bug fixing

 new functionality

INDENICA D1.2.1

 67

Figure 5.3: Migration of legacy code to a CAB / Platform in PaaS (Cappl = Creuse + Cspecifc)

5.5 Summary and outlook
The ROI calculation formula developed in the European Union (EU) projects CAFÉ,
ESAPS, FAMILIES has been enhanced to cover operation related costs, which is nec-
essary in a PaaS or a Service Oriented Architecture (SOA) environment.

The formula is generic enough to cover a broad spectrum of business cases, even
though business specifics may enforce that additional cost parameters need to be
included in a similar way. On the other hand is the generality of the formula’s pa-
rameters an obstacle to really use it as is, because it is hard to estimate all the pa-
rameters over typically 5-10 versions of several product lines. Therefore chapter 5.2
gives an example how such a generic formula can be simplified for a dedicated do-
main and business case, so that it can be efficiently used.

INDENICA D1.2.1

 68

6 References

[Evans 2002] Evans, Meryl K.: Understanding UCD (Interview with Peter Merholz and
Nathan Shedroff)
http://www.digital-web.com/articles/peter_merholz_and_nathan_shedroff (
accessed May 25, 2011.

[Sun 2007] Hongquing Sun: Developing User-centric Software Requirements Specifi-
cations. Master Thesis at the Mc Master University, Hamilton, Ontario, 2007

[Kreuter2008] Kreuter et al.: Applying a Cost Model for Product Lines: Experience
Report. MESPUL 2008.

[Krueger2007] Krueger: The 3-Tiered Methodology: Pragmatic Insights from New
Generation Software Product Lines: Proceedings of the 11th International Software
Product Line Conference, IEEE Computer Society, 2007

[Voelter2006] Stahl, Voelter: Model-Driven Software Devel-opment Technology, En-
gineering, Management: Wiley, 2006

[Pohl2005] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product Line Engineering
Foundations, Principles, and Techniques. Berlin: Springer, 2005.

[Clements2005] Clements, McGregor, Cohen: The Structured Intuitive Model for
Product Line Economics (SIMPLE):, Technical Report, CMU/SEI-2005-TR-003, ESC-TR-
2005-003, 2005

[Böckle2004] Böckle et al.: Software Produktlinien: Methoden, Einführung, Praxis,
dpunkt-Verlag 2004.

[Bosch2002] Bosch: Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization, Proceedings of the Second Conference Software Product
Line Conference (SPLC2), pp. 257-271, August 2002.

[Bosch2000] Bosch: Design and Use of Software Architectures: Adopting and Evolving
a Product Line Approach: Addison Wesley, 2000

[Bayer1999] Bayer, Flege, Knauber, Laqua, Muthig, Schmid, Widen, DeBaud: PuLSE: A
Methodology to Develop Software Product Lines: Proceedings of the 1999 symposi-
um on Software reusability, pp. 122 – 131, 1999

[Lauenroth et al. 08] K. Lauenroth, K. Pohl. "Dynamic Consistency Checking of Do-
main Requirements in Product Line Engineering," Proceedings of the 16th Interna-
tional Requirements Engineering Conference (RE '08)., pp.193-202, 2008.

[Pnuli 77] A. Pnueli. The Temporal Logic of Programs. In 18th Symposium on Foun-
dations of Computer Science (FOCS), pages 46–57, 1977.

[van Lamsweerde 2009] Axel van Lamsweerde. Requirements Engineering: From Sys-
tem Goals to UML Models to Software Specifications. John Wiley, 2009.

[Hoffmann 2011] Hajo Hoffmann, Requirements Engineering & Scrum, Systemanaly-
se im agilen Umfeld; in: Marc Sihling, Andreas Rausch, Christian Lange, Marco Kuhr-
mann (Hrsg.) Software & Systems Engineering Essentials, Proceedings 2011

INDENICA D1.2.1

 69

Appendix

We have successfully tested IRET on Eclipse 3.6 (Helios) and 3.7 (Indigo) on the fol-
lowing operating systems:

- Ubuntu 11.04
- Windows 7

Installation
- Download the IRET zip file from this site:

https://repository.sse.uni-hildesheim.de/svn/Indenica/deliverables/wp1/d121-release
- Unzip the file
- Open the Eclipse Install dialog (Help Install New Software…)
- Load the IRET update site from the local folder (see Figure A.1)

Figure A.1: Load of the IRET update site in Eclipse.

- Check IRENE Toolset to install all the plug-ins composing IRET:
o IRET Model
o IRET Edit
o IRET Diagram

- Press the Next button and follow the wizard procedure: it will install IRET and all the
plug-ins it requires to run

- Restart Eclipse

